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Abstract
Purpose To develop and evaluate an approach to estimate
the respiratory-induced motion of lesions in the chest and
abdomen.
Materials and methods The proposed approach uses the
motion of an initial reference needle inserted into a mov-
ing organ to estimate the lesion (target) displacement that
is caused by respiration. The needles position is measured
using an inertial measurement unit (IMU) sensor externally
attached to the hub of an initially placed reference needle.
Data obtained from the IMU sensor and the target motion
are used to train a learning-based approach to estimate
the position of the moving target. An experimental plat-
form was designed to mimic respiratory motion of the liver.
Liver motion profiles of human subjects provided inputs to
the experimental platform. Variables including the insertion
angle, target depth, target motion velocity and target proxim-
ity to the reference needle were evaluated by measuring the
error of the estimated target position and processing time.
Results The mean error of estimation of the target position
ranged between 0.86 and 1.29mm. The processing maxi-
mum training and testing time was 5ms which is suitable for
real-time target motion estimation using the needle position
sensor.
Conclusion The external motion of an initially placed ref-
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erence needle inserted into a moving organ can be used as
a surrogate, measurable and accessible signal to estimate in
real-time the position of a moving target caused by respira-
tion; this technique could then be used to guide the placement
of subsequently inserted needles directly into the target.

Keywords Machine learning · Motion compensation ·
Respiratory motion · Magnetic resonance imaging ·
Percutaneous needle insertion · Interventional radiology

Introduction

Percutaneous image-guided interventional radiology proce-
dures in the chest and upper abdomen are commonly used
for a variety of procedures such as biopsy, fluid collec-
tion drainages and tumor ablation [2,24]. Both ultrasound
and computed tomography (CT) are typically the imag-
ing guidance modalities of choice procedures [1]. Magnetic
resonance imaging (MRI) and PET/CT may also be used.
Whichever imaging modalities are used for interventions;
accurate targeting of the lesions is critical for successful
completion of the interventions [3]. In contrast, inaccurate
targeting can cause misdiagnoses in a case of biopsy, and
insufficient treatment and recurrences in case of ablation ther-
apies. The most common cause of inaccurate placements of
interventional instruments is respiratorymotion [5,11]. Inter-
ventional radiologists have proposed approaches to mitigate
the error caused by respiration motion by either an active
or passive approach [19,39]. The active approach is breath
holding during imaging and instrument insertions. Ideally,
the breath should be held consistently (at the same respira-
tory phase) each time during imaging or needlemanipulation,
so that the target maintains the same, predictable position
throughout the interventional procedure [19]. A study by
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Zhou et al. [39] reported, however, that 10–15% of the
patients cannot hold their breath for a sufficient time; this
often leads to inaccurate placements. Breath-holding aids
have been used; for example, a bellows device leads to an
LED display that shows the patient the level of the breath
that can improve consistency [8]. Passive approaches com-
pensate for respiratory motion without breath holds. These
approaches require the detection of the targeted lesions loca-
tion in real-time during respiration and then adjust the needle
insertion angle and position during interventional procedures
to compensate for the respiratory-induced motion. However,
detecting the position of the lesion is challenging in real-
time [16]. Currently, there are four main methods of tracking
a lesion and consequently correcting for its motion dur-
ing an image-guided procedure: (1) imaging of the lesion
[19]; (2) imaging of fiducial markers implanted in or near
the lesion in case the lesion is not easily visible [4,32]; (3)
detection of an active or passive signaling device implanted
in or near the lesion [25,27,31]; and (4) inference of the
lesion position/motion from a respiratory surrogate signal
[26]. The advantage of using surrogate signals is that they
can provide motion data with higher refresh rate than the
imaging modality that can detect small lesions in liver which
is MRI. Other imaging modalities do not provide images
with sufficient contrast to detect small lesions in liver. Addi-
tionally, the approach of implanting fiducial markers or
signaling devices is adding a new challenging task because
the implant needs to be placed accurately in close vicinity to
the lesion.

