
Host triacylglycerols shape the
lipidome of intracellular trypanosomes

and modulate their growth
The Harvard community has made this

article openly available.  Please share  how
this access benefits you. Your story matters

Citation Gazos-Lopes, Felipe, Jessica L. Martin, Peter C. Dumoulin, and
Barbara A. Burleigh. 2017. “Host triacylglycerols shape the lipidome
of intracellular trypanosomes and modulate their growth.” PLoS
Pathogens 13 (12): e1006800. doi:10.1371/journal.ppat.1006800.
http://dx.doi.org/10.1371/journal.ppat.1006800.

Published Version doi:10.1371/journal.ppat.1006800

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34869030

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Host%20triacylglycerols%20shape%20the%20lipidome%20of%20intracellular%20trypanosomes%20and%20modulate%20their%20growth&community=1/4454687&collection=1/4454688&owningCollection1/4454688&harvardAuthors=0ecc9e1a0a2d8ef2e451c25f563fa631&department
http://nrs.harvard.edu/urn-3:HUL.InstRepos:34869030
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


RESEARCH ARTICLE

Host triacylglycerols shape the lipidome of

intracellular trypanosomes and modulate

their growth

Felipe Gazos-Lopes☯, Jessica L. Martin☯, Peter C. Dumoulin, Barbara A. Burleigh*

Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston,

Massachusetts, United States of America

☯ These authors contributed equally to this work.

* bburleig@hsph.harvard.edu

Abstract

Intracellular infection and multi-organ colonization by the protozoan parasite, Trypanosoma

cruzi, underlie the complex etiology of human Chagas disease. While T. cruzi can establish

cytosolic residence in a broad range of mammalian cell types, the molecular mechanisms

governing this process remain poorly understood. Despite the anticipated capacity for fatty

acid synthesis in this parasite, recent observations suggest that intracellular T. cruzi amasti-

gotes may rely on host fatty acid metabolism to support infection. To investigate this predic-

tion, it was necessary to establish baseline lipidome information for the mammalian-

infective stages of T. cruzi and their mammalian host cells. An unbiased, quantitative mass

spectrometric analysis of lipid fractions was performed with the identification of 1079 lipids

within 30 classes. From these profiles we deduced that T. cruzi amastigotes maintain an

overall lipid identity that is distinguishable from mammalian host cells. A deeper analysis of

the fatty acid moiety distributions within each lipid subclass facilitated the high confidence

assignment of host- and parasite-like lipid signatures. This analysis unexpectedly revealed

a strong host lipid signature in the parasite lipidome, most notably within its glycerolipid frac-

tion. The near complete overlap of fatty acid moiety distributions observed for host and para-

site triacylglycerols suggested that T. cruzi amastigotes acquired a significant portion of

their lipidome from host triacylglycerol pools. Metabolic tracer studies confirmed long-chain

fatty acid scavenging by intracellular T. cruzi amastigotes, a capacity that was significantly

diminished in host cells deficient for de novo triacylglycerol synthesis via the diacylglycerol

acyltransferases (DGAT1/2). Reduced T. cruzi amastigote proliferation in DGAT1/2-defi-

cient fibroblasts further underscored the importance of parasite coupling to host triacylgly-

cerol pools during the intracellular infection cycle. Thus, our comprehensive lipidomic

dataset provides a substantially enhanced view of T. cruzi infection biology highlighting the

interplay between host and parasite lipid metabolism with potential bearing on future thera-

peutic intervention strategies.
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Author summary

The development of human Chagas disease is associated with persistent intracellular

infection with the protozoan parasite, Trypanosoma cruzi, which displays tropism for tis-

sues with characteristically high fatty acid flux, such as heart and adipose tissues. Previous

studies have highlighted fatty acid metabolism as likely critical to support the growth and

survival of this intracellular pathogen, however biochemical data supporting this predic-

tion is currently lacking. Employing an untargeted lipid mass spectrometry approach, we

defined the lipidome of intracellular T. cruzi parasites and their mammalian host cells.

Comparative analyses revealed that the fatty acid signatures in the triacylglycerol (TG)

pools were highly conserved between parasite and host, suggesting a major route of fatty

acid acquisition by this pathogen via host TG. Metabolic tracer studies demonstrated

intracellular parasite incorporation of exogenous palmitate into both neutral and phos-

pholipid subclasses that was diminished in host cells deficient for TG synthesis. Moreover,

parasites grown in these cells displayed reduced proliferation, demonstrating the impor-

tance of parasite coupling to host TG pools during the intracellular infection cycle.

Introduction

Infection with the protozoan parasite Trypanosoma cruzi underlies the development of human

Chagas disease, a progressive and debilitating condition characterized by cardiac and gastroin-

testinal disturbances [1]. With an estimated 8 million people infected [2] and limited treatment

options [3], this neglected tropical disease remains a significant health and economic burden

in Latin America and an emerging immigrant health problem in non-endemic regions of the

world [4]. Mammalian infectious forms of T. cruzi are transmitted in the feces of insect vectors

(family Triatominae), congenitally, via oral infection by the consumption of contaminated

foods and liquids, or in the blood and organs of infected donors [5], where they colonize a

range of cell and tissue types during the acute stage of infection [6, 7]. Immune control mecha-

nisms are insufficient to eliminate infection [8], leading to chronic infection with parasite per-

sistence in a variety of tissues including cardiac muscle [9–11], gastrointestinal smooth muscle

[7, 12, 13], and adipose tissue [7, 14, 15]. While T. cruzi infection can cause acute myocarditis,

parasites often persist asymptomatically for decades before clinical symptoms arise in infected

individuals [16]. It is now recognized that tissue infection with T. cruzi is highly dynamic, even

during the more tissue-restrictive chronic phase [7]. As such, understanding the mechanisms

that underlie the successful intracellular colonization of diverse host cell types by T. cruzi is a

crucial step to elucidating processes involved in the development and progression of both the

acute and chronic stages of Chagas disease.

In the mammalian host, T. cruzi cycles between two morphologically and biochemically dis-

tinct forms: non-dividing, motile trypomastigote forms that circulate in the body and actively

penetrate cells to establish intracellular infection [17] and obligate intracellular amastigote

(ICA) forms that replicate in the host cell cytosol [18]. Like other intracellular pathogens (e.g.,

[19]), T. cruzi amastigotes must meet their metabolic demands by coupling to host metabolic

processes. While such metabolic dependencies are potentially exploitable for pathogen control

[20, 21], fundamental knowledge of the host pathways that are co-opted by T. cruzi amastigotes

during infection is lacking. To address this gap, we previously performed a genome-wide RNA

interference screen in human cells to identify host factors that are permissive for intracellular

T. cruzi growth [22]. Fatty acid (FA) metabolism emerged among the top host cellular path-

ways associated with an efficient T. cruzi amastigote growth phenotype in human cells, where
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an increase in parasite proliferation was observed under conditions expected to favor FA

uptake and oxidation by infected host cells [22]. Given that T. cruzi upregulates expression of

FA oxidation and membrane lipid synthesis enzymes as an early adaptation to the host intra-

cellular environment [23–25], and the noted tropism of this parasite for tissues with high rates

of FA metabolism [26], intracellular T. cruzi amastigotes appear to be poised to exploit host FA

metabolism to meet their metabolic needs. However, biochemical evidence to support this pre-

diction is currently lacking. In this study, we have leveraged comprehensive lipid mass spec-

trometry to investigate the potential coupling of parasite and host FA metabolism in a cell

culture model of T. cruzi infection. We provide several lines of evidence to demonstrate that

cytosolically-localized T. cruzi amastigotes co-opt long chain fatty acids (LCFA), predomi-

nantly from host triacylglycerol (TG) pools, a process that facilitates the replication of this

intracellular pathogen.

