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ABSTRACT

Accumulating evidence suggests the idea that chronic inflammation may play a 
critical role in various malignancies including bladder cancer and long-term treatment 
with non-steroidal anti-inflammatory drugs (NSAIDs) is significantly effective in 
reducing certain cancer incidence and mortality. However, the molecular mechanisms 
leading to malignant transformation and the progression of bladder cancer in a 
chronically inflammatory environment remain largely unknown. In this review, we will 
describe the role of inflammation in the formation and development of bladder cancer 
and summarize the possible molecular mechanisms by which chronic inflammation 
regulates cell immune response, proliferation and metastasis. Understanding the 
novel function orchestrating inflammation and bladder cancer will hopefully provide 
us insights into their future clinical significance in preventing bladder carcinogenesis 
and progression.

INTRODUCTION

Chronic inflammation has been recognized as 
one of the hallmarks of cancer. In early 1989, Rudolf 
Virchow hypothesized that cancer originated from the 
sites of chronic inflammation [1]. Since then, a large 
amount of studies investigated the association between 
the inflammatory microenvironment of malignant tissues 
and cancer prevention or treatment, and accumulating 
evidence has supported Virchow’s hypothesis [2, 3]. 
Inflammation is an essential host defense mechanism 
for cell or organism injury in response to stresses, by 

which the immune system tries to neutralize or eliminate 
injurious stimuli and initiate regenerative or healing 
processes. However, excessive or persistent inflammation 
is also shown to contribute to carcinogenesis and tumor 
progression by activating a series of inflammatory 
molecules and signals [4, 5].

Bladder cancer (BCa) is the fourth most common 
cancer among men and the ninth overall in the world 
[6]. Males are more likely to develop BCa than females. 
When diagnosed, 90% of bladder cancers are urothelial 
carcinomas, whereas the remaining 10% are mostly 
squamous cell carcinoma (SCC) and adenocarcinomas 

www.impactjournals.com/oncotarget/              Oncotarget, 2017, Vol. 8, (No. 54), pp: 93279-93294

                                                                        Review



Oncotarget93280www.impactjournals.com/oncotarget

[7]. Many risk factors contribute to the malignant 
transformation and the progression of bladder cancer, 
including smoking, heavy alcohol consumption 
and occupational exposure to polycyclic aromatic 
hydrocarbons or aromatic amines [8, 9]. Besides these 
risk factors, chronic inflammation is recently recognized 
as another risk factor for BCa [10].

Recent studies have linked inflammation with the 
formation and development of bladder cancer. On the one 
hand, chronic inflammation, whether systemic or local, 
increases the risk of developing BCa. On the other, the 
oncogenic changes may induce a chronically inflammatory 
microenvironment which has many tumor-promoting 
effects on the cell proliferation, angiogenesis, invasion 
and metastasis of bladder cancer [11, 12]. However, the 
molecular pathways involved in inflammation-related 
bladder cancer still remain largely unexplained. Thus, 
there is an urgent need to understand the underlying 
molecular mechanisms on the possible role of chronic 
inflammation during bladder carcinogenesis. In this review 
we will summarize the different cellular and molecular 
signaling pathways regarding the relationship between 
chronic inflammation and bladder cancer promotion 
and progression, and discuss the attractive prospect of 
targeting inflammation as a revolutionary strategy for 
cancer prevention and therapy.

THE TRIGGERS OF CHRONIC 
BLADDER INFLAMMATION

Urinary tract infection

Urinary tract infections (UTIs) are among the most 
common urologic diseases. About 80% of UTIs occur 
in women and 40–50% of females have at least one 
symptomatic infection during their lifetime [13]. The 
majority of UTIs are caused by Escherichia coli (80%) 
or Staphylococcus saprophyticus (10–15%) [14]. Previous 
epidemiological studies have reported a correlation 
between UTI and the increased risk of BCa. The majority 
of these studies show UTI not only increases the risk of 
BCa but also is associated with worse BCa outcomes, 
in both men and women [15–17]. However, there is a 
conflicting report regarding the potential role of UTI. 
Jiang et al. reported that a history of UTI was associated 
with a reduced risk of BCa among women [18]. Possible 
mechanisms that were involved in this paradox might be 
the cytotoxicity against BCa cells from the antibiotics 
commonly used to treat bladder infections. Recently, 
Vermeulen et al. investigated the association between UTI 
and the risk of BCa, and they found that regular cystitis 
was positively associated with the risk of BCa, whereas, 
those women with episodes of UTI treated with antibiotics 
have a decreased urinary bladder cancer (UBC) risk [19].

