
ADAM12-L confers acquired 5-fluorouracil
resistance in breast cancer cells

The Harvard community has made this
article openly available.  Please share  how
this access benefits you. Your story matters

Citation Wang, Xuedong, Yueping Wang, Juan Gu, Daoping Zhou, Zhimin
He, Xinhui Wang, and Soldano Ferrone. 2017. “ADAM12-L confers
acquired 5-fluorouracil resistance in breast cancer cells.” Scientific
Reports 7 (1): 9687. doi:10.1038/s41598-017-10468-x. http://
dx.doi.org/10.1038/s41598-017-10468-x.

Published Version doi:10.1038/s41598-017-10468-x

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34492014

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/154891741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=ADAM12-L%20confers%20acquired%205-fluorouracil%20resistance%20in%20breast%20cancer%20cells&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=e3b50831a4492c6a7f4916782c2495e8&department
http://nrs.harvard.edu/urn-3:HUL.InstRepos:34492014
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


1ScienTiFic RepoRts | 7: 9687  | DOI:10.1038/s41598-017-10468-x

www.nature.com/scientificreports

ADAM12-L confers acquired 
5-fluorouracil resistance in breast 
cancer cells
Xuedong Wang1,2,6, Yueping Wang3,6, Juan Gu1,2, Daoping Zhou4, Zhimin He5, Xinhui Wang6 & 
Soldano Ferrone6

5-FU-based combinatory chemotherapeutic regimens have been routinely used for many years for 
the treatment of breast cancer patients. Recurrence and chemotherapeutic drug resistance are two 
of the most prominent factors that underpin the high mortality rates associated with most breast 
cancers (BC). Increasing evidence indicates that overexpression of ADAMs could correlate with cancer 
progression. However, the role of ADAMs in the chemoresistance of cancer cells has rarely been 
reported. In this study, we observed that 5-FU induces expression of the ADAM12 isoform ADAM12-L 
but not ADAM12-S in BC cells and in recurrent BC tissues. The overexpression of ADAM12-L in BC cells 
following 5-FU treatment results in the acquisition of resistance to 5-FU. ADAM12-L overexoression 
also resulted in increased levels of p-Akt but not p-ERK. These alterations enhanced BC cell growth 
and invasive abilities. Conversely, ADAM12 knockdown attenuated the levels of p-Akt and restored 
5-FU sensitivity in 5-FU-resistant BC cells. ADAM12 knockdown also reduced BC cell survival and 
invasive abilities. These findings suggest that ADAM12-L mediates chemoresistance to 5-FU and 
5-FU-induced recurrence of BC by enhancing PI3K/Akt signaling. The results of this study suggest that 
specific ADAM12-L inhibition could optimize 5-FU-based chemotherapy of BC, thereby preventing BC 
recurrence in patients.

Breast cancer (BC) is the most common malignancy among women worldwide, with an increasing incidence 
rate in most countries. Despite recent advances in combination therapies, disease recurrence caused by patient 
treatment failure remains a major clinical problem. Approximately 6–10% of patients have metastatic disease 
at the time of diagnosis and around 30% of patients initially diagnosed with early-stage BC will eventually suf-
fer a recurrence1. Adjuvant systemic chemotherapy is often prescribed for patients with advanced or recurrent 
BC, although the first treatment option for BC usually encompasses surgical operation. As shown in several 
meta-analyses, adjuvant systemic therapies reduce the risk for relapse and death2, 3. 5-Fluorouracil (5-FU)-based 
poly-chemotherapy regimens have long been established for the routine treatment of breast cancer patients in 
clinical settings4–6. Furthermore the integration of taxanes into chemotherapy has improved survival benefits in 
the adjuvant setting7. A significant survival advantage of 5-FU-based chemotherapy has been reported in patients 
with metastatic cancer as well as in those who have undergone surgery8, 9. Although such treatments have resulted 
in an increased in the survival rate of breast cancer patients, many patients treated with 5-FU-based chemother-
apy experience recurrence. Indeed, a study performed by Vulsteke, et al. revealed that 15.3% of patients with 
breast cancer suffered a relapse of the disease following treatment with 5-FU-based chemotherapy10. This recur-
rence is predominantly attributed to the development of chemoresistance during treatment. Chemoresistance to 
5-FU-based treatments is a complex and multifaceted problem which involves multiple pathways that facilitate 
increased 5-FU efflux, evasion of apoptotic pathways, replication checkpoint bypass, increased cell proliferation, 
and increased DNA damage repair11–15. A number of targets have been implicated to have a role in 5-FU resistance 
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during breast cancer including COX-2, Survivin, Bcl-2, 14–3–3σ and the miRNA regulator Dicer16–20. However, a 
better understanding of the molecular mechanisms that underlie chemotherapeutic resistance is required for the 
development of effective 5-FU-based therapeutic strategies for the treatment of breast cancer.