Results

Comprehensive lipidomic analysis of intracellular T. cruzi amastigotes and

mammalian cells reveals distinct lipidome signatures

To assess the potential contribution of host FA metabolism to T. cruzi amastigote develop-

ment, it was necessary to first establish steady-state lipidomic signatures for the parasites and

for their cognate mammalian host cells. T. cruzi is capable of infecting and completing its

intracellular life cycle in most nucleated mammalian cell types in vitro [27]. Anticipating the

potential influence of the immediate host cellular environment on the T. cruzi amastigote lipi-

dome, parallel lipidomic analyses were performed in two different mammalian cell types that

have predicted differences in lipid metabolism [28]: human foreskin fibroblasts (HFF) and

mouse skeletal myoblasts (C2C12), as outlined (Fig 1A). T. cruzi amastigotes were isolated

from infected cell monolayers at 48 hours post infection (hpi), a time point chosen to reflect a

period of active intracellular parasite replication [22]. Isolated parasites were shown to be free

of contaminating host cell organelles and membranous material as assessed by transmission

electron microscopy (Fig 1B) and western blot analysis (Fig 1C).

Lipid extracts obtained from mock- and parasite-infected HFF and C2C12, T. cruzi amasti-

gotes liberated from each host cell type, as well as tissue-culture trypomastigotes (TCT) that

egress upon completion of the intracellular infection cycle (Fig 1A) were subjected to an ultra-

high performance reverse-phase liquid chromatography (UHP-RPLC) system coupled with a

Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer operating in high-resolution

data-dependent full scan MS/MS in negative and positive ion modes. Representative base peak

chromatograms generated from total lipid extracts of uninfected C2C12, HFF, and T. cruzi
amastigotes isolated from these cell types revealed clear peak separation and distinct ion pro-

files (Fig 1D; S1 Fig). The chromatographic profiles for T. cruzi amastigotes isolated from dif-

ferent mammalian host cell types exhibited strong similarity, particularly in the peak clusters

eluting in the 30–36 min range corresponding to triacylglycerols (TG), diacylglycerols (DG),

sphingolipids, and cardiolipins (CL), but differ from their respective host cell of origin (Fig

1D). A total of 1079 lipid molecular species were confidently identified after manual curation

of LipidSearch-assigned spectra, with coverage of 30 different lipid subclasses, across all sam-

ples (S1 and S2 Tables; Supporting Information: Supplemental Methods). Over half of the lip-

ids identified belong to the glycerophospholipid lipid (GP) category (675 unique molecular

species), with most of this diversity associated with diacyl glycerophosphocholine (PC) or dia-

cyl- and ether-linked glycerophosphatidylethanolamine (PE) subclasses (236 and 110 unique

species, respectively). The glycerolipid (GL) category comprised approximately one-third of

the total lipid diversity, with 326 TG, 58 DG, and 6 monoglycerol (MG) species. Sphingolipids,

Lipid scavenging by T. cruzi amastigotes
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Fig 1. Overview of experimental design, evaluation of T. cruzi amastigote isolation and LC-MS/MS methods. (A) Schematic overview of the

experimental approach that involved parallel lipidomics analysis of T. cruzi parasites isolated from two different mammalian cell types: C2C12 (mouse

skeletal myoblast) and HFF (human foreskin fibroblasts). Host cell infection was established with T. cruzi trypomastigotes (TCT) and intracellular T.

cruzi amastigotes (ICA) were isolated from infected host cells 48 hours post infection as detailed in the Methods. T. cruzi amastigote purity was evaluated

using (B) transmission electron microscopy, scale bar = 2 μm, and (C) western blot analysis using antibodies to T. cruzi, host mitochondria (ATP5B),

endoplasmic reticulum (IRE1) and lipid droplets (TIP47) to probe whole cell lysates of control uninfected HFF (HFFu), T. cruzi-infected HFF (HFFi),
and T. cruzi amastigotes purified from HFF (hICA). (D) Positive ion mode base peak chromatogram of lipid extracts derived from C2C12, HFF, and

cognate T. cruzi amastigote (cICA and hICA, respectively) analyzed by LC-ESI-MS/MS. The major lipid subclasses eluting at different retention times

(min) are indicated above the chromatogram. TG–triacylglycerol, DG–diacylglycerol, Cer–ceramide, CerG–hexosylceramide, SM–sphingomyelin, LPC–

lysophosphatidylcholine, PC–phosphatidylcholine, LPE–lysophosphatidylethanolamine, PE–phosphatidylethanolamine, LPS–lysophosphatidylserine,

PS–phosphatidylserine, PI–phosphatidylinositol, PG–phosphatidylglycerol.

https://doi.org/10.1371/journal.ppat.1006800.g001
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with 58 sphingomyelin (SM) and 43 ceramide (Cer) species comprised ~10% of the total lipids

identified (S1 Table).

Next, the proportion of each of the major lipid classes within the lipidomes of T. cruzi and

mammalian cells was plotted to determine if the parasite lipidome could be readily distin-

guished from that of its host and, if so, what major trends in its lipidome would be conserved

regardless of the host cell background (Fig 2). To this end, the relative abundance of each

major lipid class identified in T. cruzi and mammalian cells was compared across all cell types

and conditions (Fig 2; S3 Table). As expected, the lipidomes of HFF and C2C12 differ

markedly, as evidenced by the quantitative differences in the PC and SM content in these dis-

parate cell types (Fig 2, uninfected). Apart from the increased TG content in infected fibro-

blasts as compared to the uninfected cell (Fig 2, HFF), the lipid class distribution of

mammalian host cells remained largely unchanged after 48 hours of T. cruzi infection (Fig 2,

infected). The lipid class relative abundance profiles of isolated T. cruzi amastigotes are clearly

distinguishable from either mammalian host cell type but display nearly identical profiles inde-

pendent of host cell of origin (Fig 2, ICA). This finding suggests that, at least for the phase of

the intracellular T. cruzi infection cycle examined here, maintenance of a particular lipid class

balance may be critical for the growth and survival of this intracellular pathogen. Notably, this

lipid identity includes a relatively enriched TG pool in T. cruzi amastigotes (~25% of total lipid

area), reflecting the capacity for lipid storage in this parasite life cycle stage [29]. The lipidomic

signatures of the extracellular trypomastigotes diverge from their amastigote counterparts sug-

gestive of developmental regulation of lipid class ratios in this parasite [30]. In addition, the

lipidome profiles of T. cruzi trypomastigotes isolated from distinct mammalian host cell types

exhibited marked differences, a feature that may impact future parasite-host interactions.

These observations indicate that while the T. cruzi lipidome is dynamic over the course of its

life cycle, the lipid composition requirements may be constrained in the intracellular amasti-

gote stage.

