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Abstract

Background: Quantifying the response of cell lines to drugs or other perturbagens is the cornerstone of pre-clinical
drug development and pharmacogenomics as well as a means to study factors that contribute to sensitivity and
resistance. In dividing cells, traditional metrics derived from dose–response curves such as IC50, AUC, and Emax, are
confounded by the number of cell divisions taking place during the assay, which varies widely for biological and
experimental reasons. Hafner et al. (Nat Meth 13:521–627, 2016) recently proposed an alternative way to quantify
drug response, normalized growth rate (GR) inhibition, that is robust to such confounders. Adoption of the GR
method is expected to improve the reproducibility of dose–response assays and the reliability of pharmacogenomic
associations (Hafner et al. 500–502, 2017).

Results: We describe here an interactive website (www.grcalculator.org) for calculation, analysis, and visualization
of dose–response data using the GR approach and for comparison of GR and traditional metrics. Data can be
user-supplied or derived from published datasets. The web tools are implemented in the form of three integrated
Shiny applications (grcalculator, grbrowser, and grtutorial) deployed through a Shiny server. Intuitive graphical user
interfaces (GUIs) allow for interactive analysis and visualization of data. The Shiny applications make use of two R
packages (shinyLi and GRmetrics) specifically developed for this purpose. The GRmetrics R package is also available
via Bioconductor and can be used for offline data analysis and visualization. Source code for the Shiny applications
and associated packages (shinyLi and GRmetrics) can be accessed at www.github.com/uc-bd2k/grcalculator and
www.github.com/datarail/gr_metrics.

Conclusions: GRcalculator is a powerful, user-friendly, and free tool to facilitate analysis of dose–response data. It
generates publication-ready figures and provides a unified platform for investigators to analyze dose–response data
across diverse cell types and perturbagens (including drugs, biological ligands, RNAi, etc.). GRcalculator also provides
access to data collected by the NIH LINCS Program (http://www.lincsproject.org/) and other public domain datasets.
The GRmetrics Bioconductor package provides computationally trained users with a platform for offline analysis of
dose–response data and facilitates inclusion of GR metrics calculations within existing R analysis pipelines. These
tools are therefore well suited to users in academia as well as industry.

Keywords: GR metrics, GR50, GRmax, Data analysis, Web interface, Dose response, IC50, Emax, Shiny, R package,
Bioconductor, NIH LINCS program
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Background
Measuring the relationship between the dose of a per-
turbagen and cellular response is a cornerstone of pre-
clinical research. For simplicity, in this paper we focus
specifically on drug response, but the concepts and
tools discussed are applicable across studies of response
to a variety of perturbagens, including small molecules,
antibodies, and protein ligands. In pre-clinical pharma-
cology studies, response metrics are used to prioritize
compounds for further analysis, investigate factors that
determine drug sensitivity and resistance, and guide
mechanism-of-action studies. In the case of cell-based
studies using anti-cancer drugs, proliferating cells are
typically exposed to drugs across a range of doses, and
viable cell number (or a surrogate such as ATP level) is
measured at a single subsequent point in time (often
following three days of drug exposure). Relative cell
count is then determined based on the ratio of the
number of cells in drug-treated versus vehicle-only
control wells. Data are fitted to a sigmoidal curve,
which is used to compute multiple metrics of sensitivity
such as the concentration of drug at which the re-
sponse is half the control (IC50), the maximal effect at
the highest dose tested (Emax), and the area under the
dose–response curve (AUC) [1].
However, quantification of drug dose–response

using relative cell counts suffers from a fundamental
flaw [2, 3]: for purely arithmetic reasons, when cells
undergo fewer divisions over the course of an assay
they appear more drug resistant than otherwise identi-
cal cells undergoing more divisions. The number of
cell divisions that takes place over the course of an
assay varies with cell density, media composition, and
assay duration as well as with division rate, which is
highly variable among cell lines and also differs in a
systematic manner with tissue of origin and genotype
[3]. The confounding effects of division rate on re-
sponse as conventionally measured are sufficient to
change IC50 values >100-fold following changes in ex-
perimental conditions that are largely arbitrary (e.g.
plating density, serum concentration, assay duration
etc.). Thus, dose–response curves based on relative
cell count and their parameterization using IC50, AUC,
and Emax values are fundamentally unreliable.
These issues can be addressed by measuring the sensi-

tivity of cells to drugs on a per-division basis as computed
using GR(c), the normalized growth rate inhibition value
at drug concentration c:

