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Abstract

BACKGROUND—Multiple and varied benefits have been suggested for increased neighborhood 

walkability. However, spatial inequalities in neighborhood walkability likely exist and may be 

attributable, in part, to residential segregation.

OBJECTIVE—Utilizing a spatial demographic perspective, we evaluated potential spatial 

inequalities in walkable neighborhood amenities across census tracts in Boston, MA (US).

METHODS—The independent variables included minority racial/ethnic population percentages 

and percent of families in poverty. Walkable neighborhood amenities were assessed with a 

composite measure. Spatial autocorrelation in key study variables were first calculated with the 

Global Moran’s I statistic. Then, Spearman correlations between neighborhood socio-demographic 

characteristics and walkable neighborhood amenities were calculated as well as Spearman 

correlations accounting for spatial autocorrelation. We fit ordinary least squares (OLS) regression 

and spatial autoregressive models, when appropriate, as a final step.
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RESULTS—Significant positive spatial autocorrelation was found in neighborhood socio-

demographic characteristics (e.g. census tract percent Black), but not walkable neighborhood 

amenities or in the OLS regression residuals. Spearman correlations between neighborhood socio-

demographic characteristics and walkable neighborhood amenities were not statistically 

significant, nor were neighborhood socio-demographic characteristics significantly associated with 

walkable neighborhood amenities in OLS regression models.

CONCLUSIONS—Our results suggest that there is residential segregation in Boston and that 

spatial inequalities do not necessarily show up using a composite measure.

COMMENTS—Future research in other geographic areas (including international contexts) and 

using different definitions of neighborhoods (including small-area definitions) should evaluate if 

spatial inequalities are found using composite measures but also should use measures of specific 

neighborhood amenities.

1. Introduction

1.1 Benefits of neighborhood walkability

Definitions of neighborhood walkability may include walking proximity to amenities (such 

as movie theaters, clothing stores, parks, and libraries) or may refer to community-built 

environment design features of neighborhoods (such as street connectivity and sidewalk 

access) (Lo 2009).

There are multiple benefits related to increased neighborhood walkability. First, several 

reviews suggest that neighborhood walkability is associated with better population health, 

including improved physical activity (Saelens and Handy 2008; Saelens and Papadopoulos 

2008; Giles-Corti et al. 2009; Ding et al. 2011) and less obesity (Dunton et al. 2009; Feng et 

al. 2010), which continues to be one of today’s most pressing public health problems (Flegal 

et al. 2012; Ogden et al. 2012). In addition, some research evidence suggests that 

neighborhood walkability improves mental health (Truong and Ma 2006; Kim 2008). 

Second, there are environmental benefits associated with increased neighborhood 

walkability including decreases in neighborhood greenhouse gas emissions and vehicle-

related air pollution (e.g. nitric oxide) (Bechlet, Millet and Marshall 2011; Setton et al. 

2011; Marshall, Brauer, and Frank 2009). Indeed, vehicle emissions may be reduced if more 

people choose to walk as opposed to drive in and around their neighborhoods. Third, there 

are economic benefits for having walkable neighborhoods. A recent study evaluated the 

influence of neighborhood walkability (measured using the Walk Score website which rates 

walkable neighborhood amenities on a 100-point scale) on commercial real estate 

investments and found that an increase in Walk Score was associated with increased 

commercial property values (Pivo and Fisher 2011). Another study found that each Walk 

Score point was worth up to $3,000 in home values after controlling for various factors that 

influence housing value (Cortright 2009). Walkability has also been linked to increased 

economic activity in neighborhoods (Drennen 2003; Litman 2003; Local Government 

Commission 2012) with the potential pathways being increased access to amenities, better 

walking conditions, and shifting consumer expenditures away from automobiles and related 

expenses (e.g. fuel). Of course, a reduction in automobile-related expenditures is an 
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economic benefit for individuals (Litman 2003). Furthermore, improved neighborhood 

walkability may influence more social interactions and foster increased social capital among 

residents. Pedestrian-oriented neighborhoods with various accessible destinations might 

influence socialization (either intentional or accidental) which in turn can foster a better 

sense of community. A recent study that surveyed residents in three New Hampshire (US) 

communities shows that neighborhoods that are more walkable had higher levels of social 

capital, such as trust among neighbors, and participation in community events (Rogers et al. 

2011). This is consistent with the results from past studies (Leyden 2003; de Toit et al. 2007; 

Cohen, Inagami, and Finch 2008).

Given the myriad and varied benefits of neighborhood walkability, it is important to evaluate 

whether all population groups experience these advantages of neighborhood walkability.

1.2 Spatial inequalities in neighborhood walkability: Evidence and limitations

Demographers and sociologists have long been interested in social inequality, including as it 

relates to space (Lobao, Hooks, and Tickamyer 2007). In the 1960s, spatial inequality was 

discussed in terms of the spatial mismatch in educational and employment opportunities 

disproportionately experienced by certain population groups (e.g. racial/ethnic minorities 

and low-income individuals) which is in part attributable to residential segregation (Kain 

1968). Residential segregation (i.e. physical separation of certain population subgroups in 

space) is a fundamental organizing feature of life in the United States as well as in New 

Zealand, Brazil, and several countries in the European Union. In the US, racial and socio-

economic (class) residential segregation are commonplace and were previously supported by 

the federal government, economic, and social institutions (Massey and Denton 1993). 