A disintegrin and metalloproteases (ADAMs) comprise a family of zinc-dependent transmembrane proteins. 
They are characterized by a multidomain structure comprised of prodomain, metalloprotease, disintegrin, and 
cysteine-rich domains, as well as a transmembrane and cytoplasmic domain21. There is increasing evidence that 
ADAMs are differentially expressed in malignant tumors and may therefore participate in the pathology of car-
cinomas. Most notably, ADAM family members such as ADAM-9,-10,-12,-15 and 28 have been shown to be 
associated with cancer progression and may serve as molecular targets for cancer therapy22–26. However, rela-
tively little is known about the role of ADAMs in the modulation of chemosensitivity of cancer cells. For this 
reason, we attempted to characterize the potential role of ADAMs in chemoresistance regulation. In the pres-
ent study, we sought to investigate the contribution of ADAMs on 5-FU chemoresistance of breast cancer cells. 
We investigated 6 ADAM family members as part of this study. It is possible that other ADAMs are involved 
in this phenomenon. However, the gene expression profile of 5-FU-induced drug-resistant MCF-7/5-FU and 
SKBR3/5-FU cells showed that only ADAM12 of the ADAM family was significantly different in parental and 
resistant cells (data not shown). Human ADAM12 exists in two forms that arise from alternate splicing; the 
prototype membrane-anchored protein (ADAM12-L, including 120 and 90 kDa for latent and active forms) and 
the shorter secreted type form (ADAM12-S, 68 kDa truncated form). With this in mind, we decided to analyze 
ADAM12 and several of the ADAM gens that have been shown in previous studies to be related to tumorigene-
sis22–26. Surprisingly, ADAM12 isoform ADAM12-L but not ADAM12-S was shown to confer chemoresistance to 
5-FU in breast cancer cells. Thus, we speculate that ADAM12 –L represent a promising therapeutic target for the 
treatment of drug-resistant cancers.

Results
Expression of ADAMs in breast cancer cells after treatment with 5-FU. To investigate the expres-
sion of ADAM family members in breast cancer cells after treatment with 5-FU, quantitative real-time PCR (qRT-
PCR) was performed to detect ADAM genes in MCF-7 and SKBR3 cells induced following 5-FU treatment for 
6 days. Interestingly, the only ADAM gene that was strongly induced by 5-FU (after 6 days) at the mRNA level 
was ADAM12 (Fig. 1A and B). ADAM12 has two isoforms, ADAM12-L and ADAM12-S. In order to determine 
which isoform is affected following 5-FU treatment, we analyzed the mRNA expression profiles of both iso-
forms in breast cancer cell lines using qRT-PCR. We observed a marked increase in ADAM12-L expression com-
pared with ADAM12-S expression following treatment with 5-FU (Fig. 1C and D). ADAM12 protein expression 
was also examined by Western blotting. Consistent with ADAM12 mRNA expression levels, Western blotting 
analyses revealed that ADAM12-L protein expression was markedly increased in MCF-7 and SKBR3 cells that 
were induced following 5-FU treatment for 6 days (Fig. 1E). Interestingly, Several cancer studies have reported 
that ADAM12 was increased in breast cancer25–27; however, little or no information is available for recurrent 
breast tissues from patients who underwent 5-FU adjuvant therapy. Thus, as part of this analysis, a qRT-PCR was 
performed in tissues from 25 primary BC and 15 recurrent BC samples following adjuvant therapy with 5-FU 
(Fig. 1F). We observed that ADAM12 expression was induced by 5-FU, increasing from 2.56 times for primary 
BC to 5.17 times for recurrent BC. More importantly, we also found a marked increase in ADAM12-L expression 
compared with ADAM12-S expression in the recurrent breast tissues (Fig. 1C and D). Therefore, we hypothesize 
that expression of ADAM12-L in BC cells could be mechanistically relevant in relation to the chemoresistance 
and invasive behavior of recurrent BC cells.