Fig 2. Lipid class breakdown in T. cruzi and mammalian cells. Pie charts display the relative abundance of the major

lipid subclasses of mammalian host cells (C2C12 and HFF) and T. cruzi intracellular amastigotes (ICA) and tissue-

culture trypomastigotes (TCT) represented as a portion of total lipid content in each sample, averaged for 4

independent experiments. TG–triacylglycerol, DG–diacylglycerol, Cer–ceramide, CerG–hexosylceramide, SM–

sphingomyelin, PC–phosphatidylcholine, PE–phosphatidylethanolamine, PS–phosphatidylserine, PI–

phosphatidylinositol, PG–phosphatidylglycerol.

https://doi.org/10.1371/journal.ppat.1006800.g002
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Principle component analysis reveals complex relationships between host

and parasite lipid classes

To compare parasite and host lipidomic signatures in more depth, analyses of the detailed

lipid species distributions within each of the major lipid subclasses described above were

undertaken. Two-dimensional principal component analyses (PCA) were performed to iden-

tify overall trends in the data (Fig 3). When total lipidomes were compared across samples, T.

cruzi amastigotes clustered with their cognate mammalian host cells (Fig 3A) rather than

together, as predicted by the proportional lipid class trends observed for T. cruzi amastigotes

isolated from different cell types (Fig 2). To determine if this relationship might be driven by a

sub-compartment of the total lipidome, additional PCA plots were generated for individual

lipid subclasses. A more complex relationship between host and parasite lipid signatures

emerged in these analyses (Fig 3B and 3C; S2 Fig). Within the TG class, tight clustering

between T. cruzi amastigote and cognate mammalian host cell was evident (Fig 3B) whereas,

clear divergence between parasite and host lipidomes was observed within the PI pool (Fig

3C). Still other lipid classes showed no distinct trend (S2 Fig). Combined, these data suggest

that the steady state lipidome of T. cruzi amastigotes is a mixture of parasite-synthesized lipids

and host-derived lipids obtained through scavenging.

Intracellular T. cruzi amastigotes display a mosaic lipidome with signatures

of lipid scavenging

T. cruzi is capable of the synthesis, elongation [31], and desaturation [32] of FA, although the

extent to which the intracellular amastigote stage relies on these FA synthesis capacities has

not been determined. With several enzymatic activities absent in mammals, T. cruzi produce

some fatty acids that are typically found in much lower abundance in mammalian host cells

[32–34]. An example is linoleic acid (C18:2 cis,cis-Δ9,12) which, in a gas chromatography with

flame ionization detection (GC-FID) analysis of the esterified FA content of total lipid pools is

found to be highly enriched in isolated T. cruzi amastigotes as compared to mammalian cells

(S3 Fig), consistent with previous reports [32, 33]. Conversely, trypanosomes have been

reported to have lower levels of oleic acid and palmitic acid than human cells [33, 35]. We

Fig 3. Principle component analysis of host and parasite lipidomes at the lipid species level. Principle component analysis of lipid species are

plotted for the (A) total lipidome, (B) TG subclass, and (C) PI subclass. The first two principle components are plotted (PC1 and PC2) with

proportion of variance for each component shown in parenthesis. Each sample is represented and the 95% confidence interval indicated in shaded

circle.

https://doi.org/10.1371/journal.ppat.1006800.g003
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therefore predict that lipids produced endogenously by T. cruzi, either through de novo synthe-

sis, or via FA remodeling, will be likely enriched in FA species that are abundant in the parasite

(e.g., C18:2; S3 Fig), whereas lipids scavenged from the host and incorporated directly into the

parasite lipidome would more closely mirror the FA composition of the mammalian host cell.

With these criteria in mind, a deeper analysis of the parasite and host lipidome data was con-

ducted in which detailed comparisons of the FA moiety composition of each lipid subclass of

T. cruzi and cognate host cells were performed to determine which, if any, parasite lipid classes

display signatures indicative of scavenging by T. cruzi amastigotes. Because of the differences

between parasite and mammalian cell FA elongase and desaturase enzymatic machineries men-

tioned above, emphasis was given to the comparison of long-chain and very long-chain polyun-

saturated FA (LC-PUFA and VLC-PUFA, respectively) moiety distributions of each of the

major lipid subclasses of T. cruzi and host. In most cases, this approach identified T. cruzi-spe-

cific trends in the FA moiety distribution of the major GP pools, which were clearly different

from the host cells (Fig 4; S4 Fig). For instance, T. cruzi-derived PE and PI pools had high levels

of C18:2 FA, and very low levels of C20:3, C20:4, and C20:5 FA as compared to the host (Fig 4A

and 4B). Also, the parasite-derived PE and PI pools exhibited much higher abundance of ether-

bound moieties (1-0-alkyl and 1-0-alkenyl, represented as 16:0e and 16:0p, respectively, in Fig

4A and 4B) as compared to the host. Another parasite-specific trend pertained to the PC and

LPC pools, which had markedly higher levels of VLC-PUFA (C22:4, C22:5, and C22:6 FA moie-

ties), than the host (Fig 4C and 4D). Taken together, these data suggest that T. cruzi amastigotes

either do not readily incorporate GP from host cells, preferring to synthesize these lipids de
novo or extensively remodel FA moieties after acquisition from host GP pools.

In contrast to these observations, the glycerolipid (GL) pools of T. cruzi amastigotes isolated

from HFF (Fig 5) or from C2C12 (S5 Fig) were more similar to their cognate host cell than to

each other, in agreement with the PCA plot of the TG subclass (Fig 3B). These trends were

made more evident given the divergence between the HFF and C2C12 host cell GL FA compo-

sition. This led us to hypothesize that T. cruzi amastigotes co-opt GL (TG and/or DG) or FA

derived from the GL pool, directly from their mammalian host cells.

T. cruzi amastigotes acquire and incorporate exogenous FA provided to

infected host cells

To obtain direct biochemical evidence of FA scavenging by T. cruzi ICA and investigate

whether amastigotes access long chain fatty acid (LCFA) species from their host cells, we used

the odd chain fatty acid (OCFA) pentadecanoic acid (C15:0) to trace FA incorporation into

different lipid pools of the amastigote. This approach took advantage of the fact that OCFA

occur naturally in very low abundance in both T. cruzi and mammalian cells (~0.3%; of total

LCFA abundance, S4 Table). Using our LC-ESI-MS/MS pipeline, we determined the relative

abundance of OCFA substituents in the lipidomes of T. cruzi amastigotes and their host cells

after provision of 200 μM C15:0 to T. cruzi-infected cultures for 6 h (42–48 hpi). This protocol

resulted in a striking 30-fold increase in the C15:0 content in total acylated FA in isolated para-

sites and host cells (Fig 6A, inset), confirming the capacity for C15:0 uptake by mammalian

cells, as anticipated [36]. C15:0 was determined to be the most abundant OCFA in the TG sub-

class (Fig 6A), and was represented in similar levels in host and parasite TG pools, in agree-

ment with the observations from our steady-state lipidomic analyses (Fig 5B).