GR cð Þ ¼ 2k cð Þ=k 0ð Þ−1

where k(c) is the growth rate of drug-treated cells and
k(0) is the growth rate of untreated (or vehicle-treated)
control cells. In practice, growth rates can be estimated

using a fixed difference method involving the number of
cells at the beginning of the treatment (x0) and the num-
ber of cells at the end of the assay in an untreated (or
vehicle-treated) control well (x(0)) and in a drug-treated
well (x(c)). The GR value is thus:

GR cð Þ ¼ 2
log2 x cð Þ=x0ð Þ
log2 x 0ð Þ=x0ð Þ−1

Alternatively, if the doubling time of untreated cells,
Td, is known from other data and is assumed to be ap-
plicable to the conditions of the dose–response experi-
ments, the GR value can be calculated as:

GRðcÞ ¼ 2

log2
xðcÞ
xð0Þ

� �
þT=Td

T=Td −1

with T representing assay duration.
The sign of the GR value relates directly to response

phenotype: it lies between 0 and 1 in the case of partial
growth inhibition, equals 0 in the case of complete
cytostasis, and lies between 0 and −1 in the case of cell
death. Parameterization of GR dose–response curves
yields GR50, GEC50, GRmax, GRinf, GRAOC, and Hill coef-
ficient (hGR) values that are largely independent of cell
division rate. GR50, analogous to IC50, is the concentra-
tion at which GR(c) = 0.5; GEC50, analogous to EC50, is
the concentration at which the perturbagen has half of
its maximal effect on cell growth; GRmax is the maximal
measured effect of the perturbagen (in practice, we re-
port the lowest GR value measured at the two highest
concentrations tested); GRinf, analogous to Einf, is the
maximal effect of the perturbagen as extrapolated from
the GR curve rather than directly from the data (in con-
trast to GRmax); GRAOC (Area-Over-the-Curve is used
because the GR curve can dip below zero), analogous to
AUC, is calculated by integrating the area between the
GR curve and the value 1 over a range of concentrations
(in practice, we calculate GRAOC directly from the GR
values using the trapezoidal rule); and hGR is the steep-
ness of the sigmoidal dose–response curve. GR values
can be estimated using both time-lapse and endpoint as-
says; in the latter case, it is necessary only to measure
the number of cells in each well prior to and after drug
exposure. Detailed protocols for collecting the necessary
experimental data and for performing GR calculations
have recently been published [4, 5].

Implementation
The GRcalculator web tool is implemented in the form
of three integrated Shiny applications (grcalculator,
grbrowser and grtutorial) (Fig. 1) deployed via the
Community Edition of Shiny Server. The Shiny instance
supporting GRcalculator runs on a server accessible via
the http://www.grcalculator.org domain.
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Shiny [6] is a web application framework for R [7] that
facilitates building interactive web applications using
only R. It combines a seamless integration of analytical
and visualization tools implemented in R with libraries
of JavaScript GUI Elements. The Shiny framework also
allows injection of additional JavaScript elements and
modifications of underlying Cascading Style Sheets
(CSS). We used the flexibility of the Shiny framework to
modify some of the aspects of the default Bootstrap CSS
in building GUI elements and to insert JavaScript
visualization routines for displaying fitted dose–response
curves. In addition to accessing GRcalculator via the
web, the GRcalculator application can be launched
through the R command line on a private computer or
server to facilitate analysis of proprietary data. Deploying
the GRcalculator application alone requires R version
3.3 or greater and a small number of package dependen-
cies. Detailed instructions can be found in the “readme”
document at https://github.com/uc-bd2k/grcalculator.
Two R packages developed as part of this work,

