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TECHNICAL ADVANCE Open Access

EEG dynamical correlates of focal and
diffuse causes of coma
MohammadMehdi Kafashan1,4, Shoko Ryu1, Mitchell J. Hargis2,5, Osvaldo Laurido-Soto2, Debra E. Roberts2,6,
Akshay Thontakudi1, Lawrence Eisenman2, Terrance T. Kummer2* and ShiNung Ching1,3*

Abstract

Background: Rapidly determining the causes of a depressed level of consciousness (DLOC) including coma is a
common clinical challenge. Quantitative analysis of the electroencephalogram (EEG) has the potential to improve
DLOC assessment by providing readily deployable, temporally detailed characterization of brain activity in such
patients. While used commonly for seizure detection, EEG-based assessment of DLOC etiology is less well-established.
As a first step towards etiological diagnosis, we sought to distinguish focal and diffuse causes of DLOC through
assessment of temporal dynamics within EEG signals.

Methods: We retrospectively analyzed EEG recordings from 40 patients with DLOC with consensus focal or diffuse
culprit pathology. For each recording, we performed a suite of time-series analyses, then used a statistical framework to
identify which analyses (features) could be used to distinguish between focal and diffuse cases.

Results: Using cross-validation approaches, we identified several spectral and non-spectral EEG features that were
significantly different between DLOC patients with focal vs. diffuse etiologies, enabling EEG-based classification with an
accuracy of 76%.

Conclusions: Our findings suggest that DLOC due to focal vs. diffuse injuries differ along several electrophysiological
parameters. These results may form the basis of future classification strategies for DLOC and coma that are more
etiologically-specific and therefore therapeutically-relevant.

Keywords: Coma, Classification, Electroencephalogram, Depressed level of consciousness

Background
A depressed level of consciousness (DLOC) is a near
universal result of acute severe brain injury, and
disorders of consciousness are among the most feared
long-term sequelae of such injuries. Coma, a state of
complete loss of spontaneous or stimulus-induced
arousal, is the most severe form, but all forms of DLOC
have substantial impacts on patient outcomes [1, 2]. A
DLOC can result from diffuse brain injuries, or from
focal insults to brain regions with widespread projec-
tions that secondarily induce global alterations in cere-
bral function [3]. For example, diffuse axonal injury may
induce a diffuse DLOC through widespread cortical

deafferentation, while a small brainstem hemorrhage may
induce a focal DLOC via an injury to the ascending reticu-
lar activating system. Formulating an accurate differential
is crucial to the clinical management of patients with
DLOC, as diagnoses drive the approach to treatment and
prognosis [2–4]. Diagnostic formulation often begins with
distinguishing between focal and diffuse etiologies.
In some cases a careful history, paired with a basic

laboratory workup and screening neuroimaging tests, are
all that are required to determine the cause of coma or
other DLOC. Often, however, these standard assess-
ments prove inadequate to determine DLOC etiology
during acute, therapeutically-relevant windows. There
are several common scenarios in which such ambiguity
exists: A patient may have a DLOC that exceeds expec-
tations from modest structural brain injury evident on
imaging; or a patient’s DLOC may result from a focal
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process that, due to its nature, acuity, location, or size, is
not apparent on screening imaging studies.
More specialized testing, such as expanded laboratory

assessments, specialized neuroimaging studies, and inva-
sive procedures, may help to establish a diagnosis. These
tests, however, carry risk and expense and are only use-
ful in restricted circumstances. Similarly, highly special-
ized interventions including specific medications and
even surgical procedures are effective in some cases, but
are rarely used empirically. A non-invasive, bedside
screening test that can help classify DLOC acutely could
be of significant utility in guiding both advanced
diagnostic strategies and, ultimately, management ap-
proaches [5, 6]. Although the differentiation of focal
from diffuse DLOC may not be clinically-actionable on
its own, it may help distinguish between more specific
diagnoses that are, or suggest a more targeted work-up.
A strong suggestion of a focal etiology in the absence of
initial imaging findings, for example, might prompt
more advanced neuroimaging. Similarly, a strong sugges-
tion of a diffuse etiology, even in the presence of dis-
tracting structural brain lesions, might prompt a more
extensive toxic-metabolic work-up, or a more aggressive
correction of known toxic-metabolic abnormalities.
All DLOC, and in particular coma, are characterized

