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Abstract

MicroRNAs (miRNAs) play important roles in cancer formation and progression by sup-

pressing the production of key functional proteins at the post-transcriptional level in a

sequence-specific manner. While differential expression of miRNAs is widely observed in

cancers including prostate cancer (PCa), how these miRNAs are transcriptionally regu-

lated is largely unknown. MiRNA-221 and miRNA-222 (miR-221/-222) are well-estab-

lished oncogenes and overexpressed in breast, liver, pancreas, and lung cancer, but their

expression and biological functions in PCa remain controversial. Both up and down regu-

lation have been observed in patient samples. Specifically, studies have demonstrated

miR-221/-222 function as oncogenes, and promote PCa cell proliferation and the develop-

ment of castration-resistant prostate cancer (CRPC). However, the expression level of

miR-221/-222 is downregulated in several miRNA expression profiling studies. In this

study, we demonstrate miR-221/-222 are androgen receptor (AR)-repressed genes and

reside in a long primary transcript (pri-miRNA). Derepression of miR-221/-222 after andro-

gen deprivation therapy (ADT) may enhance PCa cell proliferation potential through pro-

moting G1/S phase transition. This function is likely transient but important in the

development of CRPC. Downregulation of miR-221/-222 subsequently occurs once AR

activity is restored through AR overexpression in CRPC. Our findings shed light on the

complexity of transcriptional regulation of miRNAs in PCa and suggest context-dependent

targeting of oncogenic miRNAs.

Introduction

MicroRNAs (miRNAs) are small non-coding RNAs about 22 nucleotides in length that reg-

ulate the expression of target mRNA post-transcriptionally and influence a multitude of cel-

lular processes during development and disease. Dysregulation of miRNAs has been widely

observed in numerous cancers and different stages of cancer. These miRNAs function as
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oncogenes or tumor suppressors based on their inhibition of tumor-suppressive and onco-

genic target mRNAs, respectively. Prostate cancer (PCa) is the most frequently diagnosed

cancer in American men. While miRNA profiling shows that many miRNAs are differen-

tially expressed in PCa tissues versus the corresponding normal tissues, only a small number

of them have been experimentally determined to be involved in the development and pro-

gression of PCa.

MiRNA-221 and miRNA-222 (miR-221/-222) are two highly homologous miRNAs, which

are clustered on the short arm of chromosome X. They are overexpressed in the majority of

epithelial cancers, including breast, liver, pancreas, and lung cancer [1–4]. It is believed that

miR-221/-222 play an oncogenic role in these cancers. They control cell cycle progression

through inhibition of CDKN1B/p27 and CDKN1C/p57, and facilitation of G1/S phase transi-

tion [5–9]. The role of miR-221/-222 in PCa remains controversial. PCa is initially dependent

on androgen for growth and sensitive to androgen deprivation therapy (ADT). However,

almost all patients progress to castration-resistant prostate cancer (CRPC). CRPC remains an

incurable disease through multiple resistance mechanisms to ADT [10]. Interestingly, both up

and down regulation of miR-221/-222 in PCa, especially in CRPC have been reported [9, 11–

21]. It is unclear how miR-221/-222 are transcriptionally regulated during PCa progression

from androgen dependence to castration resistance and whether miR-221/-222 act as onco-

genes or tumor suppressor genes. The variability between these studies may be related to dif-

ferent methodology, molecular heterogeneity and sample collection (such as tumor purity and

stroma contamination). In addition, it should be noted that miRNA function is cell type-spe-

cific and context-dependent. It is possible that miR-221/-222 may act as tumor suppressor

genes in a certain setting [22]. On the other hand, consistent upregulation of miR-221/-222 is

observed in all epithelial cancers except PCa raises the question of whether there is a unique

tissue-specific underlying molecular mechanism.