GRmetrics and shinyLi, constitute the backbone of the
Shiny applications deployed at http://www.grcalculator.-
org. The GRmetrics R package is used for calculating GR
values [2] from user-supplied dose–response data, fitting
dose–response curves to these values, and calculating
GR metrics (GR50, GRAOC, GRmax, etc.) from fitted

curves. To facilitate comparison of GR and other mea-
sures of perturbagen response we have implemented
tools to generate dose–response curves from relative cell
count data and to calculate traditional response metrics
(IC50, AUC, Emax, etc.) from these curves. The shinyLi
package is used for easy and intuitive grid visualization
of large sets of dose–response curves within the GRcal-
culator web application.
The grtutorial Shiny application (accessed via the

“About GR Metrics” link in the toolbar) provides back-
ground information about GR metrics and a description
of the GRcalculator tools. The tutorial provides the
mathematical details and scientific rationale for using
GR metrics in place of traditional metrics like IC50 and
Emax. These points are illustrated with an interactive Ex-
ploration Tool (found in the “Exploration tool” tab) for
examining the dependency of response metrics on param-
eters of a prototypical dose–response curve. The inter-
active Exploration Tool is implemented in the ShinyLi
package by modifying the original JavaScript dose–
response widget described in Fallahi-Sichani et al. [1]
The grcalculator Shiny application (accessed via the

“Online GR Calculator” link in the toolbar) facilitates
online calculation of GR values, fitting of dose–response
curves (along with goodness-of-fit estimation), and
calculation of GR and traditional metrics. It provides

Fig. 1 GRcalculator Shiny applications (grtutorial, grcalculator, and grbrowser) (http://www.grcalculator.org). A schematic of the GRcalculator homepage
showing links to each of the Shiny applications that comprise it
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interactive visualization of GR and traditional dose–
response curves, along with the points used to fit
them, across multiple experimental conditions. The
calculator also features interactive boxplot and scat-
terplot tools to explore individual GR metrics and
their relation to experimental variables. The inter-
active graphical displays are implemented using
ggplot2, plotly, and shinyLi packages.
The grbrowser Shiny application (accessed via the

“LINCS Dose–response Datasets” section in the toolbar)
facilitates interactive browsing and mining of dose–re-
sponse data generated by the NIH LINCS Program as
well as other published datasets. The interactive graph-
ical displays are identical to the displays found in the
grcalculator application, the only difference being that
GR metrics are pre-computed. There are currently six
datasets available on the website (see below) and we will
be adding new public domain datasets to the web site as
they become available.
The GRmetrics R package provides the key analytical

functionality of the grcalculator application by comput-
ing GR values, fitting dose–response curves to these
values, and calculating GR metrics. The drm function
from the drc package is used to fit GR data to a 3-
parameter logistic curve [1]. The GRmetrics package also
contains the visualization routines found in the online
version of the GRcalculator: GR dose–response curves
along with the points used to fit them, boxplots of spe-
cific GR metrics across different experimental variables
(e.g. cell lines), and scatterplots of GR metrics values
(e.g. GR50 values for one drug against values for another
drug). The package also allows for computation and
visualization of traditional dose–response curves and
metrics.
The shinyLi R package serves as the wrapper for

JavaScript routines used for interactive visualization of
dose–response curves and provides the grid views of
dose–response curves found in the “Dose–response
Grid” tab of the grcalculator and grbrowser applications.
This is particularly useful for large dose–response data-
sets. The Dose–response Grid tool itself is an adaption
of the online visualization tool previously released to
visualize dose–response data described in Fallahi-
Sichani et al. [1].
The suite of R scripts for calculating GR values is

available as a package via Bioconductor at https://bio-
conductor.org/packages/GRmetrics or as MATLAB and
Python scripts via the GitHub repository www.github.-
com/datarail/gr_metrics. For the online tool at http://
www.grcalculator.org, users can upload a text file with
dose–response data from their computer or provide a
URL pointing to a data file (including links to Dropbox,
Basecamp, or FTP sites). GR metrics will then be calcu-
lated, and the interactive visualizations described above

will be produced. The resulting GR metrics datasets can
then be downloaded for further analysis off-line.

