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ABSTRACT: Methane-oxidizing bacteria, aerobes that
utilize methane as their sole carbon and energy source,
are being increasingly studied for their environmentally
significant ability to remove methane from the atmosphere.
Their genomes indicate that they also have a robust and
unusual secondary metabolism. Bioinformatic analysis of
the Methylobacter tundripaludum genome identified bio-
synthetic gene clusters for several intriguing metabolites,
and this report discloses the structural and genetic
characterization of tundrenone, one of these metabolites.
Tundrenone is a highly oxidized metabolite that
incorporates both a modified bicyclic chorismate-derived
fragment and a modified lipid tail bearing a β,γ-unsaturated
α-hydroxy ketone. Tundrenone has been genetically linked
to its biosynthetic gene cluster, and quorum sensing
activates its production. M. tundripaludum’s genome and
tundrenone’s discovery support the idea that additional
studies of methane-oxidizing bacteria will reveal new
naturally occurring molecular scaffolds and the biosyn-
thetic pathways that produce them.

Research on natural products, genetically encoded members
of a small-molecule miscellany, has repeatedly shown that

investigating new patches of organismal space can reveal new
chemotypes along with their associated biosynthetic machinery
and regulatory elements. The increasing availability of genomic
sequences has enabled the discovery of previously unreported
molecular diversity through bioinformatic analysesan ap-
proach usually called “gene-to-molecule”. In a variation on this
approach, we recently characterized a quorum sensing system1

in the aerobic methane-oxidizing bacterium Methylobacter
tundripaludum 21/222 that activates the expression of a co-
located biosynthetic gene cluster (BGC) detected by the
antiSMASH genome mining tool.3 The same quorum sensing
system regulated the production of a UV-active molecule
observed in the M. tundripaludum supernatant, which was the
likely product of the BGC.1 Since quorum sensing systems in
bacteria regulate gene expression on the basis of cell density

and often control the production of molecules such as
siderophores, antibiotics, and electron shuttles, we decided to
further investigate the molecule, which we named tundrenone
(1) (Figure 1a).4−7

We isolated approximately 3 mg of 1 from the ethyl acetate
extract of 12 L of supernatant with subsequent C18 solid-phase
extraction and UV-absorbance-guided semi-preparative HPLC.
The molecular formula of 1 (C22H28O8), obtained by HRMS
(observed [M + H]+ m/z 421.1857, theoretical [M + H]+ m/z
421.1857, 0 ppm), indicated a highly oxygenated metabolite
with no matches in spectral databases.8 The 13C NMR
spectrum revealed numerous shielded carbon atoms, including
three carbonylstwo ketones (200.9 and 209.9 ppm) and one
ester (161.5 ppm)and eight olefinic carbons between 96.9
and 149.3 ppm that accounted for seven of the nine degrees of
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Figure 1. (a) Structure of tundrenone (1). (b) Partial structures
assembled by 2D NMR data.
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unsaturation. There were also four oxygenated sp3-hybridized
carbons with resonances between 62.1 and 77.8 ppm.
Further analysis with an array of 2D NMR experiments

(gHSQC, gHMBC, gCOSY, and ROESY) led to three partial
structures A−C (Figure 1b) that contained all of the carbon
atoms in 1. Partial structure A consists of one ketone, two
olefins, and two oxygenated sp3-hybridized carbons, all within a
[4.3.0] bicyclic system. Partial structure B consists of a
dehydroserine hydroxy acid with exo-methylene signals at δC
149.3 and 96.9 and δH 5.29 and 5.03. The last partial structure,
C, contains four spin systems and was deduced to be a modified
lipid tail functionalized with only an exo-methylene group, an
alcohol, and a ketone. Partial structure C is structurally similar
to ketalin, a metabolite previously isolated from Streptomyces sp.
strain 1668.9 Partial structures A−C were connected to form
the planar structure of 1 using key HMBC correlations. A and
B were connected by the observation of an HMBC correlation
between H9 and C10 to form a vinylic ether linkage. The
connection between B and C was established by an HMBC
correlation between H12 and C11, thus forming an ester
linkage and completing the planar structure elucidation of 1.
The three contiguous stereocenters in the tetrahydroinde-

none core of 1 were assigned using NMR and chiroptical data
and theoretical calculations. The relative configuration was
determined by comparing experimental NMR data for 1 with
roughly calculated 3JHH coupling constants (Figure 2) and