In general, a miRNA is processed from a primary transcript (referred to as pri-miRNA)

that is transcribed by RNA polymerase II (Pol II). The pri-miRNA can extend hundreds of

kilobases in length and include more than one precursor miRNA hairpin (pre-miRNA). Stud-

ies have shown that approximately 50% of miRNAs are intragenic and mostly located within

introns of protein-coding genes [23, 24]. While about one third of intronic miRNAs are tran-

scribed from their own promoters, the majority are co-expressed and co-regulated with the

host gene in which they reside. In other words, intronic miRNAs and host mRNAs may be

processed from the same primary transcript. On the other hand, intergenic pri-miRNAs are

poorly characterized. There is no well-annotated intergenic pri-miRNA database. Neverthe-

less, similar to transcriptional regulation of protein-coding genes, intergenic pri-miRNA

expression is largely controlled by transcription factors through promoters and enhancers.

Promoter and enhancer regions of intergenic pri-miRNAs and protein-coding genes share

many common epigenetic features, including histone modification marks. MiR-221/-222 are

clustered genes separated by 726 bases based on the reference genome hg19. Since miR-221/-

222 are produced from the same pri-miRNA, expression alteration of these two miRNAs was

observed in cancer cells in a synchronous fashion.

Here, we present integrated genomic data at the miR-221/-222 locus. We define and char-

acterize a pri-miRNA for miR-221/-222 in CRPC cells. We investigate whether and how miR-

221/-222 are regulated by AR, which may explain the disparity of miR-221/-222 expression

level in different PCa tumors. Because miR-221/-222 target key cell cycle genes and increase

cellular proliferation potential in cancer cells, a complete understanding of their regulation

during PCa progression may have clinical applications in the future.

Androgen receptor downregulates microRNA-221 and -222
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Materials and methods

Cell culture and materials

Human prostate cancer LNCaP and C4-2B cells were described previously [25]. All cell lines

were maintained in RPMI 1640 supplemented with 10% (v/v) fetal bovine serum (FBS). Anti-

bodies are: anti-AR (Abcam, ab74272), anti-FOXA1 (Abcam, ab23738), anti-acetylated H3K9/

14 (Millipore, #06–599), anti-acetylated H3K27 (Abcam, ab4729), ant-dimethyl-H3K4 (Milli-

pore, #07–030), ant-trimethyl-H3K4 (Millipore, #07–473), anti-trimethyl-H3K27 (Millipore,

#07–449), anti-Pol II (Santa Cruz Technology, sc-899), and anti-β-tubulin (Santa Cruz Tech-

nology, sc-80011).

Western blot. Anti-AR (1:200 dilution), anti-FOXA1 (1:1000 dilution), and anti—β-tubu-

lin (1:2000 dilution) were used as primary antibodies in Western blot. Experiments were per-

formed as previously described [26].

Cell proliferation and cell cycle assays. C4-2B cells were co-transfected with miR-221

and miR-222 precursors or inhibitors (Ambion) at a final concentration of 20 nM each using

Lipofectamine RNAiMAX Transfection Reagent (Life Technologies) according to the manu-

facturer’s instruction. Cell number was counted 3 days after transfection. Cell cycle analysis

was performed in parallel using Propidium Iodide Flow Cytometry Kit (Abcam). Cell cycle

distribution of 10,000 gated cells is presented.

MiRNA microarray and quantitative reverse transcription polymerase chain reaction

(RT-qPCR). LNCaP and C4-2B cells were grown in RPMI 1640 supplemented with 10%

FBS. Total RNA was extracted using TRIzol Reagent (Thermo Fisher Scientific) and sub-

mitted to Exiqon for miRNA expression profiling using miRNA microarrays. Dual-color

experiments using Hy3™ and Hy5™ as labeling dyes with dye swap were conducted for com-

parison of differential expression between LNCaP and C4-2B cells. In addition, miR-221/-

222 were quantified by RT-qPCR using TaqMan MicroRNA Reverse Transcription Kit

(Applied Biosystems) and FastStart Universal Probe Master (Roche) according to the man-

ufacturer’s instruction. U6 snRNA was used for normalization. All primer sets for TaqMan

MicroRNA Assays were purchased from Applied Biosystems. Values are means ± standard

deviations (SD) of triplicate wells.