Although discrimination in housing and mortgage lending was made illegal in the US by the 

Civil Rights Act of 1968, explicit and implicit discrimination continued to sustain high 

levels of segregation, especially among US Blacks (Fix and Struyk 1993). Importantly, 

residential segregation often results in disparate economic, physical, and social 

neighborhood environments which translate into lower educational attainment, employment 

opportunities, and accessibility to resources (Massey and Denton 1993). The current patterns 

of de facto residential segregation also have serious implications for population health 

(Acevedo-Garcia et al. 2003; Kramer and Hogue 2009; White and Borrell 2011) and are 

considered a fundamental cause of racial/ethnic health disparities (Williams and Collins 

2001). Segregation is hypothesized to influence health by perpetuating disparities in 

educational and employment opportunities, concentrating poverty, shaping the social and 

physical neighborhood context, and the availability of health-promoting resources and 

amenities (Williams and Collins 2001; Acevedo-Garcia and Lochner 2003; Acevedo-Garcia 

et al. 2003). While some studies have examined the association between residential 

segregation or percent minority racial/ethnic composition (which is commonly used as a 

proxy measure of racial residential segregation) and walkable neighborhood amenities, it is 

possible that highly-segregated neighborhoods may be associated with an inequitable 

distribution of walkable neighborhood amenities. The historical disinvestment in segregated 

neighborhoods may shape accessibility and availability of walkable neighborhood amenities.
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A recent review provides evidence demonstrating that disadvantaged groups live in 

neighborhoods with deleterious neighborhood walkability features, including fewer walkable 

neighborhood amenities such as full-service supermarkets and exercise facilities (Lovasi et 

al. 2009). The studies that examine social inequalities in walkable neighborhood amenities, 

which often estimate relationships with specific neighborhood amenities (e.g. supermarkets), 

are informative. However, most do not consider the spatial demography of walkable 

neighborhood amenities or employ spatial analytical techniques that account for the 

dependence between nearby observations (Chi and Zhu 2008; Castro 2007; Voss 2007; 

Weeks 2004). Indeed, these studies assume that neighborhoods are spatially independent but 

might be plagued with spatial autocorrelation, which may have affected the results. 

However, we note that the theoretical processes for potential spatial inequality are unknown. 

Therefore, there may be substantive or “nuisance” spatial autocorrelation—both have some 

theoretical justification (Smiley et al. 2010). Substantive spatial autocorrelation is due to a 

substantive spatial process. However, nuisance spatial autocorrelation is not caused by a 

substantive spatial process but rather spatial autocorrelation that arises from spillovers or 

spatial mismatch. Essentially, in this case, the spatial scope of the phenomenon of interest 

does not match the scope of the spatial units used in the analysis. For example, a 

“neighborhood” may span portions of several census units. If substantive spatial 

autocorrelation is ignored, the point estimates and standard errors can be incorrect (LaSage 

and Pace 2009; Ward and Gleditsch 2008; Waller and Gotway 2004; Bailey and Gatrell 

1995; Anselin and Bera 1998). On the other hand, ignoring nuisance spatial autocorrelation 

can produce standard errors that are too small and thus the results could be more significant 

than they should be (LaSage and Pace 2009; Ward and Gleditsch 2008; Waller and Gotway 

2004; Bailey and Gatrell 1995; Anselin and Bera 1998). Some of the studies examining 

spatial inequalities in walkable neighborhood amenities rely on traditional multi-level 

modeling methods, although research has shown that there can be spatial autocorrelation that 

is unaccounted for by multilevel models (Chaix, Merlo, and Chauvin 2005; Chaix et al. 

2005). Spatial regression approaches account for the effect of neighbors on one another 

(spatial autocorrelation) by giving explicit attention to the location and arrangement of 

neighborhood units (LaSage and Pace 2009; Ward and Gleditsch 2008; Waller and Gotway 

2004; Bailey and Gatrell 1995; Anselin and Bera 1998). While the use of spatial modeling 

techniques in research is increasing, it is not surprising that most studies evaluating potential 

spatial inequalities in neighborhood walkability features do not utilize spatial modeling 

techniques when analyzing spatial data. Dissemination of spatial techniques is only slowly 

permeating demography and related social science fields (such as sociology and public 

health). Only a few studies that we are aware of have examined spatial clustering in 

neighborhood walkability features and these studies found significant positive spatial 

autocorrelation (Duncan et al. in press, 2011; Sharkey et al. 2009; Auchincloss et al. 2007, 

Talen and Anselin 1998; Talen 1997). This indicates that spatial regression methods may be 

needed when examining spatial inequalities in walkable neighborhood amenities.

1.3 Spatial modeling techniques in demographic research

Demographic research using spatial modeling techniques is motivated by the oft-cited First 
Law of Geography which provides a clear articulation of spatial dependence, noting that 

“everything is related to everything else, but near things are more related than distant things” 
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(Tobler 1970). Spatial dependence, also termed spatial autocorrelation, of variables under 

study can lead to misstatements regarding the uncertainty of results and incorrect inferences. 

One assumption of traditional correlation analysis is that observations are independent. 

When positive spatial autocorrelation exists for both variables in a bivariate correlation 

analysis, the probability of Type I error exceeds the specified level (Clifford and Richardson 

1985; Haining 1991). When there is positive spatial autocorrelation in one variable and 

negative spatial autocorrelation in another, the specified level of significance is too 

conservative in the traditional bivariate correlation analysis, increasing the likelihood of the 

Type II error. Furthermore, the application of non-spatial regression methods (such as 

ordinary least squares regression) are predicated on the assumption that regression residuals 

are independent (Waller and Gotway 2004; Bailey and Gatrell 1995). As stated previously, 

neglecting to account for spatial autocorrelation, if it exists, can result in biased parameter 

estimates and incorrect standard errors (LaSage and Pace 2009; Ward and Gleditsch 2008; 

Waller and Gotway 2004; Bailey and Gatrell 1995; Anselin and Bera 1998). Specifically, 

when there is substantive spatial autocorrelation, the point estimates and standard errors can 

be incorrect. In this circumstance, researchers compute the spatial lag model (LaSage and 

Pace 2009; Ward and Gleditsch 2008; Waller and Gotway 2004; Bailey and Gatrell 1995; 

Anselin and Bera 1998). In the case of “nuisance” spatial autocorrelation, standard errors 

may be incorrect (too small) (LaSage and Pace 2009; Ward and Gleditsch 2008; Waller and 

Gotway 2004; Bailey and Gatrell 1995; Anselin and Bera 1998). The spatial error model is 

computed in this circumstance to ensure that statistical inferences are valid (LaSage and 

Pace 2009; Ward and Gleditsch 2008; Waller and Gotway 2004; Bailey and Gatrell 1995; 

Anselin and Bera 1998).