by pathological alterations in brain electrical activity [7].
These electrical alterations may provide valuable etio-
logical insight. Consistent with this, in addition to its
well-established role in seizure detection, the EEG has
been shown to have utility in the monitoring of non-
epileptic, large-scale alterations of neurological function.
Examples include EEG monitoring of delirium [8, 9], burst
suppression [10, 11], and cerebral ischemia [12–14]. Thus,
EEG can provide non-invasive, highly temporally-resolved
data at the bedside on both structural and non-structural
brain injury that may not be apparent on screening neuro-
imaging studies.
Visual inspection of raw EEG data requires advanced

training and cannot easily capture the full complexity of
electrical dynamics that are potentially encoded in the
EEG signal. In contrast, quantitative EEG methods use
computer-assisted analysis of EEG patterns to derive
quantitative metrics that are not immediately apparent
upon review of raw EEG data. The use of quantitative
EEG analysis in the clinical setting has seen significant
recent growth, particularly in the domains of sleep [15],
epilepsy [16], and general anesthesia [17]. In these
scenarios, progress has been made towards translational
applications including seizure detection [16, 18], classifi-
cation of sleep stages [19, 20], and quantification of
depth of anesthesia [21, 22].
While a DLOC is expected to entail widespread net-

work dysfunction regardless of injury type, secondary
network dysfunction resulting from focal injuries may

exhibit temporal or other EEG features distinct from
those of primarily diffuse injuries. The goal of this study
is to evaluate quantitative EEG analysis for classifying
focal and diffuse DLOC [23, 24] with a particular focus
on the temporal dynamics of the EEG. In other words,
do focal injuries give rise to different temporal dynamics
as compared to diffuse injuries? This approach contrasts
spatial analyses that overtly characterize inter-region
relationships (e.g., inter-hemispheric symmetry) with
respect to a particular temporal signature (see also
Discussion). If successful, such strategies may eventually
become applicable to more specific, clinically-actionable
DLOC etiological subtypes.
Common treatments of temporal dynamics in EEG in-

volve spectral analysis, which decomposes a given signal
into constituent frequencies [25], typically aggregated
into the standard EEG ‘bands’ (i.e., alpha, delta, etc.)
[26]. In this context, severe brain injuries and DLOC are
classically associated with concentration of EEG power
into low frequencies (<1 Hz) [27]. However, while ap-
proaches based on spectral analysis are commonplace,
this form of analysis only captures sinusoidal harmonic
structure in the underlying signal. Other forms of spatio-
temporal time series analysis, such as measures of signal
entropy and complexity, are available that may comple-
ment and augment spectral methods [28], and have been
applied to EEG data from limited cohorts of patients
with DLOC [29, 30]. We investigated these and other
temporal markers to determine their potential for classi-
fying focal and diffuse DLOC.

Methods
Study population and data collected
We retrospectively collected EEG data, EEG reports, and
complete medical records from 62 patients who under-
went EEG for routine monitoring purposes related to a
diagnosis of coma or less-severe DLOC, which we define
as a Glasgow Coma Scale (GCS) ≤ 9 at the time of EEG,
in the Neurological and Neurosurgical Intensive Care Unit
at Barnes-Jewish Hospital and Washington University
School of Medicine (St. Louis, MO, USA). GCS was
inferred for intubated patients [31]. Table 1 summa-
rizes the study population and clinical determinations.
Additional file 1: Table S1.
gives further clinical features for each subject included