Results
GRcalculator integrates three basic functionalities: (1) inter-
active exploration of a prototypical GR dose–response
model via an interactive Exploration Tool; (2) online and
offline calculation and interactive visualization of sensitivity
metrics and dose–response curves for user-supplied data;
and (3) online browsing and visualization of pre-computed
dose–response datasets generated from published data or
data collected by the NIH LINCS Program.

Interactive exploration tool for exploration of the GR
dose–response model
Hafner et al. [2, 3] showed in theory and experimentally
that the cell division time (Td) of a cell line has a con-
founding effect on dose–response curves computed
using relative cell count. As a consequence, traditional
measures of drug sensitivity (IC50, AUC, Emax) depend
on division time. This is illustrated via a model explor-
ation tool (Fig. 2) that consists of three data visualization
panels with sliders that allow users to adjust the parame-
ters of a prototypical dose–response experiment. The
left panel shows cell number over time following treat-
ment with different concentrations of drug based on
cell-doubling time. The middle panel shows a dose–re-
sponse curve based on relative cell count as determined
at the end of the experiment (the conventional, con-
founded approach), and the right panel shows a GR
curve for the same data. The parameters used to gener-
ate these curves can be adjusted with sliders located
below the plots. Each slider represents a property of a
cell line or one of the parameters of the underlying
model of perturbagen response used to generate dose re-
sponse data: (1) cell division time in days (Td), (2) the
concentration at which the treatment has half its max-
imal effect in the model (SC50), (3) the maximal effect of
the treatment in the model (SCmax; values above 1 re-
flect a cytotoxic effect), and (4) the Hill coefficient of the
equation in the model of the treatment response (h). A
few concentration values are set by default. Buttons
below the sliders can set parameter values typical of cy-
tostatic, partially cytostatic, or cytotoxic drugs. With this
tool users can see for example that the GR response
curve is unaffected by changes in cell division time and
that the sign of GRinf determines whether a perturbagen
is cytostatic (GRinf = 0), partially cytostatic (GRinf is posi-
tive), or cytotoxic (GRinf is negative) for a given cell line.

Calculating and visualizing GR metrics from user-supplied
datasets
The primary functionality of GRcalculator is to facilitate
calculation and analysis of user-supplied dose–response
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data using the GR method (Fig. 3, upper panels). After
uploading a file in the specified format or providing a link
to a web-accessible file, a user chooses which “grouping
variables” to use in the analysis. Each unique combination
of values of the selected grouping variables defines an ex-
perimental condition. For each experimental condition, a
dose–response curve is fitted across all tested concentra-
tions in that condition. Experimental variables that are not
selected as “grouping variables”, such as technical repli-
cates, are averaged prior to GR metric calculation. For ex-
ample, if the dataset contains a combination of cell lines,

drugs, concentrations, and replicates, the user can select
‘cell lines’ and ‘drugs’ as grouping variables. In such case,
replicates are averaged and a dose–response curve will be
calculated for each pair of cell line and drug. By default,
all experimental variables are considered grouping
variables. Note that ‘concentration’ cannot be a grouping
variable as it is considered to be the independent vari-
able along which a dose–response curve is necessarily
computed.
Running the analysis generates data tables containing

the calculated GR values and derived GR metrics as well

Fig. 3 Calculating GR values and fitting dose–response curves for user-supplied data. A flowchart showing a typical GRcalculator workflow

