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ARTICLE

Thermal crumpling of perforated two-dimensional
sheets
David Yllanes 1,2,3, Sourav S. Bhabesh 1,2, David R. Nelson4 & Mark J. Bowick 1,2

Thermalized elastic membranes without distant self-avoidance are believed to undergo a

crumpling transition when the microscopic bending stiffness is comparable to kT, the scale of

thermal fluctuations. Most potential physical realizations of such membranes have a bending

stiffness well in excess of experimentally achievable temperatures and are therefore unlikely

ever to access the crumpling regime. We propose a mechanism to tune the onset of the

crumpling transition by altering the geometry and topology of the sheet itself. We carry out

extensive molecular dynamics simulations of perforated sheets with a dense periodic array of

holes and observe that the critical temperature is controlled by the total fraction of removed

area, independent of the precise arrangement and size of the individual holes. The critical

exponents for the perforated membrane are compatible with those of the standard crumpling

transition.
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Two-dimensional materials such as graphene1 or MoS22

currently enable the experimental study3 of the mechanical
properties of thermalized elastic sheets and a testing

ground for many longstanding theoretical and numerical
predictions4–21. Particularly striking is the possibility of engi-
neering elastic parameters such as the bending rigidity and
Young’s modulus over broad ranges simply by varying the overall
size or temperature of atomically thin cantilevers and springs (see
refs. 22,23 for general references on elastic membranes).

Recent work by Blees et al.24, in addition to demonstrating a
4000-fold enhancement of the bending rigidity relative to its T =
0 value, has shown the potential of graphene as the raw ingredient
of microscopic mechanical metamaterials. Employing the prin-
ciples of kirigami (the art of cutting paper), one can construct
robust microstructures, thus providing an alternative route to
tune mechanical properties, leaving graphene’s remarkable elec-
trical properties essentially intact. These results serve as inspira-
tion for further theoretical work on the interplay between
geometry and mechanics25.

A common working model of elastic membranes is the
crystalline or polymerized membrane10, which serves as a
useful tool to describe systems ranging from graphene to the
spectrin cytoskeleton of red blood cells26, polymersomes27

and assemblies of spider silk proteins28. In this context, a key
theoretical prediction is the existence of a crumpling transition.
For low temperatures, the thermal sheet is in a flat phase
roughened by flexural phonons, with long-range order in
the orientations of surface normals, analogous to the ferromag-
netic phase of a spin system. At sufficiently high temperatures,
however, thermal fluctuations can disorder the membrane
and drive it to a crumpled phase, with only short-range order
in the normals. This prediction has been confirmed analytically
and numerically, at least for phantom membranes, without
distant self-avoidance9,10,23,29. Unfortunately, in many materials,
the crumpling transition is very far from the experimentally
accessible regime: for instance, graphene has a bending rigidity
of κ0≈ 48 kTR, where TR is room temperature11. For the intact
lattice, this corresponds to a crumpling temperature of order
104–105 K, well beyond the melting point for graphene. Clearly,
we need a mechanism to lower the crumpling transition
temperature.

We show here that the crumpling temperature can be
significantly lowered by altering the geometry and topology of the
membrane. In particular, we perform extensive molecular
dynamics simulations of crystalline membranes with dense
periodic arrays of holes and determine the dependence of the
onset of crumpling on the degree of perforation. This dependence
is very strong, but can be shown to be a function of a simple
control parameter, namely the total fraction of removed area,
and independent of the detailed arrangement and size of the
individual holes.

Results
Our model. We consider square sheets of size L × L, which for the
purposes of computer simulation, we discretize with a tiling of
equilateral triangles of side a= 1. We use a standard coarse-
grained model30 to compute the elastic energy in the sheet, which
is composed of a stretching and a bending term

H ¼ Hstretch þHbend: ð1Þ

Stretching is modeled by considering each triangle side as a spring
of elastic constant ϵ and rest length a:

Hstretch ¼ 1
2
ϵ
X
i;jh i

rij � a
� �2

; ð2Þ

where the sum is over all pairs of vertices joined by a triangle
edge. The bending energy is represented by a standard dihedral
interaction between normals,

Hbend ¼ ~κ
X
α;βh i

1� n̂α � n̂β

� �
: ð3Þ

Here the sum is over all the pairs of triangles that share a side and
n̂α is the unit normal to triangle α. Note that placing a carbon
atom at the center of each triangle provides an approximate
atomic model for the elastic modes of graphene on a dual lattice,
as long as we choose the bending rigidity and Young’s modulus
correctly.