While acylated C15:0 was found in similar abundance (~15%) in uninfected and infected

host cells, isolated intracellular amastigotes showed less C15:0 incorporation (~8%; Fig 6A,

inset), Despite the lower C15:0 incorporation in total amastigote FA pool, we observed ~2-fold

higher levels of C17:0 and C17:1 in amastigotes than infected or uninfected host cells. This
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suggests that following import of LCFA from mammalian host cells, T. cruzi amastigotes are

able to modify these fatty acids through the action of parasite elongase and desaturase enzymes

[33]. We find that OCFA were unequally distributed across lipid classes in the host and para-

site lipidomes, with C15:0 being predominantly incorporated into TG pools in T. cruzi amasti-

gotes (Fig 6A). In contrast, T. cruzi amastigote PI was enriched in C17:0 and C17:1, (Fig 6B),

however, this enrichment was not observed in amastigote PE, suggesting that a portion of the

acquired C15:0 FA was modified by T. cruzi amastigotes prior to incorporation into different

parasite lipid classes. Thus, in conjunction with lipidomic profiling data, metabolic labeling

studies provide further evidence that T. cruzi amastigotes acquire LCFA from host lipid pools

and incorporate these FA into their own lipid/membrane synthesis pathways. Furthermore,

our results implicate host TG metabolism as a critical factor influencing FA incorporation by

T. cruzi amastigotes.

Fig 4. Trends in host and parasite FA composition varies between lipid classes. The relative proportion of identified

FA for (A) PE, (B) PI, (C) PC, and (D) LPC lipid subclasses is plotted (FA area %; calculated as detailed in Methods)

for HFF-derived samples (C2C12-derived samples plotted in S4 Fig): uninfected HFF (HFFu), T. cruzi-infected HFF

(HFFi) and T. cruzi amastigotes purified from HFF (hICA). The long-chain fatty acid (LCFA) and very long-chain

polyunsaturated fatty acid (VLC-PUFA) are plotted separately for clarity. Data are represented as mean ± standard

deviation.

https://doi.org/10.1371/journal.ppat.1006800.g004
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Exogenous LCFA flux into intracellular T. cruzi amastigote lipid pools

utilizes host DGAT 1/2-dependent TG synthesis

To investigate the role of host GL metabolism in LCFA scavenging by T. cruzi amastigotes,

mouse embryonic fibroblasts (MEF) deficient in diacylglycerol acyltransferase (DGAT1/2)-

dependent TG synthesis were exploited for parasite infection and metabolic labeling studies.

T. cruzi-infected WT, DGAT1/2-/-, and DGAT2-complemented DGAT1/2-/- fibroblasts were

pulsed with [14C(U)]-palmitate for 6 h (42–48 hpi), amastigotes were isolated, and label

incorporation into host cell and T. cruzi amastigote neutral lipids and phospholipids was

visualized following separation by TLC (Fig 6D and 6E). As expected from prior characteriza-

tion of the DGAT1/2-/- fibroblasts [37], the enzyme deficiency resulted in greatly reduced

incorporation of exogenous 14C-palmitate into TG pools in DGAT1/2-/- cells as compared to

WT cells (Fig 6D, lane 1, 2), and was restored with the ectopic expression of DGAT2 (Fig 6D,

lane 3). Decreased 14C-labeling of cholesterol esters (ChE) was also noted in the DGAT1/2-/-

fibroblasts relative to WT cells, a likely consequence of impaired lipid droplet formation in

the knockout cells [37]. Interestingly, we observed a marked increase in TG 14C-labeling in

DGAT1/2-/- cells upon infection with T. cruzi, suggesting that a non-DGAT TG synthesis

pathway (as discussed in [37]) may be upregulated in response to parasite infection. T. cruzi
amastigotes harvested from DGAT1/2-/- fibroblasts incorporated less 14C-label into neutral

lipid (Fig 6D) and phospholipid (Fig 6E) classes as compared to the same number of parasites

derived from WT fibroblasts or from DGAT2-complemented DGAT1/2-/- fibroblasts

Fig 5. FA composition in TG and DG of T. cruzi intracellular amastigotes mirrors host cells. FA area % is plotted

for (A) TG and (B) DG classes for HFF-derived samples, (C2C12 plotted in S5 Fig): uninfected HFF (HFFu), T. cruzi-
infected HFF (HFFi) and T. cruzi amastigotes purified from HFF (hICA). Data are represented as mean ± standard

deviation.

https://doi.org/10.1371/journal.ppat.1006800.g005
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(Fig 6D and 6E). Given that the DGAT1/2-/- cells were not generally impaired in 14C-palmi-

tate uptake and incorporation into other neutral lipid or phospholipid classes (Fig 6D and

6E), our results indicate that host DGAT-dependent TG synthesis is a major route of LCFA

acquisition by T. cruzi amastigotes. Thus, despite increased TG labeling in parasite-infected

DGAT1/2-/- cells our results suggest that the non-DGAT-derived TG pool may be inaccessi-

ble to the parasite.

We sought to determine the impact of decreased access to host FA through the TG pool

on amastigote growth. Using a flow cytometry-based method to follow amastigote prolifera-

tion using CFSE-labeled parasites [22] we find that T. cruzi amastigotes undergo fewer divi-

sions in DGAT1/2-/- cells as compared to WT MEF or in DGAT2-complemented DGAT1/

2-/- fibroblasts (Fig 6F). These combined lipidomic, metabolic labeling, and proliferation data

suggest that T. cruzi amastigotes are capable of scavenging LCFA primarily from the host GL

pool and that, specifically, the host TG pool is important for maintaining maximal parasite

growth. However, amastigotes are still able to proliferate in host cells lacking the capacity for

TG synthesis via the major DGAT-dependent pathway [37]. Such predicted metabolic flexi-

bility may be due to the capacity for parasites to access TG generated via PC in DGAT-inde-

pendent manner (discussed in [37]) or to synthesize their own LCFA de novo [25] via a

sequential FA elongase system [38], and/or parasite access to host FA independent of the

host TG pool.

Fig 6. T. cruzi intracellular amastigotes (ICA) scavenge and incorporate exogenous FA, amastigote FA acquisition and

proliferation are compromised in DGAT-TG synthesis deficient host cells. Lipidomic analysis of uninfected HFF

(uninfected), T. cruzi-infected HFF (infected) and T. cruzi amastigotes purified from HFF (ICA) show incorporation of

exogenous C15:0 FA into (A) TG, (A, inset) total FA, dotted line indicates the average C15:0, C17:0, C17:1 in unlabeled

samples, (B) PI, and (C) PE. Representative autoradiographs showing (D) neutral lipid and (E) glycerophospholipid TLC

analysis of 14C-palmitate incorporation into uninfected (lanes 1–3), infected (lanes 4–6), and isolated amastigotes (lanes 7–9)

from wild type mouse embryonic fibroblasts, diacylglycerol acyl transferase 1/2 knockout MEF DGAT1/2-/-, and DGAT1/2-/-

(+DGAT2) cell lines, respectively; (F) Proliferation of T. cruzi amastigotes measured by CFSE intensity at 18 hpi (undivided)

and 48 hpi in WT MEF, DGAT1/2-/- and DGAT1/2-/- (+DGAT2) cell lines.

https://doi.org/10.1371/journal.ppat.1006800.g006
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Discussion

Metabolic coupling to host cellular and biochemical pathways is universally required to sustain

the growth and/or survival of obligate intracellular pathogens. In addition to acquiring essen-

tial nutrients from their host cells, intracellular pathogens often scavenge metabolites and/or

macromolecules that they have the intrinsic capacity to synthesize [39, 40]. This strategy may

be more energetically favorable and offer a level of flexibility that can facilitate pathogen sur-

vival under changing environmental conditions. Here, we demonstrate that, despite the pre-

dicted capacity for de novo FA synthesis by the kinetoplastid protozoan parasite, Trypanosoma
cruzi [31], the obligate intracellular amastigote stages of this parasite readily incorporate long-

chain fatty acids (LCFA), acquired from mammalian host cell glycerolipid (GL) pools, into

their own lipid storage and synthesis pathways. Our findings expose a biochemical and func-

tional link between parasite and host lipid metabolism and demonstrate the potential or T.

cruzi to bypass its own FA and lipid biosynthetic capabilities predicted in expression analyses

[23–25].

