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Over the past several years, new populations of innate lymphocytes have been 
described in mice and primates that are critical for mucosal homeostasis, microbial 
regulation, and immune defense. Generally conserved from mice to humans, innate 
lymphoid cells (ILC) have been divided primarily into three subpopulations based on 
phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 
have overlapping functions with TH2 cells; and ILC3 that share many functions with 
TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly 
one of the earliest responders during viral infections besides being involved in the 
homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial bar-
rier integrity. Burgeoning evidence also suggests that there is an early and sustained 
abrogation of ILC function and numbers during HIV and pathogenic SIV infections, 
most notably ILC3 in the gastrointestinal tract, which leads to disruption of the mucosal 
barrier and dysregulation of the local immune system. A better understanding of the 
direct or indirect mechanisms of loss and dysfunction will be critical to immunothera-
peutics aimed at restoring these cells. Herein, we review the current literature on ILC 
with a particular emphasis on ILC3 and their role(s) in mucosal immunology and the 
significance of disrupting the ILC niche during HIV and SIV infections.

Keywords: innate lymphoid cells, innate immunity, Hiv infections, Siv, mucosal immunity

inTRODUCTiOn

Innate lymphoid cells (ILC) encompass a broad diversity of cell types including the nominal 
subtypes ILC1, ILC2, ILC3, and in some descriptions also include traditional natural killer (NK) 
cells and lymphoid tissue inducer cells, all of which arise from a common lymphoid progenitor. 
A common consensus in the field favors grouping of these cells based on the dependence on 
transcription factors, as well as by production of major cytokine classes (1–4). ILC1 and NK cells 
rely on the transcription factor T-bet and produce type I cytokines, such as IFN-γ and TNF-α, 
but notably ILC1 lack the complex cytotoxic functions inherent to NK cells. ILC2 are classified by 
their dependence on GATA3, and their production of IL-5 and IL-13 (5, 6), and finally ILC3 are 
generally identified by their dependence on RORγt and AHR, and secretion of IL-17 and IL-22 (7). 
Interestingly, through the expression of their respective cytokines and dependence on transcription 
factors for their development, the three ILC groups (1–3) show strong commonalities with TH1, 
TH2, and TH17/TH22 cells, respectively (8). It is important to note that the classification scheme 
remains somewhat fluid and grouping is not absolute, as NK cells and ILC1 do not always require 
T-bet (9), and ILC2 and ILC3 can both convert to ILC1 (10), underscoring the inherent plastic-
ity of these cell types. To further complicate matters, innate subsets of lymphoid cells may also 
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TabLe 1 | Phenotypic markers and tissue distribution for innate lymphoid cell (ILC) groups.

iLC1 iLC2 iLC3 Reference

Mousea Lin−CD127+RORγt−T-bet+IL-1R+IL-
12Rb2+

Lin−CD25+CD127+ICOS+THY1+SCA1+ST
2+IL-17Rb+

Lin−CD25+CD127+CD117+THY1+NKp46+/−RORγt+

IL-1R+IL-23R+

(13, 20, 28–31)

Humanb Lin−CD127+ICOS+RORγt−T-bet+IL-
1R+IL-12Rb2+

Lin−CD25loCD127+CD161+ICOS+CRTH2+ 
ST2+IL-17Rb+

Lin−CD127+CD161+/−CD117+NKp46+/−NKp44+/−ROR
γt+IL-1R+IL-23R+

(13, 20, 32–36)

Tissues 
distribution

Lungs, small intestines, blood, 
bone marrow, liver

Lungs, blood, bone marrow, skin, small 
intestines

Colon, small intestines, oral mucosae, lymph node, 
bone marrow, skin, spleen, thymus

(20, 25, 30, 32, 
33, 35–39)

aLineage markers for mouse are CD3, CD4, CD8, CD11b, CD11c, CD14, CD19, B220, FcεRI, TER119 antigen, and GR1.
bLineage markers for humans are CD1a, CD3, CD11c, CD14, CD16, CD19, CD34, CD123, TCRαβ, TCRγδ, BDCA2, and FcεRI.
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include mucosal-associated invariant T cells (11), which express 
a semi-invariant T cell receptor and defined phenotypically as 
CD3+Vα7.2 TCR+CD161high cells in humans (12, 13). In addi-
tion to their cellular and functional plasticity, ILC have a wide 
tissue distribution and thus are thought to be some of the earliest 
responders to infections and other inflammatory stimuli, but the 
full mechanisms involved are still poorly understood. Striking 
observations have revealed that lentiviral infection leads to 
the depletion of functional ILC3 in gut mucosae (14–16), and 
increased microbial translocation from the gut lumen and an 
overt disruption of epithelial tissue integrity in HIV+ individu-
als is linked to a massive loss of IL-17-producing gut-resident 
lymphocytes (17). It is now becoming increasingly clear that 
reduced IL-17 and IL-22 production during infection cannot be 
attributed solely to the loss of TH17/TH22 cells and that early 
depletion of ILC may also contribute to this process.

