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Enhancing the sialylation of 
recombinant EPO produced in 
CHO cells via the inhibition of 
glycosphingolipid biosynthesis
Chan-Yeong Kwak1, Seung-Yeol Park2, Chung-Geun Lee1, Nozomu Okino3, Makoto Ito3  
& Jung Hoe Kim1

Sialylation regulates the in vivo half-life of recombinant therapeutic glycoproteins, affecting their 
therapeutic efficacy. Levels of the precursor molecule cytidine monophospho-N-acetylneuraminic 
acid (CMP-Neu5Ac) are considered a limiting factor in the sialylation of glycoproteins. Here, we show 
that by reducing the amount of intracellular CMP-Neu5Ac consumed for glycosphingolipid (GSL) 
biosynthesis, we can increase the sialylation of recombinant human erythropoietin (rhEPO) produced 
in CHO cells. Initially, we found that treating CHO cells with a potent inhibitor of GSL biosynthesis 
increases the sialylation of the rhEPO they produce. Then, we established a stable CHO cell line that 
produces rhEPO in the context of repression of the key GSL biosynthetic enzyme UDP-glucose ceramide 
glucosyltransferase (UGCG). These UGCG-depleted cells show reduced levels of gangliosides and 
significantly elevated levels of rhEPO sialylation. Upon further analysis of the resulting N-glycosylation 
pattern, we discovered that the enhanced rhEPO sialylation could be attributed to a decrease in neutral 
and mono-sialylated N-glycans and an increase in di-sialylated N-glycans. Our results suggest that the 
therapeutic efficacy of rhEPO produced in CHO cells can be improved by shunting intracellular CMP-
Neu5Ac away from GSL biosynthesis and toward glycoprotein sialylation.

Many of the therapeutic bio-drugs currently in commercial production are sialylated glycoproteins1. Sialic acid 
is a terminal sugar residue on the N- and O-linked glycosylation chains attached to many glycoproteins. Since 
secreted therapeutic glycoproteins are degraded by hepatocytes after being recognized by the asialoglycoprotein 
receptor (ASGPR), enhanced sialylation of these therapeutic glycoproteins can increase their in vivo circulating 
half-life2,3. Thus, because it will likely enhance therapeutic efficacy, there is considerable interest in developing 
methods for enhancing the sialylation of recombinant glycoproteins.

Early attempts at promoting sialylation focused on the over-expression of sialylation-related enzymes4,5, but 
these efforts quickly hit a ceiling6. It became clear that the intracellular level of CMP-Neu5Ac, a precursor required 
for sialic acid biosynthesis, was limiting7–9. Attempts to increase intracellular CMP-Neu5Ac have included sup-
plementation of the CMP-Neu5Ac biosynthetic precursor ManNAc10, over-expression of the CMP-Neu5Ac 
transporter (CST)11,12, and over-expression of mutant UDP-N-acetyl-glucosamine-2-epimerase (GNE) to bypass 
CMP-Neu5Ac-mediated feedback inhibition13,14. Recently, we also found a further increase in rhEPO sialylation 
upon over-expression of α2,3-sialyltransferase (ST) in CHO cells expressing mutant GNE and CST15.

In addition to its role in glycoprotein biology, sialic acid is also attached to glycosphingolipids (GSLs) includ-
ing those of the Ganglio-series (GlcNAcβ4Galβ4GlcβCer), Globo-series (Galα4Galβ4GlcβCer), Lacto-series 
(GlcNAcβ3Galβ4GlcβCer), and Neolacto-series (Galβ4GlcNAcβ3Galβ4GlcβCer)16. Sialylation occurs when 
CMP-Neu5Ac is translocated to the Golgi complex. There, ST catalyzes the transfer of Neu5Ac to a terminal 
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galactosyl residue17. The inhibition of CMP-Neu5Ac translocation to the Golgi reduces the sialylation of both 
glycoproteins and GSLs, suggesting CMP-Neu5Ac is required for both18. It is unclear, however, whether GSL 
sialylation would correlate with glycoprotein sialylation. This is the question we attempted to address in the pres-
ent study. Indeed, we found that treating CHO cells with a potent inhibitor of GSL biosynthesis increases their 
sialylation of rhEPO. Subsequently, we established a stable cell line with reduced expression of the UGCG gene. 
These cells too show enhanced rhEPO sialylation. After performing a more detailed N-glycan analysis, we found 
that UGCG-depleted CHO cells produce rhEPO with increased levels of di-sialylated N-glycan.