The main requirements for surrogate signals are that
they should have a strong relationship with the actual tar-
get motion, and that they can be acquired with sufficiently
high temporal frequency to estimate the motion in real-
time [25]. An example of a respiratory surrogate signal is
respiratory bellows measurements. Respiratory bellows are
used as an alternative means of measuring respiratory posi-
tion during MR imaging [30]. It consists of an air filled
bag, which is wedged between the subjects’ abdomen or
chest and a firm surface such as an elasticated belt. The
motion of the abdomen or chest during respiration causes
air to be expelled from the bellows and a sensor mea-
sures the flow of the air. The bellows are not widely used
due to technical issues regarding lack of information about
breathing amplitude. Spirometer measurements have also
been proposed for use as a surrogate signal for respira-
tory motion models [15,21,22,38]. The spirometer measures
the air flow to and from the lungs and is commonly used
for testing pulmonary function [23]. Some authors have
proposed using the motion of the diaphragm surface as
surrogate signal [17]. The diaphragm surface could be mea-
sured using fluoroscopy or ultrasound. A common means of
acquiring respiratory surrogate data for a range of motion
modeling applications has been to track the motion of

one or more points on the skin surface of the chest or
abdomen using optical tracking, electromagnetic tracking
or laser-based tracking systems [14,15,23]. However, the
effectiveness of using skin surface motion to estimate the
organ displacement due to respiration has been questioned
[33,37].

An experimental phantom was designed by Cleary et al.
[10] to simulate the respiratory motion in liver. Bricault et al.
[7] tracked respiratory motion using EM sensors integrated
at the needles hub and investigated the relation between the
needle position and the respiratory-induced motion of the
target in the liver. The needle allowed the authors to pre-
dict the location of the moving targets. They also suggested
that integrating the sensor into the needle tip instead of the
hub is desirable to estimate the respiratory motion accu-
rately. Borgert et al. [6] followed the findings of Bricault
et al. and investigated another special needle with similar
EM sensors on the needle tip and also on the patients ster-
num to estimate the target motion during a liver biopsy.
The data acquired from EM sensors were used to evalu-
ate the correlation between the positions of the two sensors
and to derive a motion model to assess respiratory motion
compensation for percutaneous needle interventions. Fur-
thermore, Lei et al. [20] integrated multiple EM sensors
along a flexible needle and used the movement and bend-
ing of the needle to estimate the liver motion during free and
ventilator controlled breathing. However, a simplistic model
was developed to correlate the needle motion/deformation to
the target motion and the error was in the range of 2–4mm
[20].

The purpose of this study is to develop and evaluate an
approach to estimate the position of a moving target caused
by respiration that could improve targeting accuracy. For
this purpose, we applied the concept of reconstruction of
a correspondence model that creates a relationship between
a respiratory surrogate signal and the target motions [15] to
estimate the target position for percutaneous needle interven-
tions. We also developed an experimental platform to mimic
respiratory liver motion to experimentally validate the pro-
posed approach. Our hypothesis is that the external motion
of an initially placed guiding reference needle inserted into
a moving organ can be used as a surrogate, measurable and
accessible signal to estimate in real-time the position of a
moving target caused by respiration [34]. The reference nee-
dle is the first needle inserted into the organ. Images of the
reference needle are often used to guide the consequent nee-
dles toward the target. Since the relationship between the
reference needle and the target is largely fixed throughout
the respiratory cycle, it can be used to direct the subsequent
needle insertions [29]. In this study, the concept of using the
motion of the needle inserted into the moving organ as a sur-
rogate signalwas assessed using an inertialmeasurement unit
(IMU) sensor attached to the hub of the reference needle.
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Fig. 1 The needle positionwasmeasured for several respiratory cycles
while measuring independently the target motion. The measured needle
position (sensor) and target position (electromagnetic (EM) tracking)
were preprocessed before being used for training the machine learning

algorithm. The learning-based algorithm was then tested to estimate
the target motion using only the needle position as an input. The target
position obtained from the EM sensor was used as the gold standard to
evaluate the output of the learning-based algorithm

Needle
3D printed clip

IMU sensor

Fig. 2 The inertialmeasurement unit (IMU)was attached to the biopsy
needle inserted into the moving phantom

Materials and methods

The aim of study was to assess our motion estimation
approach using the surrogate signal obtained from reference
needle and correspondence model generated by supervised
machine learning. The study was conducted by constructing
a special reference needed equipped with IMU at its hub and
performing a mock procedure using moving phantom. We
then varied respiratorymotion profiles and conditions of nee-
dle placement to investigate their impact on the accuracy of
target estimation. The estimation error was measured as dif-
ference between estimated location of the target by IMU and
the correspondence model, and actual target location directly
measured by an electromagnetic sensor (see Fig. 1).