iLC PHenOTYPeS anD DiSTRibUTiOn

Although ILC are typified by their unique plasticity and their 
descriptive definitions are somewhat fluid, some generally 
accepted phenotypic nomenclatures have been established. 
ILC are usually identified as negative for common lymphocyte 
lineage markers (Lin−) that are otherwise distinct from NK cells 
and can usually be distinguished as such by higher expression of 
the IL-7 receptor, CD127 (1–4). However, even these definitions 
can vary significantly as “Lin” markers differ depending on the 
animal species (Table  1). For instance, in mice the Lin group 
may include CD3, CD4, CD8, CD11b, CD11c, CD14, CD19, 
B220, FcεRI, TER119 antigen, and GR1, whereas in humans, the 
Lin group may include CD1a, CD3, CD11c, CD14, CD16, CD19, 
CD34, CD123, TCRαβ, TCRγδ, BDCA2, and FcεRI. Burkhard 
et al. (18) recommends using CD5 marker in order to exclude 
small levels of contaminating T  cells, especially for analyzing 
ILC3 populations. Regardless, these exclusion criteria remove T, 
B, NK, and dendritic cells, as well as other myeloid/granulocyte-
derived cells and stem cells. ILC in rhesus macaque models align 
most closely to patterns seen in humans, but partly due to vari-
ability in cross-reactive reagents, may be more simply defined by 
excluding CD3, FcεRI, CD14, CD20, and NK cell-related mark-
ers, such as NKG2A or NKp46 (15, 16, 19). It is also important to 
note that exclusion of Lin markers may vary significantly between 
laboratories. Several other factors are used to characterize ILC, 
including the presence of various cytokines mentioned above and 

utilization of key transcription factors and receptors (1–5, 20).  
The co-expression of NKp46 and NK1.1 classifies mouse ILC1 
subsets including related NK  cells from other ILC groups 
whereas the expression of transcription factors, namely T-bet 
and Eomes, can be used to distinguish ILC1 and NK cells from 
each other (21–23). Loosely, in mice, NK cells are T-bet+Eomes+ 
while ILC1 are T-bet+Eomes− cells, although exceptions to this 
classification occur (9). Based on the nomenclature proposed 
by different reports (1, 2), ILC1 can be more comprehensively 
phenotyped as Lin−CD127+RORγt−T-bet+IL-1R+ cells in mice, 
and Lin−CD127+ICOS+RORγt−T-bet+IL-1R+ cells in humans. 
ILC2 are described as Lin−CD25+CD127+ICOS+THY1+SCA1+

ST2+ cells in mice and Lin−CD25loCD127+CD161+ICOS+CRTH
2+ST2+ in humans. Similarly, ILC3 may be identified as Lin−CD
25+CD127+CD117+THY1+NKp46+/−RORγt+IL-1R+ in mice and 
Lin−CD127+CD161+/−CD117+NKp46+/−NKp44+/−RORγt+IL-
1R+IL-23R+ in humans. ILC may also be partially identified by 
receptors of cytokines to which they are responsive—IL-12Rβ2+ 
(ILC1), IL-17RB+ (ILC2), and IL-23R+ (ILC3), but due to issues 
with antibody specificity may best be shown molecularly or in 
functional assays. Collectively, these phenotypic descriptions of 
ILC populations continue to evolve, and while there is generally 
a good consensus about the definition of ILC2 and ILC3, what 
truly defines ILC1 is still somewhat unclear. Currently there 
are no unique markers or complete phenotypes that uniquely 
identify ILC1, and the field is still limited to their identification 
via exclusion criteria—i.e., cells that are not NK  cells, ILC2, 
or ILC3. Functionally ILC1 are identified as IFN-γ-producing 
cells that are distinct from NK cells through their low cytotoxic 
potential. Understandably, these factors make the study of ILC1 
particularly cumbersome. Indeed, a recent profiling of ILC across 
tissues using mass spectrometry by Simoni et al. (24) indicated 
lack of ILC1 as described previously by other groups (25, 26). 
Instead, they described a unique intra-epithelial ILC1-like cells 
(ieILC1) that matched the description by Fuchs et al. (27).