Schistosoma haematobium (S. haematobium), 
endemic in Africa and the Middle East, is a chronic 

infection caused by parasitic Schistosoma worms. There 
is strong evidence linking S. haematobium infection with 
increased bladder cancer incidence [20, 21]. In fact, S. 
haematobium is particularly relevant with squamous 
cell carcinoma of the bladder [22]. S. haematobium 
antigens have been observed to induce the development 
of urothelial dysplasia and inflammation [21]. In 
the experiment, S. haematobium was shown to have 
carcinogenic ability through enhanced c-KIT expression 
or oncogenic mutation of KRAS gene [23, 24]. The 
nuclear localization of cyclooxygenase-2 (COX-2) was 
also involved in S. haematobium-mediated stem cell 
differentiation/proliferation in bladder carcinogenesis 
through upregulation of Oct3/4 expression [25]. In 
addition, p53 signaling seems to mediate urothelial 
malignant transformation during S. haematobium infection 
in a sex-specific manner, but it’s not clear if p53 actually 
inhibits urothelial cell cycle progress and carcinogenesis 
in the setting of urogenital schistosomiasis [26, 27].

Human papilloma virus (HPV)

Human papillomavirus (HPV) infection has 
been known as a risk factor for certain cancers such as 
cervical, anogenital, oropharyngeal carcinoma and skin 
cancers [28–30]. However, whether the virus might play 
a key role in the pathogenesis of BCa has not been well 
clarified. A number of studies have been done to elucidate 
this possibility. The meta-analysis from Li et al. reported 
that HPV infection were significantly associated with the 
increased risk of BCa [31]. However, a modified meta-
analysis suggested limited biologic rationale for a role 
of HPV in BCa [32]. Kim et al. provided some evidence 
that HPV infection may be associated with squamous 
metaplasia of the bladder especially in non-smokers [33]. 
The work from Shigehara et al. showed that HPV may 
play an etiological role in the tumorigenesis of female BCa 
at younger patients with a past history of cervical cancer, 
however, no statistical difference was observed between 
high-risk HPV infection and histologic subtypes of BCa 
[34]. Currently, the molecular subtypes of BCa have 
been identified and HPV infection may have a role in the 
development of a small percentage of urothelial carcinoma 
patients with amplified and overexpressed BCL2L1 [35]. 
In summary, although a large number of research that has 
shown the presence of HPV in BCa, the results are far 
from conclusive.

Chronic chemical and mechanical irritations

It has been suggested that some chronic irritations 
of urinary tract are also risk factors for BCa. When 
bladder mucosa is persistently subjected to these chronic 
irritations, the urothelium tend to generate a high level of 
cell proliferation, resulting in many pathological changes 
such as dysplasia, metaplasia, carcinoma in situ and 
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ultimately to invasive carcinoma [36, 37]. N-butyl-N-(4-
hydroxybutyl) nitrosamine (BBN), an alkylating agent, 
is the most commonly-used chemical inducer of murine 
BCa model [38]. The uracil, a nongenotoxic chemical, 
can induce urinary bladder carcinomas in rats and mice, 
which was related to the presence of calculi in the urinary 
bladder and increased spontaneous mutations by vigorous 
cell proliferation [37, 39]. Long-standing bladder stones 
have been also implicated as a cause of urinary tract 
cancers [40, 41], however, the association between urinary 
stones and BCa is largely undefined. In addition, some 
foreign bodies such as pellets of paraffin wax, glass beads 
and wood chips were demonstrated to induce urothelial 
tumorigenesis [42–44]. Chronic indwelling urinary 
catheters (CIDCs) and augmentation cystoplasty are also 
considered as risk factors of BCa development, especially 
in older aged and male patients [45]. Augmentation 
cystoplasty is the gold standard treatment for the patients 
with congenital bladder abnormalities. The question is 
whether these patients have an increased risk of BCa. 
A number of early studies showed that the patients with 
surgical bladder augmentation had an increased risk 
of BCa [46, 47]. However, there are also conflicting 
reports regarding an increased risk of malignancy after 
augmentation cystoplasty. Higuchi, et al. explored the 
relationship between augmentation and cancer, and 
they found that augmentation did not appear to be an 
independent risk factor for the development of BCa 
[48, 49]. In order to clearly understand the relationship 
between augmentation cystoplasty and the formation of 
BCa, large-scale and multicenter collaboration will be 
necessary in the future.

INFLAMMATORY CELLS 
AND CYTOKINES IN TUMOR 
MICROENVIRONMENT OF 
BLADDER CANCER

The chronic inflammatory microenvironment 
in solid cancers is characterized by the presence of 
proinflammatory cells (such as macrophages, myeloid-
derived suppressor cells, regulatory T cells, dendritic cells, 
mast cells, neutrophils and lymphocytes) and cytokines 
(such as tumor necrosis factor-α and interleukins) both in 
the supporting stroma and in tumor areas (Table 1). These 
chronic inflammatory cells and cytokines contribute to 
BCa formation and progression via multiple mechanisms 
(Figure 1).

Macrophages

Tumor-associated macrophages (TAMs) play a dual 
role in BCa, depending on the different polarization states 
classified as M1 and M2 [50]. M1 macrophages can be 
induced by tumor necrosis factor (TNF)-α, interferon-γ 

(IF-γ), interleukin (IL)-1β, IL-6, IL-23, lipopolysaccharide 
(LPS), and show an inhibitory action in the initiation and/
or progression of BCa (Table 1) [51, 52]. M2 macrophages 
are mainly activated by IL-4, IL-10, IL-13 or transforming 
growth factor-β (TGF-β) and associated with promotion of 
cancer cell proliferation, migration, invasion, metastasis 
and suppression of anti-tumor immune responses (Table 
1) [53, 54].