Reference needle as surrogate signal

Surrogate signal was collected from IMU (BNO055, Bosch
Sensortec GmbH, Reutlingen, Germany) attached to the hub
of the reference needle (see Fig. 2). The IMU has a triaxial
16-bit gyroscope, triaxial 14-bit accelerometer and a geo-
magnetic sensor. The signal output of the IMU was position,

orientation, linear acceleration and angular velocity around
its pitch, roll and yaw axes emitted at the sampling rate 100
Hz. A microcontroller board was used to obtain the signal
from IMU (Arduino MICRO, Arduino, Italy) via an Inter-
Integrated Circuit module. Serial communication was then
used to connect the microcontroller board to the computer
in order to record the measured data. The output signal from
the IMU was used as an input to the correspondence model
to estimate needle respiratory-induced motion of targets in
liver from the surrogate signal.

Target location as gold standard in training

The target position was measured using an electromagnetic
(EM) sensor (Northern Digital Inc., Waterloo, Canada) at the
target site. Another 5 degrees-of-freedom (DoF) EM sensor
was also embedded into the reference needle inserted in the
phantom to measure the distance between the reference nee-
dle tip and target, and also to measure the needle insertion
angle. The target location, the distance between the needle
tip and target, and the needle insertion angle were displayed
and calculated using a free open-source medical image com-
puting software, 3D Slicer [13]. The EM sensor data and the
IMU sensor measurements were synchronized by applying
a mechanical trigger that is detectable by both sensors. The
data were then used as input to the learning-based algorithm
(correspondence model) as described in the next subsection.

Correspondence model trained by machine learning
algorithm

The correspondence model attempts to model the relation-
ship between the location of the target and the surrogate
signal, which is the needle position, measured using the IMU
sensor [25]. This can be written as,

M(t) = φ(s(t)) (1)
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where s(t) is the surrogate data measured using the IMU
sensor, φ the direct correspondence model (developed using
the learning-based algorithm) and M(t) the estimate of the
motion (a vector of the 3D target position at a certain time
instance). The number of degrees of freedom of the model is
determinedby the number andnature of the surrogate data (s).
The outputs of the IMU sensor are the position, orientation,
linear acceleration and angular velocity around its pitch, roll
and yaw axes. The surrogate values directly parameterise the
motion/position estimates.

The corresponding model is established in the training
phase where both surrogate signal and target location are
measured as gold standard. The correspondencemodel estab-
lished in this training phase is then applied to estimate
the target motion during needle placement based only on
newly obtained surrogate signal. In this particular study, the
correspondence model was trained using a machine learn-
ing algorithm. Our machine learning algorithm is based
on Random k-Labelsets (RAkEL) method for classification
(multi-variant regression) [36]. The RAkEL method was
selected as it showed higher performance compared to other
popular multi-label classification methods such as Binary
Relevance and label powersets methods [36]. k is a param-
eter that specifies the size of the labelsets. The main idea in
this method is to randomly break a large set of labels into
a number of small-sized labelsets, and for each of labelsets
train a multi-label classifier using the label powerset method.
Disjoint labelset construction version RAkELd presented in
[35] was used in the current study as it can process multiple
numeric inputs (surrogate data) and outputs (target posi-
tion). For training and testing the correspondence model, we
used the open-source MEKA software [28]. The multi-label
learning-based classification software was used to generate
the correspondence model and then estimate the target posi-
tion in 3D space. The measured needle position and target
motion at each instance during respiratory motion represents
a single training point for the learning algorithm.

Target estimation

The target position was estimated by supervised training of
data. Three training methods were applied for target motion
estimation. First, train/test split (TTS) methods of 20 s of
the data were performed to evaluate the learning algorithm
where 66% of the data points were used for training and
34% was used for testing. Training data of more than one
respiratory cycle were selected to account for variations in
different breathing patterns within the same subject. The data
points used for training and testing the learning algorithm
were selected randomly in order to consider the variation
in the respiratory motion profile in the collected data. Sec-
ond, cross-validation (CV) was also performed where a data
set of 140s was used for training and then complete data

set was tested in the same order (without randomization).
The aim of the CV testing is to estimate the processing time
for large number of data points and also to test the correla-
tion between the estimation error and the respiratory phase.
Third, cross-validation with delay (CVD) was performed.
Based on the rate by which the clinician will visually receive
change in the target position, a delay of 20 ms is included to
determine the effect of the delay on the accuracy of target esti-
mation [12]. After training, the correspondence model used
only the surrogate signal from the IMU sensor to estimate the
3-dimensional (3D) position of the target at a certainmoment
during respiration. The actual target position obtained from
the EM sensors (embedded into the phantom) was only used
for measuring the estimation error.