Although ILC are generally found systemically, they are dispa-
rately distributed by subpopulation and are particularly enriched 
in mucosal sites and secondary lymphoid organs (Table 1). ILC 
have been identified in the lungs (ILC1, ILC2), colon (ILC3), small 
intestine (ILC1, ILC3), oral mucosae (ILC3), as well as in bone 
marrow, blood (ILC1, ILC2), lymph nodes (ILC3), liver (ILC1), 
and even in embryonic tissues (40), although the ILC-related 
NK cells tend to be much more broadly distributed (8). How ILC 
populations are maintained and replenished is unfortunately not 
well defined. Tissue-resident ILC predominantly replenish by 
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self-renewal (40), though evidence suggests that common precur-
sor cells from the bone marrow, or elsewhere, may also contribute 
to ILC homeostasis via cell recruitment (22, 41).

ROLe OF iLC in GaSTROinTeSTinaL 
(Gi)-ReLaTeD DiSeaSeS anD RePaiR

Innate lymphoid cell populations are constitutively present in  
the GI tract and lymphoid tissues but differ in their compart-
mental distribution (42, 43). In healthy humans, ILC1 are the 
major population in the upper compartment of the GI tract while 
ILC3 are elevated in ileum and colon (44). The local distribution 
of ILC within the GI tract also differ—ILC1 predominate the 
intra-epithelial compartment of the intestine (27, 41, 42), while 
ILC2 are present in fat-associated lymphoid clusters in the intes-
tinal mesentery and in significant numbers in lamina propria of 
small intestine where ILC3 is the dominant population (44–46). 
ILC3 are also enriched in the isolated lymphoid follicles, crypto- 
patches, and perifollicular area of Peyer’s patches at steady state 
(20, 47).

In the healthy gut, ILC3 are thought to be one of the major cell 
populations contributing to overall homeostasis. This is, in part, 
because ILC3 produce large quantities of IL-22 and IL-17 (48), 
and directly interact with intestinal epithelial cells to maintain 
an intact barrier and modulate inflammation (49, 50). IL-22 
protects intestinal epithelium from inflammation and promotes 
wound healing by inducing STAT-3 dependent increases in 
production of antimicrobials by epithelial cells and epithelial 
cell proliferation, thus maintaining barrier integrity (51–53). 
In a mouse model of dextran sulfate sodium-induced ulcerative 
colitis, microinjection-based gene delivery of IL-22 ameliorated 
local inflammation through activation of STAT-3 in colonic 
epithelial cells, stimulation of mucus production, and goblet cell 
restitution (54). In IL-22−/− mice, increased intestinal damage, 
bacterial burden, and mortality was observed on infection with 
Citrobacter rodentium (52), and in humans, IL-22 has been 
shown to protect intestinal epithelium in IBD (55). Specifically, 
IL-23 responsive, IL-17/22-producing ILC protected intestinal 
stem cells against intestinal inflammation leading to epithelial 
regeneration in graft versus host disease patients who underwent 
bone marrow transplantation (56).

Another mechanism by which ILC regulates intestinal 
homeostasis is through their interaction with the commensal 
and/or pathogenic microbiota (48, 50, 57). Several protective 
mechanisms exist in the gut for the containment of commensal 
bacteria within intestinal sites including tight epithelial junctions, 
production of mucus and antimicrobial peptides, and immuno-
logical mechanisms that include ILC- and IgA-mediated immune 
exclusion pathways (58–63). ILC3 prevent commensal bacterial 
dysbiosis by IL-22-mediated induction of antimicrobial proteins 
(RegIIIβ, RegIIIγ, and β-defensins), element-sequestering 
proteins (S100A8, S100A9, and lipocalin-2) and mucins in epi-
thelial cells leading to a strengthened intestinal epithelial barrier  
(49, 64–66). For example, depletion of ILC in mice led to selective 
peripheral dissemination of a commensal bacteria originating 
from host lymphoid tissues, namely Alcaligenes spp. and alcali-
gene-specific immune responses were found to be associated with 

Crohn’s disease and Hepatitis C virus-infected patients (63, 64). 
Further, ILC3 also are involved in the formation of gut-associated 
lymphoid tissues (GALT), including cryptopatches and isolated 
lymphoid tissues, which are important for protection against 
pathogens and act as niche areas of symbiosis for colonizing com-
mensal microbiota (63). In turn, microbial products and signals 
were also found to be necessary for epigenetic modifications of 
ILC contributing to their diversity, plasticity, and maintenance 
of intestinal homeostasis (48, 57). This was evidenced by a study 
conducted by Manuzak et al. (67), describing the beneficial effects 
of probiotic therapy in healthy rhesus macaques by toll-like recep-
tor (TLR) mediated downregulation of intestinal inflammatory 
markers and elevated ILC3 and T-follicular helper cells in colon.

