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Infection with parasitic helminths affects humanity and animal welfare. Parasitic hel-
minths have the capacity to modulate host immune responses to promote their survival 
in infected hosts, often for a long time leading to chronic infections. In contrast to many 
infectious microbes, however, the helminths are able to induce immune responses that 
show positive bystander effects such as the protection to several immune disorders, 
including multiple sclerosis, inflammatory bowel disease, and allergies. They generally 
promote the generation of a tolerogenic immune microenvironment including the induc-
tion of type 2 (Th2) responses and a sub-population of alternatively activated macro-
phages. It is proposed that this anti-inflammatory response enables helminths to survive 
in their hosts and protects the host from excessive pathology arising from infection with 
these large pathogens. In any case, there is an urgent need to enhance understanding 
of how helminths beneficially modulate inflammatory reactions, to identify the molecules 
involved and to promote approaches to exploit this knowledge for future therapeutic 
interventions. Evidence is increasing that C-type lectins play an important role in driving 
helminth-mediated immune responses. C-type lectins belong to a large family of calci-
um-dependent receptors with broad glycan specificity. They are abundantly present on 
immune cells, such as dendritic cells and macrophages, which are essential in shaping 
host immune responses. Here, we will focus on the role of the C-type lectin macrophage 
mannose receptor (MR) in helminth–host interactions, which is a critically understudied 
area in the field of helminth immunobiology. We give an overview of the structural aspects 
of the MR including its glycan specificity, and the functional implications of the MR in 
helminth–host interactions focusing on a few selected helminth species.

Keywords: C-type lectin, mannose receptor, helminth, schistosoma, trichuris, immune regulation

iNTRODUCTiON

Parasites have been a great burden to human health throughout many centuries. Parasitic helminths 
(worms) are a large and important group of parasites that cause diseases, such as ascariasis, filariasis, 
and schistosomiasis, which are often endemic in tropical areas.

Over the past 20–30 years it has been observed in the Western world that a correlation exists 
between an effective hygiene and the increase in atopic, autoimmune, and inflammatory diseases. 
These findings are reflected in the “hygiene hypothesis” (1, 2), and led to the concept that in the 
developed world the reduction in exposure to helminths affects the immunoregulatory mechanisms 
of our immune system (3, 4). The existence of a long and close association between helminths and 
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FiGURe 1 | The mannose receptor is a type 1 membrane glycoprotein with 
multiple C-type lectin domains that can bind mannose- and fucose-
containing glycans and an R-type lectin domain that binds sulfated Gal/
GalNAc residues.
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their hosts is proposed to have been the driving force of the 
co-evolution of helminth and host mechanisms that ameliorate 
harmful inflammatory responses. These enable helminths to 
survive and protect the host from excessive pathology arising 
from infection with these large pathogens (5).

The anti-inflammatory consequences of helminth infections 
are further supported by the observations that either infection 
with parasitic helminths or systemic treatment with helminth 
extracts can reduce the symptoms of allergic diseases (6) and 
inflammation associated with autoimmune diseases. The latter 
include inflammatory bowel diseases (7, 8), multiple sclerosis 
(9–12), or rheumatoid arthritis (13, 14), as well as metabolic 
disorders such as obesities (15–17), diabetes (18, 19), or athero-
sclerosis (20). From this perspective, there is some rationale in 
regarding parasitic helminths, as long as they do not induce obvi-
ous pathology, as potentially beneficial commensals rather than 
dangerous pathogens that need to be expelled. Along this way, 
infection with helminth parasites is being explored as a potential 
therapy for a variety of diseases in clinical trials (21).

Increased understanding of the nature of helminth effects 
on the immune system could enable new treatment options for 
parasitic diseases, or beneficially modulate inflammatory reac-
tions. Such studies could lead to identification of the molecules 
involved and promote approaches to exploit this knowledge for 
future therapeutic interventions. In this regard, there is increas-
ing evidence that carbohydrate-binding proteins, and specifically 
C-type lectins, play an important role in driving helminth-
mediated immune responses (22, 23). C-type lectins are a large 
family of calcium-dependent receptors and each member has a 
relatively unique carbohydrate (glycan)-binding specificity. These 
lectins are abundantly present on immune cells that shape host 
immune responses and collectively they can recognize a wide 
variety of glycans.