in this study. There were 62 patients considered and 70
total EEG studies (6 patients underwent EEG monitoring
twice and one patient underwent EEG monitoring three
times). In all cases EEG was performed for the detection
of non-convulsive seizures in patients with otherwise
inadequately explained DLOC. Only cases in which
seizures were not detected at any point in the
hospitalization were analyzed. For each of the 62 pa-
tients, two neurointensivists (TTK and either DER or
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MJH and OLS) examined all diagnostic data available in-
cluding imaging to assign a focal or diffuse classification.
Importantly, these assessments benefited from diagnostic
data not available to the team at the time of the initial
EEG. Thus in most cases we were able to determine
DLOC etiology to a reasonable degree of clinical cer-
tainty despite the diagnostic ambiguity that resulted in
EEG testing early on. Imaging data was given the great-
est weight in etiological determinations. Evidence of her-
niation or direct injury to brainstem reticular activating
structures resulted in assignment to a focal etiology. Less
severe structural lesions were interpreted in the context
of historical data and coexisting toxic-metabolic influ-
ences to determine the etiology of the DLOC. Cases
were included in the analysis only when the ultimate eti-
ology (focal vs. diffuse) was apparent from clinical data.
In cases of disagreement, the case was re-reviewed and
discussed until a consensus was reached (most such
cases classified as indeterminate). In total 40 subjects
(21 focal and 19 diffuse) were used in the analysis
(23 focal and 21 diffuse EEGs, with total 44 studies ana-
lyzed). Twenty eight of 40 subjects (70%) had some evi-
dence of more than one potential DLOC contributor, but
in all included cases secondary causes were felt to be
minor. To examine the utility of traditional clinical EEG
metrics, the clinical EEG reports were separately scruti-
nized to identify reported features that could assist in the
classification of cases as focal or diffuse in etiology. Specif-
ically, any focal or lateralized abnormalities in the report
were flagged as supportive of a focal as opposed to diffuse
etiology. All studies were conducted with approval from
the institutional review board at Washington University in
St. Louis.

EEG sampling and parsing
Recordings are collected at a sampling frequency of
either 250 or 500 Hz using the standard 10–20 system
of electrode placement. The 500 Hz data were

downsampled to 250 Hz prior to analysis. In our
analyses, we used a bipolar montage with 18 bipolar
channels (FP1-F7, F7-T7, T7-P7, P7-O1, Fp1-F3, F3-C3,
C3-P3, P3-O1, Fz-Cz, Cz-Pz, Fp2-F4, F4-C4, C4-P4,
P4-O2, Fp2-F8, F8-T8, T8-P8, and P8-O2). Records were
visually analyzed for quality control, with sections of the
record containing large-amplitude artifacts excluded from
analysis. Each bipolar channel was normalized to zero-
mean, unit variance. They were then filtered using a 10th
order Chebyshev Type I lowpass filter with cutoff fre-
quency of 50 Hz before further analysis.

Feature extraction and classification
Feature extraction
We considered the 25 features listed in Table 2 for dis-
crimination of focal and diffuse DLOC. These features
are related to the dynamical (including spectral) proper-
ties of time-series data. Secondary statistics (e.g., higher
order moments) of the features were not considered in
this analysis. All signal processing and feature extrac-
tions were performed in MATLAB (Natick, MA), and
feature selection and evaluation of classifiers were com-
puted in R (version 3.1.2).

Definition of trials and analysis epochs
We divided each patient’s bipolar montaged EEG data
into separate, non-overlapping trials for the purpose of
analysis (Fig. 1). Dividing the EEG data into trials results

Table 1 Summary of study population

Classification Diffuse Focal

N = 19 (47%) N = 21 (53%)

Male 6 (32%) 12 (57%)

Female 13 (68%) 9 (43%)

Age 58.32 (23, 90) 58.42 (18, 87)

GCS at time of EEG 5.74 (3, 8) 5.6 (3, 9)

Injuries Observed

Vascular 7 14

Diffuse structural 3 0

Brainstem lesion 0 6

Traumatic 2 1

Toxic/Metabolic 7 0

Table 2 List of features. List of 25 features extracted from
EEG data

Feature ID Description

1–2 Maximum, minimum eigenvalues of the estimated A
matrix from MVAR fitting of EEG data with unit order;
see Eq. (1)