Innate lymphoid cell can also act as a first line of defense at 
mucosal portals of entry due to their rapid production of cytokines 
following initial exposure to pathogens and recruitment of other 
innate and adaptive cells to sites of infection. ILC1 produce 
IFN-γ and TNF-α, both of which are important in the control of 
infections by intracellular pathogens such as Toxoplasma gondii 
(41) and Listeria monocytogenes (68). Furthermore, mice defi-
cient in ILC3 were susceptible to intestinal pathogens including 
Helicobacter spp. and Clostridium difficile (69, 70). In helminthic 
infections, IL-25-mediated activation of ILC2 promotes a TH2 
response which is important for an effective elimination of para-
sites (71). IL-17 is essential for the control of Candida albicans 
infection suggesting the importance of ILC3 in protection against 
oropharyngeal candidiasis in mice (72).

Given their critical roles in maintaining mucosal homeostasis, 
altered frequency or function of ILC during chronic disease 
could contribute to exacerbated intestinal inflammation. Indeed, 
intestinal ILC1 are elevated in IBD (73, 74), and production 
of IFN-γ by IL-15-activated ILC1 may play a major role in the 
pathogenesis of celiac and Crohn’s disease (25, 75). ILC2 along 
with NKT cells can also promote IL-13-mediated inflammation 
in an oxazolone-induced model of colitis (76). Interestingly, 
IL-23 responsive ILC3 can play a pathogenic role in intestinal 
inflammation through the production of IL-17A and IFN-γ and 
are also increased in patients with IBD (25, 28, 73, 74, 77–79). 
Given the significant protective roles ILC mediate in the GI tract, 
it may be important to take into account various interactions with 
intestinal epithelium and microbiota in achieving a balance of 
positive and negative ILC-related functions.

LOSS OF iLC in PaTHOGeniC 
LenTiviRUS inFeCTiOnS

One of the hallmarks of HIV and pathogenic SIV infection is 
early loss of gut integrity followed by massive and rapid trans-
location of microbial products from the lumen of the intestine 
into the lamina propria, blood, lymph nodes, and liver (80–83). 
Indeed circulating lipopolysaccharide (LPS), sCD14, and other 
microbial products are now well-established biomarkers for 
microbial translocation and immune stimulants associated with 
inflammation and chronic immune activation. Because ILC, 
particularly ILC3, play major roles in maintaining gut integrity, 
tissue modeling, and repair (53, 84–86), these cells are likely 
critical players in the pathophysiology of HIV/SIV disease. 
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Initial work in SIV-infected rhesus macaques by our group and 
others showed that ILC3 are generally restricted to mucosal tis-
sue, express high levels of RORγt, and produce IL-17 and IL-22 
much like their human counterparts, but they are depleted or 
otherwise dysfunctional in infection (15, 16, 87). Specifically, 
we showed that even 1 week following SIV infection there was 
up to a threefold reduction in ILC3 in colon and fourfold to 
ninefold reduction in jejunum and ileum (19) and that this loss 
was maintained during chronic infection. Surprisingly, SIV viral 
loads did not correlate with the loss of ILC3 (19), nor were ILC3 
infected in vivo (15).

Functionally, ILC3 from SIV-infected animals took on a 
more cytotoxic phenotype and produced greater quantities of 
TNF-α, IFN-γ, and MIP-1β, but reduced levels of IL-17 (14). 
This cytokine profile suggests lentivirus infection may drive 
ILC3 plasticity toward ILC1, as has been previously described for 
mice (10). Similarly, a study by Xu et al. (16) clarified the kinetic 
changes in IL-17-producing ILC3 from intestinal epithelium 
by showing a reduction during acute pathogenic SIV infection 
(7–14 days postinfection) is followed by an increase in the total 
numbers of ILC (14–21  days postinfection) and eventually a 
gradual decline of ILC3 with disease progression after 28  days 
postinfection (16). Klatt et al., (87) also noted a significant deple-
tion of all IL-17-producing lymphoid cells in rhesus macaques, 
but not in sooty mangabeys, where SIV replicates efficiently but 
does not cause significant mucosal barrier damage. This observa-
tion further underscores a potential role for ILC3 in maintaining 
gut homeostasis in HIV/SIV infections. Work in an HIV model 
of humanized mice by Zhang et al. (88) showed that persistent 
HIV-1 infection depleted ILC3 but effective antiretroviral therapy 
reversed this loss.

