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Abstract

Background: Genome–phenome studies have identified thousands of variants that are statistically associated with
disease or traits; however, their functional roles are largely unclear. A comprehensive investigation of regulatory
mechanisms and the gene regulatory networks between phenome-wide association study (PheWAS) and genome-
wide association study (GWAS) is needed to identify novel regulatory variants contributing to risk for human diseases.

Methods: In this study, we developed an integrative functional genomics framework that maps 215,107 significant
single nucleotide polymorphism (SNP) traits generated from the PheWAS Catalog and 28,870 genome-wide significant
SNP traits collected from the GWAS Catalog into a global human genome regulatory map via incorporating various
functional annotation data, including transcription factor (TF)-based motifs, promoters, enhancers, and expression
quantitative trait loci (eQTLs) generated from four major functional genomics databases: FANTOM5, ENCODE, NIH
Roadmap, and Genotype-Tissue Expression (GTEx). In addition, we performed a tissue-specific regulatory circuit
analysis through the integration of the identified regulatory variants and tissue-specific gene expression profiles in
7051 samples across 32 tissues from GTEx.

Results: We found that the disease-associated loci in both the PheWAS and GWAS Catalogs were significantly enriched
with functional SNPs. The integration of functional annotations significantly improved the power of detecting novel
associations in PheWAS, through which we found a number of functional associations with strong regulatory evidence
in the PheWAS Catalog. Finally, we constructed tissue-specific regulatory circuits for several complex traits: mental
diseases, autoimmune diseases, and cancer, via exploring tissue-specific TF-promoter/enhancer-target gene interaction
networks. We uncovered several promising tissue-specific regulatory TFs or genes for Alzheimer’s disease (e.g. ZIC1 and
STX1B) and asthma (e.g. CSF3 and IL1RL1).

Conclusions: This study offers powerful tools for exploring the functional consequences of variants generated from
genome–phenome association studies in terms of their mechanisms on affecting multiple complex diseases and traits.

Keywords: Phenome-wide association study (PheWAS), Genome-wide association study (GWAS), Regulatory variants,
Enhancer, Promoter, Human disease
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Background
Genome-wide association studies (GWAS) have proven
an effective strategy for the detection of variants statisti-
cally associated with disease or traits. Since 2005, thou-
sands of single nucleotide polymorphism (SNP)-trait
associations have been identified, most of which were
deposited in the GWAS Catalog [1]. In recent years,
benefiting from the rapid accumulation of detailed
phenotypic data from electronic medical records
(EMRs), the phenome-wide association study (PheWAS)
became feasible as a complementary approach to GWAS
to identify genetic susceptibility [2, 3]. Unlike GWAS, in
which investigators examine the association of hundreds
of thousands to a few million genotypes across the gen-
ome with a specific phenotype, PheWAS aims to detect
the association of a specific genetic variant with a wide
range of physiological and/or clinical outcomes catego-
rized by disease terminologies like the International
Classification of Disease (ICD) [4]. One of the advan-
tages of this design is that PheWAS has the ability to
identify pleiotropic effects for disease SNPs.
As a proof of concept, the first PheWAS genotyped

6005 European–Americans in Vanderbilt’s biobank using
five SNPs that had been previously reported with disease
associations in GWAS [4]. After generating case and
control populations across all ICD9 code groups for each
of these five SNPs, disease-SNP associations were sys-
tematically reanalyzed. This study suggested that Phe-
WAS could not only replicate known SNP-disease
associations but also identify potentially novel statistical
associations. Since this pioneer study, many other
groups have applied this strategy to assess previously re-
ported GWAS SNPs and managed to identify new asso-
ciations and pleiotropic effects [5–7]. In 2013, Denny et
al. released the results of the largest PheWAS for that
time, namely the PheWAS Catalog, containing 3144
SNPs reported in the GWAS Catalog [8]. However,
there are several challenges for PheWAS analysis,
such as poor understanding of the functional conse-
quences of variants and potential false positives and
false negatives in case assignment. Thus far, appropri-
ate statistical thresholds for defining clinical signifi-
cance have not yet been reported. Even for the top
202 associations in the PheWAS Catalog, the current
estimation of false positive rate for new associations
could be as high as 29% [8].
Another challenge is how to improve the interpret-

ation of the associations in the PheWAS Catalog. Previ-
ous studies have not systematically examined biological
or functional annotations associated with those SNPs.
Although one alternative PheWAS approach is to focus
on variants with expected function (such as damaging
variants with stop-gain and stop-loss) [9], this approach
could only be applied to a small proportion of GWAS

variants. Furthermore, the majority (~93%) of disease-
associated or trait-associated variants discovered in
GWAS are located in non-coding sequence [10]. Exist-
ing studies have identified a number of such variants
involved in transcriptional regulatory mechanisms, in-
cluding modulation of promoter and enhancer elements
and enrichment within expression quantitative trait loci
(eQTLs) [11–14]. Previous studies have suggested that
there was significant enrichment in functional SNPs
among the currently identified association results in the
GWAS Catalog [10, 15, 16]. Thanks to the recent ad-
vances of functional genomics studies, several national
and international projects, such as FANTOM5 [17], EN-
CODE [18], NIH Roadmap [19], and GTEx [20], have
generated massive amounts of functional data in various
human cell lines or tissues. Comprehensive investigation
of the functional or regulatory roles of the variants re-
ported by PheWAS and further investigation of their
tissue-specific regulatory networks will be important for
our deeper understanding of the biological consequences
of the significant SNPs involved in various complex dis-
eases or traits.
In this study, we performed a comprehensive investi-