Phantom

A gelatin-based phantom was used mimic the elasticity of
human liver. The gelatin-to-water mixture (1.6 L) of 15%
(by weight) was used (Knox gelatin, Kraft Foods Group,
Inc, Illinois, USA). The phantom was placed in a container
and covered by an abrasion-resistant natural latex rubber
layer (McMaster-Carr, Illinois, USA) of 0.5 mm thickness
to mimic the skin. To simulate the respiratory motion, the
skin layer and the upper part (2 cm) of the gelatin phan-
tom were clamped in the x- and y-directions but can move
in the z-direction (up and down). The phantom was attached
to two motorized stages (type eTrack ET-100-11, Newmark
Systems Group Inc. California, USA) actuated with step-
per motors to simulate the respiratory motion in liver. Both
motors were controlled using a Newmark controller NSC-
A2L Series (see Fig. 3).

Motion profile

The target motion range and the velocity were selected based
on the results obtained from the MR images of eight human
subjects recruited. Informed consent was obtained according
to an IRB-approved protocol and performed in accordance
with ethical standards. Sagittal images were obtained using
a steady-state gradient-echo sequence from the human sub-
jects scanned in 3T wide-bore MRI scanner (MAGNETOM
Verio 3T, Siemens, Erlangen, Germany) to measure the liver
respiratory motion (see Fig. 4). In the liver MR images, the
motion of three structures (blood vessels) that resembled the
lesionwas tracked in eachMR image frame. These structures
were located manually in each image frame to determine the
target motion during respiration. The image slice thickness
flip angle matrix size and field of view were 5 mm, 30◦,
192 × 192 and 38 × 38 cm2, respectively. The frequency of
acquiring images was 1Hz, and the duration of each scan
was 140.27 ± 51.10 s. Per scan, 122 ± 45.86 images were
acquired. The tracked targetmotion inMR images shows that
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Fig. 3 Experimental setup: the
inertial measurement unit (IMU)
was attached to the biopsy
needle inserted into the moving
phantom. Electromagnetic
tracking sensor was embedded
into the gelatin phantom to
measure the target motion. The
phantom motion (11 cm height)
was actuated using 2D
motorized linear stages. The
motion of the upper part of the
phantom that includes a rubber
layer (skin) was constraint

Electrmagnetic 
field generator

Orientation
   sensor

XZ linear
  stages

Rubber (skin) layer

Biopsy 
needle

Stationary 

Moving
 phantom

x 
z Needle

3D printed clip

Orientation sensor

(a)

(b)

Fig. 4 a Sample image of the liver with a highlighted target. The ante-
rior (a) and superior (s) axes are presented in the figure. b A plot of the
target motion during respiration in the vertical direction

the motion was mainly in the anterior-posterior and inferior-
superior axis; 8.10± 4.71 and 2.53± 1.60 mm, respectively
(see Fig. 4). The mean velocities of target motion were
3.54± 1.044 and 1.11± 0.33mm/s in the anterior-posterior
and inferior-superior axis, respectively.

The anterior–posterior and inferior–superiormotions (dis-
placement and velocity) obtained from the subjects’ MRI
data were set to the controllers of the two motorized linear
stages of the phantom. Target motion varies among subjects
and also at respiratory cycles of same subject. A random
fraction was added to the mean motion value to account for
variation of motion during simulations.

Data collection

Experiments were performed to determine the accuracy of
the developed motion estimation approach at different inser-
tion angles, target depths, target motion velocities and target
proximity to the needle. The initial parameters are: 60◦ inser-
tion angle, 8 cm target depth, 3.5mm/s target velocity, 1–2 cm
distance between the needle tip and target. The experimental
conditions are presented in Table 1. The target displace-
ment wasmeasured using the EM-tracker, and needle motion
was measured using the IMU sensor. The steps of data syn-
chronization and processing are presented in Fig. 1. Each
experiment was performed seven times. The results were
evaluated by calculating the error between the estimated error
from the learning-based algorithm and the gold standard,
which was the actual target position, obtained from the EM
sensor.

Processing time

The processing time of the training and testing the learning-
based algorithm was measured to determine expected delay
of the motion estimation algorithm. Kruskal–Wallis test was
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Table 1 Experimental protocol for validation of the correspondence model while varying the motion profiles and the conditions are presented

Experiment testing the effect of Insertion angle (◦) Target depth (cm) Target velocity (mm/s) Proximity to needle (cm)

40 60 90 4 8 10 2.5 3.5 4.5 0–1 1–2 2–3

Insertion angle � � � � � �
Target depth � � � � � �
Target velocity � � � � � �
Proximity to needle � � � � � �

performed to determine the statistical significance of the
tested parameters as it can deal with more than two data
sets [18].