Fig. 2 Dose–response model interactive Exploration Tool. Interactive graphs with parameters controlled by sliders show the behavior of the
traditional dose–response curve (center) versus that of the normalized growth rate inhibition (GR) curve (right). Derived traditional dose–response
model parameters IC50 and Einf are displayed along with the analogous GR model parameters GR50 and GRinf. Cell population growth at different
concentrations of a drug is shown over a typical 3-day assay (left). Traditional dose–response curve values and GR curve values at these concentrations
are marked by similarly colored points on the center and right plots. Buttons (bottom) set parameter values to those of a typical cytostatic, partial
cytostatic, or cytotoxic drug
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as interactive visualizations of best-fit dose–response
curves and individual GR metrics organized into three
additional tabs: (1) the “Dose–response by Condition”
tab contains a plot of the GR values and the fitted
dose–response curves for each experimental condition
selected (Fig. 3, lower left panel); (2) the “Dose–re-
sponse Grid” tab contains dose–response curves orga-
nized into a grid of plots defined by one of the
grouping variables (Fig. 3, lower middle panel): in the
example above, if the user chooses ‘drugs’ for the plot
grid, each plot in the grid will contain the dose–re-
sponse curves of all cell lines for a given drug; and (3)
the “GR Metric Comparison” tab displays interactive
boxplots and scatterplots of user-selected response
metrics in which data points can be collapsed across
multiple conditions or colored by grouping variables
(Fig. 3, lower right panel). The user may also compare
the underlying distributions between two box plots or
groups of box plots for a particular metric using the
nonparametric Wilcoxon rank-sum test. All plots are
interactive: the user can zoom in and display the under-
lying numeric values. All data tables and plots created
can be downloaded for offline analysis. A step-by-step
guide to GRcalculator is provided in Additional file 1 and
in the GRcalculator tutorial at http://www.grcalculator.
org/grcalculator/example.html.
The grbrowser application provides the same function-

ality as the grcalculator application with respect to data
analysis and visualization of GR metrics, but it is specif-
ically used for pre-loaded, publicly available datasets
(Fig. 4). At the time of publication, the application con-
tains the six datasets described below.

Datasets available for mining
Broad-HMS LINCS Joint Project presents information
on the responses of 6 breast cancer and nonmalignant
breast epithelial cell lines to 107 different small
molecule inhibitors. Cell count was measured 72 h after
exposure of cells to each drug at 6 different concentra-
tions. For further information about the experimental
protocol and to download the raw data, please visit the
HMS LINCS Database (http://lincs.hms.harvard.edu/
db/; datasets #20245 to #20251). These data were
collected in parallel with L1000 transcript profiling data
as recently described [8], allowing cellular phenotype
and expression state to be compared across many
conditions.
LINCS MCF10A Common Project presents data on the

response of the nonmalignant MCF10A breast epithelial
cell line at 72 h to 8 small molecule drugs across a 9-
point dose range. The data were collected independently
by five different LINCS Data and Signature Generation
Centers as a means to investigate the reproducibility and
accuracy of drug dose–response data. Depending on the
Center, cell number was determined either by direct
counting using a microscope or by using the CellTiter-
Glo assay (Promega) to measure ATP levels, a surrogate
for direct cell counting.
HMS LINCS Seeding Density Project [2] presents the

density- and context-dependent sensitivities of 6 breast
cancer cell lines plated at six different densities. Cells
were treated at each density with one of 12 drugs across
a 9-point dose range, and viable cell number was deter-
mined at 72 h by direct counting using a microscope.
For further information about the assay, please visit the

Fig. 4 Mining LINCS and published datasets. A flowchart showing a typical GRbrowser workflow
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HMS LINCS Database (http://lincs.hms.harvard.edu/db/;
datasets #20256 and #20257).
MEP-HMS LINCS Joint Project presents the responses

of a panel of 73 breast cancer cell lines treated with 107
small molecule and antibody perturbagens assayed by
CellTiter-Glo at 72 h across a 9-point dose range. A sub-
set of these data were described in Heiser et al. [9] and
Deamen et al. [10], and re-analyzed using GR metrics in
Hafner et al. [11].
Genentech Cell Line Screening Initiative (gCSI) [12],

a large-scale drug sensitivity dataset produced by
Genentech, contains data on the responsiveness of
~400 cancer cell lines from 23 tissues to 16 anti-
cancer drugs. The original publication reported trad-
itional drug response metrics based on relative cell
count and we computed the GR metrics using cell
doubling times available in the gCSI dataset [13]. Both
types of metrics are presented here (with IC50 and
GR50 values capped at 31 μM) along with data on the
mutation status of key cancer-related genes, as re-
ported by the Cancer Cell Line Encyclopedia (CCLE).
Because of the care with which gCSI data were col-
lected, this is a particularly valuable dataset for com-
paring GR and traditional response metrics.
Cancer Therapeutics Response Portal (CTRP), de-