gation of the functional regulation of variants derived
from the PheWAS Catalog through an integrative func-
tional genomics framework (Fig. 1). Specifically, we
incorporated functional annotation data, including tran-
scription factor (TF)-motif, promoter, enhancer, and
eQTL information from FANTOM5, ENCODE, NIH
Roadmap, and GTEx, into 215,108 significant SNP-trait
associations connecting 3107 SNPs and > 1000 complex
diseases or traits collected in the PheWAS Catalog. We
found a significant enrichment of functional SNPs in
these disease-associated loci in PheWAS compared to
the polymorphisms generated from the 1000 Genomes
(1KG) project, which is comparable to disease associated
loci in the GWAS Catalog. We further constructed
tissue-specific gene regulatory networks, namely TF-
promoter/enhancer-target gene networks, to examine
the tissue-specific regulatory circuits for the significant
SNP-trait association results in the PheWAS Catalog.
We found that functional annotations significantly im-
proved the power of detecting novel associations in the
PheWAS Catalog. Furthermore, we found that dozens of
novel associations in the PheWAS Catalog had strong
functional evidence even though they only exhibited
moderate significance, often likely due to inadequate
sample size in the original study. Finally, we constructed
the tissue-specific regulatory circuits for several complex
traits, such as mental diseases and autoimmune diseases
in case studies. In summary, this study sheds light on
the functional consequences of disease-associated loci
and it offers a powerful approach to identify novel SNP-
trait associations in PheWAS.
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Methods
SNP annotations
We downloaded all the SNP-phenotype association re-
sults from the GWAS Catalog [1] (September/2015) and
the PheWAS Catalog [8] (October/2015). We first anno-
tated each SNP with transcription information from
RefSeqGene using ANNOVAR [21]. We further mapped
the protein-coding SNPs onto protein structures and
identified those SNPs affecting protein functional sites:
protein–ligand binding sites and phosphorylation sites.
Then, we annotated the remaining non-coding SNPs
with three types of genomic functional information:
motif; promoter/enhancer; and eQTL, respectively. Sin-
gle nucleotide variants (SNVs) from the 1000 Genomes
project were also annotated in the same way. We then
performed Fisher’s exact test on a 2 × 2 table to calculate
a P value for the difference in the frequency of function-
ally annotated SNPs between all the reported SNPs and
the SNVs from the 1000 Genomes project.

Proteins’ structural genomics data
We collected two types of proteins’ functional site infor-
mation: ligand-binding sites and phosphorylation sites.
We extracted protein–ligand binding site data from Bio-
LiP, which is a semi-manually curated database for high-
quality, biologically relevant protein–ligand binding
interactions [22]. For each UniProt protein, we com-
bined the protein–ligand binding site residues of all
the corresponding PDB structures. In total, there were
17,595 UniProt proteins with protein–ligand binding
site information. We mapped all protein-coding SNPs

generated from PheWAS and GWAS as described in
our previous study [23–25]. We also collected human
phosphorylation site information from the PhosphoSi-
tePlus [26] and dbPTM3 databases [27]. The detailed
data preparation for phosphorylation sites was de-
scribed in our previous studies [28, 29]. In total, we
obtained 173,460 non-redundant phosphorylation sites
on 18,610 proteins.

Genome-wide functional annotation data
We collected three types of functional annotation informa-
tion: motif, promoter/enhancer, and eQTL. Motif data
were extracted from the ENCODE-motif that was available
from the MIT Computational Biology Group (http://comp
bio.mit.edu/encode-motifs/). In total, we collected the pos-
ition information of 1772 motifs for 662 TFs. Promoter/en-
hancer information was obtained from FANTOM5 (http://
fantom.gsc.riken.jp/data/), Roadmap (http://egg2.wus-
tl.edu/roadmap/web_portal/), and ENCODE (through
UCSC Genome Browser [30]). We downloaded eQTL ana-
lysis results of 44 tissues from the GTEx V6 release (http://
www.gtexportal.org/). In the GTEx analysis, cis-eQTLs
were calculated for all the SNPs within ± 1 Mb of the tran-
scriptional start site (TSS) of each gene. Each eQTL is de-
fined as a SNP being significantly cis-associated with the
expression difference of at least one gene by false discovery
rate (FDR) ≤ 0.05. SNVs from the final phase of the 1000
Genomes project were retrieved from the EBI FTP Site in
VCF format (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/re
lease/20130502/).