ADAM12-L facilitates 5-FU resistance in BC cells. To assess whether ADAM12-L plays a role in 
chemoresistance in breast cancer cells, we first analyzed ADAM12-L the expression levels in breast cancer cell 
lines (MCF-7, SKBR-3 and MDA-MB-231) by qRT-PCR and Western blotting. The data showed that SKBR3 and 
MDA-MB-231 cell lines expressed high levels of ADAM12-L while the MCF-7 cell line expressed a low level of 
endogenous ADAM12-L mRNA and protein (Fig. 2A and B). Next, a specific siRNA- targeting human ADAM12 
(siA12) lentivirus and non-silencing control siRNA lentivirus, which was used as a scramble control (siCtrl) 
were generated and used to infect SKBR3 and MDA-MB-231 cells; both of these cell lines harbor high endoge-
nous ADAM12-L levels. The results of qRT-PCR and Western blotting analyses revealed that ADAM12-L mRNA 
and protein expression levels were effectively suppressed in both ADAM12-siRNA virus-infected SKBR3 and 
MDA-MB-231 cells compared with the scramble control virus-infected cells. The knockdown ratio was approxi-
mately 85.3% and 81.6% in SKBR3 and MDA-MB-231 cells, respectively (Fig. 2A and B).

Cell survival assays (CCK-8) were performed in various kinds of breast cancer cells following treatment with 
a panel of chemotherapy agents: the DNA topoisomerase II inhibitor (etoposide; VP-16), a microtubule stabi-
lizer (paclitaxel; PTX), a DNA alkylating agent (cisplatin; cDDP) and an anti-metabolite (5-fluorouracil; 5-FU). 
Interestingly, silencing of ADAM12 in SKBR3 and MDA-MB-231 cells resulted in a statistically relevant increase 
in sensitivity to 5-FU (10 µM and 30 µM treatments) and cDDP (30 µM treatment) compared to parental cells. 
Similar increases in sensitivity to PTX and VP-16 were not observed in the ADAD12-silenced cells. These results 
reveal that ADAM12-silenced SKBR3 and MDA-MB-231 cells were the most sensitive to 5-FU (Fig. 2C and D),  
suggesting that ADAM12-L might be involved in the resistance of breast cancer cells to 5-FU. In addition, the 
viabilities of ADAM12-silenced SKBR3 and MDA-MB-231 cells decreased upon treatment with 5-FU in a 
dose-dependent manner, and the increase in sensitivity to 5-FU following silencing of ADAM12 expression was 
also dependent of dose (Fig. 2E and F). Moreover, results from the colony formation assay also clearly demon-
strated increased sensitivity to 5-FU following silencing of ADAM12. As expected, the colony numbers associated 
with both ADAM12 knockdown cell lines were significantly less than those of the scramble control cells. In addi-
tion, the Akt inhibitor, LY294002 (LY, 20 μM), attenuate the proliferative ability of BC cells that were induced by 
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5-FU. LY294002 (LY, 20 μM) was even more effective at inhibiting the proliferative ability of ADAM12-silenced 
cells (Fig. 2G). These data suggest that ADAM12-L inhibition causes sensitization to 5-FU in BC cells. These 
results most likely reflect an association between ADAM12-L expression, Akt activity and sensitivity to 5-FU.

ADAM12-L affects 5-FU resistance in BC cells though the PI3K/Akt pathway. To investigate 
the potential mechanism that underlies ADAM12-L-mediated 5-FU resistance, we investigated the effect of 
ADAM12 on the downstream activation of the MAPK and PI3K pathways. As part of this analysis, we ana-
lyzed both Akt and ERK1/2 to determine whether the latter pathways facilitated ADAM12-L-mediated effects 
on chemoresistance in breast cancer cells. Western blotting was performed to analyze 5-FU-dependent activa-
tion of Akt and ERK1/2. The results showed that the ratios of phosphorylated Akt and total Akt levels (p-Akt/
Akt) were significantly decreased in SKBR3 and MDA-MB-231 cells following ADAM12 knockdown compared 
with the scramble control cells (Fig. 3). Notably, compared with the untreated cells, a significant increase in the 
ratio of p-Akt/Akt was observed in SKBR3 and MDA-MB-231 cells after 6 days treatment with 100 μM 5-FU. 
Conversely, compared to their untreated scramble groups, the ratio of p-Akt/Akt did not significantly change fol-
lowing treatment of SKBR3/siA12 and 231/siA12 cells with 5-FU (Fig. 3). Furthermore, in the analyzed cell lines, 