1.4 Research purpose

We sought to evaluate potential spatial inequalities in walkable neighborhood amenities 

using the Walk Score® composite measure. The purpose of this study, specifically, was to 

evaluate if minority neighborhood racial/ethnic composition and neighborhood 

socioeconomic disadvantage are related to walkable neighborhood amenities. In order to 

evaluate potential spatial inequalities in walkable neighborhood amenities, we used 

population data from the 2010 US Census and the 2006–2010 American Community Survey 

for census tracts across Boston, Massachusetts (US). The cutting-edge algorithm from the 

Walk Score® website for computing an up-to-date indicator of walkable neighborhood 

amenities was the dependent variable. The data were analyzed with spatially explicit 

methods for quantifying spatial autocorrelation and for assessing relationships between 

variables.

2. Methods

2.1 Study area

The study area is the city of Boston, Massachusetts (US) which over the past three decades 

has consistently ranked as one of the top metropolitan areas exhibiting a high degree of 

residential segregation (Logan and Stults 2011; Iceland, Weinberg, and Steinmetz 2002) and 

which is an understudied city in neighborhood research. Boston is one of the oldest cities in 

the US, the largest city in Massachusetts, and the largest city in the New England area. 
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According to the 2010 US Census, Boston has a population of 617,594, although many more 

people live in the Greater Boston area. Among metropolitan areas, the Greater Boston area is 

ranked tenth, with an estimated population of over 4.5 million people. The city of Boston 

has a total area of 89.63 square miles (232.14 km2), which includes 48.43 square miles 

(125.43 km2) (54.03%) of land. Like selected other cities, Boston is sometimes referred to as 

the “city of neighborhoods” (City of Boston 2012). Our definition of a neighborhood was 

the US census tract (Subramanian et al. 2006, 2005; Krieger et al. 2003, 2002). Census tracts 

in the US are “designed to be relatively homogeneous units with respect to population 

characteristics, economic status, and living conditions” – with an average of approximately 

4,000 people (US Census Bureau 2012). We used 2010 census tract boundaries for this 

study. Figure 1 shows a map of census tracts in the study area clipped to Boston’s natural 

boundaries.

2.2 Walkable neighborhood amenities

We used the Walk Score® web-based algorithm to assess neighborhood walkability, which 

was defined for this study as walkable neighborhood amenities, i.e. the degree to which an 

area is within walking distance to amenities (www.walkscore.com). Walk Score® was 

developed by Front Seat Management (www.frontseat.org), a software development 

company based in Seattle, WA, which focuses on software with civic applications. Walk 

Score® uses publicly available data including from Google, Education.com, Open Street 

Map and Localeze to measure the number of typical consumer facilities within walking 

distance of a location. Facilities are first divided into five categories: educational (e.g. 

schools), retail (e.g. grocery, drug, convenience, and bookstores), food (e.g. restaurants), 

recreational (e.g. parks and gyms) and entertainment (e.g. movie theaters). The Walk Score® 

algorithm calculates the distance to the closest of each of the five facilities, using straight-

line distances. It calculates a linear combination of these distances weighted both by facility 

type priority and a distance decay function. If one of each of the five facilities is within a 

quarter-mile radius from the input location, that location receives a 100 score (the maximum 

number of points). The number of points assigned in each category declines as the distance 

approaches 1-mile and no points are awarded for destinations more than 1-mile away. Scores 

are then normalized into an integral score ranging from 0 (least walkable/car dependent) to 

100 (most walkable) (Front Seat 2011a). An emerging body of research suggests that Walk 

Score® is a valid measure of neighborhood walkability (Carr, Dunsiger, and Marcus 2010, 

2011; Duncan et al. 2011, in press). Importantly, one recent Walk Score® validation study 

was conducted in Boston and found that Walk Score® validly measured several walkable 

neighborhood amenities, including retail destinations, service destinations, cultural/

education destinations, and recreational open space (Duncan et al. in press). The location to 

be entered into Walk Score® can be entered as geographic coordinates or as an address 

which is then geolocated using Google Geolocation (Google 2011). Front Seat provides an 

application programming interface (API), which can be used to query the Walk Score® 

database through URL calls; this eliminates the need to use the website interface (Front Seat 

2011b). A program was created for this study within the R programming language (R 

Foundation for Statistical Computing, Vienna, Austria), which queries the Walk Score® 

database for the geographic coordinates or a given address. The script then scans the API 

response and extracts the corresponding Walk Score®. Using the Walk Score® API in early 

Duncan et al. Page 6

Demogr Res. Author manuscript; available in PMC 2017 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.walkscore.com
http://www.frontseat.org
http://Education.com


December of 2011, we obtained Walk Scores for the centroid of census blocks in Boston. In 

this study, we used the population-weighted average of the block-level Walk Scores 

contained within a census tract to aggregate to that level.

2.3 Neighborhood-level demographic and socioeconomic characteristics used to evaluate 
potential spatial inequalities

Neighborhood-level socio-demographic characteristics for minority neighborhood racial/

ethnic composition included the percentage of non-Hispanic Black residents and percentage 

of Hispanic residents. Neighborhood-level socioeconomic disadvantage was operationalized 

as percentage of families below poverty level. We used 2010 US Census data for information 

on neighborhood-level percent non-Hispanic Black and percent Hispanic. Because data on 

neighborhood-level socioeconomic conditions were not obtained in the 2010 US Census, we 

used data from the American Community Survey (ACS). For this study, we used 2006–2010 

ACS data (5-year estimates) for percent of families in poverty.