Direct evidence for the role of TAM in the 
formation and development of BCa has recently been 
reported. OK-432, a streptococcus-derived anticancer 
immunotherapeutic agent, was demonstrated to suppress 
cell proliferation and metastasis through inducing 
M1 to secrete cytokines in BCa [55]. ATP-binding 
cassette transporter G1 (ABCG1) inhibited BCa growth 
through a phenotypic shift from a tumor-promoting 
M2 to a tumor-fighting M1 [56]. The predominance 
of M2-polarized macrophages in the stroma of low-
hypoxic BCa was associated with Bacillus Calmette-
Guérin (BCG) immunotherapy failure, possibly owing 
to immunosuppressive function of M2 [54]. Taken 
together, TAMs have been shown to be associated with 
carcinogenesis and progression of bladder, however, the 
molecular mechanisms that TAMs establish their tumor-
inhibiting or tumor-promoting effect remain undefined.

Myeloid-derived suppressor cells

Myeloid-derived suppressor cells (MDSCs) 
originate from bone marrow or from peripheral lymphoid 
organs, and their presence is associated with disease 
progression and reduced survival in many types of tumors 
[57, 58]. Accumulating evidence shows that induction 
of MDSCs is an important immune-evading strategy for 
cancer cells, which is linked to their immunosuppressive 
activity and the capacity to impair T cell function [59, 
60]. MDSCs suppress anti-tumor immunity through 
multiple mechanisms, including a high level of arginase or 
tryptophan activity as well as nitric oxide (NO), reactive 
oxygen species (ROSs) and prostaglandin E(2) (PGE(2)) 
induction [59, 61].

BCa is a highly immunogenic malignancy and 
MDSCs are demonstrated to be critical mediators of 
BCa cell-associated immune suppression. Bladder cancer 
tissues spontaneously produce MDSCs-attracting CXCL8 
(IL-8) and CCL22, which are correlated with poor 
prognosis of BCa [62]. The increased tumor infiltration 
of MDSCs with concomitant decrease of T cells and NK 
cells are shown in tyrosine kinase Rip2-deficient mice 
model of BCa, resulting in an enhanced incidence of 
metastases in BCa [63]. CD14(+)HLA-DR(-/low) cells, 
as a new subpopulation of MDSCs, display strong T-cell 
suppressive activity, and are associated with gender, tumor 
size, number of tumors and disease progression in the 
patients with BCa (Table 1) [64]. Thus, MDSCs may be 
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Table 1: Inflammatory cells and cytokines in tumor microenvironment of bladder cancer

Class Target Biomarkers Role in 
BCa

Histologic 
subtypes of BCa Control N p 

value References

Inflammatory cells

TAMs M1: TNF-α, IL IL-8 Inhibition TCC Patients without 
treatment 12 p<0.05 52

M2: TGF-β, IL CD163 Promotion TCC Patients without 
treatment 99 p<0.05 54

MDSCs PBMCs, IFN-γ CD14(+)HLA-
DR(-/low) Promotion TCC Healthy human 64 p<0.01 64

MCs c-Kit c-Kit Promotion TCC Normal bladder 
mucosa 78 p<0.05 82

Stem cell ALDH1 Inhibition TCC Healthy human 52 p<0.05 84
NLR Unknown NLR Inhibition TCC NLR<2.7 899 p<0.05 88
Inflammatory cytokines

TNF-α MMP-9 MMP-9 Promotion TCC Without TNF-α Cell 
lines p<0.05 94

ILs Unknown IL-1α Inhibition Main TCC Low IL-1α 
expression 164 p<0.05 95

ALDH1, aldehyde dehydrogenase 1 A1; PBMCs, peripheral blood mononuclear cells; TCC, Transitional cell carcinoma; 
SCC, squamous cell carcinoma.

Figure 1: The inflammatory spectrum underlying the carcinogenesis and progression of bladder cancer. Many factors 
such as infections (bacterial, S. haematobium, viral), proinflammatory cells (such as TAM, MDSC, T cells, mast cells and neutrophils), 
and chronic chemical or mechanical irritation are considered as a major risk factors of chronic inflammation. These factors can activate the 
inflammatory responses which contribute to the formation and development of bladder cancer.
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a potential target for the tumorigenesis, progression and 
treatment of BCa.

Regulatory T cells (Tregs)

Regulatory T cells (Tregs) play an essential role in 
the pathogenesis of inflammation and various autoimmune 
diseases, including cancer. Currently, numerous studies 
support the idea that Tregs can promote cancer progression 
by suppressing antitumor immune responses or expressing 
inflammatory cytokines [65, 66]. In bladder cancer, 
S1PR1 signaling in T cells can drive Treg accumulation 
in tumors through JAK/STAT3 activation, resulting in 
promoting BCa growth [67]. Moreover, the patients with 
bladder carcinoma show a relative enrichment of Tregs in 
peripheral blood compared with healthy controls [68, 69], 
and the suppression of Tregs contributes to an antitumor 
effect in an orthotopic BCa model [70]. However, the 
role of Tregs in chronically inflammatory environment of 
bladder cancer cells has not been explored.