The elastic parameters ϵ and ~κ are directly related to the
continuum Young’s modulus Y0 ¼ 2ϵ=

ffiffiffi
3

p� �
and bare bending

rigidity κ0 ¼
ffiffiffi
3

p
~κ=2

� �
. Normally, when performing a numerical

a b

Fig. 1 Two different arrays of perforations. For clarity, the images show only a small section of the full membrane. We begin by considering a full
triangulated sheet and then remove all the nodes in a radius R around its center. This central hole is then repeated periodically throughout the membrane.
In the figure, the removed nodes are represented by blue dots (a: R= 1, b: R= 2). In the rest of the paper, we will consider patterns of perforations with R=
1, 2 and varying spacing between holes (see Supplementary Fig. 1 for a full description of all perforation patterns)
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study (see, e.g., refs. 9,31) one chooses natural units where ϵ = 1
and ~κ is varied. To better approximate the behavior of materials
such as graphene or MoS2, however, we will instead fix the ratio
ϵ=~κ and vary temperature by changing the ~κ=kT ratio.
For graphene, at room temperature, ~κ=kT � 4811. Following
refs. 25,32, we will use ϵ=~κ ¼ 1440=a2. This corresponds to
a Young’s modulus about an order of magnitude lower than for
real graphene33,34, in order to facilitate equilibration in our
computer simulations. We note, however, that this choice should
have only a minor effect on the onset of crumpling, since the
degree of order in the normals only depends on ϵ=~κ logarith-
mically21. For a sheet of length L=a ¼ O 102ð Þ, corresponding
to a patch of freely suspended graphene, roughly 30 nm on a
side, these parameters result in a Föppl von Kármán number
of vK ¼ Y0L2=κ0 � O 107ð Þ, similar to that of a standard A4 sheet
of paper.

Dense arrays of holes. We are interested in exploring the effect of
a perforated geometry on the rigidity of elastic membranes. To
this end we shall compare the physics of the “full” or unperfo-
rated sheet described above with that of a sheet with a dense array
of holes. We begin by removing the node i= 0 situated in the
center of the sheet and all the nodes j such that r0j ¼ rj

�� ��<R. We
then repeat this operation periodically throughout the lattice to
create a dense lattice of perforations (Fig. 1 and Supplementary
Fig. 1). In this paper, we consider arrays of holes of size R= 1, 2
with varying spacing. We kept the radius of the hole small relative
to the length of the sheet to minimize finite-size effects.

As a first demonstration of the dramatic effect of
these perforations, consider the pattern of holes depicted in Fig. 1
—right. Figure 2 compares the equilibrium configurations of this
perforated sheet and those of the full membrane for two values of
temperature that differ by only 10%. In both cases, the full
membrane is deep in the flat phase and exhibits smooth,
approximately flat configurations. The perforated sheet, on the
other hand, experiences a crumpling transition.

To characterize this transition, it will be useful to consider the
radius of gyration of the sheet

R2
g ¼

1
3N

XN
i¼1

Ri � Rih i; Ri ¼ ri � rCM; ð4Þ

where rCM is the position of the center of mass and Oh i
represents a thermal average. In the flat phase, R2

g � L4=dH ,
with Hausdorff dimension dH= 2, while in the crumpled
phase R2

g � logðL=aÞ (dH=∞). In the critical region, the
Hausdorff dimension has been computed with analytical methods
(dH= 2.737) and with numerical simulations (dH= 2.70(2)31).

We have plotted Rg as a function of ~κ for all our perforation
patterns in Fig. 3. In blue (red), we represent systems with arrays
of holes of radius R= 1 (R= 2) and a decreasing separation
between holes. The black curve provides the baseline value of R2

g
for the full membrane. We are interested in computing the critical
kTc=~κ for crumpling in each of these geometries. This can be
done by searching for the maximum in the specific heat of the
system, which can be computed as35

CV ¼ 1
N

H2
� �� Hh i2� �

: ð5Þ

Alternatively, we can consider the ~κ-derivative of R2
g, which can

be evaluated as:

dR2
g

d~κ
¼ kT

~κ
Hh i R2

g

D E
� HR2

g

D E� 	
: ð6Þ

We show these two quantities for two different perforation
patterns in Fig. 4. In the thermodynamic limit, the positions of
the peaks in CV and dR2

g=d~κ tend to the same kTc=~κ value.
For our finite systems, we use the difference in these peak
positions for our most perforated membrane (the case where the
peaks are most separated) as an estimate of our systematic error
in ~κ=kTc.