3 Number of absolute eigenvalues of matrix A larger
than Threshold = 0.95; see Eq. (1)

4–6 Statistical properties: variance, skewness, and kurtosis

7–11 Power in the delta, theta, alpha, beta, and gamma
bands

12 Ratio of power in beta and gamma bands to total
power

13 Ratio of power in delta and theta bands to total power

14 Hurst exponent [33]

15 Hjorth parameters [33]

16–19 Equidistant mutual information, Equiprobable mutual
information, and the first minimums of both types of
mutual information [33]

20 Bicorrelation

21 Median frequency [33]

22–24 Spearman autocorrelation, Pearson autocorrelation, and
partial autocorrelation

25 Composite permutation entropy index (CPEI) [62]
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in multiple predictions for each subject, thus yielding an
empirical probability of focal/diffuse for each subject.
Each trial was further subdivided for analysis purposes
into epochs (Fig. 1). Specifically, one 25-dimensional fea-
ture vector for each trial by averaging feature vectors
over all epochs of that trial. In our analysis, we consid-
ered trial lengths of 200 s, with epoch lengths of 5 s (i.e.,
40 epochs per trial), except as noted when evaluating the
robustness of our obtained features. It is important to
note that all the trials for a given subject were allocated
to either the training or testing set, thus training and
testing sets are fully independent (i.e., no subject con-
tributed trials to both the training and testing sets; see
also below).

Classification and training/testing separation
We specified a support vector machine (SVM) to func-
tion as a binary classifier to discern a patient’s DLOC
etiology (i.e., focal or diffuse). The SVM approach uses a
portion of data as support vectors to create a decision
boundary (i.e., threshold) [32, 33]. To train the classifier,
we applied principal component analysis (PCA) to the
primary feature vectors over trials. Only the first 20
most important principal components (PCs) of feature
vectors were kept. The first 20 PCs explain more than
98% of the variance in the original feature vectors (data
not shown). We used the train.R routine in the Caret
toolbox [34], implemented in the R programming lan-
guage, to rank the features/PCs by importance by evalu-
ating a family of linear vector quantization (LVQ)
models. A 10-fold cross validation is used within this
feature selection step which is resampled 50 times. We
then selected a set of predictive PCs based on their im-
portance (i.e., quantified in terms of their ensuing LVQ
classification performance) to train a SVM with a linear

kernel according to different clinically-adjudicated
DLOC etiologies. Within this cross-validation paradigm,
the importance of a feature/PC was obtained as a nor-
malized quantity that characterizes the relative improve-
ment in the region under the receiver operating
characteristic (provided by the feature in question). In
other words, the extent to which that feature improves
accuracy within the cross-validation paradigm.
All classification analysis was performed using strictly

independent training and testing sets. Two testing para-
digms were considered. In the first paradigm, we parti-
tioned the data into two groups: two-thirds of the total
subjects were selected randomly and defined as the
training set and one-third of subjects were defined as
the testing set. This process was repeated within a cross-
validation paradigm in order to evaluate average classifi-
cation performance. In the second paradigm, we with-
held 14 patients (1/3 of the data) as a dedicated test set,
and trained strictly on the remaining 2/3 of the patients
(i.e., one-time training and testing, with no re-sampling
and averaging).

Evaluation of classifier performance
Classification performance was evaluated in two ways:
(i) Hard accuracy, wherein each trial from a subject was
independently classified, with the overall classification
being made on the basis of the majority of trials; (ii) Soft
accuracy, wherein each trial was independently classified
with no overall classification rendered.

Multivariate autoregressive model of EEG data
Features 1–3 in Table 2 use a multivariate autoregressive
model wherein the (multivariate) EEG signal is modeled as
a linear sum of previous samples. For a multivariate N-
channel processx(t) = [x1(t), x2(t),⋯, xN(t)]

T, a Multivariate

Fig. 1 Schematic illustrating sliding window to define epoch and trial in EGG data with bipolar montage. The EEG channel number on the
vertical axes are ordered as: FP1-F7, F7-T7, T7-P7, P7-O1, Fp1-F3, F3-C3, C3-P3, P3-O1, Fz-Cz, Cz-Pz, Fp2-F4, F4-C4, C4-P4, P4-O2, Fp2-F8, F8-T8,
T8-P8, P8-O2
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Autoregressive (MVAR) Model of order p takes the follow-
ing form:

x tð Þ ¼
Xp

k¼1

Akx t−kð Þ þ w tð Þ; ð1Þ

where w(t) ∈ℝNare additive noise vectors (innovation
process) and Ak ∈ℝ

N ×Nare the MVAR model coeffi-
cients. Here, we used a standard Least-Squares approach
to implement the model fit [35].