Dendritic cells

Dendritic cells (DCs) are professional antigen-
presenting cells, thus, they play a crucial role in both 
the induction of antigen-specific immunity and the 
maintenance of tolerance [71]. The impairment of 
myeloid DC (mDC) counts and monocyte-derived DC 
(MoDC) function are closely associated with proliferation 
of superficial transitional cell carcinoma of the bladder 
(STCCB) [72]. Tumor-infiltrating dendritic cells (TIDCs) 
exhibit an abnormal phenotype and impaired function 
to stimulate T cells [73, 74]. Numerous studies have 
suggested that TIDCs contribute to tumor escape from 
immune surveillance by suppressing antitumor immune 
responses, therefore promoting tumor development 
[75, 76]. The high level of CD83(+) mature TIDCs is 
associated with a increased risk of muscle-invasive BCa 
[77]. In contrast, Xiang et al. reported that TIDCs were 
inversely correlated with the degree of malignancy and 
prognosis of bladder transitional cell carcinoma (BTCC) 
and the decrease in the number of TIDCs could have 
important relation to tumor immune evasion and immune 
tolerance [78]. Thus, TIDCs may be risk factors for BCa.

Mast cells

Mast cells (MCs) are among potent proinflammatory 
cells that have been known to play an important role in 
variety of inflammation-associated diseases including 
cancer [79]. Several clinical studies suggested that MCs 
could influence the neoplasia and progression of BCa. 
The number of MCs within and around the tumor may 
be a useful prognostic indicator in patients with bladder 
carcinomas and MCs density is significantly higher in 
high-grade BTCC than low-grade BTCC [80, 81]. c-Kit 
positive MCs may contribute to tumor angiogenesis and 

play an important role in tumor invasion of the urinary 
bladder (Table 1) [82]. Recruited MCs in the tumor 
microenvironment are demonstrated to enhance bladder 
cancer metastasis through modulation of ERβ/CCL2/
CCR2 EMT/MMP9 signals [83]. Whereas, stem cell 
marker-positive MCs are reduced in stroma of benign-
appearing mucosa of BCa patients, indicating that MCs 
could be also involved in suppression of carcinogenesis 
(Table 1) [84]. However, the mechanisms of how mast 
cells influence the formation and progression of BCa are 
still unclear.

Neutrophil-to-lymphocyte ratio

The neutrophil-to-lymphocyte ratio (NLR) in 
peripheral blood samples has been indicated as a crucial 
indicator for the systemic inflammatory response [85] 
and the prognosis of some solid malignancies including 
BCa [11, 86, 87]. Elevated serum NLR level among 
BCa patients undergoing radical cystectomy (RC) is 
associated with significantly increased risk for disease 
recurrence and progression (Table 1) [88, 89]. NLR is 
also associated with pathological response (pathR) in 
muscle-invasive bladder cancer (MIBC) patients who 
receive neoadjuvant chemotherapy (NC) [90]. Although 
the large number of clinical evidence has linked NLR with 
BCa progression, the molecular events by which NLR 
promotes BCa development and tumor recurrence are not 
fully understood.

TNF-α

TNF-α is a key event for infectious disease and 
malignancy. The released TNF-α during inflammation is 
associated with the transformation of BCa due to induction 
of H2O2 [91]. The serum level of TNF-α is remarkably 
elevated in BCa patients with or without schistosomiasis 
infection, moreover, higher level of TNF-α is observed in 
T3 and T4 advanced-stage patients than T1 and T2 early-
stage patients, indicating TNF-α level might contribute to 
the progression of BCa [92]. TNF-α gene promoter-308 
A/G single nucleotide polymorphisms are recently 
found to be significantly associated with the tumor-
invasive stage of BCa [93]. TNF-α is also implicated in 
promoting invasion and migration of BCa cells through 
stimulating the secretion of matrix metalloproteinases-9 
(MMP-9) in the tumor microenvironment (Table 1) [94]. 
Taken together, TNF-α as a proinflammatory cytokine 
contributes to the formation and development of BCa.