DFT-calculated 13C chemical shifts for i, ii, iii, and iv, where
the ester on the acyclic motif was simplified to a carboxylic acid
(Table 1).10 The measured 3JHH for H1/H9 in d6-DMSO was
3.3 Hz, which is indicative of a cis H1/H9 configuration and is
in good agreement with the calculated11 3JHH for cis-H1/H9-
configured i and iii (1.5 Hz) versus trans-H1/H9-configured ii
and iv (10.2−10.4 Hz). However, the calculated 3JHH for trans-
and cis-configured H8/H9 in i and iii, respectively, could not be
used to confidently resolve their relative configuration. To
determine whether the relative stereochemistry of the three
contiguous stereocenters in 1 mimics i or iii, the measured 13C
chemical shifts for 1 were compared with the DFT-calculated
Boltzmann-weighted shifts for i and iii. The latter were
obtained through a highly accurate method developed by
Tantillo12 that we had previously used.13 Excellent agreement
between measured and calculated 13C chemical shifts of 1 and i
was observed, with a corrected mean absolute deviation
(CMAD) of 1.6 ppm, whereas the CMAD for iii was 5.3

ppm (Table 1). Thus, the chemical shift data strongly support a
trans-configured H8/H9 and a cis-configured H1/H9.
The absolute stereochemistry of the tetrahydroindenone core

was assigned by comparing the specific rotation ([α]D) for 1
with the DFT-calculated Boltzmann-weighted optical rotation
for i, where the three stereogenic centers bear the S,S,S
configuration. Tundrenone (1) exhibited a specific rotation of
−66.4, which has the opposite sign to the calculated [α]D of i
(+197).14 Thus, the measured and calculated chiroptical data
strongly suggest that the absolute configuration of the three
contiguous stereocenters in 1 is R,R,R. Unfortunately, all
attempts to determine the configuration of the stereogenic
center bearing the hydroxyl group in the fatty acid moiety
failed. Attempts to convert the hydroxyl group to a Mosher
ester via traditional methods or Mitsunobu conditions yielded
no desired product by HRMS.
With the structure of 1 secure, we investigated the

connections between 1 and the BGC co-regulated by quorum
sensing inM. tundripaludum. While genetic manipulation of this
strain is difficult, an in-frame null mutation was made in an
annotated acyl-CoA ligase gene (tunJ, T451DRAFT_0812) in
the cluster, subsequently named the tun cluster. This mutant
did not produce 1 (Figure 3). Additionally, 1 was not detected
in the supernatant of the acyl-homoserine lactone synthase
mutant ΔmbaI but returned when this strain was grown with
the addition of the quorum sensing signal 3-OH-C10-HSL.
These experiments confirmed that 1 is produced in a quorum-
sensing-dependent manner by the tun cluster,1 with 2.7 ± 0.7
μM detected in the supernatant of stationary-phase wild-type
M. tundripaludum cultures. The ΔtunJ mutant still produces the
3-OH-C10-HSL signal (Figure S9), so loss of 1 in this strain is
not due to disruption of the quorum sensing system.
A plausible biosynthesis of 1 that largely reconciles most of

the genes in the tun cluster was formulated (Figure 4). The
bicyclic western fragment in 1 clearly resembles chorismate (2).
Subsequent evaluation of the tun cluster revealed that TunN
and TunO resembleboth in sequence and putative

Figure 2. Analysis of 3JHH values [measured vs calculated (i−iv)].

Table 1. Comparison of Experimental (1) and Calculated (i,
iii) 13C NMR Chemical Shifts

13C NMR chemical shifts (ppm)

atoma exptl (1)b calcd (i)c,d calcd (iii)c,d

C1 31.0 35.2 40.2
C2 33.7 34.8 36.4
C3 200.9 199.9 199.0
C4 147.5 144.8 143.7
C5 134.6 134.5 136.5
C6 121.7 123.6 121.1
C7 130.0 132.6 140.5
C8 62.1 62.6 71.3
C9 76.2 73.1 83.3
C10 149.3 148.6 153.2
C11 161.5 162.0 163.7
C22 96.9 97.1 107.1

CMADe 1.6 5.3
largest Δδ 4.2 (C1) 10.5 (C7)

aSee Figure 1 for labeling. bData in d6-DMSO. cCalculated at the
SCRF-(IEFPCM/DMSO)-mPW1PW91/6-311+G(2d,p)//B3LYP/6-
31+G(d,p) level of theory, scaled, and Boltzmann weighted. dThe
calculated chemical shift closest in magnitude to the experimental
chemical shift for each atom is bolded. eCMAD is the average value of
|δcalcd − δexptl|
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functioncomponents of 2-amino-2-deoxyisochorismate syn-
thase (ADS), which utilizes 2 and an ammonia nucleophile, and
isochorismate synthase (ICS), which uses 2 and a water
nucleophile.15 It is important to note that TunN and TunO are
also homologous to anthranilate synthase, which is not found
elsewhere in the genome. Therefore, these enzymes may also
be necessary for the synthesis of aromatic amino acids in M.
tundripaludum, as these bacteria are prototrophic for all amino
acids. In this regard, it is important to note that tunN and tunO
are constitutively expressed,1 which is consistent with an
essential role. In support of this, multiple attempts to knock