In human subjects, Kloverpris et al. (89) found that all three 
subgroups of ILC in blood were depleted during infection, but 
early administration of ART restored all ILC subsets. However, 
if ART was not administered within 5–14 days after infection, 
only ILC3 were partially restored while ILC1 and ILC2 remained 
depleted. Much like had been shown in SIV-infected macaque 
models (14), ILC3 loss did not occur in tonsil or other oral 
mucosal tissues (89). Surprisingly, they did not detect a reduc-
tion of ILC numbers in the gut, and a similar observation was 
made by Fernandes et al. (90). Although ILC levels in the gut 
during acute infection were not measured. The reason for this 
discrepancy between these studies and multiple macaque studies 
are not clear, but could be species specific. This could also be the 
reason for the contrasting observations made by Liyanage et al. 
(91), suggesting no restoration of NKp44+ cells in the rectum 
after ART. More recently, a study by Kramer et al. (92) showed 
that intestinal ILC distribution is significantly perturbed in 
patients even on effective antiretroviral therapy and that levels of 
colonic ILC3 were inversely correlated to markers of microbial 
translocation.

One of the proposed mechanisms leading to mucosal inflam-
mation in HIV infection is the interaction of viral envelope gp120 
with polarized epithelial cells directly disrupting epithelial tight 
junctions (93–95). A closer look at the effect of viral infection on 
epithelial cells showed that HIV-1 directly reduces transepithelial 
resistance, a measure of epithelial cell monolayer integrity by 

30–60% without affecting its viability (93). Furthermore, func-
tions of tight junction proteins, such as claudin 1, 2, 4, occludin, 
and ZO-1, were also disrupted and significantly increased inflam-
matory cytokines, such as TNF-α, IL-6, MCP-1, and IL-1β (93). 
The resulting increase in cytokine production following T  cell 
infection may also cause intestinal barrier breakdown [(96), 
reviewed in Ref. (97)].

The effect of HIV-2 on the other hand is less obvious. A 
previous study correlated both HIV-1 and HIV-2 with microbial 
translocation. However, a more recent study by Fernandes et al. 
(98) suggests no disruption of the epithelial tight junction by 
HIV-2 despite active replication. How ILC-mediated mucosal 
maintenance may differ in less pathogenic infections such as 
HIV-2 remains unstudied. Collectively, these data indicate that in 
both HIV-infected humans and pathogenic SIV-infected rhesus 
macaque models, ILC3 loss in the gut occurs early, is at least 
partially irreversible, and is linked to mucosal dysregulation and 
translocation of microbial products.

MeCHaniSMS OF iLC LOSS in 
PaTHOGeniC Hiv/Siv inFeCTiOnS

While the loss of ILC during HIV/SIV infection is well established, 
multiple groups have pursued molecular and cellular mecha-
nisms leading to this depletion. We had previously observed 
that the expression of IDO1, an enzyme upregulated during 
SIV infection [also observed in Ref. (99)] (Figure 1) correlates 
negatively with CD4+TH17 cells as well as ILC3 (15). In HIV, 
IDO has been implicated in immunosuppressive activity (100) 
and dysbiosis during disease progression (101). Although the 
source(s) of IDO1 are not totally clear, the ability of HIV-1 TAT 
to induce production of IDO catabolites by dendritic cells has 
been described previously (102). Interestingly, increased levels of 
IDO1 in the gut showed a negative correlation of CD4+ T cells 
and ILC3 but not with NK or CD8+ T cells (15). This suggested 
IDO1 expression could be a negative regulator of ILC3 but not 
other effector cells. Furthermore, we were able to confirm that 
IDO catabolites caused numerical and functional depletion of 
ILC3 through a similar mechanism described for TH17 cells (99). 
Increased apoptosis leading to massive loss in total numbers of 
ILC3 was observed; however, the loss was not due to direct infec-
tion as no detectable SIV RNA was present in these cells. This is 
not surprising, as ILC do not express receptors for SIV/HIV.