Figure 1. Expression of ADAM family members in breast cancer cells following treatment with 5-FU. (A) and 
(B) Relative mRNA levels of ADAM family members determined by qRT-PCR were presented as fold-induction 
in comparison with untreated control breast cancer cells following treatment with 100 μM 5-FU for 6 days; (C) 
mRNA expression profiles of ADAM12-L isoform determined by qRT-PCR in breast cancer cell lines, primary 
BC and recurrent BC patient samples are presented as fold-induction following qRT-PCR. (D) Relative mRNA 
levels of ADAM12-S were determined by qRT-PCR in breast cancer cell lines, primary BC and recurrent BC 
patient samples. (E) Representative images of ADAM12-L (including an ~120 kDa latent form, an ~90 kDa 
active form) protein expression as visualized by Western blotting (left); the relative levels of ADAM12-L 
protein expression were analyzed from the resultant blots by scanning densitometry (right); (F) Relative 
mRNA levels of ADAM12 in primary BC compared with recurrent BC patient samples. Values for individual 
patients’ samples are shown. Mean values are represented by a horizontal line; these values were derived from 
independent runs performed in triplicate and presented relative to lowest expression value observed in the BC 
patient cohort (=1). All samples for recurrent BC were selected on the basis of documented adjuvant 5-FU 
therapy. All experiments were carried out in triplicate. Data are shown as means ± SD. *p < 0.05, **p < 0.01.
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the ratios of phosphorylated ERK1/2 and total ERK1/2 levels (p-ERK/ERK) were not markedly changed between 
5-FU-treated and 5-FU-untreated groups or ADAM12 knockdown and scramble control groups (Fig. 3). These 
data suggest that ADAM12-L causes chemoresistance to 5-FU via activation of p-Akt and there is a correlation 
between ADAM12-L expression and Akt activity in breast cancer cells treated with 5-FU.

ADAM12-L-mediated signaling in BC invasion. Since ADAM12 has been linked to increased inva-
siveness of breast cancer cells26, 27, we next investigated whether 5-FU-mediated induction of ADAM12-L caused 
the increased invasion of 5-FU-resistant breast cancer cells. Resistant vital breast cancer cells were treated with 
100 μM 5-FU for 6 days and subsequently seeded on Matrigel invasion chambers. The results showed that the 
number of invasive SKBR3/siA12 and 231/siA12 cells was dramatically decreased compared with the number 
of invasive SKBR3/siCtrl and 231/siCtrl cells (Fig. 4). Compared with SKBR3, MDA-MB-231, BC1205 and 
BC1302 cells, significant increases in the number of invaded cells were observed for those cells that were treated 

Figure 2. ADAM12-L mediates resistance to 5-FU in breast cancer cells. (A) The relative levels of ADAM12-L 
mRNA were analyzed by qRT-PCR in 3 breast cancer cell lines and SKBR3 and MDA-MB-231 cells following 
ADAM12 knockdown; (B) The representative images of ADAM12-L protein expression are shown as a Western 
blot (left) and the relative levels of ADAM12-L protein expression in 3 breast cancer cell lines and BC cells 
after ADAM12 knockdown were analyzed from the resultant blots by scanning densitometry (right); (C–F) 
Cell growth curves were generated following CCK-8 assays on SKBR-3 and MDA-MB-231 cells after ADAM12 
knockdown or the scrambled and parental cells with increasing concentrations of indicated drugs for 48 h; 
(G) SKBR3 and MDA-MB-231 cells transfected with the indicated siRNA or treated with the Akt inhibitor 
LY294002 (LY, 20 μM) or after treatment with 5-FU induction (100 μM) were seeded at 500 cells per 6 well 
plates. Cells were incubated for 14 days at 37 °C to allow colonies to form. Colonies were stained with 2% 
crystal violet and counted. Each value represents the mean ± SD of three independent experiments (*p < 0.05, 
**p < 0.01; Student’s t-test).
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with 5-FU treatment (Figs 4, 5A). However, in the presence of LY294002 (LY, 20 μΜ), invasion capacities of 
breast cancer cells were attenuated to varying degrees (Figs 4, 5A). Moreover, the number of invasive cells in the 
LY294002-treated SKBR3/siA12 and 231/siA12 groups were dramatically reduced (Fig. 4). These data suggest 
that there is a correlation between Akt activity and 5-FU-induced invasiveness, and 5-FU-mediated induction of 
ADAM12-L causes increased invasion of 5-FU resistant breast cancer cells. Moreover, to further analyze the cor-
relation between Akt activity and 5-FU treatment, we observed that the treated cells exhibited a higher p-Akt/Akt 
ration and increased expression of ADAM12-L (Fig. 5B and C). It is likely that these phenomena play a critical 
role in the invasiveness of breast cancer cells.

Therapeutic efficacy of ADAM12 silencing following 5-FU treatment. We next analyzed the effect 
of ADAM12 silencing using a xenograft tumor growth model and 5-FU treatment. As expected, the tumors 
formed from SKBR3/siA12 or MDA-MB-231/siA12 cells grew slower than those formed from the scramble con-
trol cells. Furthermore, SKBR3/siA12 or MDA-MB-231/siA12 cells treated with 5-FU resulted in an even greater 
reduction in tumor weight compared with treatment with scramble control and 5-FU or ADAM12 siRNA alone. 
The tumor growth curves and harvested tumor weights are shown in Fig. 6. These xenograft experiments clearly 
demonstrate that ADAM12 silencing can greatly improve the therapeutic efficacy of 5-FU in breast cancer.