Interleukins

As proinflammatory cytokines, interleukins (ILs) 
have been involved in cancer initiation and progression. 
Low levels of IL-1α mRNA expression are associated with 
an increased risk for BCa-specific death (Table 1) [95]. IL-
6, a major trigger of the signal transducers and activators 
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of transcription 3 (STAT3) signaling pathway, have been 
implicated in regulation of tumor growth and metastasis 
of BCa. IL-6 level is positively linked with angiogenesis 
and the clinical outcome of BCa [96]. Interestingly, 
there is a conflicting report regarding the potential role 
of IL-6. Tsui and colleagues found that IL-6 attenuated 
tumorigenesis and cell invasion in human bladder 
carcinoma cells [97]. IL-8 over-production is an important 
factor in monomethylarsonous acid [MMA(III)]-induced 
malignant transformation of urothelial cells [98]. Increased 
expression of IL-8 is also correlated with tumor recurrence 
and poor prognosis of BCa [99]. The same as IL-6, IL-
17 has a dual role in BCa. IL-17 can promote tumor 
growth through an IL-6-Stat3 signaling pathway [100]. In 
contrast, Baharlou et al. reported that reduced IL-17 levels 
in peripheral blood could be used as indicators for worse 
prognosis of BCa patients [101]. Serum IL-18 levels were 
significantly higher in BCa patients when compared to the 
control subjects, however, the relationship between IL-
18 and tumor progression need to be further determined 
[102]. Therefore, interleukins may promote or inhibit 
bladder carcinogenesis.

MOLECULAR BASIS OF CHRONIC 
INFLAMMATION IN INITIATION 
AND PROGRESSION OF BLADDER 
CANCER

Several signaling pathways are known to be 
involved in the initiation and progression of BCa during 
inflammation, including Cyclooxygenase-2 (COX-2)/
nitric oxide synthase (NOS), janus activated kinase 
(JAK)-STAT3, the nuclear factor-kappaB (NF-κB), and 
phosphoinositide-3 kinase (PI3K)-Akt-mammalian target 
of rapamycin (mTOR) (Figure 2).

CYCLOOXYGENASE-2/NITRIC OXIDE 
SYNTHASE (NOS)

Cyclooxygenase-2 (COX-2), the enzyme that 
converts arachidonic acid to prostaglandin H2, is 
stimulated by a number of inflammatory cytokines and 
plays a key role in tumorigenesis and cancer progression. 
COX-2 is commonly expressed in BCa cells but not in 

Figure 2: Summary of the signaling pathways underlying inflammatory response-mediated bladder cancer oncogenesis 
and progression.
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normal urothelium [103]. Nuclear localization of COX-2 is 
significantly associated with inflammation-mediated stem 
cell proliferation/differentiation in bladder tumorigenesis 
[25]. The overexpression of COX-2 is involved in the 
development of squamous cell carcinoma of the urinary 
bladder [104]. The high COX-2 expression is significantly 
associated with advancing grade and T stage of STCCB 
[105]. Although numerous studies suggest that COX-
2 promotes bladder tumorigenesis and progression, its 
precise role remains non-conclusive. The data from Tadin 
et al. showed an inverse correlation exists between COX-2 
expression and recurrence of non-muscle invasive bladder 
cancer (NMIBC) [106]. These results provide a pivotal 
role of COX-2 in the initiation and progression of BCa.

Nitric oxide (NO), generated by nitric oxide 
synthase (NOS), participates in the physiologic regulation 
of many diseases including cancer [107]. There are three 
NOS isoforms, endothelial (eNOS), neuronal (nNOS) and 
inducible (iNOS) [108]. NOS plays a role in simulating 
the pattern of fetal urothelium, which may be viewed as 
an oncofetal characteristic of this type of tumor [109]. 
Endogenously formed NO promotes cell proliferation in 
BCa cell lines [110]. NO generation from iNOS in the 
malignant epithelium and from eNOS in tumor stroma 
have an important potential in the angiogenesis of BCa 
[111]. However, the precise roles of NO and NOS of the 
inflammatory microenvironment in BCa carcinogenesis 
and progression remain to be defined.

JAK-STAT3

JAK-STAT3 is a crucial signal pathway for the 
pathogenesis and progression of various inflammatory 
diseases including cancer. JAKs are key participants in 
signaling networks fueled by a variety of cytokine and 
growth factor receptors in the tumor microenvironment, 
including IL-6, IL-11, IL-27, interferon (IFN-α/β/γ) 
oncostatin M (OSM), leukemia inhibitory factor (LIF), 
epidermal growth factor (EGF) and others [112]. There 
are four JAK family members in mammalian cells, JAK1, 
JAK2, JAK3, and TYK2. JAKs mediate intracellular 
signaling cascades principally through creating STAT 
docking sites via phosphorylation of tyrosine residue 
[113]. Once tyrosine is phosphorylated, STAT proteins 
are rapidly transported from the cytoplasm to the nucleus 
and bind to DNA elements to elicit transcriptional outputs 
in a specific cell or tissue [114]. STAT3 is a member of 
STAT family and its phosphorylation at Tyr705 or Ser727 
is widely mediated in a variety of cellular contexts, 
especially JAK2 [115].