RT-qPCR for mRNA expression. After treatments as indicated, total RNA from cells or

tissues was extracted using TRIzol Reagent. Complementary DNA (cDNA) was prepared

using the iScript cDNA Synthesis Kit (Bio-Rad), and qPCR was conducted using SYBR Green

PCR Master Mix (Applied Biosystems). Triplicate PCR reactions were conducted. The primers

are: Site A-forward, 5’-GTCATAATGGCAGAGTCCTCAT-3’; reverse, 5’-TACATGGCAGAA
GAGCAGAAG-3’; Site B-forward, 5’-CAGAAGTTCATGGATGGGAGAG-3’; reverse, 5’-
TGCTTTGTACTCTTCGGGATTAG-3’. Primers for AR, PSA, and GAPDH mRNA were previ-

ously described [27, 28].

Small interfering RNA (siRNA) knockdown. For AR and FOXA1 knockdown, cells were

seeded in 6-well plate and transfected with gene-specific siRNA at a final concentration of 20

nM using Lipofectamine RNAiMAX Transfection Reagent according to the manufacturer’s

instruction. SMARTpool siRNAs against AR, FOXA1, and non-specific (NS) control were pur-

chased from Thermo Fisher Scientific. Cells were collected for miR-221/-222 RT-qPCR analy-

sis 3 days after transfection.

Luciferase assay. Cells were transfected with miRNA luciferase reporters, pMiR-

221-Luc or pMiR-222-Luc (Signosis). These two vectors are firefly luciferase-based reporter

constructs, which have a unique miRNA target site at 3’UTR perfectly complementary to

miR-221 and miR-222 respectively. pRL-TK Renilla luciferase reporter (Promega) was co-

transfected as an internal control. Luciferase activity was measured 24 hours after

Androgen receptor downregulates microRNA-221 and -222
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transfection using Dual-Luciferase Reporter Assay System (Promega). The results are repre-

sented as Firefly/Renilla ratio.

Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-

seq). ChIP-seq data at the miR-221/-222 locus are from our previously generated datasets

[27]. These data have been deposited in the Gene Expression Omnibus (GEO) database under

accession number GSE40050. RNA-seq was performed in C4-2B cells that were grown in 5%

charcoal-stripped fetal bovine serum (CSS) for 3 days. Briefly, 10 ug of total RNA was extracted

and depleted of ribosomal RNA (rRNA) using the RiboMinus kit (Thermo Fisher Scientific).

Library preparation and data analysis were performed as previously described [27]. RNA-seq

data are available from http://epigenomics.wustl.edu/liData/C42B_riboM_1.bw.

Chromatin immunoprecipitation (ChIP) and formaldehyde-assisted isolation of regu-

latory elements (FAIRE). ChIP experiments were performed as described previously [27].

FAIRE experiments were performed using a published protocol [29], Briefly, cells were fixed

with 1% formaldehyde for 10 minutes at room temperature followed by sonication. Free

DNAs at nucleosome depleted regions were purified through phenol/chloroform extraction.

The DNA enrichment was analyzed by RT-qPCR. The AR binding sites and transcription

start sites (TSS) were examined. The primers for the miR-221/-222 locus are: MiR-221/-222

AR-forward, 5’-TCTTTGCAATCTGAACACAGCA-3’; reverse, 5’-TGCCCGACTTCTAAGC
ATTAGC-3’; miR-221/-222 TSS-forward, 5’-CTCCATTAAACCCTTGTCCAAAC-3’;

reverse, 5’-GGAATGGGTTTGCTGAACTTAC-3’. Primers for the PSA enhancer and pro-

moter were described previously [28].

Xenograft tissue analysis. LuCaP 35 and LuCaP 35CR xenografts were established from

metastatic human prostate tumors in lymph nodes [30]. LuCaP 35 (grown in intact mice),

LuCaP 35C (10 days after castration), and LuCaP 35CR (grown in castrated mice) tissues were

collected directly from xenograft models. LuCaP35CR was developed 4 months after castration

and then maintained in castrated mice. Fresh frozen tissues were provided by Dr. Robert Ves-

sella at University of Washington, Seattle. Total RNA was extracted using TRIzol Reagent.