2.4 Spatial statistical analysis

In this study, we designed a comprehensive spatial modeling approach to examine spatial 

relationships between neighborhood socio-demographic characteristics (i.e. minority 

neighborhood racial/ethnic composition and neighborhood socioeconomic disadvantage) and 

walkable neighborhood amenities (i.e. Walk Scores®). For the analysis, the shapefile 

included only contiguous 2010 census tracts in Boston (n=179) because contiguity matters 

in spatial analysis of areal data. Therefore, we excluded the Harbor Islands which is 

consistent with past neighborhood research in Boston (Cradock et al. 2005; Chen et al. 

2006) (n=1 census tract; census tract # 980101), and we excluded a census tract that includes 

only water, i.e. Massachusetts Bay (census tract # 990101). Notably, the Harbor Islands 

includes a small population of 535 individuals who are not typical of the rest of the city (e.g. 

there is a detoxification center there with permanent residents) and water of course does not 

include any people. The analysis was further restricted to those census tracts with >500 

people (n=167), consistent with previous spatial inequalities research (Block, Scribner, and 

DeSalvo 2004), which ensures that census tracts with extremely small populations (such as 

22 people) would not bias the results. This restriction also removes missing/withheld ACS 

data due to small populations. For all spatial data analyses we used the R statistical program 

version 2.14 with Bivand’s spdep package which includes a number of spatial analyses, 

including calculation of spatial autocorrelation and spatial regression models (Bivand 2011; 

Bivand, Pebesma, and Gómez-Rubio 2008). Statistical significance for all analyses was 

assessed at p<0.05.

2.4.1 Exploratory spatial data analysis—Prior to any spatial analysis, we conducted 

descriptive statistics for neighborhood socio-demographic characteristics and walkable 

neighborhood amenities. After this, we conducted exploratory spatial data analysis, i.e. 

geovisualization and tests of global spatial autocorrelation. Specifically, to facilitate the 

initial inspection of potential spatial patterns, we conducted geovisualization in ArcGIS 

version 10 by mapping the neighborhood socio-demographic characteristics and walkable 

neighborhood amenities. We created choropleth maps showing the spatial patterns in the 

neighborhood socio-demographic characteristics and walkable neighborhood amenities 
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across Boston census tracts using ArcGIS (map colors were based on Color Brewer 2.0) 

(Brewer and Harrower 2012).

We evaluated the presence of overall spatial autocorrelation in the neighborhood socio-

demographic characteristics and walkable neighborhood amenities using the most 

commonly used test statistic for spatial autocorrelation in the literature, i.e. the Global 

Moran’s I statistic (Bailey and Gatrell 1995; Waller and Gotway 2004). For the Global 

Moran’s I calculations, we specified a first-order Queen’s contiguity spatial weights matrix, 

which defines neighbors as census tracts that share a common boundary or a corner and 

mathematically represents the spatial relationships. A value is one when the neighboring 

spatial units are ‘neighbors’ and zero if ‘non-neighbors’. Statistical significance of the 

Global Moran’s I was obtained through a Monte Carlo simulation (n=999). This yielded a 

pseudo p-value. Moran’s I values range approximately between −1 to 1, whereby a Moran’s 

I value near zero indicates no spatial autocorrelation or the null hypothesis of complete 

spatial randomness. As measured by Moran’s I, a positive spatial autocorrelation coefficient 

reflects neighboring areas with similarly large or small values (i.e. similarity), and a negative 

spatial autocorrelation coefficient reflects neighboring areas with large inverse values–higher 

values and lower values are neighbors (i.e. dissimilarity). Thus, when the coefficient is 

positive, it suggests that there is a positive spill-over effect among neighbors while the case 

of negative spatial autocorrelation, on the other hand, is perhaps not as common of a 

phenomenon.

In addition to the primary variables used in this study (i.e. percent of non-Hispanic Black 

residents, percent of Hispanic residents, percent of families in poverty), we also conducted 

geovisualization and global spatial autocorrelation tests for the percent of non-Hispanic 

White residents (from the 2010 US Census) for comparison purposes to fully understand 

potential patterns of racial/ethnic residential segregation. To understand spatial patterns in 

the population distribution we also conducted exploratory spatial data analysis for 

population density (i.e. total population per square kilometer) (from the 2010 US Census).

2.4.2 Non-spatial and spatial regression analysis—Prior to regression analysis, we 

calculated non-parametric Spearman product correlations between the neighborhood socio-

demographic characteristics (i.e. minority neighborhood racial/ethnic composition and 

neighborhood socioeconomic disadvantage) and the values for walkable neighborhood 

amenities since the neighborhood socio-demographic characteristics had a non-normal 

distribution. Because the presence of spatial autocorrelation violates the assumption of 

independent observations, it can result in incorrect degrees of freedom in the conventional 

correlation tests of the significance—this can lead to misestimation of significance of effects 

(Clifford and Richardson 1985; Student 1914; Haining 1991). The Clifford and Richardson 

effective sample size adjustment method was used to account for spatial autocorrelation 

(Clifford and Richardson 1985; Haining 1991). This methodology employs spatial 

correlation matrices for each variable to jointly measure the dependence between 

observations. The estimated correlation matrices were derived from six spatial lags based on 

the Queen’s contiguity spatial weights matrix (Haining 1991). The corresponding t-statistics 

and p-values will change based on the adjusted sample size. Both Spearman correlation 

coefficients (rS) and significance values have been reported.
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Then, we fit ordinary least squares (OLS) regression models to test our research question. If 

the OLS regression residuals had significant spatial autocorrelation, we applied a well-

known spatial econometric approach for spatial regression modeling by fitting spatial 

simultaneous autoregressive models (LaSage and Pace 2009; Ward and Gleditsch 2008; 