JAK-STAT3 pathway is also involved in chronic 
inflammation-mediated malignant transformation 
of urothelial cells and the progression of BCa. Stat3 
activation contributes to bladder cancer cell growth and 
survival [116, 117]. By contrast, the silencing of STAT3 
significantly suppresses proliferation of T24 BC cells 

both in vitro and in vivo [118]. Therefore, inhibition of 
JAK-STAT3 signaling pathway provides us a potential 
therapeutic approach for BCa. Along the same lines, the 
activation of JAK-STAT3 pathway in tumor inflammatory 
microenvironment participates in the invasion and 
migration of BCa. Stat3 activation in urothelial stem cells 
may lead to direct progression of urothelial progenitor 
cells to carcinoma in situ (CIS) formation and subsequent 
MIBC [119]. CXCR4-mediated Stat3 activation promotes 
CXCL12-induced cell invasion in BCa [120]. STAT3 is 
also phosphorylated by interacting with c-JUN, which 
is necessary for migration and invasion activity of T24 
BCa cells [121]. Cytoplasmic p27 activates STAT3 to 
induce a TWIST1-dependent epithelial-mesenchymal 
transition (EMT), resulting in increasing the invasion and 
metastasis of BCa [122]. Taken together, these reports 
have established a relationship between JAK-STAT3 
pathway and inflammation-mediated bladder cancer.

NF-κB

NF-κB is a family of ubiquitously expressed 
transcription factors that are widely activated by various 
proinflammatory stimuli in the tumor microenvironment, 
including TNF-α, IL-1β and the IκB kinase (IKK) 
complex [115]. There are two major signaling pathways 
that mediate NF-κB activation: the canonical and 
noncanonical pathways. The canonical pathway (also 
known as classical pathway) depends on the IKK 
complex and is mainly activated by proinflammatory 
cytokines (TNF-α or IL-1β), growth factors as well 
as pathogenassociated molecular patterns (PAMPs), 
thereby enhancing cell survival and proliferation [123]. 
The non-canonical pathway (also known as alternative 
pathway) does not require the trimeric IKK complex and 
depends on the inducible processing of p100, a molecule 
functioning as both the precursor of p52 and a RelB-
specific inhibitor [124].

NF-κB activation has been reported in various 
human neoplasms including BCa. Fisetin, a dietary 
flavonoid, significantly reduces the incidence of 
N-methyl-N-nitrosourea (MNU) -induced bladder tumors 
by suppressing NF-κB activation [125]. The curcumin 
potentiates the antitumor effect of Bacillus Calmette-
Guerin (BCG) through the induction of TRAIL receptors 
and inhibition of NF-κB in bladder cancer cells [126]. 
Nuclear expression of NF-κB is correlated with histologic 
grade and T category in bladder urothelial carcinoma 
(UC) [127]. AKT-mediated NF-κB activation upregulates 
snail expression and induces EMT, therefore, promoting 
tumor progression and metastasis in BCa [128]. NF-κB 
activation also mediates angiogenesis and metastasis 
of BTCC through the regulation of IL-8 [129]. In 
addition, down-regulation of NF-κB activation results 
in enhanced sensitivity of bladder cancer cells towards 
chemotherapeutic agents [130, 131].
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PI3K-Akt-mTOR

PI3K activation is initiated in response to cell surface 
tyrosine kinase receptor-ligand binding, and leads to the 
conversion of phophatidylinositol-4,5-bisphosphate (PIP2) 
to phosphatidylinositol-3,4,5-trisphosphate (PIP3) [132]. 
Subsequently, PIP3 recruits AKT and phosphoinositide-
dependent kinase 1 (PDK1) to the plasma membrane, 
resulting in the phosphorylation of AKT either by PDK1 
at Thr308 or by mTORC2 at Ser473 [133]. And then, AKT 
phosphorylation disrupts the interaction between tuberous 
sclerosis protein complex 1 (TSC1) and TSC2, and further 
inhibits the activation of Rheb that is a suppressor of 
mTOR function [134]. There are two functionally distinct 
mTOR complexes, mTORC1 and mTORC2. mTORC1 is 
mainly regulates protein translation and cell metabolism 
through its various downstream effectors. In contrast, 
mTORC2 is involved in actin cytoskeleton organization 
and cell survival. In addition, mTORC2 also regulates 
AKT activity by a feed-back loop [135].

PI3K-AKT-mTOR signaling pathway is frequently 
changed in several malignancies including BCa. Chen 
et al. evaluated 231 single-nucleotide polymorphisms 
(SNPs) in 19 genes in the PI3K-AKT-mTOR signaling 
pathway and they found four SNPs in raptor that were 
significantly associated with increased risk of BCa [136]. 
Moreover, activation of the PI3K-AKT-mTOR pathway 
was demonstrated to be correlated with tumor progression 
and poor survival of BCa patients [137]. Nicotine could 
induce acquired chemoresistance and increase tumor 
growth through activation of the PI3K-AKT-mTOR 
pathway in BCa [138]. Angiogenin (ANG), a member of 
RNase A superfamily, is recently demonstrated to promote 
tumor angiogenesis, tumorigenesis and metastasis of 
BCa by activating key downstream target molecules of 
PI3K-AKT-mTOR signaling pathway [139]. Although 
significant progress has been made in defining the role 
of this pathway in BCa, the mechanisms by which PI3K-
AKT-mTOR pathway promotes BCa carcinogenesis and 
progression are not well known.