Gene expression was examined using RT-qPCR.

Microarray data analysis. MiR-221/-222 and AR expression data from 111 PCa patient

samples were obtained from microRNA microarray (GSE21036) and whole exon microarray

(GSE21034) datasets respectively. Patients were ranked according to AR expression level and

grouped into high-AR (the first quartile, n = 28) and low-AR (the last quartile, n = 28). Differ-

ential expression of miR-221/-222 between two groups was analyzed by non-parametric

Mann-Whitney test. Boxplot shows the mean ± 95% confidence interval (CI).

Results

MiR-221 and miR-222 are overexpressed in CRPC cells and required for

CRPC cell proliferation

First, we conducted miRNA expression profiling in androgen-dependent LNCaP and LNCaP-

derived C4-2B cells using miRNA microarray analysis (S1 Table). C4-2B is a CRPC cell line,

which was generated from a bone metastasis after castration in xenograft model [31]. In line

with previous studies in CRPC cells [18, 32, 33], we found that miR-221/-222 were overex-

pressed in C4-2B cells in contrast to LNCaP cells by approximately 3- and 4-fold respectively

(Fig 1a). MiR-221/-222 are the top two miRNAs upregulated more than 2-fold, indicating

their important functions in C4-2B cells. This result was further validated by RT-qPCR (Fig

1b). To test whether miR-221/-222 are required for C4-2B cell proliferation, we knocked down

the expression of miR-221/-222 by transfecting commercially synthesized miR221/-222 inhibi-

tors. Cell cycle analysis showed a significant increase of C4-2B cells in the G0/G1 phase and a

Androgen receptor downregulates microRNA-221 and -222
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Fig 1. Overexpression of miR-221/-222 promotes CRPC cell proliferation. (a) MiRNA microarray results showing upregulation of miR-

221/-222 in C4-2B cells compared to LNCaP cells. (b) RT-qPCR confirmed microarray results. The expression level was normalized by U6

snRNA. (c) C4-2B cells were co-transfected with miR-221 and miR-222 inhibitors (anti-221/-222) and non-specific control (NC). Cell number

was counted 3 days after transfection. Cell cycle analysis was performed in parallel. (d) C4-2B cells were co-transfected with miR-221 and

miR-222 precursors (miR-221/-222) and analyzed as described in (c). (e). LNCaP and C4-2B cells were grown in phenol red-free RPMI

1640 media containing 5% charcoal-stripped fetal bovine serum (CSS) for 3 days followed by treatment with 10 nM dihydrotestosterone

(DHT) or ethanol control for 16 hours. MiR-221/-222 were examined using RT-qPCR. (f) LNCaP and C4-2B cells were grown in phenol red-

free RPMI 1640 media containing 5% CSS with or without 10 nM DHT for 2 days. pMiR-221-Luc or pMiR-222-Luc luciferase constructs

containing DNA sequences at 3’UTR complementary to miR-221/-222 were transfected into cells. pRL-TK Renilla luciferase reporter was

co-transfected as an internal control. Luciferase activity (Firefly/Renilla ratio) was determined 24 hours after transfection. The p-value for cell

cycle distribution of 10,000 gated cells was determined using a chi-squared test. The p-value for other assays was determined using a two-

tailed Student’s t-test. Data presented are mean ± SD of three measurements. * P < 0.05; ** P < 0.01.

https://doi.org/10.1371/journal.pone.0184166.g001
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corresponding decrease in the S and G2/M phases (Fig 1c). Accordingly, proliferation of C4-

2B cells was significantly decreased after miR-221/-222 inhibition. In contrast, overexpressing

miR-221/-222 precursors dramatically decreased cells in the G0/G1 phase and increased cells

in the S phase and G2/M phases (Fig 1d). Proliferation of C4-2B cells was significantly

enhanced. These results are consistent with the notion that miR-221/-222 are required for

CRPC cell proliferation.