HeLMiNTH iNFeCTiON AND HeLMiNTH-
iNDUCeD iMMUNe ReACTiONS

Infection with parasitic helminths typically induces a type 2 (Th2) 
immune response and promotes the generation of alternatively 
activated macrophages (AAMs) and eosinophils. Soon after 
infection, innate responses are initiated by many different cell 
types [including antigen-presenting cells such as dendritic cells 
(DCs) and macrophages], which, upon encountering the invad-
ing parasites, promote the suppression of T-cell-driven protective 
immune responses and a shift to Th2 responses. The helminth-
driven Th1/Th2 immune responses are controlled through the 
generation of regulatory networks, which can include FoxP3+ 
regulatory T cells (Treg), anergic/hyporesponsive T cells, regula-
tory monocytes/macrophages, and/or B cells.

It is possible that evolution of different types of helminths 
has resulted in relatively similar pattern of immune responses in 
infected hosts. Many different molecules, receptors, and host cells 
cooperate and interact, generating mechanisms that have evolved 
to achieve a balance between host and parasite, dependent on the 
living environment and biology of the parasites. To dissect the dif-
ferent molecular mechanisms and signaling pathways involved, 

experimental data with isolated soluble products are essential. 
Several of such helminth products have been purified and studied 
in animal models and in  vitro assays with antigen-presenting 
cells (24–29). These parasite-derived molecules include secreted 
glycoconjugates, e.g., glycoproteins and glycolipids, which play 
important roles in host immune modulation. The helminth-
derived glycans can interact with immune cell-expressed C-type 
lectins [termed C-type lectin receptors (CLRs)] and other glycan-
binding proteins, such as galectins, and these interactions help 
to shape the innate and adaptive immune responses (22, 23, 30). 
Because helminths do not express sialic acid, they do not appear 
to interact with the Siglec family of sialic acid-binding lectins 
on immune cells. Dendritic cells express many different CLRs, 
including DC-SIGN, Dectin-1, MGL, and the mannose recep-
tor (MR); their expression can vary within distinct DC subsets. 
CLRs can act as endocytic and/or signaling receptors, and play 
major roles in both innate and adaptive immune responses often 
in concerted action with other CLRs and/or toll-like receptors 
(TLRs) (31–33). One of the best studied CLRs is the human 
DC-SIGN (31, 34), which typically binds glycans containing 
terminal fucose or mannose residues (35), such as fucosylated 
glycans of Schistosoma mansoni, including Lewis-X [Galβ1-
4(Fucα1-3)GlcNAc-], LDNF [GalNAcβ1-4(Fucα1-3)GlcNAc-], 
and the schistosome-specific pseudo-LeY ligand [Fucα1-3Galβ1-
4(Fucα1-3)GlcNAc-] (35–38). Remarkably, DC-SIGN induces 
distinct signaling pathways dependent on the type of glycan that 
is recognized (39, 40). Similar to DC-SIGN, the MR typically 
recognizes mannose- and fucose-containing glycans in both 
trematode and nematode parasites, but its glycan specificity and 
functions are less well understood.

THe MANNOSe ReCePTOR

Structural Properties of the MR
The MR is expressed by a selected population of myeloid cells and 
non-vascular endothelium and has been implicated in helminth-
induced modulation of host immune responses. The MR is 
a type I membrane glycoprotein of 165 kDa that is comprised 
of a cytoplasmic domain of 45 amino acids and three types of 
extracellular domains as shown in Figure 1. These domains are 
an N-terminal cysteine-rich domain, followed by a fibronectin 
type II repeat (FNII), and eight consecutive C-type lectin-like 
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domains (CRDs) (41). The MR was originally described as an 
endocytic receptor with a broad binding specificity for both 
microbial and endogenous ligands and constantly cycles from 
the cell surface to the cytoplasm (42, 43). More recently, there is 
evidence that the MR is also involved in cellular activation and 
signaling. However, the signaling activity of the MR is unusual, 
since the receptor does not have clear signaling motifs in its cyto-
plasmic domain; thus, the mechanisms and potential signaling 
pathways may involve the action of co-receptor(s) and are poorly 
understood (44).