Statistical evaluation
We used a two-sample t-test to compare feature distri-
butions. Our goal was to generate hypotheses regarding
which of the screened features were informative with re-
spect to the considered coma subtypes (focal and
diffuse). Since the PCs of the primary features are uncor-
related (see Results), we compared subtype distributions
of each PC independently to a nominal significance level
of p = 0.05.

Results
Several time-series metrics, including non-spectral
features, discriminate focal from diffuse DLOC
Correlation of primary features
We first screened and ranked the importance of the pri-
mary features, i.e., without applying PCA (Fig. 2a) using
testing paradigm 1, i.e., with resampling and cross-
validation. As illustrated in Fig. 2b, these primary fea-
tures exhibit substantial correlation, particularly in the
entropic features (i.e., features 15–24 in Table 2). This
observation indicates a degree of redundancy in the dis-
criminative power of these features. We also note sub-
stantial anti-correlation between spectral and entropic
features (i.e., 10–13 and 15–24). Recall that the import-
ance of a feature measures its relative ability to improve
classification performance, where an importance of 1

means that the feature in question can alone lead to per-
fect accuracy. Thus, we transformed the primary features
into their uncorrelated principal components, then
ranked these PCs (Fig. 3a).

Dichotomy of entropic and spectral features
We observed that the most informative PCs dichoto-
mized into two categories (Fig. 3a): (i) components com-
prised mostly of entropic time series analyses (i.e., PC1)
and higher order statistical signal properties (PC4); and
(ii) components comprised mostly of spectral analyses
(i.e., band-limited power, (delta, alpha, theta) and delta/
theta ratio PC2). This observation is in agreement with
the anti-correlation between these categories observed
in Fig. 2b. Subsequent PCs, while informative, are com-
prised of a more random combination of analyses. The
composition of these PCs is notable since by definition
these components are uncorrelated, meaning that they
provide distinct information regarding DLOC subtype. It
is interesting to observe that the least informative PC
(PC7) has a strong contribution from the median fre-
quency, so that this feature is not particularly useful for
discriminating focal and diffuse etiologies.

Variability in diffuse cases
Figure 3b compares the distribution of the three most
informative PCs (distributions of focal/diffuse cases are
most significantly different). We observed a positive
contribution of entropic features (PC1) and higher order
statistical signal properties (PC4) to focal cases, versus
PC2 which has a positive contribution for diffuse cases.
Further, we observed greater variance associated with
diffuse cases, which may be suggestive of heterogeneity
across channels or trials in these cases (see Discussion).
Changing the feature epoch lengths (1, 10, 20 s) had no
qualitative effect on the overall results (data not shown).

Feature IDImportance

a b

F
ea

tu
re

 ID

F
ea

tu
re

 ID

Fig. 2 a Ranking of features by importance (see Methods). b Correlation between features, noting in particular substantial redundancy in the
entropic features 15–24
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Focal and diffuse DLOC are classified using a limited
number of PCA features
We next designed a classifier for focal versus diffuse
DLOC on the basis of first the primary features and then
the PCs. Table 3 shows the classifier performance using

the primary features only (i.e., without applying PCA)
for different epoch lengths and number of epochs in a
trial. In this analysis, the classifier is trained based on
the 10 most informative features on two thirds of the
subjects (27 subjects), and then tested on the remaining

a

b

Fig. 3 a (left) Principal component decomposition of primary features. Each row in the matrix depicts the composition of a PC. The colorbar
references the weight of each primary feature to the respective PCs. (right) Rows are ranked according to PC importance. b Box plots comparing
the distributions of PC1 (entropic features), PC4 (kurtosis, bicorrelation) and PC2 (delta, alpha, theta, delta/theta ratio) for focal and diffuse cases