Results
EtDO-P4 treatment enhances sialylation. To investigate the effect of GSL biosynthesis on glycoprotein 
sialylation, we used a chemical inhibitor of GSL biosynthesis. Ceramide glucosyltransferase (CGT) catalyzes the 
transfer of the glucose moiety from UDP-glucose to ceramide to produce glucosylceramide (GlcCer). GlcCer, in 
turn, acts as the GSL core (Fig. 1). EtDO-P4 (D-threo-ethylenedioxyphenyl-2-palmitoylamino-3-pyrrolidino-
propanol) inhibits CGT and is, therefore, capable of reducing GSL biosynthesis in various cells19,20. After treating 
rhEPO-producing EC2-1H9 CHO cells with EtDO-P4, we measured their GSL biosynthesis using thin-layer 
chromatography (TLC) as previously described21. We found that ganglioside GM3 is the predominant GSL in 
CHO cells, with gangliosides GM1 and GM2 making up only minor fractions (Fig. 2A). After EtDO-P4 treat-
ment, however, we observed a significant reduction in GSL biosynthesis (Fig. 2A). Although ganglioside GM3 
reportedly induces cell proliferation in various cancer cells by activating cell surface receptors like EGFR and 
integrins22, EtDO-P4 does not alter cell proliferation in EC2-1H9 CHO cells (Fig. S1).

We previously reported that over-expression of glycosylation enzymes in CHO cells producing rhEPO leads to 
increased rhEPO sialylation6,23. To determine whether the inhibition of GSL biosynthesis can enhance the sialyl-
ation of therapeutic glycoproteins, we cultured EC2-1H9 CHO cells producing rhEPO as previously described23. 
We then purified rhEPO they produced via immunoprecipitation with an anti-EPO antibody and measured its 
sialylation level using lectin blotting with wheat germ agglutinin (WGA). This technique is specific for terminal 
sialic acids24. Indeed, we found that although EtDO-P4 treatment slightly reduces rhEPO production, it increases 
rhEPO sialylation by 50% (Fig. 2B and C). This suggests reducing the amount of CMP-Neu5Ac consumed by GSL 
production increases rhEPO sialylation.

Transient inhibition of GSL biosynthesis enhances rhEPO sialylation. From a commercial perspec-
tive, the treatment of cells with chemical inhibitors is generally considered impractical because of the cost and 
potential for side effects. Instead, we hoped to develop a stable cell line that produces highly sialylated rhEPO as a 
consequence of its reduced expression of UGCG. As a first step in this direction, we designed three different small 
interfering RNAs to specifically target UGCG (Table SI). We were able to confirm that all three siRNAs signifi-
cantly repress the expression of UGCG by EC2-1H9 CHO cells (Fig. S2A). Consistent with what we observed with 
EtDO-P4 treatment, all three siRNAs reduce the levels of ganglioside GM3 (Fig. 3A) and other GSLs (Fig. 3B). 
We next used an anti-EPO antibody to pull-down rhEPO from supernatant collected from these UGCG-depleted 
EC2-1H9 CHO cells. As expected, we found rhEPO purified from these UGCG-depleted CHO cells shows 50% 
more sialylation than rhEPO obtained from control cells (Fig. 3C and D).

Stable UGCG depletion also enhances rhEPO sialylation. Since transient knock-down of UGCG 
enhances rhEPO sialylation, we next attempted to establish a cell line that produces rhEPO in the context of 
stable UGCG depletion. All three siRNAs produce similar levels of rhEPO sialylation (see Fig. 3), so we designed 
an artificial miRNA expression vector, pcUGCG-miR-1, to target the same sequence as siRNA1. We trans-
fected this vector into EC2-1H9 CHO cells and selected for a stable cell line. We confirmed that expression of 
the artificial miRNA reduces expression of UGCG as compared to control EC2-1H9 CHO cells (Fig. S2B). We 
also found that enzymatic activity of UGCG was inhibited in UGCG depleted cells as examined by the conver-
sion of NBD-ceramide to NBD-glucosylceramide (Fig. 4A). The stable CHO cell line, which we named EC2-
1H9-miUGCG, shows significantly reduced levels of ganglioside GM3 as well as other GSLs (Fig. 4B and C). 
Importantly, we confirmed that the rate of proliferation of EC2-1H9-miUGCG cells is similar to that of EC2-1H9 
cells (Fig. 4D).