Waller and Gotway 2004; Bailey and Gatrell 1995; Anselin and Bera 1998). We specifically 

planned to estimate the spatial error model and the spatial lag model as appropriate. The 

motivation for implementing both of these approaches to account for spatial autocorrelation, 

if necessary, is that the theoretical processes for potential spatial inequality is unknown and 

both spatial models have some theoretical justification. Previous spatial inequalities research 

has implemented both spatial models for similar reasons (Smiley et al. 2010). Maximum 

likelihood will be used for parameter estimation. However, we recognize that different 

techniques when estimating spatial linear regression models can be implemented (Bivand, 

Pebesma, and Gómez-Rubio 2008), so, if necessary, in a sensitivity analysis, we estimated 

the spatial models via other estimation methods such as the generalized method of moments 

technique for the spatial error model (Bivand, Pebesma, and Gómez-Rubio 2008; Kelejian 

and Prucha 1999). Using the first-order Queen’s spatial weights matrix, the Global Moran’s 

I statistic and the Lagrange Multiplier test for both spatial regression models were used to 

evaluate the fitted OLS regression residuals for evidence of spatial autocorrelation (LaSage 

and Pace 2009; Anselin et al. 1996; Anselin and Bera 1998; Anselin 1988), which also 

suggests which spatial model is most appropriate. The Global Moran’s I statistic was applied 

to the error terms of the OLS model to assess spatial autocorrelation. When the Moran’s I is 

statistically significant, the Lagrange Multiplier test for spatial lag and spatial error 

dependence is used. The one with the highest value (and lowest p-value) will indicate the 

proper specification for the data. If spatial models were necessary, the OLS and spatial 

model were compared using the Akaike Information Criterion (AIC) (Akaike 1974). The 

AIC examines overall model fit and model complexity, whereby a lower AIC value indicates 

a better goodness-of-fit. Finally, if spatial error models were fit, we conducted a spatial 

Hausman test comparing the magnitude of the OLS and spatial error model parameter 

estimates based on the null hypothesis of correct specification (i.e. the coefficients between 

the two models are of a similar magnitude and direction) (LeSage and Pace 2009, Pace and 

LeSage 2008). Multivariate regression models of minority neighborhood racial/ethnic 

composition and neighborhood socioeconomic disadvantage (i.e. percent of non-Hispanic 

Black residents, percent of Hispanic residents, and percent of families in poverty) predicting 

walkable neighborhood amenities are controlled for census tract population density because 

it might influence the placement of walkable neighborhood amenities.

3. Results

3.1 Descriptive statistics

Descriptive statistics for walkable neighborhood amenities (Walk Scores) and neighborhood-

level socio-demographic characteristics are shown in Table 1. The mean Walk Score was 

67.67, with a standard deviation (SD) of 4.33. Among the neighborhood socio-demographic 

characteristics examined, there was a particularly large range for census tract percent White 

(range: 0.92–98.33) and census tract percent Black (range 0.16–83.99).
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3.2 Spatial distribution and spatial autocorrelation in neighborhood-level socio-
demographic characteristics and walkable neighborhood amenities

Geovisualization revealed particularly striking spatial patterns in neighborhood racial/ethnic 

compositions of neighborhoods. However, based on geovisualization, there appeared to be 

clear spatial patterns in all neighborhood-level socio-demographic characteristics examined 

(Figures 2–6). The Global Moran’s I confirms the presence of spatial autocorrelation for the 

neighborhood-level socio-demographic characteristics (Global Moran’s I range from 0.33 to 

0.86; all p=0.001), indicating positive spatial autocorrelation to a large degree (Table 1). 

There was particularly large significant positive spatial autocorrelation in census tract 

percent Black (Global Moran’s I=0.86; p=0.001). Spatial patterns in walkable neighborhood 

amenities were not apparent. A map of these walkable neighborhood amenities is shown 

(Figure 7). The Global Moran’s I value for walkable neighborhood amenities value was 

−0.06 (p=0.83).

3.3 Spatial relationship between neighborhood-level socio-demographic characteristics 
and walkable neighborhood amenities

Spearman correlations between the neighborhood-level socio-demographic characteristics 

(i.e. minority neighborhood racial/ethnic composition and neighborhood socioeconomic 

disadvantage) and walkable neighborhood amenities are presented in Table 2. Correlations 

between neighborhood-level socio-demographic characteristics and walkable neighborhood 

amenities were low to moderate and not significant (Table 2). Interestingly though, there was 

an inverse correlation between neighborhood percent non-Hispanic Black and walkable 

neighborhood amenities (rS=−0.10; conventional p-value=0.18; spatially adjusted p-

value=0.08).

In terms of the regression models, the Global Moran’s I evaluating spatial autocorrelation in 

the OLS regression residuals in the bivariate and multivariate relationships between 

neighborhood-level socio-demographic characteristics and walkable neighborhood amenities 

indicated that there was no spatial autocorrelation (Table 3). The Global Moran’s I for the 

multivariate model was −0.08 (p=0.87). The Lagrange Multiplier test for both the 

multivariate spatial error model and the spatial lag model also indicate that there was no 

spatial autocorrelation (both p>0.10). Therefore, there was no need to take spatial 

autocorrelation into account.

Results from the bivariate and multivariate OLS models estimating the relationship between 

minority neighborhood racial/ethnic composition and neighborhood socioeconomic 

disadvantage with walkable neighborhood amenities are shown in Table 4. Across models 

there was an inverse relationship between neighborhood-level percent non-Hispanic Black 

and walkable neighborhood amenities as well an inverse relationship between 

neighborhood-level percent families in poverty and walkable neighborhood amenities. 