Glycan Specificity of the MR
The MR is unique among the CLRs in that it consists of multiple 
carbohydrate-recognition domains (CRDs) (Figure  1). The 
N-terminal domain is an R-type domain that binds in a calcium-
independent manner to glycans that have a non-reducing terminal 
3-O-sulfated galactose or 3/4-O-sulfated-N-acetylgalactosamine 
(45). The FN II domain is involved in binding collagens (46). 
The MR was eponymously named by its property of binding to 
mannose, which is mediated within the C-type lectin domains 
4–8. Fibroblast expression studies showed that CRD 4 has the 
major affinity for carbohydrate, whereas CRDs 5 and 7 appear 
to contribute to the binding capacity of mannose-containing 
glycans. Removal of CRDs 1–3 did not affect affinity for the 
ligands tested (47), and their roles, if any, in glycan binding is 
unknown. In vitro binding studies with the MR showed its pref-
erential but weak interaction with both the monosaccharides 
Man and Fuc above other monosaccharides (48). With more 
complex glycans the MR shows a preference for Manα1-6Man-R 
and Manα1-3Man-R compared to α1-2/4-linked Man residues, 
whereas the branched mannotrioside Manα1-6(Manα1-3)
Man-R showed the highest affinity to the MR. Of the fucosylated 
ligands tested, Fucα1-6GlcNAc-R showed a similar affinity as the 
branched mannotrioside, whereas binding to Fucα1-2Gal-R was 
lower and α1-3/4-linked Fuc was not tested. The latter linkage 
is found in the Lewis antigens to which the MR does not bind 
(49), in contrast to the C-type lectin DC-SIGN (37), which is 
also expressed by DCs and shares with the MR a preference 
for mannose/fucose/GlcNAc. The MR selectivity for Manα1-
3/6Man corresponds well to its function as a pathogen receptor, 
considering the abundance of these termini in yeast mannans, 
and the presence in helminths of paucimannose-N-glycans such 
as Man3GlcNAc2-Asn (23). It is likely that the multivalent nature 
of the MR facilitates high avidity interactions with multivalent or 
repetitive glycan-ligands, which occur in many microorganisms, 
fungi, and parasites (48). Whereas multivalent binding by most 
CLRs is mediated by multimer-forming of lectin molecules, the 
presence of multiple CRDs in the MR is thought to promote its 
multivalent binding within a single MR molecule. This implies 
that the binding affinity of the MR highly depends both on 
valency and structural characteristics of a particular glycocon-
jugate (47).

The glycosylation of the MR may further fine-tune its 
binding to ligands (50). The MR contains many Asn-linked 
N-glycans, and their structures in the mouse appear to be tissue 
specific (51). Terminal sialylation of glycans on the MR is of 
special interest, since it has been suggested that this may affect 

the MR binding properties to mannosylated glycans, whereas 
non-sialylated or neutral glycans might affect the avidity for 
sulfated carbohydrate ligands (50). Such differential glycosyla-
tion of the MR might not only influence its binding properties 
to exogenous ligands but might also influence its interactions 
with other receptors on the cell membrane, thereby possibly 
modulating MR functions.