Figure 1. Ganglioside biosynthesis schematic. UGCG catalyzes the first step of GSL biosynthesis. CMP-Neu5Ac 
is a sialylation precursor in both glycoproteins and GSLs.
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To determine whether stable UGCG depletion enhances rhEPO sialylation, we allowed the EC2-
1H9-miUGCG cells to produce rhEPO for 4 days (see Methods). We then used an anti-EPO antibody to purify 
rhEPO from the resulting supernatant using immunoaffinity chromatography. Both the EC2-1H9-miUGCG cells 
and the control EC2-1H9 cells produce similar levels of rhEPO (Fig. 5A). Although both types of cells show simi-
lar levels of intracellular CMP-Neu5Ac, EC2-1H9-miUGCG cells produce rhEPO with significantly more sialyla-
tion than that produced by EC2-1H9 cells (Fig. 5B and C). The similar levels of intracellular CMP-Neu5Ac suggest 
that the concentration of this metabolite in the sialylation pathway is maintained in a state of dynamic equilib-
rium. Since rhEPO contains one O-glycosylation site (Ser 126) and three N-glycosylation sites (Asn 24, Asn 38, 
and Asn 83), a single mole of rhEPO can be decorated with up to 14 moles of sialic acid25. Previously, we meas-
ured rhEPO sialylation using an o-phenylenediamine (OPD)-labeling technique coupled with reversed-phase 
HPLC with a C18 column15,26. Using this same approach, we found 8.5 moles of sialic acid per mole of rhEPO 
produced by EC2-1H9-miUGCG cells and only 6 moles of sialic acid per mole of rhEPO produced by EC2-1H9 
cells (Fig. 5C). This suggests that the use of EC2-1H9-miUGCG cells may represent a novel method for generating 
large amounts of highly sialylated rhEPO.

Analysis of N-linked glycan sialylation on rhEPO. To determine how stable depletion of UCGC affects 
the structure of the glycosylation chains on rhEPO, we used HPLC to analyze the N-linked glycans released 
from rhEPO after 2-aminobezaminde (2-AB) labeling27. We used an anion-exchange column (DEAE-5PW) to 
separate the 2AB-labeled N-linked glycans by their number of sialic acids and then estimated rhEPO sialylation 
by measuring the resulting peak area. For this sialylation profiling analysis, we used the 2-AB-labeled N-glycans 
of bovine fetuin as a sialylation standard (Fig. 6A). Consistent with the results described above (Fig. 5C and D), 
this technique confirmed that the rhEPO produced by EC2-1H9-miUGCG cells is more highly sialylated than 
that produced by EC2-1H9 cells (Fig. 6B). Specifically, we found EC2-1H9-miUGCG cells produce rhEPO with 
less neutral (6.9% vs. 12.4%) and mono-sialylated (14.4% vs. 21.0%) N-glycans compared to the control rhEPO 
produced by EC2-1H9 cells (Fig. 6C). Instead, the rhEPO produced by EC2-1H9-miUGCG cells shows signif-
icantly more di-sialylated N-glycans (40.8% vs. 30.7%) than the control rhEPO. The rhEPO produced by EC2-
1H9-miUGCG cells shows similar levels of tri-sialylated (25.0% vs. 23.8%) and tetra-sialylated (12.9% vs. 12.1%) 
N-glycans compared to the rhEPO produced by EC2-1H9 cells (Fig. 6C).

Discussion
Sialic acid is the terminal sugar on the glycosylation chains of most secreted glycoproteins, where it contributes 
to their function and stability1,28,29. In exploring the increased stability of recombinant therapeutic glycoproteins 
by regulating sialylation, we noted that it is also required for GSL biosynthesis16. We, therefore, hypothesized that 