Fig. 1 Diagram of an integrative functional genomics workflow. SNPs from the PheWAS Catalog and GWAS Catalog were mapped to the whole
human genome and non-coding SNPs were re-annotated with regulatory information. Protein-coding SNPs were re-annotated with protein functional
information, including protein–ligand binding sites and phosphorylation sites. Based on gene regulatory annotations, we also performed a tissue-specific
regulatory circuit analysis. All detailed data are provided in Additional files 1–5: Tables S1–S5
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Linkage disequilibrium
We used the online SNP Annotation and Proxy (SNAP)
tool (https://www.broadinstitute.org/mpg/snap/) to search
for the proxy SNPs of each reported SNP in the PheWAS
Catalog and GWAS Catalog based on linkage disequilib-
rium (LD), confined to the CEU population of HapMap 3
(release 2). For each of the reported SNPs, we obtained
those SNPs that were in its strong LD (r2 ≥ 0.8) within the
500-kb flanking region of each side (upstream and down-
stream) of the SNP.

Tissue-specific regulatory circuit analysis
We downloaded 394 cell type-specific and tissue-specific
regulatory networks from http://regulatorycircuits.org/.
For our analysis, if the SNPs were in the promoter se-
quences or promoter’s 400-bp upstream to 50-bp down-
stream sequences, they would be considered possibly
affecting promoter function. We considered SNPs that
possibly affected enhancers if they were located in the
enhancer sequences. The detailed description is provided
in a recent study [31].

Tissue specificity of gene expression
We downloaded the gene expression data of 32 tissues
from GTEx V6 release (http://www.gtexportal.org/). For
each tissue, we regarded those genes with RPKM ≥ 1 in >
80% samples as tissue-expressed genes and the
remaining genes as tissue-unexpressed. To quantify the
expression significance of tissue-expressed gene i in tis-
sue t, we calculated the average expression 〈E(i)〉 and the
standard deviation δE(i) of a gene’s expression across all
considered tissues [32]. The significance of gene i in tis-
sue t is defined as

zE i; tð Þ ¼ E i; tð Þ− E ið Þh ið Þ=δE ið Þ ð1Þ

Collection of disease-associated genes
Disease-associated genes were collected from DisGeNET
v4.0 [33]. We used all the 429,036 gene-disease associa-
tions that covered 17,381 genes and 15,093 diseases, dis-
orders and clinical or abnormal human phenotypes.
Fisher’s exact test was used to calculate P values for the
enrichment of disease genes among the perturbed mod-
ules obtained from functional annotation and the raw
PheWAS data.

Statistical analysis and network visualization
All the statistical analyses were performed using R v3.2.3
(http://www.r-project.org/). We illustrated the network
graphs using Cytoscape (v2.8.1) [34].

Results
An integrative functional genomics framework
We developed an integrative functional genomics frame-
work to examine the functional regulation and tissue-
specific regulatory circuits for large-scale disease-associated
SNPs reported in the GWAS Catalog and PheWAS Catalog
(Fig. 1). To examine the regulatory roles of variants in the
PheWAS Catalog, we downloaded data from http://phe-
wascatalog.org, which included 215,108 significant disease-
SNP associations (P < 0.05) connecting 1354 disease terms
and 3107 SNPs. As a comparison, we downloaded data
from the GWAS Catalog (data downloaded on 27 April
2015), including 28,829 significant disease-SNP associations
(P < 1.0 × 10–5) connecting 1290 disease terms or traits and
15,442 SNPs from 2153 published papers. Then, we per-
formed systematic localization for the disease SNPs in vari-
ous functional regions including TF-motifs, promoters,
enhancers, and eQTLs based on the data from FANTOM5
[17], ENCODE [18], NIH Roadmap [19], and GTEx [20].
We used SNP data from the 1000 Genomes project as
background in our enrichment analysis of the disease SNPs
in various functional regions [35]. After functional annota-
tion, we constructed tissue-specific gene regulatory net-
works (TF–Promoter/Enhancer–Target gene) and
investigated the associations in the PheWAS Catalog at the
tissue-specific regulatory circuit level (Fig. 1).

Functional atlas of variants generated from PheWAS
First, we annotated each SNP with RefSeq gene informa-
tion using ANNOVAR [21]. From the PheWAS Catalog,
we found 173 SNPs (5.5%) in exon regions. This result is
consistent with a previous report that most (~93%) dis-
ease SNPs in the GWAS Catalog are in non-coding re-
gions [10]. Further analysis showed two SNPs located at
ligand-binding sites or within their two-residue flanking
regions (rs1800961, HNF4A: p.T139I; and rs1057910,
CYP2C9: p.I359L, Additional file 1: Table S1) and 15
SNPs at phosphorylation sites or within their seven-
residue flanking regions (e.g. rs1801275, IL4R: p.Q576R;
and rs11906160, MYH7B: p.A25T, Additional file 2:
Table S2). CYP2C9: p.I359L is reported to be related
with deep vein thrombosis by PheWAS and with
warfarin maintenance dose by GWAS [36]. However,
individuals who carry CYP2C9: p.I359L are poor
metabolizers and require lower doses of warfarin to
achieve similar anticoagulation. Note that other vari-
ants in CYP2C9 are candidate factors in different
warfarin dosing. While the finding here unveiled the
possible underlying functional role of this SNP, much
more functional and pharmacological work will be
needed for more evidence for this SNP in warfarin
dosing.
Among the 585 exonic SNPs from the GWAS Catalog,