MicroRNAs

MicroRNAs (miRNAs) are small noncoding 
molecules that regulate gene expression by silencing 
mRNA targets. miRNA dysregulation exhibits great 
regulatory potential during organismal development, 
cell proliferation and death, immunity, and inflammation 
[140]. Recently, increasing studies have linked miRNAs 
to inflammation during bladder cancer initiation and 
development.

TNF-α-related apoptosis-inducing ligand (TRAIL) 
shows a strong apoptosis-inducing effect on a variety 
of cancer cells including BCa. MiRNA-221 silencing 
promoted cell apoptosis induced by TRAIL in T24 cells 
[141]. The problem that adenoviral vector lacks the ability 
to discriminate cancer and normal cells seriously hurdles 

the clinical application of TRAIL therapy. To solve the 
problem, Zhao et al. applied miRNA response elements 
(MREs) of miR-1, miR-133 and miR-218 to confer 
TRAIL expression with specificity to bladder cancer cells. 
They found that miRNA response elements-based TRAIL 
delivery showed specific survival-suppressing activity 
on bladder cancer [142]. Notwithstanding a long list of 
miRNAs deregulated in BCa, there is very little overlap in 
the patterns of miRNA expression between inflammation 
and BCa. In order to evaluate the differential effects of 
inflammation on the bladder cancer, microRNA research 
may be an exciting and challenging field in the future.

IMPLICATIONS FOR PREVENTION 
AND TREATMENT OF BLADDER 
CANCER

Nonsteroidal anti-inflammatory agents and 
COX-2 inhibitors

Experimental and epidemiologic evidence strongly 
suggests that nonsteroidal anti-inflammatory drugs 
(NSAIDs) and COX-2 inhibitors have the potential as 
chemopreventive agents for cancer (Table 2) [143, 144]. 
NSAIDs (such as naproxen, sulindac, and their NO 
derivatives) show good preventive effects in a chemically 
induced urinary bladder cancer model [145]. As a NSAID, 
meloxicam treatment inhibits the development of bladder 
neoplastic lesions induced by BBN [146]. However, in 
a comprehensive meta-analysis, Zhang et al. evaluated 
the association between NSAIDs and BCa risk and they 
reported there was no significant association between 
use of aspirin or non-aspirin NSAIDs and BCa risk. 
However, non-aspirin NSAIDs use among long-term 
quitters might be associated with a decreased risk of BCa 
[147]. Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, 
promotes a striking inhibitory effect on BCa development, 
reinforcing the potential role of chemopreventive 
strategies based on COX-2 inhibition [148]. In contrast, 
the results from Sabichi et al. do not show a clinical 
benefit for celecoxib in preventing NMIBC recurrence 
[149]. So, whether the treatment of NSAIDs or COX-2 
inhibitors may reduce the risk of BCa remains unclear.

BCG immunotherapy

BCG, a live attenuated form of Mycobacterium 
bovis, has been used to treat high grade NMIBC for almost 
40 years, to reduce the risk of recurrence and progression 
(Table 2) [150]. Currently, several meta-analyses have 
confirmed that intravesical BCG is a first-line choice for 
reducing tumor recurrence and delaying or preventing 
progression to MIBC [151–153]. In addition, some clinical 
and experimental research also show that intravesical BCG 
is safe and effective in immunologically compromised 
patients with BCa [154], and BCG treatment suppresses 
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the tumorigenesis and progression in a BBN-treated rodent 
model [155]. Although the precise mechanism of BCG 
antitumor response remains undefined, the current research 
suggest that it stimulates both an inflammatory tumor 
response as well as an immune response to kill the bladder 
cancer cells [156]. BCG presents its antitumor potential 
by secretion of cytokines/chemokines (such as IL-6, IL-
8, CXCL1 and CXCR4) into tumor microenviroment, 
moreover, increased levels of cytokines/chemokines in 
serum are associated with enhanced survival in the animal 
model of BCa [157]. BCG's anti-tumor effects can be also 
attributed to the elimination of BCG-infected cancer cells 
by presentation of cancer cell antigens to immune cells, 
including natural killer (NK) cells, CD4(+) T cells and 
CD8(+) T cells [158, 159].

ILs agonists or their antagonists

Based on the different role of ILs in the formation 
and development of BCa, ILs agonists or their antagonists 
are demonstrated to display distinct antitumor effect 
(Table 2). Intravesical IL-12 immunotherapy can induce 
tumor-specific systemic immunity against murine BCa 
[160]. IL-15 gene therapy inhibits cell survival in an 
orthotopic BCa model through inducing tumor-specific 
cytotoxic T lymphocytes [161]. IL-10 blocking antibodies 
enhances BCG induced Th 1 immune responses and anti-
bladder cancer immunity [162]. In addition, there are 18 
phase I/II cancer clinical trials (http://clinicaltrials.gov/) is 
assessing the efficacy of IL with or without conventional 
chemotherapeutics.