While it has been reported that miR-221/-222 are regulated by NF κB in PCa [34], andro-

gen may also affect the production of the miR-221/-222 [35]. In this study, we found that the

expression level of miR-221/-222 was significantly suppressed after androgen treatment in

both LNCaP and C4-2B cells, although androgen-induced inhibition was greater in C4-2B

cells (Fig 1e). To further examine the functionality of miR-221/-222 in LNCaP and C4-2B

cells, the luciferase reporters carrying a complementary sequence to miR-221 or miR-222 at 3’

UTR of luciferase gene were transfected into LNCaP and C4-2B cells. As expected, we

observed significantly lower luciferase activities in C4-2B cells compared to LNCaP cells (Fig

1f). Androgen treatment enhanced luciferase activities in both cells corresponding to downre-

gulation of miR-221/-222, indicating androgen-mediated regulation.

MiR-221 and miR-222 are AR-repressed genes

Next, we sought to determine whether and how androgen inhibits expression of miR-221/-222

through the AR at this locus. We studied this in C4-2B cells because a greater inhibitory effect

was observed. It is known that miR-221/-222 are transcribed in a single primary transcript

[36]. Computational analysis has predicted the length of the primary transcript of miR-221/-

222 is over 10 kilobases [37]. However, the exact pri-miRNA length and TSS have not been

experimentally defined. We performed RNA-seq in C4-2B cells and identified a highly

expressed transcript in which miR-221/-222 reside (Fig 2a). The transcript does not code a

known protein. The whole transcript was occupied by Pol II based on our ChIP-seq data gen-

erated previously [27]. We then examined the expression of this transcript by RT-qPCR using

two sets of primers at sites A and B. We observed higher expression level in C4-2B cells com-

pared to LNCaP cells, which was inhibited by androgen treatment, but more so in C4-2B cells

(Fig 2b). Next, we examined histone modification marks for the promoter and found a robust

peak for histone H3 acetylation (AcH3) and H3K4 tri-methylation (H3K4me3) at the TSS of

the transcript (Fig 2a). Importantly, our AR ChIP-seq data showed a strong AR binding site

9.6 Kb upstream of miR-221/-222. AR occupancy was validated in both LNCaP and C4-2B

cells by an independent site-specific ChIP-qPCR (Fig 2c). These analyses revealed an AR-regu-

lated pri-miRNA in which miR-221/-222 reside.

The mechanism underlying AR-mediated transcriptional activation has been well studied,

whereas AR-mediated transcriptional repression is poorly understood. FOXA1 functions as a

pioneer factor, which facilitates AR recruitment to AR binding sites. Like the PSA enhancer,

we detected strong pre-existing FOXA1 occupancy, which coincides with the AR binding site

at the miR-221/-222 locus in the absence of androgen (Fig 2d). FOXA1 binding was further

enhanced after androgen stimulation. Importantly, the AR binding site at the miR-221/-222

locus display an open chromatin structure determined by FAIRE assay (Fig 2e). The FAIRE

signal intensity was significantly increased after androgen stimulation, suggesting AR-medi-

ated repression undergoes chromatin modifications with more open structure. This is similar

to the change observed at the AR enhancer region of the PSA gene. Knockdown of AR or

FOXA1 diminished the AR-mediated inhibitory effect on miR-221/-222 expression in C4-2B

cells (Fig 2f & 2g). Taken together, our results suggested that FOXA1 and open chromatin

structure are required for AR-mediated repression.

Androgen receptor downregulates microRNA-221 and -222
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Fig 2. Mir-221/-222 are AR-repressed genes. (a) RNA-seq and ChIP-seq results showing genomic region around the miR-221/-222 locus.