expression of the MR on immune Cells
The MR is primarily expressed on human and mouse DCs and 
macrophages (MF), but it is also found on other cells, such as 
non-vascular endothelial cells (44). Interestingly, the MR is 
largely found intracellularly in membranous structures, and only 
10–30% is expressed at the cell surface under steady state condi-
tions (43); this is consistent with the recycling and internalization 
nature of the receptor. The Th2 cytokines interleukin (IL)-4, 
IL-13, and IL-10 (52–54) as well as prostaglandins PGE1 and 
PGE2 (55) upregulate MR expression on murine macrophages; 
in human macrophages generated in vitro culture with human 
serum, activation by treatment with IL-4 results in significantly 
increased MR expression (56). The MR is expressed at low levels 
on naïve monocytes. Monocytes constitute around 10% of total 
leukocytes in blood and are key players of the human innate 
immune response. Blood-derived monocytes are an independ-
ent cell lineage that has the ability to differentiate into specific 
DC and macrophage populations, which often constitutively 
express the MR. In monocytes, the expression of the MR is 
induced upon maturation (44), and specific (pro-inflammatory) 
subsets of monocytes have been reported to be MR positive 
(57). Interestingly, a sub-population of monocytes with an 
enhanced expression of the MR has been identified in patients 
with asymptomatic filarial infection; such expression is cor-
related with enhanced expression of the suppressor of cytokine 
signaling-1 (SOCS-1) and the cytokines IL-10 and transforming 
growth factor β (TGFβ) (58). We recently observed a similar 
monocyte phenotype in helminth-infected Ethiopian individu-
als (unpublished observation). Furthermore, human monocytes 
treated in vitro with soluble components (SPs) of the whipworm 
Trichuris suis induce a sub-population of anti-inflammatory 
patrolling monocytes with enhanced CD16, IL-10, and MR 
protein expression (59). These data indicate that interaction 
with helminth components, either directly or indirectly via the 
induction of Th2 cytokines, can induce expression of the MR 
on monocytes. Such modulated monocytes may differentiate to 
AAMs, as are known to be induced by helminths (60). Indeed, 
human monocytes treated in vitro with T. suis SPs differentiate 
into a subset of macrophages with enhanced AAM properties, 
including elevated MR expression and IL-10 production (61). An 
interesting possibility is that the helminth-induced MR expres-
sion on AAMs may be relevant for the known role of AAMs in 
wound healing. A common property of helminths is that they 
need to migrate in the hosts as part of their life cycles, and this 
causes extensive tissue damage. The ability of helminths to thus 
limit host-damage may promote their survival in the hosts. In 
summary, these data indicate that helminths modulate the phe-
notype of human blood monocytes, which in turn may lead to the 
generation of AAMs expressing the MR.
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TABLe 1 | Interaction of the mannose receptor (MR) with helminth components, and immunological parameters.

Helminth Components effects Reference

Schistosoma mansoni SEA Interaction with MR (h, m), internalization in dendritic cells (DCs) (h) (62, 63)
Omega-1 Internalization of Omega-1 by MR in DCs (h) (64)
SEA MR-dependent expression of suppressor of cytokine signaling-1 and SHP1 on DCs (h) (65)
Larval E/S Binding Larval E/S products by MR; reduction INF production, stimulation Th2 responses (m) (66)

Fasciola hepatica E/S products Induction high levels of transforming growth factor β and interleukin (IL)-10 in macrophages (m) (67)
Tegumental coat 
proteins

Binding to BMDCs (m) (68)

Trichuris suis SWP Inducing enhanced motility of monocytes (h) (59)
SWP Enhancing IL-10 and reducing CCR2 expression on monocytes (h) (59)

Trichuris muris Binding of BMDM and production of IL-6 (m) (69)

Trichinella spiralis SP L1 larvae Binding to macrophages, stimulation of NO secretion (m) (70)

Ascaris suum High MW SWP Inhibition LPS-induced BMDCs maturation and in vitro T cell proliferation (m) (71)

h, human; m, mouse; SEA, soluble egg proteins; SWP, soluble worm products; E/S, excretory secretory products; MW, molecular weight.
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THe MR iN HeLMiNTH-MeDiATeD 
iMMUNe ReSPONSeS

Whereas enhanced expression of the MR is observed upon 
contact with helminths as described above, the role of the MR in 
modulating immune responses is still unclear. The MR interacts 
with and internalizes components of several helminth species, and 
this is often associated with the induction of anti-inflammatory 
or Th2 responses (Table 1).