Positive relationships were found between neighborhood-level percent Hispanic and 

walkable neighborhood amenities. However, all relationships were not statistically 

significant. In the multivariate model, neighborhood percent Hispanic was marginally 

significantly associated with slightly increased walkable neighborhood amenities 

(controlling for population density, percent non-Hispanic Black, and percent of families in 
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poverty) (Table 4). While moderate significant positive correlations between some of the 

independent variables were found (e.g. percent non-Hispanic Black and percent families in 

poverty, and percent non-Hispanic Black and percent Hispanic), there was not strong 

evidence of multicollinearity as assessed via the variance inflation factor (VIF) in our 

multivariate model (the range for the values of VIF was 1.09 to 1.39).

4. Conclusion and discussion

The purpose of the present investigation was to evaluate spatial relationships between 

neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and 

socioeconomic disadvantage) and walkable neighborhood amenities utilizing a spatial 

demographic perspective and novel geospatial data from Walk Score. Notably, we rigorously 

and explicitly tackled spatial aspects in model specification, estimation, and diagnostic 

testing. To our knowledge, this is one of few studies to evaluate spatial inequalities in 

walkable neighborhood amenities to consider issues of spatial autocorrelation. Results show 

significant positive spatial autocorrelation in neighborhood socio-demographic 

characteristics (e.g. census tract percent Black) but not walkable neighborhood amenities or 

in the OLS regression residuals, which suggests no need for spatial models. Spearman 

correlations between neighborhood socio-demographic characteristics and walkable 

neighborhood amenities were not statistically significant nor were neighborhood socio-

demographic characteristics significantly associated with walkable neighborhood amenities 

in OLS regression models.

Our finding of significant global spatial autocorrelation in the neighborhood-level socio-

demographic characteristics confirms that there is residential segregation in Boston 

(Reardon 2006; Acevedo-Garcia et al. 2003; Frank 2003) with especially stark segregation 

among Blacks. This is consistent with past research showing the persistence and 

distinctiveness of racial residential segregation, especially for Black individuals (Massey and 

Denton 1993; Glaeser and Vigdor 2001). Competing explanations for the cause and the 

persistence of racial residential segregation have centered on spatial assimilation and place 

stratification theories which have been empirically tested (Charles 2003; Dawkins 2004; 

Iceland and Wilkes 2006). Although Black individuals have a greater preference for residing 

in integrated areas than any other racial group (Charles 2003), our results suggest that they 

still encounter more restrictions in mobility in comparison to other racial/ethnic groups. This 

bolsters the evidence suggesting that racial residential segregation is a byproduct of 

institutional discrimination and not simply that residential segregation (among Black 

individuals) reflects their preferences for residence in segregated areas. Indeed, as previously 

argued, currently existing neoclassical real estate market dynamics drive residential 

segregation and spatial sorting of population subgroups which is important since racial 

residential segregation can constrain the physical context and availability of resources in a 

neighborhood. Prior research shows that residential segregation among Blacks creates a 

distinctive social and economic milieu that facilitates, promotes, and sustains disadvantage 

(Massey and Denton 1993; Glaeser and Vigdor 2001; Williams and Collins 2001).

Our study extends previous research that has evaluated spatial inequalities in neighborhood 

conditions. First, we are not aware of research examining spatial inequalities in walkable 
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neighborhood amenities with the Walk Score algorithm— which has up-to-date data on such 

amenities and has other pros including it being free and easy to use, and being at an 

international scale. Second, as previously noted, we evaluated spatial autocorrelation in OLS 

regression residuals, which few studies have done. This is an advancement of the literature 

because parameter estimates and p-values can be incorrect if spatial autocorrelation exists 

(LaSage and Pace 2009; Ward and Gleditsch 2008; Waller and Gotway 2004; Bailey and 

Gatrell 1995; Anselin and Bera 1998). Among the few studies evaluating spatial inequalities 

(e.g. neighborhood-level racial composition and income) in walkable neighborhood 

amenities that examined spatial autocorrelation (Kwate et al. in press; Dahmann et al. 2010; 

Smiley et al. 2010; Zenk et al. 2005), some found spatial autocorrelation in the standard 

regression residuals (Kwate et al. in press; Smiley et al. 2010; Zenk et al. 2005), but other 

studies did not (Dahmann et al. 2010). In the present study, we did not find spatial 

autocorrelation in OLS regression residuals. We also found no significant relationship 

between neighborhood socio-demographic characteristics and walkable neighborhood 

amenities in the OLS regression models. This was surprising because we expected to find a 

spatial relationship between neighborhood socio-demographic characteristics 

(neighborhood-level percent Black particularly) and walkable neighborhood amenities. 

Several prior studies documented that neighborhood socio-demographic composition 

(including neighborhoods with a high concentration of Blacks and poor individuals) are 

related to fewer health-promoting resources (Lovasi et al. 2009) such as fewer healthy food 

establishments (e.g. supermarkets) (Smiley et al. 2010; Sharkey et al. 2009; Franco et al. 

2008; Morland and Filomena 2007; Powell et al. 2007; Moore and Diez Roux 2006; Zenk et 

al. 2005; Morland et al. 2002) and fewer physical activity-related facilities (e.g. recreational 

facilities) (Dahmann et al. 2010; Smiley et al. 2010; Moore et al. 2008; Gordon-Larsen et al. 

2006; Powell et al. 2006, Estabrooks et al. 2003). Studies have also found spatial inequalities 

in other important neighborhood amenities. Indeed, research that examined spatial 

inequalities in other amenities (which examined the multiple amenities separately) found 

that the percent of Blacks in the neighborhood was significantly associated with a reduced 

number of various neighborhood amenities (e.g. pharmacies, banks, credit unions, and 

movie theatres) (Kwate et al. in press; Small and McDermott 2006; Hellig and Sawicki 

2003). Results from these previous studies collectively suggest that neighborhood amenities 

may serve as potential mediating mechanisms linking segregation to deleterious health 

outcomes such as obesity, hypertension, and all-cause mortality (Chang 2006; Collins and 

Williams 1999; Kershaw et al. 2011; Lopez 2006). Identifying intermediary mechanisms can 

provide important clues and improve our understanding of how broader social and spatial 

inequalities such as segregation function to influence health status (White and Borrell 2011).