there were eight SNPs located at ligand-binding sites or
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within their two-residue flanking regions (Additional file 3:
Table S3) and 45 SNPs at phosphorylation sites or within
their seven-residue flanking regions (e.g. rs7412, APOE:
p.R176C, Additional file 4: Table S4). These ligand-
biding site SNPs are rs1057910, CYP2C9: p.I359L;
rs16844401, HGFAC: p.R516H; rs9381199, UBR2:
p.T154I; rs1229984, ADH1B: p.H48R; rs1303, SER-
PINA1: p.E400D; rs5880, CETP: p.A390P; rs1800961,
HNF4A: p.T139I; and rs1058172, CYP2D6: p.R365H.
Apolipoprotein-E (apoE) is important in neuronal lipid
transport and is thought to stabilize microtubules by
preventing tau hyperphosphorylation [37]. The GWAS
Catalog also reported the association between SNP
rs7412 and lipid metabolism phenotypes [38]. These
analyses revealed that protein-coding SNPs with puta-
tive functions (e.g. altering ligand–protein binding
sites and phosphorylation sites) only accounted for
approximately 3% of the total SNPs in the GWAS
Catalog. We next systematically investigated the regu-
latory information for the remaining 97% non-coding
variants using an integrative functional genomics
framework as illustrated in Fig. 1.
Overall, > 60% of the non-coding SNPs in the Phe-

WAS Catalog could be annotated with one of the func-
tional categories: TF-motif, promoter/enhancer, or
eQTL (Fig. 2a and Additional file 5: Table S5). Specific-
ally, 398 SNPs (12.6%) were found to be located in the
motif regions of at least one TF, 1097 SNPs (34.8%) over-
lapped with a promoter/enhancer detected in at least
one cell line, and 1220 SNPs (38.8%) were eQTLs in at
least one tissue type in GTEx. There were 859 SNPs
(27.3%) that could be annotated with more than one
type of functional category and 66 SNPs (2.1%) that had
functional support from all three types of information.
The enrichment of functional annotations for these
SNPs suggested that the PheWAS SNPs might play im-
portant roles in disease or traits through functional
regulation. The detailed annotated data for regulatory
variants in the PheWAS Catalog is provided in
Additional file 5: Table S5. A similar distribution was ob-
served for the GWAS Catalog (Fig. 2b). Specifically,
there were 1981 SNPs (12.8%) located in the motif re-
gions of at least one TF, 5043 SNPs (32.6%) overlapped
with a promoter/enhancer of at least one cell line, 5222
SNPs (33.8%) with an eQTL in at least one tissue type in
GTEx, 2806 SNPs (18.1%) that could be annotated with
more than one type of functional information, and 270
SNPs (1.7%) that had functional support from all three
types of information.
Interestingly, a previous study has suggested that a

functional SNP with the strongest experimental evidence
is often not the reported SNP itself in GWAS; rather, it
is a SNP within LD of the reported SNP [15]. Inspired
by this finding, we next examined the proxy SNPs that

were in strong LD (r2 ≥ 0.8) with the reported SNP in
the CEU population (Utah residents with Northern and
Western European ancestry from the CEPH collection)
of HapMap 3 (release 2) [39]. We performed LD exten-
sion analysis: (1) for each reported SNP, we located and
annotated its proxy SNPs with the same regulatory in-
formation; and (2) a reported SNP was also considered
as annotated if one of its proxy SNPs could be anno-
tated with functional information even if the reported
SNP itself was not in the functional region. After LD
extension, the frequency of annotated SNPs reached up
to 80%. When considering the annotated SNPs sup-
ported by more than one type of functional informa-
tion, the frequency increased to 55.6% from 27.3%. For
example, 686 reported SNPs (21.8%) or their proxy
SNPs had functional evidence from all three types of in-
formation. Next, we performed the same analysis on
the full SNP set from the GWAS Catalog and found
that the SNPs in the GWAS Catalog displayed a similar
trend (Additional file 6: figure S1).

PheWAS variants are enriched in functional regions
We used the SNVs from the 1000 Genomes project as
the background to assess the significance of the enrich-
ment of functional elements among the disease-
associated SNPs in the PheWAS Catalog and GWAS
Catalog, respectively. We found a significant overall en-
richment for regulatory functions in PheWAS disease-
associated SNPs. Similar trends in the GWAS Catalog
were observed. Figure 2c shows the enrichment analysis
for different types of functional data. In comparison with
the 1000 Genomes SNPs, we observed weak enrichment
for TF-motif (1.32-fold, P = 0.035, Fisher’s exact test),
moderate enrichment for promoter/enhancer (1.42-
fold, P = 3.6 × 10–36), and strong enrichment for
eQTLs (14.6-fold, P < 2.2 × 10–226), respectively, in the
PheWAS Catalog. Similarly, comparison of the GWAS
Catalog with the 1000 Genomes data revealed 1.14-
fold enrichment of TF-motif (P = 1.4 × 10–10), 1.37-
fold enrichment for promoter/enhancer (P = 1.0 × 10–
133), and 13.2-fold enrichment for eQTLs (P < 2.2 ×
10–226), respectively (Fig. 2c).
We also observed an interesting phenomenon that the