The unbiased, quantitative lipidomics approach adopted in this study, which focused on FA

moiety compositions in different parasite and host cell lipid subclasses, was instrumental in

revealing the hybrid nature of the T. cruzi lipidome. A key element of our study design was the

generation of parallel comprehensive lipidomic datasets for T. cruzi amastigotes isolated from

two distinct mammalian host cell types and the subsequent comparisons made between para-

sites and their cognate host cells. A deep analysis of the FA moiety distribution within each

lipid subclass was conducted with extensive manual curation to facilitate the high confidence

assignment of host- and parasite-like lipid signatures. Overall, we find that T. cruzi amastigotes

maintain a lipid identity that is distinguishable from that of their mammalian host cells. First,

the proportion of several major lipid classes identified in T. cruzi amastigotes remained con-

stant over four independent experiments and was shown to be independent of the host cell

type that housed the parasite, despite overt differences between fibroblasts and myoblasts.

Additionally, T. cruzi amastigotes display strong parasite-specific signatures within the GP

pool with lipids enriched in C18:2, a FA moiety that is not synthesized by mammalian cells,

but differentially produced by T. cruzi via the action of an oleate delta-12 desaturase [32]. This

parasite also contains relatively high levels of ether-bound GP and proportionally high levels of

VLC-PUFA in their PC pools, as compared to mammalian host cells. Such conservation of

class-specific lipid moiety distribution in T. cruzi amastigotes suggests that these molecules

play important biological roles in this organism, including differentiation, cell signaling, and

modulation of host immune responses, as has been shown for the specific LPC distribution of

T. cruzi trypomastigotes and amastigotes [41, 42].

Another consistent feature among parasites isolated from different mammalian cell types

was the relative enrichment of TG, a main storage lipid in cells, which comprised approxi-

mately 25% of the T. cruzi amastigote lipidome. However, unlike the parasite signatures noted

above, the T. cruzi TG and DG pools, along with the LCFA-containing PC pool, displayed a

strong host signature. In fact, the FA moiety profiles for these lipid subclasses were nearly

identical to their specific host cell counterparts, suggesting that these lipids were acquired by

the parasites from their mammalian host cells. This conclusion is supported by metabolic

labeling studies in which incorporation of exogenous FA into amastigote neutral lipids and

phospholipids involves flux through host TG pools. Exogenous provision of either odd-chain

FA (C15:0) or radiolabeled FA (C16:0) resulted in their incorporation into a range of parasite-

associated neutral lipids and phospholipids. However, trafficking of these exogenous FA trac-

ers into host-resident T. cruzi amastigotes was significantly diminished in parasites that were

grown in fibroblasts lacking enzymes required for de novo TG synthesis, DGAT1/2 [37], this
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trafficking into amastigote was restored upon genetic complementation with DGAT2. Further-

more, as the proliferative capacity of T. cruzi ICA was significantly reduced in DGAT1/2-defi-

cient fibroblasts and restored with ectopic expression of DGAT2, we conclude that host TG

pools likely serve as an important source of FA needed for different biological activities in the

parasite, including lipid and membrane synthesis, β-oxidation, and the generation of bioactive

lipid mediators [23–25, 43].

Together, our observations support a model in which intracellular T. cruzi amastigotes

assemble a mosaic lipidome that combines scavenged and de novo synthesized FA. Scavenged

lipids may serve as a source of FA during the proliferative phase of the T. cruzi intracellular

lifecycle and/or during the intracellular conversion of amastigotes to trypomastigotes, a time

when extensive lipid remodeling is anticipated [44]. Evidence that host-derived TG/DG are

utilized, at least in part, for the synthesis of parasite phosphatidylinositols (PI) was seen in the

metabolic incorporation of exogenous FA into parasite PI in a DGAT1/2-dependent manner.

In contrast, exogenous FA were not detectably incorporated into T. cruzi PE, a relatively abun-

dant lipid class, suggesting a route of PE synthesis intrinsic to the parasite. Since the bulk of PE

in T. cruzi amastigote was shown to be ether-bound (plasmalogen), it is possible that the lack

of labeling of these lipids with exogenous FA is a consequence of the compartmentalized bio-

synthesis of ether lipids in the parasite glycosomes (organelles which are roughly equivalent to

mammalian peroxisomes) [45]. The lack of flux of exogenous FA into parasite glycosomes

would also explain the relatively low labeling of the T. cruzi PI pools, which were also shown to

be rich in ether-bound species. While more detailed metabolic flux analyses are required to

fully appreciate the contribution of scavenged FA to the biology of intracellular T. cruzi amasti-

gotes, these data suggest that pathways involved in the synthesis of certain parasite lipids may

not converge with the exogenously supplied FA obtained from host TG pools. As such, T. cruzi
amastigotes may rely on their own FA synthesis capacity to generate a subset of lipids, which

may be subject to differential regulation. T. cruzi exploits an uncommon modular synthesis

pathway shared with other kinetoplastids to synthesize LCFA de novo, that relies on FA elon-

gases instead of type I or type II FA synthases typically found in other organisms [31, 46]. This

modular synthesis involves 3 elongases (ELO 1–3), which convert C4:0 to C10:0 (ELO1),

C10:0 to C14:0 (ELO 2), and C14:0 to C18:0 (ELO3). A fourth elongase (ELO4) is responsible

for the synthesis of very-long chain fatty acids (VLCFA), possibly including VLC-PUFA.

Although ELO1-3 are highly expressed in host cell resident T. cruzi amastigotes [25], it is cur-

rently unknown whether these enzymes are active in this life cycle stage [25] or essential.

Based on our current finding that T. cruzi amastigotes scavenge and utilize host lipid-derived

FA for the synthesis of certain lipids, but not others, we predict that the T. cruzi FA elongase

system may be required for this life cycle stage of the parasite. In addition to generating FA de
novo, T. cruzi FA elongases, along with parasite desaturases, are likely to be used to modify

scavenged LCFA before incorporation into parasite lipids. The relative reliance of T. cruzi on

exogenous versus endogenous FA, and whether environmental conditions alter this balance,

remains to be determined.