Flatworm Trematodes interacting  
with the MR
The interaction of the MR has been reported both with the 
bloodfluke S. mansoni and with the liver fluke Fasciola hepatica 
(Table 1). S. mansoni is a human parasite causing schistosomiasis 
(bilharzia), affecting millions of individuals especially in tropical 
areas (72). S. mansoni can also infect rodents, which are often 
used as model system to study the immunobiology of the disease. 
F. hepatica primarily infects sheep and cattle causing fascioliasis, 
but is also an important emerging pathogen of humans (73).

Schistosoma mansoni—Th2 polarization by infection with 
S. mansoni and exposure to S. mansoni antigens involves the 
induction of tolerogenic DCs and the expansion of regulatory 
cell populations (including IL-10 secreting and Foxp3-expressing 
Tregs) (74–76). The immune response against S. mansoni infection 
begins at the earliest stage of infection, when cercaria gain entry 
to the mammalian host via the skin, which initially stimulates the 
innate immune response. During transformation from cercariae 
to schistosomula within 72 h after infection, the parasite secretes 
large amounts of highly glycosylated components, termed excre-
tory/secretory (E/S) products. Mononuclear phagocytic cells in 
the skin internalize E/S products released by the schistosomula 
via the MR (66). In addition, it was shown that the ligation of the 
MR by S. mansoni larval E/S products has a major role in limiting 
the production of pro-inflammatory cytokines (66), which may 
prime the immune system for the subsequent development of a 
Th2 response.

After maturation of the larvae to adult worm pairs of female/
male, eggs are deposited that secrete soluble egg components. 
One of these components is Omega-1, a major secreted egg 
glycoprotein RNase, which is capable of inducing a Th2 response 
(25, 77, 78). It has been proposed that the MR on DCs is essential 
for internalization of Omega-1, which subsequently acts as an 
RNase to degrade RNA thereby impairing protein synthesis 
(25, 64). Intraperitoneal injection of obese mice with Omega-1 
resulted in a Th2 immune response in the white adipose tissue, 
improving glucose tolerance and induction of a transient delay in 
weight gain (79). Whereas IL-33 release from cells in the adipose 
tissue was mediated by the RNase activity of Omega-1, its ability 
to improve metabolic status was shown to be dependent upon 
effective binding to the MR (79).

We recently showed that SEA, both untreated and heat-treated 
(in which RNases and thus Omega-1 activity were eliminated), 
potently suppressed LPS-induced TNF and IL12 production and 
upregulated SOCS-1, SHP-1, and OX40L expression in human 
DCs (65); these are phenotypic and functional changes in DCs 
associated with Th2 polarization. Remarkably, treatment of SEA 
with periodate (PI) (in which glycans are oxidized and lose their 
recognition potential), causes a loss of the inducing activity, 
suggesting an important role of SEA glycans in regulating DC 
function. Similarly, CD4+ T cell proliferation was suppressed by 
the addition of DCs primed with either untreated or heat-treated 
SEA, but suppression was not observed by using PI-treated SEA 
(65). The SEA-induced upregulation of expression of SOCS-1 
and SHP-1 appeared to be MR-dependent. These data indicate 
that RNase activities within SEA are not essential to induce Th2 
polarizing DCs in the human system; however, it is possible that 
glycans linked to Omega-1 and/or other MR-ligands trigger the 
MR to induce inhibition of pro-inflammatory responses, perhaps 
similar to the larval E/S products (66).

Many reports have described a potential role of parasite-
derived glycans in modulation of schistosome-mediated immune 
responses (39, 66, 80–82). The observation that PI-treated SEA 
has a strongly decreased ability to modulate DC function, 
compared to heat-treated and untreated SEA, also indicates that  
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glycans within SEA play an important role in polarization of 
DC-mediated immune responses (65). The observation that 
Omega-1, in contrast to SEA, has no potential to inhibit T-cell 
proliferation (83) suggests that SEA contains additional com-
ponents that contribute to modulation of the host’s immune 
response; thus, it will be important to identify the SEA compo-
nents that are responsible for these properties. One possibility 
is that the lipid mediator prostaglandinE2 (PGE2) contributes to 
SEA-induced immune responses. SEA preparations have been 
shown to contain the lipid mediator PGE2 (27, 84), and PGE2 
has been shown to have the potential to induce Th2 responses  
(27, 85). Remarkably, it appears that the activity of PGE2 is 
PI-sensitive (27), which shows that deducing a role for glycans 
based only on PI sensitivity of the putative compounds should 
be regarded with caution. In conclusion, there may be several 
pathways and multiple schistosome components mechanistically 
involved in the suppression of inflammatory responses and Th2 
polarization, some of which essentially involve a role of the MR.