Table 3 Averaged classification performance before applying PCA on initial features

Epoch length Number of epochs in a trial Accuracy (Hard) Accuracy (Soft) Specificity Sensitivity

1 s 10 0.51 0.52 0.42 0.66

20 0.53 0.54 0.45 0.68

40 0.53 0.53 0.41 0.69

100 0.53 0.53 0.41 0.70

All 0.57 0.57 0.49 0.69

5 s 10 0.50 0.49 0.44 0.67

20 0.50 0.50 0.41 0.68

40 0.52 0.51 0.44 0.67

100 0.58 0.54 0.51 0.66

All 0.57 0.57 0.46 0.72

20 s 10 0.51 0.51 0.41 0.69

20 0.52 0.51 0.38 0.70

40 0.53 0.53 0.51 0.64

All 0.59 0.59 0.46 0.77

Classification results are for different epoch length (1 s, 5 s, and 20s) and different number of epochs in a trial (10, 20, 40, 100, and all epochs). All the results are
averaged classifier performance over 500 random training and testing sets. In each realization, the subjects in training and testing sets are different
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patients (13 subjects). We performed training and testing
for 500 repetitions (each repetition, subjects in the train-
ing set are totally separate from subjects in testing set).
The values reported in this table are averaged over repeti-
tions. The classifier exhibits higher sensitivity (true
positives; here ‘positive’ is defined as a focal etiology) com-
pare to specificity (true negatives, i.e., diffuse trials that
were classified as diffuse). In this analysis, false positives
(misclassification of diffuse as focal etiology) constitute
the predominant source of inaccuracy. This Table shows
that classifying on the basis of primary features alone is
inadequate since performance is not significantly above
chance, and particularly poor in correctly identifying
diffuse cases.
Thus, we redesigned the classifier using the PCs, after

which the performance reported in Table 4 was
obtained. Only the first six most informative PCs are
used for classification. Working with the PCs results in
substantial improvement to the overall classifier per-
formance. Specifically, it can be seen in this table that
the false positive rate is improved on average by 0.14,
and average performance approaches 68% for many
parameterizations.
Finally, we performed a final test of the classifier by

withholding 13 subjects as a dedicated testing set, and
trained the classifier on only the remaining cases. That is,
we trained a classifier on 2/3 of the data, then evaluated it
on a separate, withheld patient cohort (paradigm 2).
Table 5 reports the classification performance in this
scenario, where performance approaches 76% with high
sensitivity, but only moderate specificity. It is important to
emphasize that within these classification regimes, the

feature extraction step is performed on only the
(independent) training set.

Clinical EEG interpretation
Lastly, we examined the EEG reports for our study
population to determine whether a similar classification
performance could be achieved from a more straightfor-
ward clinical decision process. Specifically, we catalo-
gued observations of focal or lateralized abnormalities in
the EEG reports (lateralized or otherwise focal slowing
or epileptiform discharges), an indication of a spatially
local electrophysiological phenomenon correlating with
focal injury. Of the 21 patients with focal injury in our
study, a report of focal/lateralized slowing was only
present in seven instances (i.e., corresponding to a sensi-
tivity of 7/21 = 0.33), demonstrating that the clinical
EEG report was a poor indicator of focal etiology. Gen-
eralized slowing was observed in all study patients.

Discussion
Disambiguating focal and diffuse DLOC etiologies using
EEG time series analysis
Our results demonstrate proof-of-concept for EEG-
based segregation of focal versus diffuse DLOC sub-
types based on time-series analysis and support-vector
machine classification. We evaluated the performance of
this system by segmenting our data into separate train-
ing and testing sets and then using cross-validation to
minimize model overfitting. The results demonstrate
performance up to 76% accuracy in focal identification,
but less robust performance in detecting diffuse cases.
In many cases, including all those studied for this report,

Table 4 Averaged classification performance after applying PCA on initial features

Epoch length Number of epochs in a trial Accuracy (Hard) Accuracy (Soft) Specificity Sensitivity