Our data strongly suggest that T. cruzi amastigotes scavenge TG, DG, and LCFA-PC from

their mammalian host cells during intracellular infection. As the bulk of the cellular TG pool is

sequestered in lipid droplets (LD), that are comprised of a neutral lipid core (TG and DG) sur-

rounded by a phospholipid monolayer enriched in saturated LCFA-PC [47], we propose that

TG, DG and LCFA-PC are acquired en masse from host lipid droplets. The alternative model,

in which FA stored in host TG/DG pools are mobilized through the action of TG lipases [48],

and then taken up by the parasite and reassembled into TG, DG and LCFA-PC with the same

FA moiety distribution as existed in the host cell, is unlikely. As lipid droplets are highly

dynamic organelles that function as critical hubs for FA trafficking in cells with key roles in
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cellular lipid and energy metabolism [49–51], it is not surprising that host LD are frequently

targeted by intracellular pathogens. LD accumulation is a common cellular response to patho-

gen infection [52–55], which can occur in response to increased oxidative stress [56, 57] or

paracrine signals [58]. With high rates of FA flux, host cell LD represent a readily accessible

source of FA for a number of intracellular pathogens, such as Chlamydia trachomatis, Myco-
bacterium tuberculosis, and M. leprae, that exploit host LD to obtain lipids for energy and

membrane biosynthesis [59]. Our demonstration of a biochemical interaction between T. cruzi
amastigotes and host TG, which are mainly found in lipid droplets, brings functional insight

to earlier descriptions of increased LD content in T. cruzi infected macrophages [60] and the

clustering of intracellular parasites in the vicinity of host LD in adipocytes, macrophages, and

cardiomyocytes [15, 61]. During acute Chagas disease, inflammatory macrophages typically

exhibit increased formation of LD enriched with arachidonic acid (AA), which is a precursor

for the synthesis of proinflammatory eicosanoids such as prostaglandin E2 [61]. Moreover,

these LD have been shown to contain eicosanoid-forming enzymes (cyclooxygenases and

lipoxygenases) that are upregulated during T. cruzi infection [61]. Despite the importance of

LD for the storage of AA in inflammatory macrophages and other leukocytes [62, 63], we were

unable to detect appreciable levels of this FA in the TG pools of either infected or mock-

infected host cells, or T. cruzi amastigotes. On the contrary, most of the esterified AA was iden-

tified in the PE and PI pools of host cells, while T. cruzi amastigotes had consistently low levels

of this FA throughout its lipidome. These differences likely reflect the substantial variation in

lipid droplet composition and function between cell types, and even within a homogenous cell

population under different environmental conditions [64].

In summary, the application of a comparative lipidomics approach successfully distin-

guished parasite- and host-specific lipidomic signatures, providing evidence that T. cruzi
amastigotes acquire a substantial portion of their lipidome from host TG pools, possibly via

the direct acquisition of host lipid droplets. With this strategy, we show that future research on

TG and LD metabolism in the context of T. cruzi infection is predicted to yield important

information pertaining to the mechanisms of T. cruzi persistence and recrudescence during

Chagas disease.

Methods

Mammalian cell culture and T. cruzimaintenance

Mammalian cell lines: human foreskin fibroblast (HFF; provided by S. Lourido, MIT), mouse

skeletal muscle myoblast (C2C12; ATCC CRL-1772), African green monkey kidney epithelial

(LLcMK2; ATCC CCL-7), mouse embryonic fibroblast (MEF), and diacylglycerol acyltransfer-

ase 1/2-deficient MEF (DGAT1/2-/-; generously provided by the Walther-Farese laboratory at

Harvard T. H. Chan School of Public Health [37]). DGAT1/2-/- complementation with Ori-

Gene Mouse cDNA ORF Clone of Dgat2 (NM_026384) was performed according with the

manufacturer’s protocol for the generation of stable transfectants. Mammalian cells were

maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 1mM pyru-

vate, 25 mM glucose, 2 mM glutamine, 100 U/ml penicillin, 10 μg/ml streptomycin and 10%

fetal bovine serum (FBS) (DMEM-10). Cell culture reagents were purchased from Gibco. Try-
panosoma cruzi Tulahuén strain parasites (ATCC PRA-33) were selected because of their fre-

quent use in high-throughput screens for novel anti-trypanosomal drug discovery and

functional studies [65] and [22, 66]. Parasites were maintained by weekly passage in LLcMK2

cells in DMEM supplemented with 1 mM pyruvate, 25 mM glucose, 2 mM glutamine, 100 U/

ml penicillin, 10 μg/ml streptomycin and 2% FBS (DMEM-2) at 37˚C, 5% CO2 as previously

described [22, 66]. Motile extracellular trypomastigotes were collected from infected LLcMK2
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supernatants, pelleted at 2,000g for 10 min and allowed to swim up from the pellet for a mini-

mum of 2 h at 37˚C, 5% CO2 before collection and use for experimental infection.

Experimental T. cruzi infection and intracellular amastigote isolation

HFF, C2C12, or MEF, as indicated, were seeded in T-75 flasks and grown to 80% confluence

over 2 days in DMEM-10. To establish intracellular T. cruzi infection, host cell monolayers

were incubated with 1 x 107 tissue culture-derived trypomastigotes (TCT) for 2 h at 37˚C, 5%

CO2 in DMEM-2. Cells were then rinsed twice with PBS to remove extracellular parasites

and fresh DMEM-2 medium added to flasks and incubated for a further 46 h. Parallel cul-

tures of mock-infected mammalian cell monolayers were also established. The isolation of

the intracellular amastigotes (ICA) form of T. cruzi, was conducted using a protocol modified

from [67]. Briefly, infected monolayers were washed extensively with PBS, detached from the

flask using mild trypsinization (Gibco, 0.05% Trypsin-EDTA), resuspended in DMEM-2 and

pelleted by centrifugation at 300g for 10 m. After aspirating the supernatant, cells were

washed with cytosolic buffer (10 mM NaCl, 140 mM KCl, 2 mM MgCl2, 2 μM CaCl2, 10 mM

HEPES, pH 7.4 [68] and suspended in 10 ml cytosolic buffer. Of this infected cell suspension,

0.5 ml was retained as the “infected” sample and the remaining 9.5 ml was subjected to 2

rounds of cell disruption using a Miltenyi GentleMACS dissociator (M tubes, Protein_01

protocol) and host cell lysis was visually confirmed. The lysate was then passed over a 4 ml

DEAE-Sephacel (Sigma) column (pre-washed with 10 column volumes cytosolic buffer), and

cytosolic buffer was added such that three 10 ml flow-through fractions could be collected.

Isolated amastigote from each fraction were enumerated by haemocytometer and fractions

containing T. cruzi amastigotes were pooled, pelleted, decanted, and then frozen at -80˚C

until analysis.

Protein quantitation

Quantitation of protein content in host cell and parasite lysates was determined using the

ThermoPierce BCA assay reagent kit as per manufacturer’s instructions for microplate assay,

using bovine serum albumin as the reference standard.