In principle, one could think that this Tc would depend in a
complicated way on the particular spatial arrangement of the
holes or on their individual sizes. Fortunately, the reality is much
simpler. Indeed, in Fig. 5, we have plotted the kTc=~κ for each of
the curves in Fig. 3 as a function of the fraction of removed area
in the sheet. Given our discretization, this areal fraction is most
easily estimated by counting the fraction of remaining dihedrals
connecting adjacent triangles, after the holes have been made.

kT = 1.14 �~

kT = 1.25 �~

Fig. 2 Snapshots of thermalized configurations. We superimpose the
configurations of a pristine sheet (blue) and a perforated sheet with holes
of size R= 2, in the pattern of Fig. 1b (red) for two values of the
temperature (in units of the bending rigidity ~κ). In both cases, the full sheet
is well into the flat phase, the thermal fluctuations causing just some
wrinkling and oscillation. This 10% increase in the temperature, however,
triggers a crumpling of the perforated sheet. Both systems have size
L= 100a. See Supplementary Movies 1 and 2 for animations of these
simulations
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Fig. 3 Radius of gyration as a function of ~κ=kT for several patterns of
perforation. The black curve is the baseline unperforated membrane, which
crumples at the highest temperature, ~κ=kTc � 0:18. The red curves A–D are
for triangular arrays of perforations of radius R= 2 with decreasing spacing
between individual holes. The blue curves (1–3) are arrays of perforations
with radius R= 1. As the spacing between holes is reduced, the crumpling
temperature decreases. The full description of the perforation patterns
A–D and 1–3 is given in Supplementary Fig. 1. Data for systems of size
L= 100a

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01551-y ARTICLE

NATURE COMMUNICATIONS |8:  1381 |DOI: 10.1038/s41467-017-01551-y |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


As a function of this dimensionless area fraction, all our Tc,
including the one for the full membrane, fall on a single smooth
curve.

In fact, if we denote by s the fraction of removed area in the
perforated sheet, we have found that the following ansatz
reproduces our results very accurately:

kTc=~κ ¼ A 1� sð Þc: ð7Þ

With our choice of parameters, we obtain a good fit with
c= 1.93(4) and A≈ 5.5. Notice, in particular, that for our
most perforated sheet (where about 70% of the area has been
removed), the value of kTc is reduced by a factor of 10 compared
to the full membrane. Extrapolating using Eq. (7), we find
that removing 85% of the area in a graphene sheet would
bring the crumpling temperature down to about 1600 K.
Thus creating “lacey graphene” via, say, laser-ablated holes that
remove 85% of the carbon atoms could allow the crumpled
regime to be accessed experimentally. We note that
the mechanical and electrical properties of free-standing graphene
springs with roughly 40% of the material removed were studied
in ref. 24.

It is important to note that the observed kTc(s), Eq. (7), cannot
be explained by the effective elastic constants of the perforated
sheets κeff(T = 0) and Yeff(T= 0). Indeed, as we explain in
Supplementary Note 1, the T= 0 bending modulus of the
perforated sheet, κeff(T= 0), linearly decays with (1−s). Therefore,
if the onset of crumpling were simply determined by κeff(T= 0),
one would expect Tc to be a linear function of (1−s). Instead, as
we obtained in Eq. (7), Tc � ð1� sÞ1:93, a result which indicates
that nontrivial thermal fluctuation effects are responsible. The
effective Young’s modulus Yeff(T= 0), on the other hand, has a
complicated dependence on the details of the perforation pattern
(Supplementary Note 1). However, Y only affects the crumpling
temperature as a logarithmic correction, see Eq. (9) below.
Explaining the observed value of c= 1.93(4) remains, therefore, a
theoretical challenge.