Expression of the primary transcript matches enriched Pol II signals. Robust H3K4me3 and AcH3 peaks are present at the TSS. AR binding

site is observed upstream of miR-221/-222 and coincides with FOXA1 and AcH3 peaks. (b) The expression level of pri-miRNA was

measured by RT-qPCR using two sets of primers at sites A and B. (c) LNCaP and C4-2B cells were grown in phenol red-free RPMI 1640

media containing 5% CSS for 3 days followed by treatment with 10 nM DHT or ethanol control for 4 hours. AR ChIP-qPCR analyses were

conducted in both LNCaP and C4-2B cells. Strong DHT-induced AR occupancy was detected. (d) FOXA1 occupancy at AR binding sites

was confirmed using ChIP-qPCR. (e) FAIRE assay was used to measure open chromatin structure at AR binding sites of the PSA and miR-

221/-222 loci. (f) C4-2B cells were grown in RPMI 1640 medium with 5% CSS for 2 days followed by AR siRNA transfection. RT-qPCR

analyses of miR-221/-222 levels were conducted 3 days after siRNA transfection. Cells were treated with 10 nM DHT or ethanol for 16 hours

Androgen receptor downregulates microRNA-221 and -222
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Specific histone modifications are associated with AR-mediated

repression at the miR-221/-222 locus

AR binding sites can be epigenetically marked by specific histone modifications and fluctua-

tion of these modifications has been linked to transcriptional regulation. To understand chro-

matin modifications associated with AR-mediated activation versus repression, we examined

several specific histone modification marks at the AR binding site of the miR-221/-222 locus

versus that of the PSA locus (Fig 3a). ChIP-qPCR was performed in both LNCaP and C4-2B

cells in the presence or absence of androgen. We observed enrichment of H3K9/14 (general)

and H3K27 (enhancer-specific) acetylation at both loci (Fig 3b). Acetylation levels were signifi-

cantly increased after androgen stimulation at the PSA locus, but remained unchanged or

slightly decreased at the miR-221/-222 locus. H3K4me2 and H3K4me3 have been the most

efficient marker for AR enhancer and promoter [38]. We found H3K4me2 and me3 are highly

enriched at both AR binding sites. Interestingly, both H3K4me2 and me3 decreased with

androgen stimulation at the PSA and miR-221/-222 loci. These changes are site-specific rather

than global likely due to nucleosome repositioning or epitope masking [39]. H3K27me3, an

inactive marker for transcription, was also decreased at both AR binding sites. Furthermore,

we examined Pol II occupancy at the promoter region and AR binding site. The Pol II level

was similar between the PSA and miR-221/-222 genes in the absence of androgen at the pro-

moter (Fig 3c). The association of Pol II at the PSA promoter was significantly increased after

androgen stimulation. In contrast, androgen treatment reduced the binding of Pol II to the

promoter of miR-221/-222. Similar changes of Pol II occupancy were observed at AR binding

sites. These results indicate AR-mediated activation and repression are associated with histone

H3 acetylation level, which either facilitates or blocks Pol II recruitment to the TSS.

AR overexpression could provide a possible explanation for

downregulation of miR-221/-222 in CRPC

While miR-221/-222 are considered as oncogenes in CRPC, it is not clear why their expression

level is downregulated in CRPC patients in several studies [11, 16, 20]. Here, we used a xeno-

graft mouse model to mimic clinical CRPC development and progression. LuCaP 35 is an

androgen-dependent xenograft, whereas LuCaP 35CR is an androgen-independent variant of

LuCaP 35 [30]. LuCaP 35 and LuCaP 35CR xenografts are implanted and maintained in intact

and castrated immunodeficient mice respectively (Fig 4a). In order to examine gene expres-

sion changes immediate after castration, we obtained LuCaP 35 tumor at day 10 post-castra-

tion (referred to as LuCaP 35C). We found that AR target gene PSA expression level was

decreased 30% 10 days after castration while the AR level remained unchanged or slightly

increased (Fig 4b). Upon emergence of CRPC, both AR and PSA were dramatically overex-

pressed in the LuCaP 35CR tumor. In contrast, the expression level of mature miR-221/-222

and their primary transcript was significantly upregulated in LuCaP 35C after castration (Fig

4c), which might be necessary for the tumor to survive castration. Subsequently, the expression

level was suppressed in line with AR overexpression once LuCaP 35CR tumor was established.