Western blotting

Host cell or parasite lysates were adjusted to 2 μg/μl in 2X Laemmli sample buffer containing

100mM β-mercaptoethanol, heated to 95˚C for 3 min in and 10 μl (20 μg protein) and sepa-

rated by polyacrylamide gel electrophoresis on 4–20% Bio-Rad Mini-PROTEAN TGX Precast

Gels and transferred to Immobilon-FL 0.45 μm PVDF membrane by semi-dry transfer (Bio-

Rad Trans-Blot SD Semi-Dry Transfer Cell) for 30 min at 20V. Membranes were blocked for

1 h at ambient temperature with shaking in 1:1 mixture of SEA BLOCK Blocking Buffer

(Thermo Pierce) and phosphate-buffered saline. Primary antibodies were incubated for 16 h at

4˚C at the following dilutions, Abcam ATPB antibody [3D5], 1:2000; Cell Signaling IRE1

alpha [14C10], 1:1000; Novus Biologicals Perilipin-3/TIP47 antibody, 1:1000; Sigma FLAG,

1:500. All secondary antibodies were incubated for 30 m at room temperature at the following

conditions AlexaFluor (647 goat anti-mouse) 1:10,000; Donkey anti-rabbit DyLight 800

Thermo Fisher 1:10:000. All antibodies were diluted with a 1:1 mixture of SEA BLOCK Block-

ing Buffer and phosphate-buffered saline containing 0.2% Tween 20. Membranes were imaged

using the Odyssey Infrared Imaging System (LI-COR Biosciences).
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Lipid extraction

All solvents used were of HPLC grade or higher. The lipid extraction protocol was modified

from [42]. Briefly, cell lysates (biological replicates, containing the following standard lipid

mix per 100 μg protein lysate: 375 pmoles C17:1 lysophosphatidic acid; 225 pmoles C17:0/

C20:4 phosphatidic acid; 170 pmoles C17:1 lysophosphatidylserine; 180 pmoles C17:0/C20:4

phosphatidylserine; 86 pmoles C17:1 lysophosphatidylethanolamine; 112 pmoles C17:0/C14:1

phosphatidylethanolamine; 95 pmoles C17:1 lysophosphatidylcholine; 112 pmoles C17:0/

C20:4 phosphatidylcholine; 33.2 pmoles C17:1 lysophosphatidylinositol; 165 pmoles C17:0/

C20:4 phosphatidylinositol; 105 pmoles C17:0/C14:1 phosphatidylglycerol; 180 pmoles C17:0/

d18:1 ceramide; 140 pmoles C17:0/d18:1 sphingomyelin; 155 pmoles C12:0/d18:1 β-glucosyl-

ceramide; and 60 pmoles C17:1/C17:1/C17:1 triacylglycerol) were suspended in ice-cold

HPLC-grade water, and transferred to 13x100-mm Pyrex tubes with polytetrafluoroethylene

(PTFE)-lined screw caps. HPLC-grade water, methanol, and chloroform were added to a final

chloroform/methanol/water (C/M/W) ratio of 1:2:0.8 (v/v/v). Samples were vortexed vigor-

ously for 5 min, and centrifuged for 10 min at 1,800g at room temperature. After centrifuga-

tion, the supernatants were transferred to new Pyrex tubes, and the pellets were dried under

N2 stream. The pellets were then extracted with chloroform/methanol (2:1, v/v), centrifuged,

and the resulting supernatants were combined with the corresponding supernatants from the

first step of extraction (C/M/W 1:2:0.8 v/v/v), and dried under N2 stream. Samples were then

subjected to Folch partitioning [69] by dissolving them in C/M/W (4:2:1.5, v/v/v), followed by

vortexing and centrifuging, as described above. After centrifugation, the lower (organic) and

upper (aqueous) phases were separated into fresh Pyrex tubes. The aqueous upper phase was

then re-extracted with C/M (2:1 v/v), and the resulting organic phase was combined with the

organic phase from the preceding step. The pooled organic phases were dried under N2 stream

and stored at -20˚C until analysis.

UHPLC-ESI-MS/MS for lipidomics

Extracted lipid samples were diluted in 50 μl of C/M (2:1 v/v) and analyzed by UHPLC-E-

SI-MS, method modified from [70]. UHPLC-ESI-MS/MS was conducted using a Dionex

UltiMate 3000 UHPLC system (Thermo Scientific) coupled to a Q Exactive Hybrid Quadru-

pole-Orbitrap Mass Spectrometer (Thermo Scientific). 5 μl of each sample was injected onto

an Accucore (Thermo Scientific) C18 LC column (2.1 mm x 150 mm x 2.6 μm particle size).

Lipids were fractionated by reverse-phase chromatography over a 46 min gradient (mobile

phase A: acetonitrile/water (50:50 v/v), 10 mM ammonium formate, 0.2% formic acid; mobile

phase B: methanol/isopropanol/water (10:88:20 v/v/v), 2 mM ammonium formate, 0.01%

formic acid), with the following program, constant flow rate of 500 μL/min, 35–45% B over

0–5 min, 45–85% B from 5–28 min, 85–100% B from 28–38 min, followed by an immediate

drop to 35% B, held constant up to min 46. The column temperature was set to 50˚C, and the

autosampler tray temperature was set to 10˚C. The HESI II ion source (Thermo Scientific)

was set as follows: sheath gas flow rate = 60; auxiliary flow rate = 20; sweep gas flow rate = 1;

spray voltage (KV) = 3.00; capillary temperature = 285˚C, S-Lens RF level = 45, and auxiliary

temperature = 370˚C.

The mass spectrometer acquisition settings were as follows for both positive and negative

ionization mode: Full Scan–top 15 data-dependent MS/MS. Full scan was set for a range of

250–1800 m/z. The mass resolution was set to 70,000; AGC target was set to 1e6, the C-trap ion

accumulation time was set to 120 ms; data dependent MS/MS was set to a mass resolution of

30,000, AGC target was set to 5e5, the C-trap ion accumulation time was set to 120 ms, select

ion exclusion was set to 8 s, and the HCD (higher-energy collisional dissociation) fragmentation
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ramp was set to 15, 25, and 35 NCE (normalized collision energy). All data were analyzed using

LipidSearch Software Version 4.2 (Thermo Scientific) and all identified species (A, B and C

quality) were validated manually as detailed in Supporting Information: Supplemental

Methods.

Calculation of lipid class fatty acid composition

Within a lipid class, MainArea values output by LipidSearch were assigned to each FA moiety

of a given species and summed using Microsoft Excel PivotTable. Area % is the summed FA

value divided by the lipid class total, multiplied by 100 to reflect percentage.

Determination of lipid class distribution

Known quantities of each lipid standard were analyzed using the same UHPLC-ESI-MS/MS

methods described below to generate a response factor (RF; peak area/pmol standard injected).

The RF for each standard was divided by the CerG1 RF to calculate a molar relative response

factor (MRRF) for each major lipid class. The MRRF for each class was normalized to the

CerG1 peak area of each sample, and peak areas adjusted accordingly. Only those classes for

which standards were detected in each run were considered for analysis. Each pie chart is the

average of at least 3 biological replicates.

[14C(U)]-palmitate incorporation and thin layer chromatography

Mock- and T. cruzi-infected mammalian cell monolayers were incubated with DMEM-2 sup-

plemented with 0.3 μCi/ml [14C(U)]-palmitate (Perkin Elmer) and 25 nM palmitate (Cayman

Chemical) [71] for 6 h and monolayers washed extensively in PBS to remove unincorporated

label. T. cruzi amastigotes were isolated from infected cells and lipids were extracted from

equivalent protein amounts of all labeled samples as described above, without inclusion of

internal standards, and lipid extract equivalent to 10 μg protein per sample was subjected to

thin layer chromatography (TLC).

Neutral lipid TLC. Neutral lipid TLC were conducted using a protocol modified from

[71]. Briefly, glass-backed silica plates (Silica gel 60 20 cm x 20 cm, Millipore) were precondi-

tioned with hexane, air-dried, and baked at 100˚C for 30 min. The TLC chamber was equili-

brated with hexane: diethyl ether: acetic acid (80: 20: 3 v/v/v) for at least 2 h prior to developing.