Immune checkpoint inhibitors

Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is a 
CD28 family member and is translocated to the membrane 
following activation of both CD4 and CD8 T cells. When 
expressed, CTLA-4 binds co-stimulatory B7 molecules 

with greater affinity than CD28 and generates a negative 
feedback loop to the early T cell response [163]. CTLA-
4 targeting antibodies boost anti-tumor immunity through 
blocking the interaction between CTLA-4 and B7 ligands. 
Ipilimumab was the first FDA-approved CTLA-4 inhibitor 
for treatment of unresectable or metastatic melanoma as a 
monotherapy. Currently, one active trial (NCT01524991) 
is investigating the efficacy of the combination of 
Ipilimumab with conventional chemotherapeutics 
(Gemcitabine plus Cisplatin) as first-line treatment for 
patients with metastatic urothelial carcinoma (Table 2) 
[164]. The information about the antitumor activity of this 
combination is underway.

Programed cell death protein 1 (PD-1or CD279) is 
another coinhibitory receptor expressed on the surface of 
many different subtypes of tumor infiltrating leukocytes 
[165]. PD-1 is mainly activated by interacting with its 
ligands PD-L1 which is mainly expressed on dendritic 
cells, IFN-γ-treated monocytes and many types of cancer 
cells [166]. The first FDA-approved PD-L1 inhibitor 
in bladder cancer was atezolizumab, in May 2016, for 
patients with locally advanced or metastatic urothelial 
carcinoma after disease progression on or within 12 
months of receiving platinum-based chemotherapy either 
before (neoadjuvant) or after (adjuvant) surgical treatment. 
This was followed by the approval of PD-1 blockade drug 
nivolumab in February 2017 for treatment of locally 
advanced or metastatic urothelial carcinoma whose disease 
has progressed during a period of up to 1 year after first-
line platinum-containing chemotherapy [167]. Another 
PD-L1 inhibitor pembrolizumab showed a 24.1% overall 
response rate for urothelial cancer patients. To assess 
the efficacy of the combination of pembrolizumab with 
conventional chemotherapeutics, several clinical trials 
(NCT02335424, NCT02351739 and NCT022456436) 
have been launched [164, 168]. As mentioned, PD-1 
or PD-L1 inhibitors have shown promising roles in the 

Table 2: Active clinical drugs for the prevention and treatment of bladder cancer

Drugs Identifier Targets Role References

Meloxicam NSAID Unknown Inhibition 146

Celecoxib COX-2 inhibitor COX-2 Inhibition 148

BCG Vaccine Cytokines/chemokines and T cells Inhibition 151-155

IL-15 Gene therapy T lymphocytes Inhibition 161

IL-10 blocking 
antibodies antibody Th1 Inhibition 162

Ipilimumab CTLA-4 inhibitor CTLA-4 Investigation 164

Atezolizumab PD-L1 inhibitor PD-L1 Inhibition 167

Nivolumab PD-1 inhibitor PD-1 Inhibition 167

Pembrolizumab PD-1 inhibitor PD-1 Inhibition 164, 168
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treatment of BCa patients (Table 2). However, future 
research is necessary to characterize therapeutic response 
and identify predictive markers of response for these 
drugs.

CONCLUSIONS AND PERSPECTIVES

Chronic inflammation is an important risk factor 
for the development of urinary bladder cancer. Many 
factors are involved in inflammation-associated cancer 
risk, including infections (bacterial, S. haematobium, 
viral), immunological disorders, and chronic chemical and 
mechanical irritation. Multiple proinflammatory molecules 
and signaling pathways in tumor microenvironment may 
elicit a crucial role in formation and progression of BCa. 
Therefore, several cytokine/chemokine antagonists or 
their antagonists and some signaling pathway inhibitors as 
potential agents of chemoprevention and treatment against 
BCa are in clinical investigation.

However, several gaps still exist in our knowledge 
that should be addressed in the future. Firstly, the question 
whether we should try to inhibit local inflammatory 
reactions or systemic inflammation responses is 
paradoxical since neoplastic disorders are usually 
associated with a local but not a systemic inflammatory 
response, which should be considered in the ongoing 
clinical trials where systemic anti-inflammation agents 
are used in the prevention and treatment of BCa. Second, 
it is unclear whether inflammation is sufficient for the 
formation of cancer, which means whether inflammation 
can induce carcinogenesis in the absence of an exogenous 
carcinogenic agent. Third, it has been known that the 
outcomes of inflammation activation are highly dependent 
on the treatment characteristic and tumor types. Moreover, 
the signaling pathways involved in chronic inflammatory 
tumor microenvironment and their possible crosstalk 
among themselves are complicated. So, what is needed 
to be better known include elucidating the specific impact 
of the chronic inflammation on bladder carcinogenesis 
and progression, and determining the exact molecular 
mechanisms by which the chronic inflammation can 
regulate the growth, survival, invasion and metastasis. 
However, our increased understanding of the role of 
chronic inflammation in tumor microenvironment will 
hopefully provide us an attractive therapeutic strategy to 
impede carcinogenesis, inhibit cancer cell survival and 
metastasis for bladder cancer patients.
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