Discussion
There is increasing evidence that ADAMs are differentially expressed in malignant tumors and may therefore 
participate in the pathology of carcinomas. It is interesting to note that some the ADAM family members play 
an important role not only in tumor growth, invasion and metastasis but also in chemoresistance and recur-
rence of malignant tumors. Previous studies have shown that ADAM12 is a key enzyme implicated in ecto-
domain shedding of membrane-anchored heparin-binding epidermal growth factor (EGF)-like growth factor 

Figure 3. The effects of 5-FU-mediated regulation of ADAM12-L on the expression of PI3K/Akt signaling 
molecules in breast cancer cells. SKBR3, SKBR3/siA12, MDA-MB-231 and 231/siA12 cells were each treated 
with 100 μM 5-FU for 6 days, respectively. Cell lysates were subjected to Western blotting analysis. (A) 
Representative images of protein expression of p-ERK1/2 (Tyr202/204) and p-Akt (S473) in SKBR3 and SKBR3/
siA12 cells after 5-FU induction compared to the untreated control groups. (B) Similar results were observed in 
MDA-MB-231 and 231/siA12 cells. (C) and (D) Quantification of the resultant Western blot bands following 
scanning densitometry: the values are presented relative to β-actin in all cell samples. The values represent the 
means ± SD of three independent experiments (*p < 0.05, ** < 0.01; Student’s t-test).
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(proHB-EGF)-dependent epidermal growth factor receptor (EGFR) transactivation to activate the EGFR signa-
ling pathway28, 29, cleave delta-like 1 to activate the Notch signaling pathway30, interact with the type II receptor 
to activate the TGF-beta signal pathway31, interact with β1-integrin to regulate cell migration32, and can pro-
mote angiogenesis33. Recently, ADAM12 was found to be highly expressed in breast cancer patients. As a conse-
quence, the function of ADAM12 in stimulating cell proliferation, invasion and metastasis, and chemoresistance 
was explored. Some studies have shown that ADAM12 expression levels could be used to predict resistance to 
chemotherapy in ER-negative breast tumor34–36. It should be noted that there are two isoforms of ADAM12, 
ADAM12-L and ADAM12-S. In this study we observed that the expression of ADAM12-L was significantly 
elevated in different BC cell lines following treatment with 5-FU. Conversely, ADAM-S expression remained 
relatively stable following 5-FU treatment. For this reason, we further analyzed ADAM12-L expression profiles 
in relation to chemoresistance as part of this study. Indeed, recently, it has been reported that ADAM12 was 
elevated in claudin-low tumor and a part of stromal, mammosphere, and EMT gene signatures, which were 
all associated with breast tumor-initiating cells (BTICs). Thus, ADAM12 may serve as a novel marker and/or a 
novel therapeutic target in BTICs27, 37. However, the correlation between drug-induced chemoresistance and the 
expression of potential drug target molecule (along with the related mechanisms) such as ADAM12 has yet to be 
fully elucidated.

In the present study, we demonstrated for the first time that ADAM12-L plays a crucial role in 5-FU-resistant 
breast cancer cells. In order to investigate this in more detail, 5-FU inducibility of ADAM family members was 
determined in BC cell lines, and in primary and recurrent BC tissues. We observed that only ADAM12-L expres-
sion was increased in 5-FU-resistant BC cells and recurrent BC tissues upon comparison with 5-FU-sensitive 
BC cells and primary BC tissues. In addition, our results showed that knockdown of ADAM12 abrogated breast 
cancer cell proliferation and invasive abilities, inhibited xenograft tumor growth, as well as sensitizing breast 
cancer cells to 5-FU. Moreover, we determined that the mechanistic basis for ADAM12-mediated tumor growth, 
invasion and resistance to 5-FU in breast cancer cells, occurs at least in part, via regulation of the PI3K/Akt 
signaling pathway. Following silencing of ADAM12 expression, SKBR3 and MDA-MB-231 cells became sig-
nificantly sensitive to 5-FU and slightly sensitive to cDDP, suggesting that ADAM12-L might play a role in the 
resistance of breast cancer cells to 5-FU. Although the viability of SKBR3 and MDA-MB-231 cells decreased 
upon treatment with 5-FU in a dose-dependent manner, the increase in sensitivity to 5-FU following ADAM12 
silencing was also dose-dependent, suggesting the presence of a specific ADAM12-mediated mechanism of resist-
ance to 5-FU. Mechanistically, ADAM12-L dependent differences were observed in both MAPK and PI3K/Akt 
signaling pathways. Differences in these pathways could account for differences in cell survival and invasiveness, 
respectively. We observed that p-Akt levels were increased in SKBR3, MDA-MB-231, and primary breast cancer 
BC1205 and BC1302 cells following induction with high 5-FU concentrations (100 μM) and longer incubation 
times (6 d); conversely, phosphor-ERK1/2 levels were not significantly altered. As expected, p-Akt levels were 
decreased in SKBR3 and MDA-MB-231 cells after knockdown of ADAM12. These in vitro assays showed that 
continuous inhibition of Akt phosphorylation by LY294002 has a substantial effect on proliferation, invasion 