Because AR amplification or overexpression is commonly observed in clinical CRPC tumors,

this may explain lower expression level of miR-221/-222 in these patients. We next examined

publically available miRNA expression profiling datasets [40]. Patients were grouped based on

before RNA extraction. AR knockdown was confirmed by Western blot. (g) Expression of miR-221/-222 was also examined after FOXA1

knockdown. FOXA1 knockdown was confirmed by Western blot. The p-value was determined using a two-tailed Student’s t-test. Data

presented are mean ± SD of three measurements. * P < 0.05; ** P < 0.01; *** P < 0.0001.

https://doi.org/10.1371/journal.pone.0184166.g002
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Fig 3. Analysis of histone modifications and Pol II enrichment at the miR-221/-222 locus versus PSA locus. (a) The

schematic diagrams represent AR binding sites at the PSA (left) and miR-221/-222 (right) loci. (b) LNCaP and C4-2B cells were

grown in RPMI 1640 medium with 5% CSS for 3 days followed by the treatment with 10 nM DHT or ethanol control for 4 hours.

Histone H3K4 acetylation (H3K9/14Ac and H3K27Ac), H3K27 tri-methylation (H3K27me3), H3K4 di- and tri-methylations (H3K4me2

and H3K4me3) were examined by ChIP-qPCR at AR binding sites as indicated. (c) LNCaP and C4-2B cells were treated as

described in (b). Pol II enrichment at promoters and AR binding sites were examined by ChIP-qPCR. The p-value was determined

using a two-tailed Student’s t-test. Data presented are mean ± SD of three measurements. * P < 0.05; ** P < 0.01.

https://doi.org/10.1371/journal.pone.0184166.g003
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whether they have low or high AR expression in their tumors (Fig 5). We found that the

expression level of miR-221/-222 is significantly lower in PCa tissues with high AR expression

compared with those with low AR expression.

Discussion

The molecular mechanisms by which PCa cells progress from androgen-dependent to castra-

tion-resistant status have been extensively studied. Much of the previous work has been

focused on how AR activity is restored through AR overexpression, amplification, mutations

and AR variants, which leads to reactivation of some AR-stimulated genes including PSA.

Nevertheless, emerging evidence has suggested that one of the molecular mechanisms for PCa

cells to survive ADT is derepression of AR-repressed genes that contribute to androgen syn-

thesis, DNA synthesis, and cellular proliferation [41]. While AR-repressed genes including

miRNAs have been identified, these genes are not well studied. Here, we showed that AR nega-

tively regulates the expression of miR-221/-222. MiR-221/-222 are expressed from the inter-

genic region. Thus, precise annotation of the primary transcript for miR-221/-222 is critical

Fig 4. Expression of AR, PSA, miR-221/-222 in xenograft tissues. Total RNA was extracted from fresh

frozen tumor tissues and examined for gene expression using RT-qPCR. The p-value was determined using a

two-tailed Student’s t-test. Data presented are mean ± SD of three measurements. ** P < 0.01; ***
P < 0.0001.

https://doi.org/10.1371/journal.pone.0184166.g004
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for understanding the mechanisms through which miR-221/-222 expression is regulated.

Using genomic analysis, we identified a long pri-miRNA of miR-221/-222 in CRPC C4-2B

cells. We further characterized its epigenetic features at the promoter and AR enhancer. Our

results are consistent with a recent report in which the authors elegantly mapped cell type-spe-

cific TSS and regulatory domains for pri-miRNAs using genomic approaches [42]. Specifically,

they defined a distal active TSS of pri-miRNA at the miR-221/-222 locus in LNCaP cells,

which perfectly matches the TSS of the pri-miRNA in our C4-2B cells.