enrichment of functional elements was positively corre-
lated with the statistical power of the initial SNP-
phenotype association in the PheWAS Catalog. This im-
plies that those SNPs involved in associations with
stronger statistical power may be more likely to be func-
tional (P = 0.015, Pearson’s correlation, Fig. 2d). This is
consistent with the previous observation that the likeli-
hood of PheWAS replicating a GWAS Catalog associ-
ation is directly related to the statistical power of the
initial SNP-phenotype association [8].
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Re-identifying novel associations in PheWAS
In order to search for novel associations, Denny et al.
used a FDR < 0.1 (P < 4.6 × 10–6) and detected 202 asso-
ciations for 102 SNPs and 87 phenotypes [8]. Focusing
on these 102 SNPs, we found that 61.8% of them (63/
102) were eQTLs in at least one tissue type in GTEx and
89.2% of them (91/102) could be annotated with at least
one type of functional information after LD extension.
Among these 87 phenotypes, 63 (31%) were categorized
to be potentially novel associations by FDR < 0.1. For ex-
ample, for two mental disorder-related functional SNPs
near genes PBRM1 and ITIH1 in the GWAS Catalog,
PheWAS suggested they might be associated with lip-
oma. In addition, 109 (54%) were either replications or
associations with phenotypes related to associations in
the GWAS Catalog. For example, PheWAS replicated
the associations for four functional SNPs in the gene
CDKN2B −AS1 to coronary atherosclerosis. Figure 3a

shows these associations on the background of func-
tional annotation for 20 selected diseases or traits.

Discovery of tissue-specific regulatory circuits altered by
PheWAS variants
Although integration of functional annotation data is a
promising strategy in prioritizing and fine-mapping disease
variants in the PheWAS Catalog, it overlooks the interplay
between variants at the cellular level. This problem can be
partially addressed when we examine them at the bio-
logical pathway and regulatory network levels. Multiple
previous studies have applied pathway-based and network-
based approaches to identify pathways or network modules
based on the connectivity between disease-related genes,
but the networks they relied on were typically protein–pro-
tein interaction, [40–42], gene co-expression [43–45], or
functional association networks [46], which lack detailed
regulatory information and tissue-specific information.

Fig. 2 SNP annotation and enrichment analysis in different types of functional data. a Proportions of SNPs from the PheWAS Catalog in different
types of functional data. b Proportions of SNPs from the GWAS Catalog in different types of functional data. c Enrichment analysis for different
types of functional data with the variants from the 1000 Genomes project as the background. FC fold-change. d Proportions of SNPs in different
types of functional data after linkage disequilibrium (LD) extension by the P value reported in the PheWAS Catalog
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Fig. 3 (See legend on next page.)
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Here, we mapped the genotype–phenotype association
results in PheWAS onto their respective tissue-specific
regulatory circuits. The tissue-specific regulatory circuits
were built based on three components: (1) genome-wide
mapping of promoters and enhancers; (2) linking TFs to
promoters and enhancers; and (3) linking enhancers and
promoters to target genes based on data from the FAN-
TOM5 consortium, as described in a previous study
[31]. For each disease, we reconstructed the perturbed
disease-relevant subnetwork with two types of edges: (1)
enhancer-perturbed TF-target interaction if one disease-
associated SNP affects TF-enhancer binding; and (2)
promoter-perturbed TF-target interaction if one SNP af-
fects TF-promoter binding. We illustrated this using
mental disorders (Fig. 4a). To validate the relationship of
these perturbed modules with disease, we performed
disease-associated gene enrichment analysis using the
data from DisGeNET v4.0, which included 429,036 gene-
disease associations comprising 17,381 genes and >
15,000 diseases and phenotypes [47]. As a comparison,
we extracted the nearest genes of the significant SNPs in
the original PheWAS Catalog to perform the same en-
richment analysis. The results showed that most of these
perturbed modules were more significantly enriched
with disease-associated genes when compared with the
results by using the nearest gene of each SNP (Fig. 4b).
In the following section, we describe the novel tissue-
specific regulatory circuits identified for three types of
complex diseases: cancer; brain-related diseases; and
autoimmune diseases, as case studies.

Identifying new tissue-specific regulatory circuits for
breast cancer
For breast cancer, we identified two significant SNPs in-
volved in TF targeting promoter/enhancer with strong con-
fidence by altering gene expression in disease-associated
genes. One interesting discovery is SNP rs242557, which
was found to be associated with progressive supranuclear
palsy from the GWAS Catalog (P = 9 × 10–18) [48]. While
in the PheWAS Catalog, this SNP is reported to be associ-
ated with breast cancer and schizophrenia. Based on func-
tional annotation, we found that SNP rs242557 was located
in a motif-enriched enhancer region and it regulates the ex-
pression of genes MAPT and CRHR1. MAPT, encoding the
microtubule-associated protein tau that binds and stabilizes
microtubules, plays an important role in neuronal polarity
and signal transduction. Mutations onMAPT have been as-
sociated with several neurodegenerative disorders such as