Figure 2. EtDO-P4 treatment increases rhEPO sialylation. (A) Total GSLs extracted from cells were subjected 
to TLC followed by staining with orcinol/sulfuric acid. Lane 1, GSL standards; Lane 2, GSLs extracted from 
EC2-1H9 cells; Lane 3, GSLs extracted from EC2-1H9 treated with EtDO-P4. (B) rhEPO was purified 
using immunoprecipitation with an anti-EPO antibody. Sialylation was determined using WGA lectin. (C) 
Quantification of data in B; n = 3. **P < 0.01 (Two-tailed Student’s t-test). Data are presented as means ± S.E.M.
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inhibition of GSL biosynthesis may enhance the sialylation of rhEPO. First, we treated cells expressing rhEPO 
with a GSL biosynthesis inhibitor and confirmed the expected increase in rhEPO sialylation. Ultimately, this led 
us to establish the stable CHO cell line, EC2-1H9-miUGCG, which produces highly sialylated rhEPO owing to 
its reduced expression of UGCG. We recently discovered that we were able to increase intracellular CMP-Neu5Ac 
levels by co-expressing the CMP-Neu5Ac transporter CST with GNE (R263L/R266Q), bypassing any negative 
feedback inhibition15. Surprisingly, EC2-1H9-miUGCG cells show normal levels of CMP-Neu5Ac in the cyto-
plasm and in the Golgi (Fig. S3). This suggests that the increased intracellular CMP-Neu5Ac caused by inhibiting 
GSL biosynthesis is rapidly consumed in the sialylation of rhEPO, inducing a dynamic equilibrium.

Although we do not yet fully understand the intricacies of intracellular CMP-Neu5Ac dynamics, we used 
various approaches to confirm that EC2-1H9-miUGCG cells produce highly sialylated rhEPO. We found that 
the rhEPO produced by EC2-1H9-miUGCG cells has 10.2% more di-sialylated N-glycans than that produced by 
EC2-1H9 cells, but less neutral and mono-sialylated N-glycans. Although we were previously able to attribute the 
enhanced sialylation of the rhEPO produced by EC2-1H9-CTSTrEKm cells to tetra-sialylated N-glycans15, the 
rhEPO produced by EC2-1H9-miUGCG cells does not show any changes in the levels of tri- and tetra-sialylated 
N-glycans. This means it may be possible to improve the sialylation of rhEPO produced by EC2-1H9-CTSTrEKm 
cells even further via UGCG depletion. In addition, because the rate at which proteins transit the Golgi complex 
affects glycosylation30, it may also be possible to enhance rhEPO sialylation by slowing its passage through the 
Golgi.

In this study, we have determined that glycoprotein sialylation can be enhanced via the inhibition of GSL bio-
synthesis. We extended this finding by establishing a stable CHO cell line that produces highly sialylated rhEPO 
by virtue of its reduced expression of the GSL biosynthesis enzyme UGCG. In summary, we have developed a 
novel approach that improves the efficacy of rhEPO, a therapeutically important recombinant glycoprotein, by 
modulating the metabolic flux of intracellular CMP-Neu5Ac.

Methods
Inhibition of GSL biosynthesis by EtDO-P4. EtDO-P4 (D-threo-1-(3′,4′-ethylenedioxy)-phenyl-2-
palmitoylamino-3-pyrrolidino-1-propanol), a nanomolar inhibitor of GSL synthesis, was provided by Dr. James 
A. Shayman (Department of Internal Medicine, University of Michigan, Michigan, USA). For the EtDO-P4 
treatment experiments, 5 × 106 cells were cultured on 100 mm plates in MEM-α (Minimum Essential Medium 

Figure 3. Transient repression of UGCG increases rhEPO sialylation. (A) Total GSLs extracted from cells 
were subjected to TLC followed by staining with orcinol/sulfuric acid. Lane 1, GM3 standard; Lane 2, GSLs 
extracted from EC2-1H9 cells; Lanes 3–5, GSLs extracted from EC2-1H9 cells treated with siRNAs #1–3; n = 3. 
(B) Quantification of total GSLs. n = 3. (C) rhEPO was purified using immunoprecipitation with an anti-EPO 
antibody. Sialylation was determined using MAL I lectin. (D) Quantification of data in (C); n = 3. *P < 0.05, 
**P < 0.01 (Two-tailed Student’s t-test). Data are presented as means ± S.E.M.

http://S3
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Eagle-α; Gibco, Grand Island NY) supplemented with 10% dFBS (dialyzed fetal bovine serum; Gibco) for 24 
hours31. Cells were washed twice with serum-free medium (CHO-S-SFM II; Gibco) before culturing them for an 
additional 48 hours in serum-free medium containing 1 µM EtDO-P4.