A key implication from our study is that spatial inequalities do not necessarily show up 

using a composite measure like the Walk Score. Walk Score only measures whether there is 

at least a single case of the various types of establishments nearby in one of the five 

categories we described previously. Indeed, Walk Score does not differentiate between types 

of establishments in one of the five categories measured. Therefore, composite measures 

inherently can minimize the importance of any single feature and it does not measure quality 

of features–which all may matter when examining spatial inequalities in neighborhood 

amenities. It is also important to note that most neighborhoods in Boston have relatively 
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good Walk Scores. Because we aggregated the Walk Scores to census tracts, we further 

diminished the variability in them. While we recognize the possibility that other (perhaps 

more salient) factors besides spatial demographic factors drive economic geographies, such 

as the decision to locate a business, there is emerging research suggesting that retail 

redlining based on the neighborhood racial/ethnic composition may in fact be important 

(Kwate et al. in press). Given that past research has shown an inequitable spatial distribution 

by socio-demographic characteristics in multiple specific walkable neighborhood amenities 

(Kwate et al. in press; Lovasi et al. 2009; Small and McDermott 2006; Hellig and Sawicki 

2003), future research is needed to monitor spatial inequalities in neighborhood conditions 

vis-a-vis socio-demographic characteristics in Boston, other areas in the US, and abroad. 

Such monitoring can be done with innovative, web-based geospatial technologies, perhaps 

including with Walk Score as it is a validated, up-to-date measure of walkable neighborhood 

amenities constantly being refined to improve its neighborhood walkability estimates 

(though potential limitations of the tool should be considered). In addition to monitoring 

spatial inequalities, policy-level interventions may be necessary and appropriate if such 

inequalities are documented. The inequitable distribution of certain neighborhood amenities 

could potentially be remedied with the modification of urban and density zoning laws and 

the investment of businesses in disadvantaged communities (Rothwell 2011). Such 

infrastructure developments in communities can also improve population health, including 

for historically disadvantaged groups (Williams and Marks 2011). Additionally, the 

implementation of health impact assessments (HIA) have been promising in minimizing the 

adverse health impact of segregation that are not traditionally evaluated in land use decisions 

(Dannenberg et al. 2008; Bhatia 2007). It is possible that the wider use of HIA may promote 

equitable land use development, improvement, and expansion projects across communities.

This study has some limitations. The research was conducted in a restricted geographic area 

which limits the ability to generalize its findings. However, we explicitly and specifically 

wanted to focus on Boston because it is an understudied city in neighborhood research and it 

consistently ranks as one of the top metropolitan areas exhibiting a high degree of residential 

segregation (Logan and Stults 2011; Iceland, Weinberg, and Steinmetz 2002). This was 

supported in our study with the most current demographic data. Focusing on local-level 

spatial inequalities can also be important for the development of local policies. As 

sociologist Roderick McKenzie noted in the early 1920s, “probably no other term is used so 

loosely or with such changing content as the term neighborhood, and very few concepts are 

more difficult to define” (McKenzie 1923:334–335). The neighborhood definition we 

selected was US census tracts. As indicated by the modifiable areal unit problem (Openshaw 

and Taylor 1979; Wong 2009), results may change depending on the neighborhood 

definition used. Of the several definitions of neighborhoods that have been used in research, 

US census-defined boundaries (especially census tracts) are common neighborhood 

definitions in the US, including in Boston-based neighborhood research (Subramanian et al. 

2006, 2005; Krieger et al. 2003, 2002). This is one notable reason we specifically selected 

the census tract as our neighborhood definition. In addition, while other definitions of 

neighborhood have been used in Boston, including those based on the Boston Public Health 

Commission (Chen et al. 2006) and the Boston Redevelopment Authority (Li et al. 2009a, 

2009b), these neighborhood definitions are relatively large (much larger than census tracts) 
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and thus there is likely to be less variance among the units being measured due to the 

aggregation at these coarser spatial scales (Reynolds and Amrhein 1997). Also, potential 

“edge effects” can lead to underestimation of access to walkable neighborhood amenities, 

i.e. where census tracts are adjacent to amenities outside of Boston.

We recognize that disparate measures of segregation may differentially be associated with 

outcomes and that population composition within neighborhoods can be measured as a 

continuous variable or a categorical variable (e.g. predominantly Black neighborhoods could 

be defined as census tracts with >60% or >80% Black individuals) as some studies have 

done (Franco et al. 2008; Moore et al. 2008; Morland and Filomena 2007; Moore and Diez 

Roux 2006; Morland et al. 2002). We a priori chose to evaluate segregation using percent 

minority racial/ethnic composition and to assess population composition as a continuous 

variable. Post-hoc analyses using categorical variables for population composition produced 

similar findings. In addition, we recognize that other aspects of neighborhood disadvantage 

exist, including percent of households receiving public assistance, and that different 

measures can be combined via principal component analysis to create a single measure of 

neighborhood disadvantage. However, we a priori chose to evaluate neighborhood poverty 

because it is arguably the most commonly-used measure of neighborhood disadvantage 

which we believe to be an important feature of neighborhoods. Neighborhood poverty has 

shown pronounced and consistent associations with various outcomes. Composite measures 

may reduce the salience of individual components of the measure. It is also important to note 

that we obtained population-weighted Walk Scores for the centroid of census blocks and 

then aggregated those scores to census tracts. We recognize that there are alternate 

aggregation approaches. For example, we could have randomly selected a certain number of 

addresses (e.g. 50 addresses) within each census tract to estimate the Walk Score. However, 

we believe that our approach is likely more accurate of the actual Walk Score and we are not 

aware of any published research that aggregated Walk Score data to census tracts (or any 

other areal unit for that matter), highlighting that our study adds to the literature in a novel 

way.