Alzheimer’s disease (AD), Pick’s disease, frontotemporal de-
mentia, cortico-basal degeneration, and progressive supra-
nuclear palsy [49]. In cancer-related studies, it has been
shown that low tau expression renders microtubules more
vulnerable to paclitaxel and makes breast cancer cells
hypersensitive to paclitaxel [50].
Another example is SNP rs6478109 located in the pro-

moter region of TNFSF15. This SNP may affect the
binding motif of multiple transcriptional factors and lead
to the dysfunction of TNFSF15. A clinical investigation
has indicated that high levels of TNFSF15 were associ-
ated with increased survival rates of breast cancer pa-
tients [51, 52]. We also identified several SNPs where
their LD regions had more evidence supporting a regula-
tory role than the SNPs themselves. For example, SNP
rs2885805 is reported to be associated with cytomegalo-
virus antibody response in the GWAS Catalog [53].
There has been no reported evidence that supports the
functional role of SNP rs2885805 itself. Here, we found
that it was in strong LD (r2 = 0.857) with SNP
rs2885805, a functional SNP located in the enhancer re-
gion of CD53, which is a prognostic gene signature in
breast cancer [54, 55]. A recent study revealed that ele-
vation in serum cytomegalovirus immunoglobulin anti-
body levels preceded the development of breast cancer
in some women [56], suggesting the potential biological
implication of this observation and the potential link be-
tween cytomegalovirus antibody response and breast
cancer. Further functional validation is needed to con-
form this association.

Identifying tissue-specific regulatory circuits for
brain-related diseases
We next examined the tissue-specific regulatory circuits
(TF-target gene regulatory network) for four brain-
regulated diseases: schizophrenia; AD; bipolar disorder;
and Parkinson’s disease. Figure 4b shows that SNPs with
functional annotation had lower P values in PheWAS
for all four brain-related diseases. For schizophrenia, one
novel associated SNP identified by PheWAS is SNP
rs339969 with P = 0.046 based on 60 cases. In the
GWAS Catalog, it is reported that this is associated with
Gamma-glutamyl transferase from a previous study [57].
Functional annotation indicates that SNP rs339969 is lo-
cated in a motif-enriched enhancer whose target genes
include RORA. The retinoic acid-related orphan receptor
alpha (RORA), which is a ligand-dependent orphan nu-
clear receptor, acts as a transcriptional regulator and has

(See figure on previous page.)
Fig. 3 Overview of PheWAS associations in the genome after functional annotation. a This matrix shows the number of functional SNPs
for their respective phenotype. b The Circos plot showing the PheWAS associations in different types of functional data. Red triangles
represent the associations in the GWAS Catalog only, green circles represent GWAS Catalog associations replicated by PheWAS (P < 0.05),
and blue diamonds represent new phenotype associations identified by PheWAS (P < 4.6 × 10−6 or FDR < 0.1)

Zhao et al. Genome Medicine  (2018) 10:7 Page 8 of 15
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been previously identified as a novel candidate gene for
autism spectrum disorders [58].
We next built a brain-specific TF-target gene regula-

tory network for AD as shown in Fig. 5. The brain
expression specificity for each gene was calculated by Z-
score using 1632 brain samples compared to 10,346 sam-
ples across other 31 tissues from GTEx (see “Methods”).
A lower Z-score means higher brain-specific expression.

SNP rs7197475 is associated with systemic lupus erythe-
matosus in the GWAS Catalog [59]. However, PheWAS
suggests it is associated with AD based on 737 cases (P =
0.015). Although there is no functional evidence for this
association from the annotation of this SNP itself, we
identified another SNP rs7194347, in perfect LD (r2 = 1)
with SNP rs7197475, which strongly supports this discov-
ery. SNP rs7194347 overlaps with an enhancer region and

(See figure on previous page.)
Fig. 4 Illustration of tissue-specific TF-promoter/enhancer-target gene interaction network analysis. a Overview of the perturbed tissue-specific
TF-target gene network in mental disorders. Blue links represent enhancer-perturbed TF-target gene interactions. Green links represent promoter-
perturbed TF-target gene interactions. Several disease-associated genes are highlighted in the outside of the circle. b Enrichment analysis of the
disease genes in the perturbed tissue-specific TF-target gene network

Fig. 5 A brain-specific TF-target gene regulatory network for AD. The TF-target gene network was generated by mapping the significant SNPs
with AD from the PheWAS Catalog into the enhancer or promoter regions via three components: (1) genome-wide mapping of promoters and
enhancers; (2) linking TFs to promoters and enhancers; and (3) linking enhancers and promoters to target genes as described in “Methods.” TFs
are denoted by Vee and target genes with significant SNPs are denoted by circles. The node color is coded based on the brain-specific gene expression
quantified by z-scores using the RNA-sequencing (RNA-seq) data from GTEx (see “Methods”). A larger z-score indicates a higher expression level in brain
compared to other tissues. Green lines represent the enhancer-gene regulations and orange lines represent the promoter-gene regulations. Several TFs and
targeted genes (e.g. ZIC1, STX1B, CDH13, and SKA2) described in the main text are highlighted. Both Figs. 5 and 6 were prepared using Cytoscape (v2.8.1)
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may perturb the expression of STX1B whose methylation
and expression changes are associated with Parkinson’s
disease [60]. STX1B showed highly brain-specific expres-
sion with its Z-score = 5 when compared to the other 31
tissues, suggesting a potential functional gene for AD
(Fig. 5). Another similar example is SNP rs2302189 whose
association with dental caries is reported in the GWAS
Catalog. We identified a SNP rs9898916 in strong LD (r2