Western blotting. rhEPO containing culture media was subjected to SDS-PAGE, followed by transfer-
ring to a PVDF membrane (Millipore Corp., Bedford, MA). After blocking with 5% BSA in TBS-T (140 mM 
NaCl, 10 mM Tris-HCl, with 0.05% Tween 20, pH 8.0) for 1 hour at room temperature, the PVDF membrane 
was incubated with biotinylated lectins (Wheat Germ Agglutinin; WGA, Maackia Amurensis leukoagglutinin I; 
MAL I) at 4 °C for 16 hours. After rinsing three times for 5 min using TBS-T, the membrane was incubated with 
ExtrAvidin-peroxidase (Sigma) at room temperature for 1 hour, followed by developing using ECL kit (Thermo 
Scientific; Rockford, IL). For reblotting, the membrane was stripped at room temperature for 1 hour with strip-
ping buffer (Candor Bioscience GmbH, Weissensberg, Germany). PVDF membrane was rinsed 5 times with 
T-TBS. The membrane was blocked using 5% BSA in TBS-T, and then incubated with 1:1000 diluted anti-EPO 
antibody (Santa Cruz, CA). After washing three times with TBS-T for 5 min, the membrane was incubated with 
1:5000 diluted HRP-labeled anti-mouse IgG antibody (Santa Cruz) at room temperature for 1 hour. The mem-
brane was developed using ECL solution (Thermo Scientific; Rockford, IL).

Depletion of UGCG expression using siRNA and miRNA. Three siRNA sequences (siRNA1, siRNA2 
and siRNA3) which targets Chinese hamster UGCG mRNAs (GenBank accession no. NM_001246692) were 
obtained from Invitrogen (Carlsbad, CA). The oligonucleotides are listed in Table SI. 10 μM of each UGCG-specific 
siRNA was transfected to the EC2-1H9 cells using Lipofectamine™ RNAiMAX reagent (Invitrogen, Carlsbad, 
CA) according to the manufacturer’s instruction. To establish stable cell line which prevents the expression of 
UGCG, miRNA expression vector was prepared according to the sequence of siRNA1 (see Table S1). In brief, 
paired oligonucleotides were annealed in buffer (30 mM HEPES-KOH, pH 7.4, 150 mM KCl, 2 mM MgCl2) at 
90 °C for 1 min followed by cooling down. To prepare the pcUGCG-miR-1 vector, DNA fragment was inserted 
into the pcDNATM 6.2-GW/EmGFP-miR vector (Invitrogen, Carlsbad, CA), which contains a blasticidin gene for 
the selection.

Total RNAs extracted from CHO cells with TRIzol® (Invitrogen, Carlsbad, CA) were used to prepare cDNA 
by which extracted RNAs were reversed transcribed into using AccuPower RT-PCR PreMix (Bioneer) according 

Figure 4. microRNA-mediated repression of UGCG in CHO cells. (A) Enzymatic activity of UGCG was 
determined by conversion of NBD-Cer to NBD-GlcCer on TLC. Left, Lane 1, Standard lipids; Lane 2, lipids 
extracted from control cells; Lane 3, lipids extracted from UGCG depleted cells. Right, Quantification of lipids 
was shown. (B) Total GSLs extracted from cells were subjected to TLC followed by staining with orcinol/sulfuric 
acid. Lane 1, GM3 standard; Lane 2, GSLs extracted from EC2-1H9 cells; Lane 3, GSLs extracted from EC2-
1H9-miUGCG cells. n = 3. (C) Quantification of total GSLs. n = 3, **P < 0.01 (Two-tailed Student’s t-test).  
(D) Cell proliferation was determined for 6 days of culture. Closed circles, EC2-1H9 cells; Open circles, EC2-
1H9-miUGCG. n = 3. Data are presented as means ± S.E.M.

http://S1
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to the manufacturer’s instructions. Expression level of UGCG was examined by RT-PCR using following primers 
shown 5′ to 3′: forward (CTC GAG ATG GCG CTG CT); reverse (TCT AGA TTA TAC ATC TAG GAT TTC 
CTC TGC). The amplified cDNAs were separated on 0.8% agarose gel which was visualized by ethidium bromide 
(EtBr) staining.