scribed in Rees et al. [14], is a large-scale dose–response
dataset created at the Broad Institute of Harvard and
MIT. The data were analyzed using traditional drug re-
sponse metrics based on relative cell count and we have

attempted to infer GR values. To accomplish this, we es-
timated division times for all cell lines using gemcitabine
response in the gCSI dataset [12] as a fiducial. We dis-
carded data for cell lines for which the response to gem-
citabine was weak, noisy, or missing in the gCSI dataset,
resulting in GR metrics for 146 cell lines. For more de-
tails about this calculation, see Hafner et al. [3]. Because
cell division times were inferred rather than measured in
the CTRP data, GR values are less accurate than for the
five datasets listed above.

GRmetrics bioconductor package (https://bioconductor.org/
packages/GRmetrics/)
The GRmetrics R package has two primary functions: (i)
to perform the calculations needed for estimation of GR
metrics (as well as traditional metrics) online via the
grcalculator Shiny application and (ii) to enable offline
GR analysis of datasets in R. The offline package pro-
vides the same visualization tools available online via
grcalculator except for dose–response grid views. Users
experienced in R or concerned about data confidentiality
may prefer using the offline tool. Fig. 5 shows how data
can be analyzed and visualized interactively using only a
few lines of user-edited R code. The Bioconductor web-
site for the package contains installation instructions as
well as a PDF reference manual and an HTML vignette
with usage notes and example code for each of the func-
tions in the package.

Fig. 5 GRmetrics R package. Sample code and output showing generation of an interactive visualization of GR dose–response curves using the
GRmetrics R package
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Using the grbrowser to explore pharmacogenomic
associations
By reanalyzing data from the Genentech Cell Line
Screening Initiative (gCSI) we recently established that
use of GR metrics improves the quality of pharmacogen-
omics associations [3]. For example, in the case of PTEN
loss-of-function mutations that mediate resistance to
lapatinib in breast cancer cells, we find that the gCSI
data capture the difference when drug sensitivity is mea-
sured by GR50 values but not by IC50 values. The dis-
crepancy arises because wild-type cell lines have a
significantly slower growth rate than PTEN mutant cells,
artificially increasing IC50 values. In Fig. 6 we illustrate
how this type of comparison can performed in the
grbrowser. In Step 1, a data set, in this case the recom-
puted gCSI dose–response metrics, is selected along with
the GR Metric Comparison tab (Step 2). The data can be
filtered by available metadata; for the gCSI data, a rele-
vant perturbagen and tissue type is selected from a set
of available options in a drop-down list (the drug lapati-
nib in breast cancer cells – note that multiple values can
be selected; Step 3) along with a response metric (GR50

in this case) is chosen from a list of common traditional
dose–response metrics and analogous GR metrics (Step

4). The Select grouping variable drop-down box deter-
mines the variable by which data will be separated in
multiple groups; in this case, the variable is PTEN status
(Step 5). The Show/hide data field makes it possible to
add or subtract values for the grouping variable (Step 6);
in the case of PTEN status this is mutant, wild-type, and
NA (no data on PTEN status) but in the case of tissue
type for this data, it would be a list of 23 possibilities
(on the unfiltered data). The grbrowser then displays box
plots representing the range in the response metric, in
this case GR50 value in μM, for the PTEN wild-type and
mutant grouping variables. The distributions can be
compared by using a two-sided Wilcoxon rank-sum test,
a robust t-test alternative; the resulting p-value is dis-
played on the graph (Step 7). Various features of the plot
(titles, font sizes, etc.) can be adjusted (Step 8) to gener-
ate a publication-read figure in vector (.pdf ) or bitmap
format (.tiff ). We see by the GR50 metric that PTEN mu-
tant and wild-type breast cancer cells exhibit a highly
significant difference (p = 0.0033) in sensitivity to lapati-
nib treatment, which is not found by IC50 value
(p = 0.12; Step 9).
As currently constructed, the grbrowser makes it pos-