Finite-size scaling. We have seen that cutting holes in a mem-
brane can induce crumpling at much lower temperatures. We
have yet to show, however, that this phenomenon quantitatively

corresponds to the standard crumpling transition that has been
extensively studied for full sheets7,9,16,17,29,31,35–41. This can be
accomplished by performing a finite-size scaling (FSS) study42

and finding the universality class of the phase transition. This
computation poses two difficulties: on the one hand our simu-
lations cover a very wide range of temperature, rather than
concentrating all the numerical effort to increase the precision at
the critical region. On the other hand, the presence of the holes
creates novel finite-size effects. We begin by considering the FSS
of the height of the peak in dR2

g=d~κ, which diverges as31

dR2
g

d~κ

�����
max

� L4=dHþ1=ν ; ð8Þ
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Fig. 4 Location of the crumpling temperature. We plot the specific heat CV
(right axis) and ~κ-derivative of the radius of gyration (left axis) as a function
of ~κ=kT for our most perforated system (corresponding to curve D in
Fig. 3). The inset shows the analogous plot for a less perforated sheet
(corresponding to curve B in Fig. 3), with a much sharper transition (note
the different vertical scales of the axes). All error bars represent the
standard error of the mean
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Fig. 5 Crumpling temperature kTc as a function of the fraction s of removed
area. When plotted against this parameter, the values of kTc for all eight
curves in Fig. 3 collapse to a single smooth function, independent of the size
of the individual holes or their precise geometrical arrangement. The curve
is a fit to f(s)= A(1 − s)c, with c= 1.93(4) and a goodness-of-fit estimator
χ2/d.o.f.= 8.72/6. On the right-hand vertical axis, we also plot the zero-
temperature effective bending rigidity in units of κ0 (red dotted line), which
is simply linear in (1−s). The error bars represent an estimate of our
systematic error, as explained in the text. d.o.f. degrees of freedom
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g=d~κ for our most perforated sheet and six system sizes L.

Inset: scaling of the height of the peak with an exponent θ= 4/dH + 1/ν=
2.88(7), from a fit with χ2/d.o.f.= 4.67/4. The expected value for the
crumpling transition7 is θ≈ 2.82. All error bars represent the standard error
of the mean
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where ν is the critical exponent describing a normal–normal
correlation length that diverges at the crumpling transition.
When considering this equation, it is important to notice
that, while the exponent is universal, the algebraic prefactor is
not and depends on all the parameters. In particular, for a
given finite size, the transitions in Fig. 3 seem to be of varying
sharpness. However, the values of the critical exponents for
the sharpest looking transition (the full membrane) are known
from previous work. In the following, we will perform the
FSS analysis and a fit to Eq. (8) only for our most perforated
membrane (the rightmost curve in Fig. 3). If it is critical expo-
nents turn out to be compatible with those of the full sheet,
we can conclude that the intermediate curves will be in the same
universality class too.

Figure 6 shows the results of this analysis. We obtain θ= 4/dH
+ 1/ν= 2.88(7), to be compared with θ= 2.86(1) from a recent
dedicated FSS study for the full membrane31. Extracting the
values of dH and ν separately is more difficult. In principle, one
could compute ν by studying the drift in the position of the peak
TðLÞ
c ’ T1

c þ AL�1=ν , but this has very strong corrections to the
leading scaling31. Alternatively, one could consider the critical
scaling of the specific heat (yielding α/ν and hence ν from

hyperscaling), but in this case, one has to include an analytical
contribution that introduces an extra fitting parameter: CV= Ca

+ ALα/ν. Since, unlike for the full membrane31, we have to discard
sizes L< 50 due to finite-size effects, we do not have enough
degrees of freedom to obtain a reliable computation of ν. We have
checked, however, that the value ν= 0.74 for the standard
crumpling transition is consistent with our data (Supplementary
Note 2). Using this estimate of ν, we obtain dH= 2.62(7). In short,
the transition in these perforated membranes is compatible with
the universality class of the crumpling transition for pristine
sheets, even though its location is shifted downward in
temperature by an order of magnitude.