Figure 4. 5-FU-mediated regulation of ADAM12-L induced invasion of breast cancer cells. 5-FU induced 
invasion in breast cancer cells (A) SKBR3 and SKBR3/siA12 and (B) MDA-MB-231 and 231/siA12. Six days 
after the addition of 5-FU to breast cancer cells, relative differences in invasiveness were analyzed by Matrigel 
invasion assays. Compared with control cells, the invasiveness of breast cancer cells following induction 
with 5-FU was enhanced. The 5-FU-induced invasiveness observed for breast cancer cells was dependent 
on ADAM12 activity, as demonstrated by the attenuation of 5-FU-induced invasiveness following treatment 
with the Akt inhibitor, LY294002 (LY, 20 μM). The values represent means ± SD following 3 independent 
experiments performed in triplicate. Statistical differences were calculated using the Student’s t-test with 
*p < 0.05, **p < 0.01.
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and chemoresistance in 5-FU-resistant BC cells. Higher p-Akt levels following induction by 5-FU in SKBR3 and 
MDA-MB-231 cells could account for positive ADAM12-L mediated effects in relation to cell survival. In con-
trast, reduced p-Akt levels in SKBR3 and MDA-MB-231 cells after knockdown of ADAM12 could be correlated to 
increased cell death. In addition to cell growth and chemoresistance, the regulation of ADAM12-L by 5-FU might 
contribute to enhanced invasiveness. Because the treatment of breast cancer cells with LY294002 reduced 5-FU 
induced invasiveness, p-Akt is able to mediate 5-FU induced invasiveness of breast cancer cells.

In conclusion, we have demonstrated, for the first time, that ADAM12-L is a potential target molecule involved 
in 5-FU induced chemoresistance and enhanced invasion of breast cancer cells following modulation of the PI3k/
Akt pathway. Thus, specific inhibition of ADAM12-L in future therapy regimens could optimize 5-FU-based 
chemotherapy and prevent the recurrence of breast cancers.

Figure 5. Expression of ADAM12-L and PI3K/Akt in 5-FU-induced primary breast cancer cells and effects of 
Akt activity on invasiveness. (A) 5-FU-induced invasion in primary BC1205 and BC1302 breast cancer cells. 
Six days after the treatment of BC1205 and BC1302 cells with 5-FU, relative differences in invasiveness were 
analyzed by Matrigel invasion assays. Compared with untreated cells, the invasion ability of primary breast 
cancer cells induced by 5-FU was enhanced, as demonstrated by the attenuation of 5-FU-induced invasiveness 
following treatment with the Akt inhibitor, LY294002 (LY, 20 μM). The values represent means ± SD following 
3 independent experiments performed in triplicate. Statistical differences were calculated using the Student’s 
t-test with *p < 0.05, **p < 0.01. (B) Western blot images of ADAM12-L, p-ERK1/2 (Tyr202/204) and p-Akt 
(S473) in primary breast cancer BC1205 and BC1302 cells in comparison with untreated control groups 
following induction with 5-FU. (C) Quantification of the resultant Western blots was performed by scanning 
densitometry; the values are presented relative to β-actin in all cell samples. Values represent means ± SD 
following three independent experiments (*p < 0.05, ** < 0.01; Student’s t-test).
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Material and Methods
Patients, specimens and preparation of primary BC cells. A total of 25 fresh primary breast 
cancer and 10 adjacent non-cancerous breast tissues as well as 15 recurrent breast cancer specimens were 
collected from the Wuxi Clinical Hospital of Nanjing Medical University. The Institutional Review Board 
of Wuxi Hospital and Nanjing Medical University approved all aspects of this study. Methods were car-
ried out in accordance with approved guidelines and informed consent was obtained from all subjects. 
Clinicopathological classification and staging were assessed according to the American Joint Committee 
on Cancer (AJCC) criteria. Follow-up information was obtained following the review of patient medical 
records. Primary breast cancer BC1205 and BC1302 cells were prepared from pathological grade III BC 
specimens collected directly after surgery. The sections were treated as follows: tumor tissues were washed 
in HEPES-buffered saline, homogenized and treated for 30 min with 0.025% trypsin/EDTA solution at 
37 °C. The resultant cell homogenate was passed over an 80 mm cell strainer and the cell suspension was 
centrifuged (200 g, 5 min). After 3 washes with medium (DMEM, 10% FCS), the cells were seeded out for 
propagation and kept under differentiating conditions.