Fasciola hepatica—As observed with many other helminths, 
infection with F. hepatica leads to downregulation of Th1 immune 
responses and the generation of Th2 immune responses in mice 
(29, 86). During infection, the parasites release a myriad of 
different products (E/S products and tegumental antigens) that 
downregulate Th1 responses and promote Th2 responses, includ-
ing development of AAMs with immunomodulatory potential 
(29, 87). Macrophages stimulated with F. hepatica E/S products 
show enhanced MR, Arg-1, TGF-β, IL-10, and PD-L1 expression 
and a reduced potential to respond to LPS activation (67, 88). 
Furthermore, blocking the MR with the mannan hapten or an 
anti-MR blocking antibody resulted in a partial loss of the mac-
rophages’ inflammatory phenotype. Interestingly, similar effects 
were observed when mice were intraperitoneally injected with 
mannan before being infected (67).

Fasciola hepatica tegumental antigens (FhTeg) enhance 
expression of the negative regulator SOCS3 (89) and the MR 
(90) on BMDCs, which may contribute to its immune modula-
tory properties, such as the induction of T-cell anergy or T-cell 
hyporesponsiveness (90). Interaction of FhTeg, which contains 
glycoproteins with oligo-mannose-type glycans, with BMDCs 
was partly MR-dependent (68). On the other hand, the ability 
of FhTeg to induce SOCS3 or suppress cytokine secretion from 
LPS activated BMDCs appeared not to be MR-dependent, as was 
demonstrated by the use of MR-deficient BMDCs (68), indicating 
that other mechanistic pathways are involved. The enhanced MR 
expression on the FhTeg-treated BMDCs has been suggested to be 
involved in induction of T-cell anergy. DC-CD4+ T-cell commu-
nication appeared to be MR-dependent, as was deduced from a 
reduced ability of MR-deficient BMDCs to enhance expression of 
the anergic markers GRAIL and CTLA4 on CD4+ T-cells, and a 
reversal of the suppression of IL-2 and IFN-γ compared to mock-
treated BMDCs (90). These data illustrate a role for the MR in the 
immunoregulatory properties of both murine macrophages and 
BMDCs upon interaction with F. hepatica components.

whipworms interacting with the MR
Parasitic nematodes of the order Trichocephalida (whipworms) 
contain several genera of medical importance including Trichuris 

and Trichinella species. Human infection with Trichuris trichu-
ria and Trichinella spiralis typically occurs after ingestion of 
contaminated food. Trichuris muris is often used as a natural 
mouse model of T. trichiura. The pig whipworm T. suis has strong 
anti-inflammatory properties (27, 91, 92) and transient infection 
with these parasites, which are not able to reproduce and lack 
long-term survival in non-pig mammals, are being investigated 
as a natural treatment for human inflammatory diseases, such as 
inflammatory bowel disease and multiple sclerosis (21). Studies 
with T. muris in different mouse models and T. suis infection 
in pigs have shown that a Th2-dominated immune response is 
required for worm expulsion (93, 94), whereas the development 
of a Th1 response leads to host susceptibility (94).

A Th2-dominated response includes the generation of AAMs 
which typically express the MR. T. muris E/S products contain 
components that bind to the MR; however, a functional role 
in vivo for the MR in worm expulsion could not be demonstrated 
(69). Knockdown of the MR revealed a role of the MR in the 
production of IL-6 by the AAMs, but no effect on the expulsion 
of the parasite (69). This suggests that either the MR may not be 
involved in expulsion of the parasite or alternative pathways com-
pensate for the loss of the MR. Interaction of T. spiralis L1 larvae 
with the MR expressed on the surface of peritoneal macrophages 
did not mediate IL-6 secretion, but resulted in an enhanced NO 
production, suggesting that the MR contributes to macrophage 
activation.