Crumpling of thin frames. It is illuminating to consider what
happens when all perforations are combined to create a thin
frame of widthW and overall size L, e.g., a membrane interrupted
by a single large square hole. As shown in Fig. 7 (simulations at
fixed temperature and L with varying W), there is now a striking
crumpling transition as a function of hole size. As an order
parameter for this crumpling transition, imagine erecting
the normal to these frames at the points A= (W/2, W/2) and
B= (L −W/2, L −W/2), where we use an xy-coordinate system
superimposed on the frame at T= 0 with origin at the lower left
corner. Then, in the flat phase of the frame (left side of Fig. 7,
when the hole is small), we expect in the limit of large frame
sizes, n̂A � n̂Bh i≠0. Indeed, in the limit of a vanishingly small hole
(W → L/2), we expect21

n̂A � n̂Bh iL ¼ 1� kT
2πκ0

η�1 þ ln
‘th
a


 �
þ C

kT
κ0

‘th
L


 �η� 

; ð9Þ

where C is a positive constant of order unity, η≈ 0.8 and the
thermal length scale is

‘th ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3κ20
3kTY0

s
: ð10Þ

Thus, limL!1 n̂A � n̂Bh iL≠0, indicating that the normals on
diagonally opposite corners are correlated. In contrast, when the
frame is crumpled (right side of Fig. 7, when the hole is large), we
clearly have limL!1 n̂A � n̂Bh i ¼ 0. In the case of square frames,
we can estimate where the transition occurs by comparing
the frame size L to the persistence length for thin frames of
width W21.

‘p ¼ 2WκRðWÞ
kT

; κRðWÞ ¼ κ0
W
‘th


 �η

: ð11Þ

Here κR(W) is the thermally renormalized bending rigidity.
Crumpling out of the flat phase should occur when L>‘p, which

B

W

A

L

Fig. 7 Crumpling of a thin frame. The top row shows the initial (T= 0) configuration for frames of L= 100a and W= 24a, 12a, 6a, 3a (left to right). The
bottom row shows thermalized configurations (for ~κ ¼ 1:25 kT and ϵ= 1800 kT/a2) for each of these geometries, showing a clear crumpling as the frame
width W is reduced. Points A and B of the leftmost frame are used to define an order parameter for crumpling in the text
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Fig. 8 Scaling in thin-frame crumpling. We plot the radius of gyration for
frames of different L and W against ‘p=L, where the persistence length
‘p ¼ 2WκRðWÞ=kT and the renormalized bending rigidity κR(W) are
defined in Eq. (11). The curves for different system sizes collapse when
plotted against this scaling variable. The inset shows that neglecting
thermal renormalization of the bending rigidity, that is, considering
‘0p ¼ 2Wκ0=kT, leads to a poorer collapse. In all these simulations, we have
used ~κ ¼ 1:25 kT and ϵ= 1800 kT/a2. All error bars (not visible at this scale
in most cases) represent the standard error of the mean
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suggests a scaling form for the radius of gyration of Eq. (4),
namely,

R2
g ¼ L2F ‘p=L

� �
; ð12Þ

This scaling ansatz (where crumpling is indicated by the behavior
for small x, limx!0 FðxÞ � x) is checked for a wide variety of
frame dimensions L as a function of W in Fig. 8, which shows
excellent data collapse as L becomes large. Note that the collapse
is not nearly so good if one simply scales with a bare persistence
length (inset), indicating that thermal fluctuations play an
important role in our simulations. For this problem, it is known
that the crumpled phase is robust to distant self-avoidance43.
Indeed, the crumpled phase only swells slightly with a scaling
function in Eq. (12) that behaves accordingly to FðxÞ � x4=5

for small ‘p=L. Of course, considerably more work would be
required to demonstrate convincingly that there is a sharp
phase transition in the thermodynamic limit. Here, the nontrivial
width-dependent scaling of the thermally renormalized
persistence length in Eq. (11) suggests that the appropriate limit is
L, W → ∞, with fixed WðW=‘thÞη=L. In short, this analysis
suggests that there could be a novel transition for single frames,
where both a crumpled and flat phase would survive in a
polymer-like large-size limit. Even if this transition were simply a
crossover, we expect a dramatic change in mechanical properties,
such as the response to bending, pulling and twisting, when the
frame crumples21.

We note finally that the crumpling temperature for unperfo-
rated membranes can be estimated (up to logarithmic correc-
tions) from Eq. (9) as kTc≈ 2πηκ0, in approximate agreement
with the transition temperature associated with the black curve in
Fig. 3.