Cell culture and transfection. Human breast cancer lines including MCF-7, SKBR-3 and MDA-MB-231 
were obtained from American type culture collection (ATCC, Manassas, VA). Cells were cultured in 
DMEM (Gibco, Los Angeles, CA) supplemented with 10% fetal bovine serum (Invitrogen). SKBR3 or 
MDA-MB-231 cells were cultured in 6-well plates and lentiviral-based RNA knockdown was used for silenc-
ing of ADAM12. The lentivirus stocks were generated using the Lentiviral Packaging Mix using the 293FT cell 
line according to the manufacturer’s protocol (Invitrogen). The sequence of the siRNA that was used to tar-
get ADAM-12 was 5′-GGAAGAGCUGAUGAAGUUGTT-3′ and the sequence of the scramble siRNA was 
5′-UUCUCCGAACGUGUCACGUTT-3′ 38. siRNAs for target genes were synthesized and modified accordingly 
(Invitrogen). In a previous study pertaining to breast cancer, ADAM12 was reported as having two alternative 
spliced forms: a transmembrane form (ADAM12-L) and a secreted form (ADAM12-S)26. ADAM12-L and -S 
share a high overall sequence homology, differing only in the transmembrane domain (absent in ADAM12-S) 
and a C terminus that is distinct in each isoform. ADM12-L (transcript variant 1, exons 1–18, 20–24) encodes 
the long, transmembrane protein isoform. ADAM12-S (transcript variant 2, exons 1–19) gives rise to the short, 
secreted protein isoform. In this study, the ADAM12 siRNA is specific for exon 2 and was therefore designed to 
target both splice forms of ADAM12.

Quantitative reverse transcription PCR. Total RNA was extracted from tissues using TRIZOL 
reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacture’s protocol. An equal amount 
of RNA (10 μg) was reverse-transcribed into cDNA by Reverse Transcriptase (Invitrogen) according 
to the manufacturer’s instructions. Real-time quantitative PCR was performed with SYBR Green PCR 
Master Mix ( × 2) (Applied Biosystems, Carlsbad, CA, USA). The primers for the target genes were as fol-
lows: ADAM12: 5′-GCAGTTTCACGGAAACCCAC-3′ and 5′-ACACGTGCTGAGACTGACTG-3′; 
ADAM12-L: 5′-CAGCCAAGCCTGCACTTAG-3′ and 5′-AGTGAGCCGAGTTGTTCTGG-3′; ADAM12-S: 
5′-GCTTTGGAGGAAGCACAGAC-3′ and 5′-TCAGTGAGGCAGTAGACGCA-3′; β-actin: 5′-CATGT 
ACGTTGCTATCCAGGC-3′ and 5′-CTCCTTAATGTCACGCACGAT-3′. The β-actin locus was used as in 
internal control.

Western blot analysis. Total protein from cells was extracted in lysis buffer (Pierce, Rockford, IL) and 
quantified using the Bradford method. Samples of protein (50 μg) of were separated by SDS-PAGE. Proteins were 

Figure 6. The effects of 5-FU-mediated regulation of ADAM12 on in vivo tumorigenicity. (A) Tumors 
produced by MDA-MB-231, 231/siCtrl and 231/siA12 cells (5 × 106) were injected subcutaneously into the 
mammary glands of nude mice per mouse respectively (n = 4). Upon development of tumors within 9 days, the 
mice were randomly distributed into two groups; those that were treated by intraperitoneal injection with 5-FU 
(1.5 mg/kg) and those that were untreated with 5-FU; (B) and (C) Tumor growth curves were monitored during 
the experimental period (n = 4). Data represent the means ± SD following three independent experiments. 
*p < 0.05, **p < 0.01 vs. control.