= 0.87) with this SNP. SNP rs9898916 is involved in the
regulation of SKA2 whose methylation is associated with
decreased prefrontal cortical thickness and greater post-
traumatic stress disorder (PTSD) severity among trauma-
exposed veterans [61]. In addition, epigenetic variation at
SKA2 mediates vulnerability to suicidal behaviors and
PTSD through dysregulation of the hypothalamic pituitary
adrenal axis in response to stress [62], suggesting potential
biological implication of SKA2 in PTSD. Two previous
studies have reported that the ZIC1 gene encodes a TF
that binds and trans-activates the apolipoprotein E gene
and further plays an important role in neuronal mainten-
ance and repair [63, 64]. GTEx data show that ZIC1 is
highly expressed in brain (Fig. 5). In our analysis, we iden-
tified one proxy SNP (dbSNP ID: rs4783244) that is con-
sidered as being AD-related by altering the binding motif
of ZIC1 and perturbing the expression of the target gene
CDH13. CDH13 encodes T-cadherin, a GPI-anchored
protein with cell adhesion properties that is highly
expressed in the brain and cardiovascular system. A previ-
ous study suggested that CDH13 might be a promising
candidate gene for attention deficit hyperactivity disorder
(ADHD) [65].

Identifying tissue-specific regulatory circuits for auto-
immune diseases
We further built a lung-specific TF-target gene regulatory
network for asthma in Fig. 6. The lung expression specifi-
city for each gene was calculated by Z-score using 497
lung samples compared to 11,973 samples across the
other 31 tissues from GTEx (see “Methods”). A lower Z-
score means higher lung-specific expression. In an auto-
immune disease analysis (Fig. 4b), PheWAS reported an
association between enhancer SNP rs6763931 (located in
an intron of ZBTB38) and asthma. Later this was con-
firmed by one GWA study [66]. In total, there were four
genes (RASA2, ZBTB38, RNF7, and SLC25A36) in a 1-Mb
region centered by SNP rs6763931. Functional evaluation
showed that RASA2 (103 Kb away from SNP rs6763931)
was highly differentially expressed between children with
asthma and healthy individuals while the host gene
(ZBTB38) showed no evidence of differential expression
[66]. SNP rs1420101 (located in IL1RL1) is a variant affect-
ing the quantity of eosinophil in pleiotropic multifunc-
tional leukocytes, which is involved in inflammatory and
immune responses observed in asthma, eczema, rhinitis,

and other inflammatory diseases [67]. PheWAS confirmed
the association of SNP rs1420101 with asthma based on
1390 cases (P = 0.0015).
The major histocompatibility complex (MHC) is one

of the most variable and gene-dense regions in the hu-
man genome with potential effects on innate and spe-
cific immunity. In the MHC region, PheWAS reported
an association between asthma and SNP rs660895. This
SNP may alter the binding enhancer of NFKB whose tar-
get genes include HLA-DRB1, HLA-DRB5, and HLA-
DPB1 (Fig. 6). The association between asthma and the
HLA-DRB1 locus has been identified in a family-based
population sample [68]. In addition, our gene regulatory
network analysis is consistent with a recent PheWAS
with HLA variants [69].
While PheWAS replicated the association between

SNP rs2305480 and asthma in the GWAS Catalog, our
functional annotation suggested another SNP rs9909593
that is in perfect LD with SNP rs2305480. SNP
rs9909593 might be involved with the TF PKNOX1 that
regulates CSF3 (encoding Colony Stimulating Factor 3).
CSF3 is a protein-coding gene that is important for the
survival and proliferation for neutrophils and macro-
phages. GTEx data showed that CSF3 is a lung-
specifically expressed gene with Z-score = 5 (Fig. 6). This
indicates its important regulatory role in lung function.
A previous study reported that genetic variation on
CSF3 was associated with cross-sectionally measured
lung function in smokers [70].

Discussion
Understanding the genetic architecture of disease can help
elucidate relevant biochemical pathways for drug targets
and enable personalized medicine. Toward this direction,
both GWAS and PheWAS have been successful in identi-
fying thousands of disease-variant associations for further
studies. Most of these disease-associated variants are lo-
cated in non-coding regions and exert regulatory roles in
modulating the expression of downstream target genes. In
this study, we performed functional annotations of the
regulatory variants in both the PheWAS Catalog and
GWAS Catalog. Our functional annotation analysis dem-
onstrated that both the PheWAS and GWAS significant
variants are enriched within regulatory regions in the hu-
man genome, from which putative functional mechanisms
for these associations can be further explored and vali-
dated. While no large GWAS-PheWAS datasets are cur-
rently available for a systematic validation of our findings,
here we showcased functional validation for the identified
associations in inflammatory bowel disease (IBD) on the
colon-specific TF-target gene regulatory network. We
found that one of the new network-predicted IBD genes
in our reconstructed colon-specific TF-target gene regula-
tory network (Additional file 6: figure S2), MAFB, was
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validated by very recently published functional data in
macrophages [71]. However, much more functional work
is needed to validate the identified associations via in vitro
or in vivo assays in order to fully unveil the underlying
regulatory mechanisms.
Together, this systematic investigation revealed that

gene regulation plays important roles for significant
trait-SNP associations derived from the PheWAS Cata-
log, which is comparable with the GWAS Catalog. In
addition, our results demonstrated similar distributions
of SNP functionality in the PheWAS catalog and the
current GWAS Catalog. This is not surprising in

consideration that the PheWAS Catalog set we chose
was originally derived from the GWAS Catalog as of
2012, but exploring functional roles of the SNPs in mul-
tiple phenotypes currently remains an important task.
In PheWAS, large-scale multiple testing is needed to

control the FDR. However, standard FDR control proce-
dures, such as the Benjamini–Hochberg procedure [72],
are typically built on the assumption of independence
and would fail to provide optimal power when the indi-
vidual tests are strongly correlated and differ in statis-
tical properties such as sample size, true effect size,
signal-to-noise ratio, or prior probability of being false