out either tunN or tunO were unsuccessful. On the basis of the
propensity of TunN and TunO to utilize 2 as a coupling
partner, a possible route to the tetrahydroindenone core in 1
may initially involve a TunNO-catalyzed SN2′ (or SN1′)
transformation with 2 and phosphoenolpyruvate (3), or a
related nucleophile, to generate tricarboxylate cyclohexadiene
adduct 4. Following adduct formation, cyclization of 4 to give
tetrahydroindenone intermediate 5 could occur via catalysis
involving the redox enzymes TunDEM and the glutathione S-
transferase-like enzyme TunP. Alternatively, cyclization of 4
may be facilitated by a thiamine pyrophosphate-dependent
enzyme encoded elsewhere in the genome through a
hypothetical formal α-keto acid decarboxylation/5-exo-trig
ring closure/1,6-conjugate hydroxyl addition sequence. Activa-
tion of 5 for coupling with the eastern fragment (13) (vide
infra) may involve TunJ-activated TunH−thioester adduct 6
formed via TunHJ. The supernatant of the ΔtunJ mutant strain
contains both 5 and 13, thus supporting this hypothesis
(Figures S10 and S11).
The biogenesis of the acyclic eastern fragment of 1 plausibly

begins through formation of 9 via condensation of dihydrox-
yacetone phosphate (7) with β-keto thioester 8 by TunC,
which is similar to AfsA and related enzymes that link 7 and an
activated β-keto acid en route to bacterial butyrolactone signals,
such as A factor.16 An intramolecular aldol-like cyclization of 9
catalyzed by the δ-aminolevulinic acid dehydratase homologue
TunB generates lactone 10. The tun cluster contains a gene
encoding TunK, a homologue of the quorum-quenching
enzyme AidH, a lactonase that hydrolyzes acyl-homoserine γ-
lactones.17 Thus, it is possible that TunK hydrolyzes the lactone
in 10 to form β-keto acid 11. Subsequent decarboxylation and
β-hydroxyl elimination on 11 followed by SN2′ displacement of
the phosphate group with water on 12, possibly catalyzed by
haloacid dehydratase homologue TunA, would afford β,γ-
unsaturated ketone 13. The final step involves coupling of 13
with TunJ-activated and ACP-bound 6, presumably through the
action of condensation enzyme TunI, to generate 1. Further
empirical investigation will be needed to elaborate the
postulated biosynthesis of the western and eastern fragments.

Figure 3. Extracted ion chromatogram (m/z 421.18−421.20) of 1
from supernatant extracts of M. tundripaludum strains, including the
wild type (WT), the acyl-CoA ligase mutant (ΔtunJ), and the acyl-
homoserine lactone synthase mutant (ΔmbaI) in the absence and
presence of 1 μM 3-OH-C10-HSL.

Figure 4. (a) Annotated tun biosynthetic gene cluster. (b) Proposed biogenesis of 1.
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This initial foray into a gene-to-molecule study on a
methane-oxidizing bacterium that relies on methane as the
sole carbon and energy source turned up both significant results
and promising avenues for future research. In the gene-to-
molecule realm, it led to a highly unusual molecule and
associated biosynthetic puzzles. Tundrenone (1) incorporates a
highly modified chorismate moiety that has not been observed
previously. Chorismate serves as the starting material for
metabolites ranging from the aromatic amino acids (phenyl-
alanine, tyrosine, and tryptophan) to the plant hormone
salicylic acid, large numbers of plant alkaloids, and many
metabolites. However, none feature the bicyclic modification
seen in 1. The formation is putatively attributed to the action of
TunNO, an enzyme incorporating features of known enzymes
along chorismate-containing biosynthetic pathways but with a
carbon-centered nucleophile. In addition to these structural and
mechanistic surprises, the quorum-sensing-regulated produc-
tion of 1 suggests an as yet unknown functional role.4,18 This
project has created both molecular and genetic tools that will be
essential in defining the unknown function(s). Finally, further
mechanistic understanding will allow the possibility to create a
synthetic biology platform leading to microbial factories that
utilize methane, the major component of natural gas, as a
feedstock for the synthesis of high-value small molecules.19
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