Our studies revealed that AR-mediated repression is associated with suppression of histone

H3 acetylation and pol II binding at this locus. Repressive effects of AR on miR-221/-222

expression restrains their oncogenic potential. ADT may unlock miR-221/-222, which in turn

promote G1/S transition through downregulation of cell cycle genes, such as p27Kip1. Recent

studies further suggested HECTD2 and RAB1A as miR-221/-222 targets [33]. Downregulation

of HECTD2 and RAB1A promotes androgen-independent PCa cell growth. Our results are

consistent with the notion that CRPC cells may acquire a dependency after ADT on AR-

repressed genes that are otherwise non-essential for androgen-dependent cells. CRPC cells

require high activity of miR-221/-222 to maintain sufficient proliferative ability. This is sup-

ported by the evidence that miR-221/-222 are implicated in aggressive PCa [21, 35, 43]. Upre-

gulation of miR-221/-222 has been observed in CRPC cell lines and some patients [18, 32].

Furthermore, our results indicate that miR-221/-222 may play a critical role in promoting PCa

cell proliferation in the early stage of CRPC. This function will be attenuated once AR activity

is restored or AR overexpression occurs in CRPC. We have observed upregulation of miR-

221/-222 in PCa xenograft tumors after castration followed by downregulation of miR-221/-

222 in AR-overexpressing CRPC tumors. This indicates that the oncogenic role of miR-221/-

222 is likely transient, and reactivated AR-mediated pathways may eventually take over to sup-

port the continuous growth of PCa cells.

Several studies showed downregulation of miR-221/-222 in metastatic PCa and CRPC spec-

imens, suggesting a tumor suppressor role for miR-221/-222 [11, 13, 16]. However, miR-221/-

Fig 5. The expression levels of miR-221/-222 and AR are inversely correlated in PCa tumors.

Differential expression of miR-221/-222 between high-AR and low-AR groups was analyzed by non-

parametric Mann-Whitney test. Boxplot shows the mean ± 95% confidence interval (CI).

https://doi.org/10.1371/journal.pone.0184166.g005
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222 are not always tumor-suppressive in functional analyses. The effect of miR-221/-222 on

PCa cell growth is cell type-specific and context-dependent. Kneitz et al showed that overex-

pression of miR-221 inhibits AR-negative PC3 and DU145 cell proliferation, but has no inhibi-

tory effect on AR-positive LNCaP cells [13]. Goto et al reported that overexpression of miR-

221/-222 has no effect on PC3 and DU145 cell growth, but promotes their migration and inva-

sion in vitro [11]. In contrast, Galardi et al showed that overexpression of miR-221/-222 in

LNCaP cells strongly induces cell growth while knockdown of miR-221/-222 in PC3 cells

reduces their colony formation in vitro [9]. Mercatelli used in vivo approaches and confirmed

that overexpression of miR-221 in LNCaP cells confers a high growth advantage and inhibition

of miR-221/-222 in PC3 cells reduces tumor growth in mice [15]. These observed differences

indicate a specific function of miR-221/-222 in different phases of PCa development and pro-

gression, which can be achieved by involving different targets since one miRNA may regulate

multiple genes. In this study, we showed oncogenic role of miR-221/-222 in CRPC C4-2B cells

through promoting G1/S phase transition. We further demonstrated that miR-221/-222 are

AR-repressed genes. Overexpression of AR may explain downregulation of miR-221/-222

expression in CRPC. Although our results may only reflect a small set of CRPC patients, our

finding are consistent with the notion that derepression of miR-221/-222 after ADT is critical

for the continuous growth of PCa cells when AR signaling is blocked. MiR-221/-222 are poten-

tial therapeutic targets for certain patients during CRPC development.

Conclusions

MiR-221/-222 are well-established oncogenes in all epithelial cancers except prostate cancer

(PCa). In the present study, we show miR-221/-222 are AR-repressed genes and their expres-

sion and oncogenic function are associated with AR status in PCa cells. The findings provide

an explanation of why miR-221/-222 act as oncogenes in the development of CRPC, but their

overexpression is not observed in CRPC tumors. Our findings shed light on the complexity of

transcriptional regulation of miR-221/-222 in PCa and suggest context-dependent targeting of

oncogenic miR-221/-222.
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