Establishment of UGCG depleted CHO cell line. EC2-1H9 cells, which are CHO cells that produce 
recombinant human EPO, were provided by Dr. Hyo Jeong Hong (Antibody Engineering Research Unit, Korea 
Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea). Cells were maintained 
in MEM-α (Gibco) supplemented with 10% (v/v) dFBS (Gibco), 3.5 g/L glucose, 20 nM MTX (methotrexate; 
Sigma), and 1% (v/v) Ab-Am (antibiotic-antimycotic solution; Gibco) in a humidified atmosphere containing 5% 
CO2 at 37 °C. The pcUGCG-miR-1 was transfected into EC2-1H9 cells using Lipofectamine™ 2000 (Invitrogen, 
Carlsbad, CA). Transfected cells were selected by blasticidin (Sigma) for 2 weeks.

GSL extraction, thin-layer chromatography (TLC), and immunostaining. GSL extraction, 
TLC analysis, and immunostaining experiments were performed as previously described32. Briefly, GSLs were 
extracted from confluent CHO cells using chloroform/methanol (C/M; 2:1, v/v) and isopropanol/hexane/water 
(IPA/H/W; 55:25:20, v/v/v) under sonication for 30 min. GSL extracts were dissolved in 0.1 M NaOH/MeOH 
and incubated at 40 °C for 2 hours, followed by neutralization using 1 N HCl. Hexane was added and incubated 
at room temperature for 5 min. The lower layer was evaporated under N2 stream and resuspended using distilled 
water. The solution was subjected to SepPak C18 cartridge (Varian, Palo Alto, CA). After rinsing the column using 
distilled water, total GSLs were eluted using C/M. Total GSLs were determined on TLC (Silica Gel 60 F-254, 
Merck, Whitehouse Station, NJ) in C/M/0.2% CaCl2 (55:40:10, v/v/v), followed by staining using 2% orcinol in 
2 M H2SO4.

Determination of the enzymatic activity of UGCG. Enzymatic activity of UGCG was determined as 
previously established33,34. In brief, cells (4 × 107) in TBS containing protease inhibitor (Roche, Basel, Switzerland) 
were lysed using sonication. Cell lysate (200 µg) was incubated in reaction buffer [50 mM Tris-HCl pH 7.5, 1 mM 

Figure 5. EC2-1H9-miUGCG cells produce rhEPO with increased levels of sialylation. (A) EPO production 
was determined for 4 days of culture. Closed circles, EC2-1H9 cells; Open circles, EC2-1H9-miUGCG cells. (B) 
Intracellular CMP-Neu5Ac levels were determined by HPLC. (C) rhEPO was purified using an immunoaffinity 
column with an anti-EPO antibody. Sialylation was determined using MAL I lectin. (D) Molar ratio of sialic 
acid on rhEPO. n = 3. **P < 0.01 (Two-tailed Student’s t-test); NS, not significant. Data are presented as 
means ± S.E.M.
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EDTA, 50 pmol of C6-NBD-Cer (ThermoFisher Scientific, Waltham, MA), 500 µM of UDP-Glc, 6.5 nmol of 
lecithin (Wako, Osaka, Japan)] at 37 °C for 60 min. Lipids were extracted by Folch method using 200 µl of chlo-
roform/methanol (2:1, v/v) and 5 µl of 500 µM KCl. After centrifugation, the organic phase was dried using cen-
trifugal concentrator. Samples were suspended using 15 µl of chloroform/methanol (2:1, v/v) and subjected to the 
TLC (Silica Gel 60, Merck) which was developed with chloroform/methanol/water (65:25:4, v/v/v). Lipids were 
determined by LED transilluminator at 470 nm. C6-NBD-Cer, C6-NBD-GlcCer, C6-NBD-SM were quantified 
using a Shimadzu CS-9300 chromatoscanner (excitation: 475 nm, emission: 525 nm).

Isolation of the Golgi complex. Golgi membrane was extracted from CHO cells as previously described35. 
Briefly, 1.0 × 108 CHO cells were resuspended with homogenizing buffer (0.25 M sucrose, 10 mM Tris-HCl, pH 
7.4) and homogenized using ball-bearing homogenizer with 22 µm ball. The solution was subjected to sucrose 
gradient centrifugation at 110,000 x g for 2.5 hours. Golgi membrane was collected at the 29%/35% sucrose inter-
face using a syringe with 18G gauge needle, and determined the protein concentration using the Quant-iT™ 
protein assay kit (Invitrogen).