Human DCs bind soluble components of T. suis via C-type lec-
tins including the MR (59, 91). To date, no clear role for the MR has 
been demonstrated upon interaction of T. suis components with 
DCs (unpublished observations). However, monocytes showed 
an enhanced expression of the MR upon treatment with T. suis 
components associated with the generation of a non-classical phe-
notype (59). In addition, treatment of endothelial cells with T. suis 
resulted in an enhanced motility and reduced trans-endothelial 
migration in an in vitro model of the blood–brain barrier. The 
presence of MR blocking antibody significantly inhibited the  
T. suis-induced patrolling behavior of monocytes and rescued 
the T. suis-induced reduction in monocyte trans-endothelial 
migration. In addition, the MR can induce these properties in 
monocytes via downstream signaling including the action of pro-
tein kinase C (PKC) (59). This indicates that the MR is critically 
involved in the monocyte modulation.

DiSCUSSiON AND FUTURe PROSPeCTS

The MR is an important CLR that interacts with a number of 
products generated by a variety of helminths, and clearly plays a 
role in modulating host immune responses, but many questions 
remain about its functional mechanisms. Due to its presence on 
different cells in the immune system, ligation of the MR might 
lead to different signaling consequences, but whether the MR 
can signal alone or requires co-receptors is unknown. In addi-
tion, the presence of multiple carbohydrate-binding domains 
in the MR allows differential binding of natural glycan ligands 
and differential effects. Little is known about the MR binding 
specificity to natural ligands of pathogens including helminths, 
and this is an important aspect to address. The ambiguity of the 
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MR role is also illustrated by the observation that DCs, primed 
with some natural ligands of the MR, such as MUC III, biglycan, 
and Mycobacterium tuberculosis mannosylated lipoarabinoman-
nan, inhibit the generation of Th1-polarized immune responses, 
whereas other ligands that also bind the MR, such as thyroglobu-
lin, had no effect (95).

The observation that glycosylation of the MR itself influences 
its glycan-binding properties, suggests that the function of the MR 
can vary dependent on the cells that express the lectin and their 
activation status and ability to glycosylate the MR. It is known 
that in DCs, for example, their glycosylation dramatically changes 
during cellular activation (96), which may result in changes of the 
glycosylation state of the expressed MR, but this has not yet been 
demonstrated.

Since the cytoplasmic domain of the MR has no clear sign-
aling motifs, it has been assumed that the MR cannot directly 
induce downstream signaling upon ligand binding. We recently 
demonstrated, however, that the MR is critically involved in PKC 
signaling in monocytes (59), and many of the effects observed for 
MR ligation imply its signaling potential. The most likely expla-
nation is that the MR may be needed for concerted action with 
another receptor that may be more directly involved in signaling, 
and that the primary role of the MR may be in capturing and/or 
internalizing a ligand. For example, collaboration of the MR with 
Dectin-1 has been suggested to be important in inducing high 
levels of TGF-β and IL-10 in macrophages upon stimulation with 

F. hepatica E/S products (67). Furthermore, the MR and TLR2 are 
both critically involved in pro-inflammatory cytokine production 
by human monocytes in response to Pseudomonas aeruginosa 
infection (97). Thus, the MR may indirectly influence signaling 
cascades in immune cells, but the exact mechanism of how this 
collaboration takes place is unknown.

The MR is one of the most unique CLRs produced by animals. 
The ability of this receptor to bind a wide variety of mannose- and 
fucose-containing ligands puts it at the forefront of the innate 
immune response to pathogens rich in such glycan signatures. 
While there are many aspects of MR functioning and glycan 
recognition yet to be discovered, there are exciting translational 
opportunities as the glycan ligands that regulate MR activity 
are identified and allow us to exploit its anti-inflammatory and 
regulatory functions.
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