www.nature.com/scientificreports/

9ScienTiFic RepoRts | 7: 9687  | DOI:10.1038/s41598-017-10468-x

transferred to polyvinylidene fluoride membranes (Millipore, Billerica, MA, USA) and incubated overnight at 
4 °C with antibodies against ADAM12 (1:200; Santa Cruz), AKT (pan-AKT and p-AKT), ERK1/2 (pan-ERK 
and p-ERK1/2 Tyr202/204) (1:1000; Santa Cruz) and a mouse monoclonal antibody against β-actin (1:2000; 
Santa Cruz). LY29004 was utilized as an AKT inhibitor (Cell signaling, Waltham, MA). After incubation with 
peroxidase-coupled IgG at 37 °C for 2 hours (2 h), the immunoreactive proteins were detected using chemilumi-
nescence (Pierce, Rockford, IL). After exposing the blots to X-ray film, quantitation was performed by scanning 
the films obtained from a minimum of 3 independent experiments using an imaging densitometer (Bio-Rad, 
Philadelphia, PA).

Cell viability assay and chemotherapeutic agents. Cells were plated at a density of 2 × 103 cells 
in 96-well plates. Each well contained 200 μl of complete medium, and 3 replicates were prepared per group. 
After incubation for 48 hours at 37 °C, 10 μl of cell counting kit-8 (CCK-8) was added into each well and then 
incubated for 2 h. The absorbance was measured at 450 nm and then referenced at 630 nm using a microplate 
reader. Etoposide, paclitaxel and cisplatin (10 μM and 30 μM) were independently dissolved in dimethylsulfoxide 
(DMSO). 5-FU was dissolved in sterile water. All of the chemotherapeutic agents were obtained from Sigma 
(Sigma-Aldrich, St. Louis, MO).

For the colony formation assay, cells that were exposed to 5-FU and treated with ADAM12-siRNAs or the 
scramble control were plated onto 6-well plates (600 cells/well). The cells were then cultured at 37 °C and 5% CO2 
for 2 weeks until visible clones were formed. The medium was changed every three days during this time. The 
clones were washed three times with PBS and fixed with 4% paraformaldehyde for 15 min. The clones were sub-
sequently stained with 2% crystal violet solution for 15 min. After washing, the number of colonies was counted 
under a microscope. All experiments were performed in triplicates on three independent occasions.

Invasion assays. The cell invasion assay was performed using a 24-well Transwell chamber with a pore size 
of 8 μm (Costar, Cambridge, MA). Each insert was coated with 50 μl of Matrigel (1:3 dilution;BD Bioscience, 
San Jose, CA). The cell suspensions were prepared in serum-free DMEM (1 × 104 cells in 300 μl medium) and 
transferred to the upper Matrigel chamber and incubated for 48 h. Medium supplemented with 15% FBS was 
used as a chemoattractant and added to the lower chamber. After incubation, the non-invading cells on the upper 
membrane surface were removed with a cotton swab, and the cells that passed through the filter were fixed with 
4% paraformaldehyde and stained with the HEMA 3 stain set (Fisher Scientific, Pittsburgh, PA) according to the 
manufacturer’s instructions. The number of invading cells was calculated under the microscope. All experiments 
were performed in triplicates and repeated three times.

Xenograft experiments. The animal experimental protocol was conducted in accordance with the 
guidelines of the “Animal experiment rules in Nanjing Medical University” established by the Experimental 
Animal Center of Nanjing Medical University (Nanjing, China), and was approved by the Institutional 
Animal Care and Use Committee of the Nanjing Medical University. All mice were obtained from the 
Experimental Animal Center of Nanjing Medical University. Female BALB/c nude mice (4–5 weeks old) 
were maintained under sterile and controlled environmental conditions (22 °C, 50 ± 10% relative humid-
ity, 12 h light-dark cycle, autoclaved bedding), with food and water given ad libidum. Following 7 days 
of quarantine, the mice were included in the study. To determine tumor volume, two axes of the tumors 
were measured using a digital Vernier caliper. Tumor volumes were calculated using the following formula: 
length × width2 × 0.5. In order to analyze of the effect of ADAM12, siRNA-ADAM12, scramble control and 
parental cells were injected into the mammary glands of the mice, respectively. Tumors were allowed to 
grow until they reached a size of approximately 50–150 mm3 (day 9) at which point the first group received 
placebo (PBS) and the second group received chemotherapy by intraperitoneal injection (5-FU; 1.5 mg/kg, 
twice a week); each treatment group contained four animals. The tumors were measured in two dimensions 
2–3 times a week using a calliper.

Statistical analysis. Statistical analysis was performed using SPSS software (Version 17.0 SPSS). All quan-
titative results were reported as means ± standard deviation (SD) for at least three independent experiments. The 
data were assessed using the Student’s two-tailed t-test. p < 0.05 was considered statistically significant.
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