Results

This section presents the experimental results of the valida-
tion study to evaluate the target motion estimated using the
correspondence model. The results obtained from the learn-
ing algorithm are presented in Table 2. Figure 5 shows the
targetmotionwith respect to the needle deflection (raw surro-
gate signal) during respiratory motion. The estimation error
was measured as the absolute distance between the estimated
position of the target (obtained from the learning-based algo-
rithm) and the actual position of the target (measured using
EM trackers embedded at the target site). The training time of
the learning-based algorithm was in the range of 4 ms, while
the testing time was 1 ms. The motion estimation error while
including the delay affected the error by a magnitude of less
than 0.01 mm which is negligible. The insignificant effect of
the delay is due to the relatively slow pace of respiration with
respect to quick response of the interventional radiologist to
a visual update of the target position.

The results show that the target estimation error varied
within a limited range and the mean errors of the experi-
mental trials varied between 0.86 mm and 1.29 mm. It was
observed that applying; (1) needle insertion angles of 40◦,
60◦ and 90◦ (p < 0.001), (2) target depths of 4, 8 and 10
cm (p < 0.001) and, (3) target-to-needle tip distance of 0–
1, 1–2 and 2–3cm did not show significant change in the
estimated a targeting error. We could not also conclude from
the results that the target velocity does significantly affect
absolute target error (p = 0.021). Figure 6 shows the actual
and estimated target position during respiration. It can be
observed from the results that the error was more significant
at extreme inhalation.

Discussion

In this study we developed and evaluated a novel approach
to estimate the respiratory motion of lesions in the chest

an upper abdomen during percutaneous needle intervention.
With the liver as a model, we used the motion of an ini-
tially placed reference needle as a surrogate signal and used
machine learning as a correspondence model to estimate the
position of a target during respiration. The motion of the ref-
erence needle wasmeasured using an IMU sensor attached to
the needle hub. To validate the proposed approach, an exper-
imental platform was designed to simulate the liver motion
based onMRI data collected from human subjects. A number
of variables including the insertion angle, target depth, tar-
get velocity and target proximity to the needle were used to
evaluate the correspondencemodel. The experimental results
showed that themean error of estimation of the target position
ranges between 0.86–1.29 mm. The maximum processing
time for training is 4 ms, and for testing is 1 ms which is suit-
able for real-time target motion estimation using the IMU
sensor attached to the needle. From our experimental obser-
vations, we found that at low insertion depths, the sensor data
were more sensitive to factors other than the target motion
such as theweight of sensors and cables attached to the needle
as the needle was not inserted deep enough to be fixed in the
moving organ. The proposed approach can be applicable in
a clinical work flow by using the IMU sensor to estimate the
motion. However for MRI-guided needle interventions, an
MRI-compatible needle should be used. Additionally, MRI-
compatible IMU sensors can be used such as the sensor that
was recently presented by Chen et al. [9] where optical fibers
were used for communication to prevent the introduction of
MRI image artifacts. In the first phase, a sequence of MRI
images will be needed for few respiratory cycles to develop
the correspondence model using supervised learning (train-
ing the learning-based algorithm). In the next phase, only
IMU data will be used as an input to the trained model to
estimate target motion in real-time. The target motion will
be provided to the interventional radiologist to compensate
for this motion and thus steer the needle accurately toward
the target.

Further improvements are needed to enhance the proposed
approach to minimize the estimation error. One of the limita-
tions of the presented approach is that it is sensitive to needle
bending that can occur in themoving tissue. The needle bend-
ing in biological tissue can affect direct relation between the
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Fig. 5 Sample data of the needle deflection and the absolute displace-
ment of the target during respiratory motion
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Fig. 6 Sample plot that shows the actual target displacement acquired
from the electromagnetic sensor and the estimated target displacement
from the correspondence model

externalmotion of the needle hub and the actualmotion of the
needle tip (close to the target). Additionally, a more specific
model can be used that includes the various layers of tissue
the needle penetrates till it reached the liver capsule. This
model should consider the elastic and mechanical properties
of each layer and also its motion constraints. The proposed
approachwas validated while considering shallow breathing.
This needs to be extended to include a variety of breathing
patterns and also propose methods to feedback or display the
targetmotion to the clinician to account for themotion during
the interventional procedure. To take the proposed approach
a step toward clinical practice, the proposed approach should
be validated in non-homogeneous tissue (biological tissue)
and also in animal studies.
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