Additionally, it is important to discuss limitations that pertain to the Walk Score algorithm. 

Walk Score is a composite measure of walkable neighborhood amenities (as we previously 

mentioned). As such, the types of walkable neighborhood amenities are presented in 

aggregate of different types (e.g. educational, retail, entertainment, food). Furthermore, at 

present, the Walk Score does not account for intersection density, average block length, or 

walking distances (Walk Score calculations are based on straight-line distances rather than 

distances based on the street network). Walk Score also ignores other factors that likely 

influence active pedestrian neighborhood transportation including crime, neighborhood 

aesthetics, traffic, topography, and natural walking barriers such as bodies of water. Finally, 

the validity of Walk Score can vary by geographic locale (Duncan et al. 2011). However, the 

Walk Score algorithm seems to work best in areas with high population densities such as 

Boston (Duncan et al. 2011, in press). Despite these limitations, the current study does 

provide evidence that there is residential segregation in Boston and suggests that spatial 

inequalities do not necessarily show up using a composite measure. Future research in other 

geographic areas (including international contexts) and using different definitions of 

neighborhoods (including small-area definitions) should evaluate if spatial inequalities are 
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found using composite measures, but also should use measures of specific neighborhood 

amenities.
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Figure 1. 
Map of study area, Boston, Massachusetts (2010 US Census Tracts)

Note: Massachusetts’ town layers come from the Commonwealth of Massachusetts’ Office 

of Geographic Information (MassGIS), Information Technology Division (available at: 

http://www.mass.gov/mgis/).
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Figure 2. 
Spatial distribution of percent of non-Hispanic White residents across Boston census tracts

Note: Map colors from http://www.colorbrewer2.org, by Cynthia A. Brewer, Penn State 

Geography
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Figure 3. 
Spatial distribution of percent of non-Hispanic Black residents across Boston census tracts

Note: Map colors from http://www.colorbrewer2.org, by Cynthia A. Brewer, Penn State 

Geography
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Figure 4. 
Spatial distribution of percent of Hispanic residents across Boston census tracts

Note: Map colors from http://www.colorbrewer2.org, by Cynthia A. Brewer, Penn State 

Geography
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Figure 5. 
Spatial distribution of percent of families below poverty level across Boston census tracts

Note: Map colors from http://www.colorbrewer2.org, by Cynthia A. Brewer, Penn State 

Geography
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Figure 6. 
Spatial distribution of population density across Boston census tracts

Notes: Population density was categorized in ArcGIS using Jenks natural breaks 

classification methodology (n=4).

Map colors from http://www.colorbrewer2.org, by Cynthia A. Brewer, Penn State 

Geography
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Figure 7. 
Spatial distribution of walkable neighborhood amenities (Walk Scores) across Boston census 

tracts

Notes: Scoring indices based on developers’ categorizations.

Map colors from http://www.colorbrewer2.org, by Cynthia A. Brewer, Penn State 

Geography
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Table 1

Neighborhood-level socio-demographic characteristics and walkable neighborhood amenities: Descriptive 

statistics and global spatial autocorrelation

Mean (SD) Range Moran’s I P-value

Walkable Neighborhood Amenities 67.67 (4.33) 46.76–82.31 −0.055 0.831

Neighborhood Percent non-Hispanic White 47.93 (30.39) 0.92–98.33 0.759 0.001

Neighborhood Percent non-Hispanic Black 21.63 (24.08) 0.16–83.99 0.859 0.001

Neighborhood Percent Hispanic 17.70 (14.78) 0.68–66.60 0.706 0.001

Neighborhood Percent Families in Poverty 15.54 (14.81) 0.00–64.91 0.331 0.001

Population Density 25110.91 (17271.54) 3444.00–110100.00 0.456 0.001
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Table 2

Correlation between neighborhood-level socio-demographic characteristics and walkable neighborhood 

amenities

rS Conventional
p-value

Spatially adjusted
p-value

Neighborhood Percent non-Hispanic Black −0.103 0.184 0.084

Neighborhood Percent Hispanic 0.060 0.441 0.357

Neighborhood Percent Families in Poverty 0.004 0.957 0.953
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Table 3

Global Moran’s I and Lagrange Multiplier (LM) diagnostics for spatial autocorrelation in OLS model 

estimation of the relationship between neighborhood socio-demographic characteristics and walkable 

neighborhood amenities

Global Moran’sI p-value
LM Spatial 

Error Model
p-value

LM Spatial Lag 
Model
p-value

Bivariate Estimation

Neighborhood Percent non-Hispanic Black −0.057 0.814 0.274 0.272

Neighborhood Percent Hispanic −0.074 0.896 0.152 0.180

Neighborhood Percent Families in Poverty −0.055 0.825 0.285 0.286

Multivariate Estimation

Multivariate model is controlled for population density and the 
other neighborhood socio-demographic characteristics used to 
evaluate potential spatial inequalities

−0.077 0.873 0.137 0.156
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Table 4

OLS model estimation of the relationship between neighborhood socio-demographic characteristics and 

walkable neighborhood amenities

Coefficient SE p-value

Bivariate Estimation

Neighborhood Percent non-Hispanic Black −0.008 0.014 0.576

Neighborhood Percent Hispanic 0.031 0.023 0.172

Neighborhood Percent Families in Poverty −0.006 0.023 0.786

Multivariate Estimation

Neighborhood Percent non-Hispanic Black −0.008 0.016 0.624

Neighborhood Percent Hispanic 0.042 0.025 0.097~

Neighborhood Percent Families in Poverty −0.018 0.027 0.497

~
p < 0.10;

*
p < 0.05 (bold)

Multivariate model is controlled for population density and the other neighborhood socio-demographic characteristics used to evaluate potential 
spatial inequalities
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