Fig. 6 A lung-specific TF-target gene regulatory network for asthma. The TF-target gene network was generated by mapping the significant SNPs
with asthma from the PheWAS Catalog into the enhancer or promoter regions via three components: (1) genome-wide mapping of promoters
and enhancers; (2) linking TFs to promoters and enhancers; and (3) linking enhancers and promoters to target genes as described in “Methods.”
TFs are denoted by Vee and target genes with the significant SNPs are denoted by circles. The node color is coded based on the lung-specific
gene expression quantified by z-scores using the RNA-seq data from GTEx. A larger z-score indicates a higher expression level in lung compared
to other tissues. Green lines represent the enhancer-gene regulations and orange lines represent the promoter-gene regulations. Several TFs and
targeted genes (CSF3, ZBTB38, NFKB1, HLA-DRB1, HLA-DPB1, and HLAnDRB5) described in main text were highlighted
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as in the PheWAS setting [73, 74]. Recently, there have
been several studies focused on how to use a data-driven
hypothesis-weighting strategy to improve the detection
power of large-scale multiple testing [73, 74]. The results
in our analysis suggests that functional annotation may
be a good choice in weighting associations in the Phe-
WAS Catalog. In addition, our analysis demonstrated
that integrating regulatory information for variants in
PheWAS dramatically improved the power to identify
previously published disease-associated genes derived
from DisGeNET v4.0 [33] (Fig. 4b), providing comple-
mentary evidence that will not only strengthen previ-
ously identified associations but also enhance the
discovery of new sets of causal genes for complex dis-
eases. However, potential literature bias and data incom-
pleteness of disease-associated genes in DisGeneNET
may influence the current enrichment analysis. In our
study, we used P < 1.0 × 10–5 to include more potential
SNP-trait association pairs while reasonably controlling
false positive rate. If we used P < 5.0 × 10–8 as the cutoff,
there would be not enough SNPs for follow-up analyses,
though the conclusion could remain the same. Our ra-
tionale is that moderate association signals can be useful
in integrative bioinformatics analyses in order to identify
more functional candidates (e.g. network) for follow-up
validation. This strategy has been demonstrated as being
effective in previous studies [75, 76]. Taken together,
regulatory analysis could prove an important addition to
many upcoming PheWAS and GWAS, especially for the
studies without large population sizes.
Reported results in multiple GWASs have highlighted a

number of pleiotropic effects. Compared to GWAS, one
promising advantage of PheWAS is to examine pleiotropy
by measuring genetic associations of one variant with thou-
sands of diseases or phenotypes simultaneously. Variants
demonstrating pleiotropy may confer tissue-specific effects
on multiple genes [77], some of which could occur on dif-
ferent chromosomes (trans-effects [78]). Examination of ex-
pression data in a relevant tissue type could help identify
the tissue-specific regulatory changes caused by each vari-
ant [79, 80], as demonstrated in the GTEx project [20]. In
our analysis, we also observed the tissue-specific expression
profile of the same target gene for one disease-associated
SNP with pleiotropic effects revealed by PheWAS. This
may indicate a promising role of a tissue-specific analysis in
refining the SNP-disease associations in PheWAS. In sum-
mary, this study provides a powerful approach towards the
understanding of the functional associations in PheWAS
and GWAS in terms of their functional mechanisms on af-
fecting multiple complex diseases and traits.

Conclusions
In this study, we proposed an integrative functional gen-
omics framework that maps 215,107 significant SNP

traits generated from the PheWAS Catalog and 28,870
genome-wide significant SNP traits collected from the
GWAS Catalog into a global human genome regulatory
map. By incorporating various functional annotation
data from four major functional genomics databases—-
FANTOM5, ENCODE, NIH Roadmap, and GTEx—we
showed that the disease-associated loci in both the Phe-
WAS and GWAS Catalogs were significantly enriched
with functional SNPs. We demonstrated that integration
of functional annotations significantly improves the
power of detecting novel associations in PheWAS and
we further found a number of functional associations
with strong regulatory evidence in the PheWAS Catalog.
Furthermore, we performed a tissue-specific regulatory
circuit analysis through integrating the identified regula-
tory variants and tissue-specific gene expression profiles
in 7051 samples across 32 tissues from GTEx. We un-
covered several promising tissue-specific regulatory TFs
or genes for AD (e.g. ZIC1 and STX1B) and asthma (e.g.
CSF3 and IL1RL1) in our case studies. In summary, this
study offers powerful functional genomics tools and net-
work methodology for exploring the functional conse-
quences of variants generated from genome–phenome
association studies in terms of their mechanisms on af-
fecting multiple complex diseases and traits.
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