1 s 10 0.63 0.63 0.57 0.68

20 0.64 0.62 0.59 0.68

40 0.65 0.62 0.59 0.68

100 0.65 0.63 0.59 0.69

All 0.62 0.62 0.55 0.67

5 s 10 0.63 0.61 0.57 0.67

20 0.65 0.64 0.60 0.68

40 0.65 0.62 0.60 0.69

100 0.68 0.65 0.57 0.71

All 0.65 0.62 0.61 0.66

20 s 10 0.63 0.59 0.55 0.66

20 0.63 0.59 0.56 0.65

40 0.64 0.61 0.59 0.68

All 0.64 0.60 0.61 0.67

Classification results are for different epoch length (1 s, 5 s, and 20s) and different number of epochs in a trial (10, 20, 40, 100, and all epochs). All the results are
averaged classifier performance over 500 random training and testing sets. In each realization, the subjects in training and testing sets are different
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the ultimate cause of the DLOC only becomes clear in
retrospect, hence the clinical decision to order an EEG
to rule out seizures as a contributor to a DLOC. Thus
even in cases where a clinical diagnosis can eventually
be made, an EEG-based diagnostic method could assist
with the timely delivery of care.
The design of our classifier reveals that potentially

clinically-useful information regarding DLOC subtype
may be embedded in both spectral and non-spectral
features of the EEG signals of patients with DLOC. Our
results further suggest that spectral analysis alone (e.g.,
band-limited power) may not capture all clinically-
meaningful aspects of the underlying neuronal dynamics.
Other potentially useful approaches for detecting focal

versus diffuse pathology from the EEG include the brain
symmetry index (BSI), which examines inter-hemispheric
symmetries in the power-spectral density (i.e., band
limited power) [36, 37]. This method has been used in the
detection of focal seizures and hemispheric strokes
[38, 39]. EEG-based synchronization indices, also derived
from the power-spectrum, have also been suggested as a
means of detecting diffuse electrophysiological phenom-
ena [40]. It stands to reason that such methods may be
sensitive to injury focality, though to our knowledge none
of these methods has been used in the context of DLOC
or coma. Moreover, while approaches that focus on the
spatial distribution of EEG power may be informative, we
chose here to focus our attention on the EEG in terms of
temporal dynamics only since we were interested in
whether focal and diffuse injuring give rise to differing
temporal patterns, without overt regard for their spatial
distribution. Thus, our results are likely complementary to
approaches such as the BSI and comparing the perform-
ance of the classifier reported herein with these indices,

separately and in combination, is an important future goal.
The incorporation of active stimuli to assess EEG reactiv-
ity may also provide additional information about DLOC
[41, 42], and is a further target of future work.
Significant effort has been directed at the EEG-based

analysis of chronic DLOC in rehabilitative settings, such
as minimally conscious and persistent vegetative states
[43, 44], wherein a large number of EEG analyses have
been screened for their potential to disambiguate these
subtypes [45]. While these studies have yielded insights
into the mechanisms of these conditions, the analyses
rely on high-density research grade EEG/MEG instru-
mentation [43, 46] that is generally unavailable in the
acute setting, wherein electrode spatial density and
placement precision is limited. It furthermore remains
unclear whether insights gleaned from these studies will
prove informative in the acute setting, though a recent
study did identify several acute electrophysiological cor-
relates of outcome in coma [47], demonstrating the
prognostic potential of EEG-based approaches.

Limitations
The main limitation in the development of our algo-
rithm is the lack of a true gold standard upon which to
train our classifier. Our cases were independently diag-
nosed by at least two neurointensivists on the basis of all
available retrospective data, including neuroimaging, and
only cases in which both felt a clear diagnosis was evi-
dent were included.
In this retrospective study we relied on the GCS for

identification of patients with DLOC. The GCS is an im-
perfect measure of DLOC: its measurement is incom-
plete in intubated patients and many features that are
likely to be clinically significant are not assessed. Several

Table 5 Classification performance after applying PCA on initial features with first 13 subjects as testing set