sible to explore internal datasets based on previously

Fig. 6 grbrowser use-case with gCSI data. An example use-case of the grbrowser with the gCSI dataset, reproducing a result from Hafner et al. [3].
Steps show how to use the grbrowser to filter the dataset to breast cancer cell lines treated with lapatinib and compare the sensitivity of wild-
type PTEN cell lines with that of mutant PTEN cell lines using GR50 and IC50. In this case, use of the GR50 produces a known result (p-value 0.0033),
that PTEN loss-of-function mutations mediate resistance to lapatinib in breast cancer cells, which IC50 fails to produce at a statistically significant
level (p-value 0.12) because of large differences in growth rates between the wild-type and mutant cell lines. p-values were calculated using a
two-sided Wilcoxon rank-sum test. IC50 and GR50 values were capped at 31 μM
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established grouping variables, but it is not yet a data
discovery tool for simultaneously computing over dose–
response metrics and genetic features. We plan to add
features that allow users to upload and analyze previ-
ously computed dose–response metrics datasets (e.g.
from grcalculator or GRmetrics R package output). This
would also allow users to annotate existing datasets, for
example adding additional information on tissue type or
mutational status of genes as we did with PTEN in this
example. As it stands now, the grbrowser provides a
small number of manually curated dose–response data-
sets for viewing and mining. However, because the GR
metrics methodology harmonizes dose–response data
from disparate sources that previously would have been
confounded by differences in the number of cell divi-
sions taking place during an assay, there is an opportun-
ity for researchers to combine dose–response datasets
that previously would not have been compatible.

Discussion
Tools commonly used to analyze dose–response data
(such as Prism) are not yet capable of computing GR met-
rics, which is the best method available for eliminating
biases in measuring perturbagen dose–response in prolif-
erating cells. Use of GR metrics makes it possible to reli-
ably compare data on drug potency and efficacy across
cell lines having different underlying rates of division,
assayed for different lengths of time, or growing at differ-
ent rates due to changes in culture conditions. Given
properly processed data, the online and offline tools de-
scribed here calculate GR values, fit these values to a sig-
moidal curve, evaluate the significance of the sigmoidal fit
using an F-test, and yield GR metrics. To avoid contamin-
ating dose–response datasets with low reliability values
extrapolated from poor fits, non-significant curve fits are
replaced by a flat line, and response metrics are set to de-
fault values. After calculating the sensitivity metrics, users
can quickly and simply visualize results, perform basic
analyses, and produce publication-ready figures. Offline R-
based GRcalculator tools are designed for computationally
sophisticated users and those with proprietary data. The
choice of R [7] for online and offline GR calculations
facilitates re-use of existing tools for fitting dose–response
curves [15] and has enabled creation of a GRmetrics
Bioconductor [16] package to facilitate integration of GR
metrics within R analytical workflows. For example,
combining GRmetrics with the PharmacoGx [17] Bio-
conductor package facilitates the use of GR metrics in
pharmacogenomics analyses.
Reproducibility has become a major concern in con-

temporary biomedical research and the use of GR met-
rics increases reproducibility by correcting for factors
that are often poorly controlled in large-scale studies in-
volving many cell lines. These factors include plating

density and number of cell divisions [3]. Standardization
of assay methodology [4] and of computational tools and
pipelines for converting raw data into final results [5]
are essential for making data acquisition and analysis
consistent across experiments; the GRcalculator meets
these requirement and helps to avoid data processing ar-
tefacts. GRcalculator also serves as a repository for
large-scale dose–response datasets that have been ana-
lyzed using the GR approach, thereby providing a reli-
able and reusable set of information for the community.
The number of such datasets is currently small (primar-
ily due to limitations in existing experimental data), but
future dose–response data collected by the NIH LINCS
Program will be released in GRcalculator and we antici-
pate that this will also be true of other efforts focused
on characterizing the responses of cells to perturbation.
We anticipate further development of the GR method
and of other ways of calculating drug response over time
[2, 18] and will therefore update the GRcalculator web-
site as needed.