Further studies indicated that the loss of ILC3 in the mucosae 
during acute infection was due to increased apoptosis and RORγt 
suppression induced by inflammatory cytokines, such as TGF-β, 
IL-2, IL-12, and IL-15 (19). In pathogenic SIV infection, we also 
showed previously that plasmacytoid DC (pDC) accumulates 
in the gut mucosa producing large quantities of IFN-α (103) 
(Figure  1). HIV-1 infection in a humanized mouse model 
and in  vitro treatment of splenic ILC3 with IFN-α or HIV-1 
significantly upregulated CD95 expression on ILC3 leading to 
apoptosis dependent on pDCs (88). RNA-seq analysis of ILC 
in human subjects with acute HIV-1 infection showed that 
there was a downregulation of genes associated with viability 
(89), and gene array analysis (87) showed that mucosal IL-17+ 
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(left panel). During the acute phase of lentivirus infection, early innate responders (DCs and other cells) secrete cytokines leading to apoptosis of ILC3. Subsequently, 
reduced IL-17 and IL-22 production leads to damage of gut epithelial barrier and an influx of microbial products, causing further inflammation (right panel).
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cells highly expressed TNF-receptor superfamily 4 (TNFRSF4,  
OX40), a co-stimulatory molecule involved in maintenance of 
mucosal lymphocytes, in comparison to IL-17− cells (104–106). 
Finally, ILC3 were shown to be depleted in lymphoid tissues 
mediated by TLRs in SIV-infected animals (107) (Figure  1). 
This study specifically showed that microbial translocation and 
resulting products like lipoteichoic acid or LPS via the TLR2/4 
pathway can directly cause apoptosis in ILC3, further increasing 
HIV-induced disruption of GALT.

Altogether, these data indicated that a primary mechanism of 
ILC loss is likely apoptosis due to dysregulation of homeostatic 
elements on which ILC depend. One potential avenue that 
could be explored to restore ILC and gut integrity is IL-7-based 
therapies. Indeed in mice, IL-7 promoted IL-22 production 
during chronic LCMV infection (108); and in macaques, IL-7 
therapy was shown to improve gut mucosal integrity in acute 
SIV-infected animals (109). Similarly, IL-7 immunotherapy in 
chronically infected HIV patients were associated with CD4+ 
T cell protective functions (108, 110, 111) and led to an overall 
reduced systemic inflammation (110). While these studies sug-
gest that IL-7 plays a key role in repairing gut immunity, the 
precise connection to ILC is clearly understudied and needs 
further evaluation. Interestingly, it was also recently shown 
that SIV-ALVAC in combination with multiple adjuvants could 

induce an expansion of ILC3 (112). Whether or not this modality 
could be used therapeutically to restore ILC or could contribute 
to protective vaccine efficacy remains to be elucidated.

COnCLUSiOn anD PeRSPeCTiveS

Innate lymphoid cell fill a unique and plastic niche of primarily 
tissue-resident cells that provide innate sources of typical T cell 
and NK cell produced cytokines, and although they clearly have a 
role in innate defense and homeostasis, many unknowns remain. 
Not the least of which being a recent report indicating that indi-
viduals lacking ILC may experience no obvious pathology as long 
as an intact T and B cell compartment remains (113). Specifically, 
regarding lentivirus infections, infection itself is not the source 
of depletion, but rather indirect or direct apoptosis, and while 
some potential mechanisms have been described herein this list 
is unlikely exhaustive or complete. It is also important to note 
that in several HIV studies no ILC depletion is observed in the 
gut. Regardless, whether loss is a virus-mediated subversion or an 
off-target effect of massive inflammation is unclear, and although 
ILC3 seemingly mediate gut homeostasis, their exact roles, both 
kinetically and functionally, in the perturbation and subsequent 
microbial translocation following HIV and pathogenic SIV infec-
tions are not obvious. And given the tight reciprocal relationship 
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between gut microflora and ILC3 in mice, it will be interesting to 
determine if ILC3 depletion also contributes to dysbiosis. Direct 
evidence for these phenomena will need to be confirmed by 
in vivo depletion strategies in macaques, should those reagents 
become available. Further, HIV/SIV clearly intersects with ILC3 
but whether ILC2 and ILC1 also contribute against viral patho-
genesis is less clear and will require further study. Nonetheless, 
despite a host of unknowns, the field as a whole can appreciate the 
novelty of these cell populations and conclude that manipulating 
ILC as early responders to infection could be an attractive target 
for multiple infectious as well as chronic conditions.
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