Discussion
We have studied the mechanics of thermalized membranes with
a dense array of holes and found that the perforations can
bring the crumpling temperature into an experimentally
accessible regime. From Fig. 5, we have kTc=~κ ’ Að1� sÞ1:93
for the crumpling temperature as a function of the area fraction
removed s, independent of the detailed arrangement and size of

our periodic lattice of holes. In addition, we have found that,
with an anisotropic pattern of perforation one can induce a first
partial crumpling at an even lower temperature. Indeed, see
Fig. 9, a system where the perforations are asymmetric or
arranged in such a way that one of the membrane’s axes presents
less bending resistance will first fold and roll into a very tight
cylinder, before crumpling completely. See reviews by Radzi-
hovsky and by Bowick in ref. 23 for a discussion of two-stage
crumpling. These observations provide a potential method for
bridging the gap between the theoretical expectations for the
crumpling transition and the experimentally accessible
temperatures.

A subtle issue is our neglect of distant self-avoidance. The
nearest-neighbor springs in Eq. (1) embody an energy penalty of
order ϵa2 when nearest-neighbor nodes overlap, a number that
greatly exceeds kT. Adding a hard sphere excluded-volume
interaction between second-nearest neighbors would create an
entropic contribution to ~κ of order kT, which might produce a
small shift in the crumpling temperature. The existence of a sharp
crumpling transition in unperforated membranes with distant
self-avoidance remains unclear at the present time10,44. The
presence of a lattice of large holes will certainly reduce the effect
of distant self-avoiding interactions, especially when the removed
area fraction becomes large. When distant excluded-volume
interactions are non-zero but weak, theory predicts a sharp
transition between a low-temperature flat phase and a high-
temperature crumpled phase with a nontrivial fractal dimension
dH≈ 2.545–47, qualitatively similar to the findings for perforated
membranes presented here. In addition, we have argued for the
existence of a sharp crumpling transition when all perforations
are combined to create a thin frame with a single large hole in the
center of the membrane. In this case, it is well known that the
crumpled ring polymer phase survives the imposition of distant
self-avoidance43. We hope our results will stimulate allocation of
resources (both experimental and computational) that will allow
investigations of distant self-avoidance in the presence of a lattice
of perforations. Even if distant self-avoidance smears out a
sharp crumpling transition, we nevertheless expect qualitatively
different mechanical behavior in the regimes identified here for
thermalized kirigami sheets.

Initial configuration (T = 0) kT  = 0.5 �~ ~kT  = 0.67 � ~kT  = �

a b

Fig. 9 Two-step crumpling transition in an anisotropic sheet. The zig-zag pattern of approximately vertical struts reinforced by edge-sharing triangles make
this structure more rigid in the vertical than in the horizontal direction (see highlighted example in the figure). We show snapshots of thermalized
configurations for several temperatures. As T increases, the anisotropy in the pattern of perforations makes the membrane first fold into a tight cylinder,
before crumpling completely. This geometry corresponds to the system labeled Pattern 3 in Fig. 3 and in Supplementary Fig. 1. The T= 0 snapshot a is a
close-up to a 30a × 30a section of the lattice, while the finite-temperature snapshots b show the full 100a × 100a system
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Methods
Our simulations. We have simulated model (1) for sizes ranging from L= 25a to
L= 150a with molecular dynamics in an NVT ensemble, using a standard Nosé-
Hoover thermostat48,49. All simulations were carried out with the help of the
HOOMD-blue package50,51. Smaller sizes (up to L= 50a) were simulated on CPUs
using a message-passing interface (MPI) parallelization, while for larger systems,
we have used GPUs. We use a simulation timestep of Δt= 0.0025 (in natural units
where a=m= kT = 1). We start with a flat sheet in the xy-plane, and add a small
random z component to all the nodes, in order to get the molecular dynamics
started. We then follow the evolution for 2 × 108 timesteps, discarding the first 10%
for thermalization and using a jackknife procedure42 to estimate statistical errors.
Converted into wall-clock time, 108 steps of a simulation of size L = 100a (with
11,484 nodes, 34,023 bonds and 33,597 dihedral angles) require about 8 h of
execution time on an NVIDIA Tesla K40. Our total simulation time has been the
equivalent of ≈5 months of a single Tesla K40.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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