Epoch length Number of epochs in a trial Accuracy (Hard) Accuracy (Soft) Specificity Sensitivity

1 s 10 0.69 0.69 0.66 0.71

20 0.76 0.68 0.65 0.69

40 0.69 0.71 0.66 0.73

100 0.69 0.69 0.66 0.73

All 0.69 0.67 0.52 0.77

5 s 10 0.76 0.69 0.62 0.73

20 0.69 0.71 0.70 0.73

40 0.76 0.70 0.66 0.71

100 0.69 0.69 0.66 0.73

All 0.61 0.61 0.52 0.73

20 s 10 0.61 0.61 0.51 0.71

20 0.69 0.65 0.63 0.69

40 0.61 0.67 0.66 0.71

All 0.61 0.61 0.62 0.60

Classification results are for different epoch length (1 s, 5 s, and 20s) and different number of epochs in a trial (10, 20, 40, 100, and all epochs)
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other metrics such as the Full Outline of UnResponsive-
ness (FOUR) score [48] and the JFK Coma Recover
Scale, Revised [49] are likely to provide superior differ-
entiation of patients with DLOC. Unfortunately our data
did not permit such assessments retrospectively, though
a prospective trial is underway including assessment of
these metrics in addition to GCS.
A common challenge in the paradigm we pursued here

is ensuring independent validation of classifier per-
formance. We used two separate validation paradigms to
separate training and testing sets (see Methods).
Ongoing studies will test the performance of this classi-
fier on additional independent, prospective cohorts of
DLOC patients with clinically-obvious focal or diffuse
DLOCs for whom EEG would not otherwise be
clinically-indicated.
A drawback of our framework is that direct mechanis-

tic interpretation from descriptive time-series analysis is
lacking. The support vector machine approach aggre-
gates all of the data/features (because the best predictors
are combinations of the primary features), and then gen-
erates a set of predictors that may or may not be overtly
linked to an underlying circuit mechanism. However, the
decomposition of our PCs into distinct, uncorrelated
feature sets (e.g., signal entropy and band-limited power)
is suggestive of systematic circuit-level disruption in
these patients.
Lastly, this analysis does not include specific steps to

manage confounds introduced by the administration of
medications such as antiepileptic drugs, including
benzodiazepines, on the brain’s electrical activity. It is
well-established that these medications, among other
factors such as sleep [50, 51], can lead to confounding
effects on the EEG. In the absence of a much larger trial
matched for specific agents or classes of agents, it will
be challenging to fully understand the impact of such
confounds. It is likely that the confounding effects of
these drugs constitute a substantial source of
classification error in our dataset. In a future pro-
spective trial it may be feasible to more specifically
characterize the effect of classes of medications on
the discriminatory power of our classification scheme
in individual subjects.

Design considerations
The feature selection framework reported above requires
no manual specification of thresholds or other detection
rules. The only user-specified design parameter is a
desired confidence interval [52]. The method can be
applied to any number of EEG channels. However, it
should be noted that a pervasive challenge with any
clinical EEG recording is overall signal quality and pres-
ence of artifacts (e.g., due to patient motion), which is
expected to be compounded with added channels.

It is important to note that with this feature selection
scheme, any change to the design parameters may lead to
a different set of PCA features being chosen. Nevertheless,
we found that across a range of design parameterizations
(e.g., changing the trial length from 5 min to 10 min) the
set of best predictors was largely comprised of the same
descriptive time-series statistics. Thus it seems likely that
these particular PCA features are robustly informative with
respect to the two DLOC variants under investigation.

Conclusions
The use of automatic classifiers in EEG is most well-
developed in the detection of seizures [53–60]. A host of
additional potential application domains have been
considered, however, especially in the development of
brain-machine interface technology [61]. Our results
demonstrate the potential of using such techniques to
assist in the diagnosis of DLOC in the acute setting.
Moreover, the methods and algorithms used in our study
run in minutes on standard hardware and, thus, could
potentially enable real-time assessment of the EEG. If
they are further validated on larger patient cohorts, they
may form an important component of the overall assess-
ment of acute DLOC.
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