The identity of different lipid classes on the TLC plate was inferred by comparing their migra-

tion pattern to that of commercial standards run on the same plate. The following standards

were used for neutral lipid analysis (5 μg each): cholesterol, palmitic acid, cholesteryl-palmitate,

1,3-diacylglycerol (1-Palmitoyl-3-stearoyl-rac-glycerol, Sigma-Aldrich), 1,2-diacylglycerol

(C18:1/C18:1-DAG), and C18:1/C18:1/C18:1-triacylglycerol (triolein, Avanti Polar Lipids).

Glycerophospholipid TLC. Phospholipid TLC were conducted using a protocol modified

from [72]. Briefly, glass-backed silica plates (Silica gel 60 20 cm x 20 cm, Millipore) plates were

preconditioned with dichloromethane, dried, and baked at 100˚C for 30 min. The TLC cham-

ber was equilibrated with acetone: methanol: acetic acid: chloroform: water (30: 26: 24: 80: 10

v/v/v/v/v) for at least 2 h prior to developing. The following standards were used for glycero-

phospholipid analysis (10 μg): bovine brain phosphatidylserine, egg phosphatidylglycerol,

heart cardiolipin (Avanti Polar Lipids); soy phosphatidylcholine, brain phosphatidylethanol-

amine, soy phosphatidylinositol, egg yolk phosphatidic acid, bovine brain L-α-Lysophosphati-

dylcholine, and egg yolk 3-sn-Lysophosphatidylethanolamine (Sigma-Aldrich).

Once developed, TLC plates were dried, covered with mylar, and exposed to a storage phos-

phorimager screen overnight. Fluorescence was visualized using a Typhoon FLA 9500 Scanner
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(GE Healthcare). After imaging, TLC plates were exposed to iodine vapor to visualize equal

loading.

Data analysis, visualization, and interpretation

The web-based server MetaboAnalyst 3.0 was used to perform principle component analyses

(PCA) on median normalized, and log transformed species abundances [73]. Bar and pie

charts were generated using GraphPad Prism 7, version 7.0b for Mac OSX.

Quantification of amastigote proliferation by flow cytometry

Trypomastigotes were diluted to 5x106 parasites/mL in PBS and stained with a final concentra-

tion of 1μM carboxyfluorescein succinimidyl ester (CFSE) (Thermo Fisher) for 15 min at

37˚C. After staining, trypomastigotes were washed and re-suspended in DMEM-2 and allowed

to infect host cells as described. At various time points after infection amastigotes were isolated

and fixed on ice in 4% paraformaldehyde/PBS for 20 min. After fixation amastigotes were cen-

trifuged at 4,000g for 10 min and the resulting pellet was resuspended in PBS and kept at 4˚C

until preparation for acquisition. Immediately prior to acquisition amastigotes were pelleted at

4,000g for 10 min and resuspended in a 0.1% Triton X-100/PBS permeabilization solution con-

taining 10 ng/mL DAPI (Sigma-Aldrich) for a minimum of 30 min on ice. Events were

acquired using a LSR II (Becton Dickinson). Amastigotes were identified based on size and

DAPI staining. Proliferation modeling based on signal intensity from undivided parasites col-

lected at 18 hpi were generated using FlowJo (Tree Star) proliferation software. Greater than

10,000 events in the final amastigote gate were acquired for each sample.

Supporting information

S1 Methods. Detailed supplemental methods with corresponding references are included

in file.

(DOCX)

S1 Fig. Negative ion mode base peak chromatograms of T. cruzi amastigotes and host cells.

Negative ion mode base peak chromatogram of C2C12, HFF, and cognate T. cruzi amastigote

(cICA and hICA, respectively). The major lipid subclasses eluting at different retention times

(min) are indicated above the chromatogram. (TG–triacylglycerol, DG–diacylglycerol, Cer–

ceramide, CerG–hexosylceramide, SM–sphingomyelin, LPC–lysophosphatidylcholine, PC–

phosphatidylcholine, LPE–lysophosphatidylethanolamine, PE–phosphatidylethanolamine,

LPS–lysophosphatidylserine, PS–phosphatidylserine, PI–phosphatidylinositol, PG–phosphati-

dylglycerol).

(TIF)

S2 Fig. Principle component analysis of host and parasite lipidomes at the lipid species

level. Principle component analysis of lipid species are plotted for (A) PC, (B) PE, and (C) PS

subclasses. The first two principle components are plotted (PC1 and PC2) with proportion of

variance for each component shown in parenthesis. Each sample is represented and the 95%

confidence interval indicated in shaded circle.

(TIF)

S3 Fig. Gas chromatography with flame ionization detection (GC-FID) analysis of esteri-

fied FA from the total lipid pool. Esterified FA from lipid extracts were hydrolyzed with

ammonium hydroxide at 37˚C for 1 h, and methylated with 0.5 N methanolic-HCl for 1 h at

85˚C. Methylated FA were recovered by dichloromethane:water partitioning and analyzed by
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GC-FID. Area % is plotted for each FA moiety detected. Data are from a representative experi-

ment.

(TIF)

S4 Fig. Trends in host and parasite FA composition varies between lipid classes. FA area %

is plotted for long-chain fatty acid (LCFA) and very long-chain polyunsaturated fatty acid

(VLC-PUFA) of (A) PC, (B) LPC, (C) PE and (D) PI for samples derived from C2C12 host

cells (HFF main text, Fig 4). Data are represented as mean ± standard deviation.

(TIF)

S5 Fig. FA composition in TG and DG of T. cruzi intracellular amastigotes mirrors host

cells. FA area % is plotted for (A) TG and (B) DG classes for samples derived from C2C12 host

cells; (HFF main text plotted in Fig 5). Data are represented as mean ± standard deviation.

(TIF)

S6 Fig. Immunoblot confirmation of ectopically expressed DGAT2. Protein expression of

Myc-DDK-DGAT2 was confirmed by immunoblotting using the FLAG M2 antibody.

(TIF)

S7 Fig. Annotated negative ion mode MS/MS spectrum of T. cruzi IPC (34:1). Representa-

tive MS/MS spectrum of the most abundant IPC species identified in T. cruzi was acquired

from lipid extracts of TCT as described in the supplementary methods section of the manu-

script (Supporting Information: Supplemental Methods). Fragment ions from MS/MS analysis

are indicated in the figure, according to previously published data [74].

(TIF)

S1 Table. Summary of unique lipid species, by class, identified using LC-MS/MS.

(XLSX)

S2 Table. Detection of lipid species across all samples. Summary of the lipid species detected

in at least one biological replicate of each sample. An ‘x’ indicates the species was detected,

ND = not detected.

(XLSX)

S3 Table. Summary of lipid class breakdown in T. cruzi and mammalian cells. The relative

abundance of the major lipid subclasses of mammalian host cells (C2C12 and HFF) and T.

cruzi intracellular amastigotes (ICA) and tissue-culture trypomastigotes (TCT) represented as

a portion of total lipid content in each sample, averaged for 4 independent experiments. TG–

triacylglycerol, DG–diacylglycerol, Cer–ceramide, CerG–hexosylceramide, SM–sphingomye-

lin, PC–phosphatidylcholine, PE–phosphatidylethanolamine, PS–phosphatidylserine, PI–

phosphatidylinositol, PG–phosphatidylglycerol.

(XLSX)

S4 Table. Total lipidome fatty acyl composition by average area percent. Area % was deter-

mined for each FA in every lipid class. Averages from all lipid classes are shown.

(XLSX)
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