Determination of intracellular CMP-sialic acid levels in CHO cells. The concentration of intracellular 
CMP-Neu5Ac in CHO cells was examined as previously described36. Briefly, 1.0 × 106 cells were lysed in cold 75% 
(v/v) ethanol using a cell disruptor. The soluble fraction was separated using centrifugation at 13,000 rpm at 4 °C 
for 10 min. The lyophilized CMP-Neu5Ac was dissolved with 120 μl of 40 mM phosphate buffer (pH 9.2), followed 
by centrifugation. The supernatant was filtered using a centricon (MWCO, 10,000) and subjected to CarboPac 
PA-1 column (Dionex, Sunnyvale, CA). CMP-sialic acid was determined by Abs260 absorbance detector (model 
486; Waters). The concentration of intracellular CMP-Neu5Ac was normalized to cell number.

Production of rhEPO and determination of its sialic acid level. 5.0 × 106 of EC2-1H9 cells or the 
engineered cells were seeded in T175 culture flask containing MEM-α supplemented with 10% (v/v) dFBS, 3.5 g/L 
glucose, 1% (v/v) Ab-Am solution, and 20 nM MTX. The culture medium was replaced with serum-free medium 
(CHO-S-SFM II; Gibco) in 3 days. After 2 days, the culture medium was collected, filtered using 0.45 μm filter 
(Sartorius, Göttingen, Germany), and dialyzed against phosphate buffer saline (PBS, pH 7.4) at 4 °C, overnight. To 
purify rhEPO, cultured medium was subjected to EPO Purification Gel (MAIIA Diagnostics, Uppsala, Sweden) 
according to the manufacturer’s instructions. Purified rhEPO was dialyzed against distilled water at 4 °C, over-
night. The concentration was measured using a Quant-iT™ protein assay kit (Invitrogen) and stored at −80 °C 
until use.

The sialic acid level of the purified rhEPO was examined using the OPD-labeling method as previously 
described26. Briefly, sialic acid moieties from the purified rhEPO were released using 0.5 M NaHSO4 at 80 °C 

Figure 6. Analysis of sialylated N-linked glycans on rhEPO. (A) N-glycans released from rhEPO were labeled 
with 2-AB. 2-AB-labeled N-glycans were separated using a DEAE column by HPLC. 2-AB-labeled N-glycans 
of fetuin (top), rhEPO produced by EC2-1H9 cells (middle), and rhEPO produced by EC2-1H9-miUGCG cells 
(bottom). (B) Sialylated rhEPO determined in A. (C) Neutral, mono-, di-, tri-, and tetra-sialylated N-glycans of 
rhEPO quantified in A. n = 3. **P < 0.01 (Two-tailed Student’s t-test). Data are presented as means ± S.E.M.
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for 20 min. Released sialic acid was labeled with OPD (o-phenylenediamine-2HCl; Sigma) at 80 °C for 40 min. 
The level of OPD-labeled sialic acid was determined using C18 reversed-phase column (Shim-pack CLC-ODS; 
Shimadzu, Kyoto, Japan) with 474 scanning fluorescence detector (excitation at 230 nm and emission at 420 nm, 
Waters).

Profiling the sialylation of rhEPO’s N-linked glycans. The purified rhEPO (50 μg) was denatured by 
heating at 95 °C for 5 min. N-glycans were released from rhEPO by incubation with PNGase F (Promega) at 37 °C 
for 3 hours and purified using GlycoClean R cartridges (Glyko; ProZyme, Hayward, CA). Purified N-glycans 
were labeled with 2-AB using 2-AB labeling kit (Glyko; ProZyme, Hayward, CA). The sample was subjected to an 
anion-exchange column (TSKgel DEAE-5PW, 7.5 mm × 75 mm; Tosoh, Tokyo, Japan) as described previously 
(Llop et al. 2007). These included solvent A (50% 0.5 M ammonium formate (pH 4.5)/acetonitrile (ACN)/distilled 
water (5:2:3, v/v/v)) and solvent B (20% (v/v) ACN in distilled water). 2AB-labeled N- glycans were separated in 
a linear gradient of buffer B from 0% (v/v) to 100% (v/v) over 45 min at a flow rate of 0.4 mL/min at 30 °C. 2-AB 
N-glycans of bovine fetuin (Glyko) were used as a standard.
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