Conclusions
GR metrics facilitate reliable and reproducible compari-
sons of drug efficacy and potency across cell lines having
different cell division rates. GR metrics can eliminate false
positive and false negative findings arising from the use of
traditional IC50, AUC, or Emax values. The online and
offline GRcalculator tools described in this paper facilitate
adoption of GR metrics for the analysis of dose–response
data by a wide range of users. Online GRcalculator tools
are user-friendly and simple; they enable interactive
exploration of a prototypical GR dose–response model,
calculation and interactive visualization of user-supplied
data, and online browsing and visualization of pre-
computed datasets. Offline tools implemented in the
GRmetrics Bioconductor package facilitate integration
of GR metrics calculation within R analytical workflows
and processing of confidential data offline.

Availability and requirements
Project name: GRcalculator.
Project home page: http://www.grcalculator.org
Programming languages: R, JavaScript.
Operating system(s): Platform independent.
Other requirements: R (> = 3.3) Bioconductor 3.4 or

higher.
License: GPL-3.
Any restrictions to use by non-academics: None.

Additional file

Additional file 1: Step-by-Step GR Calculator Example. Supplementary
document describing step by step example of using GRcalculator
(PDF 1256 kb)
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Abbreviations
AUC: area under the traditional dose–response curve; EC50: the concentration
of drug when it produces half of its maximal effect (Einf) extrapolated from
the traditional dose–response curve. In the fitting procedure, EC50 is
constrained to lie within two orders of magnitude of the highest and lowest
tested drug concentration range.; Einf: drug efficacy extrapolated to an
infinitely high drug concentration as determined from the asymptote of a
traditional dose–response curve. For dose–response curves that reach a
plateau at the highest tested concentrations, the value Einf is similar to Emax.;
Emax: the traditional metric of efficacy; the number of cells in the well treated
at the highest concentration divided by the number of cells in a vehicle-
treated control well.; GEC50: analogous to EC50, the concentration of drug at
half-maximal effect. GEC50 is relevant for drugs having poor efficacy for which
the response does not reach GR values below 0.5. In the fitting procedure,
GEC50 is constrained to lie within two orders of magnitude of the highest
and lowest tested drug concentration range.; GR/GR curve: the normalized
growth rate inhibition values and the associated dose–response curve. By
contrast, we refer to the curve based on relative cell count as the
“traditional” dose–response curve or occasionally the “IC curve” as in IC50.;
GR50: analogous to IC50, the primary GR metric for drug potency; the
concentration, c, of a drug at which GR(c) = 0.5. If the value for GRinf (see
below) is above 0.5, GR50 cannot be defined and we set its value to +∞.;
GRAOC: the integrated effect of the drug across a range of concentrations as
estimated from the “area over the curve” (for the GR dose–response curve).
A value of 0 means no effect of the drug across the full dose–response
range. GRAOC can only be compared across drugs or cell lines when the dose
range is the same.; GRinf: the drug efficacy extrapolated to an infinitely high
drug concentration as determined from the asymptote of the GR dose–
response curve; GRinf≡GR(c→∞). For dose–response curves that reach a
plateau at the highest tested concentrations, the value GRinf is similar to
GRmax.; GRmax: the primary GR metric for drug efficacy; the GR value at the
highest tested dose of the drug. GRmax lies between −1 and 1; negative
values correspond to a cytotoxic response (i.e. cell death), a value of 0
corresponds to a fully cytostatic response (no increase in cell number), and
positive values less than one correspond to partial growth inhibition.; h: the
Hill coefficient of the traditional dose–response curve; it reflects the
steepness of the curve. We constrain its value between 0.1 and 5.; hGR: the
Hill coefficient of the GR dose–response curve; it reflects the steepness of
the curve. We constrain its value between 0.1 and 5.; IC50: the traditional
metric of potency; the concentration of a drug at which the number of
treated cells is half the number of untreated or vehicle-treated control cells.
If the value for Einf (see below) is above 0.5, IC50 cannot be defined and we
set its value to +∞.; LINCS: Library of Integrated Network-Based Cellular Sig-
natures, a multi-center NIH Common Fund Program.; SC50: the concentration
at which the treatment effect is half its maximal in the theoretical model of
drug response.; SCmax: the maximal effect of the treatment in the theoretical
model of drug response; values above 1 reflect a cytotoxic effect.; Td: cell
division time in days.
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