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One visual search, many memory searches: An eye-tracking
investigation of hybrid search
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Jeremy M. Wolfe

Suppose you go to the supermarket with a shopping list
of 10 items held in memory. Your shopping expedition
can be seen as a combination of visual search and
memory search. This is known as “hybrid search.” There
is a growing interest in understanding how hybrid search
tasks are accomplished. We used eye tracking to
examine how manipulating the number of possible
targets (the memory set size [MSS]) changes how
observers (Os) search. We found that dwell time on each
distractor increased with MSS, suggesting a memory
search was being executed each time a new distractor
was fixated. Meanwhile, although the rate of refixation
increased with MSS, it was not nearly enough to suggest
a strategy that involves repeatedly searching visual space
for subgroups of the target set. These data provide a
clear demonstration that hybrid search tasks are carried
out via a “one visual search, many memory searches”
heuristic in which Os examine items in the visual array
once with a very low rate of refixations. For each item
selected, Os activate a memory search that produces
logarithmic response time increases with increased MSS.
Furthermore, the percentage of distractors fixated was
strongly modulated by the MSS: More items in the MSS
led to a higher percentage of fixated distractors.
Searching for more potential targets appears to
significantly alter how Os approach the task, ultimately
resulting in more eye movements and longer response
times.

From searching for the snooze button when the
alarm rings to a midnight hunt for a snack, we engage
in hundreds of visual search tasks each day. A vast
literature devoted to the visual search paradigm has
yielded a deep understanding of how we find targets or
decide that the target we are searching for is not present

Harvard Medical School, Boston, MA, USA EI

(Duncan & Humphreys, 1989; Najemnik & Geisler,
2005; Wolfe, Cave, & Franzel, 1989; Zelinsky, 2008).
The majority of this literature has focused on situations
with a single, well-defined target: for instance, a T
among Ls or the snooze button in the example above.

We know a great deal less about how search is
accomplished when the observer (O) is searching for
one of a number of possible targets. Under these
circumstances, the O must search through both the
visual scene and his or her memory of the potential
targets in order to determine whether a target is
present. We refer to this as “hybrid search,” a term
originally coined by Shiffrin and colleagues (Cunning-
ham & Wolfe, 2014; Drew & Wolfe, 2014; Shiffrin &
Schneider, 1977; Wolfe, 2012; Wolfe, Boettcher,
Josephs, Cunningham, & Drew, 2015). For example, if
we were looking exclusively for cookies during a late-
night search for a snack, this would be considered a
“simple visual search” with only one target. On the
other hand, a search for peanut butter, jelly, and bread
would be a “hybrid search” in which we must hold
several targets in memory. Hybrid search is an
important task for expert searchers. Consider radiolo-
gists, who need to determine whether signs of any of a
number of ailments are present in a medical image, or
baggage screeners, who must continuously search for
many different possible threats that might be smuggled
aboard an airplane. The present work uses eye tracking
to examine the interaction of visual and memory search
in a hybrid search task.

Previous work has shown, as might be expected, that
increasing the number of possible targets results in slower
response times (RTs), less efficient search, and slightly
elevated error rates (Wolfe, 2012). More interestingly,
that work has shown that RT increases linearly with
increases in the visual set size (VSS), but RT increases
linearly with the /og of the number of possible targets
held in memory (memory set size [MSS]). As a result, Os
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were capable of searching for any of 100 possible targets
much faster than would have been predicted by a linear
increase of RT with MSS. More concretely, if memory
search, like visual search, moved at a rate of ~25-50 ms/
item, it would take on the order of 40 min to search a
single photograph of 100 people for the presence of any
of 1,000 friends. The logarithmic compression of the
memory search allows such a search to be accomplished
in seconds.

Several mechanisms could produce the logarithmic
relationship of RT to MSS. For instance, consider the
child’s game of guessing a number between 1 and 100.
If you use the strategy of dividing the set in half on each
guess (“Is the number bigger than 50? No? Is it bigger
than 257, etc.), the number of steps to reach an answer
will be log2 of 100. Similarly, if half of the memory set
can be excluded on each step of a memory search, the
number of required steps will be log2 of the MSS. Such
a process could proceed with Os selecting item after
item in the visual display. Alternatively, the O might
somehow search the entire visual display in parallel for
half the remembered items, then for half of the
remaining items in the memory set, and so forth. In
either case, this would seem to require several passes
through the visual display in order to identify whether
any of the possible targets are present.

Leite and Ratcliff (2010) have shown logarithmic
increases in RT can be a by-product of a diffusion
process. When an item in the visual display is compared
to the contents of memory, Leite and Ratcliff envision
separate diffusion processes accumulating information
about whether the current item matches each of the items
in the memory set. The visual item is identified as a match
to a specific item in memory if the diffuser reaches the
decision threshold for that item. If that threshold is set
too low, the item might be misidentified (a false-alarm
error). As the MSS and, thus, the number of diffusers
rises, the chance of a false-alarm error also rises. To keep
the error rate constant, the decision thresholds must
increase with the MSS. A higher decision threshold
produces a longer RT, and the increase of RT with MSS
in such a model turns out to be logarithmic.

As these different models produce similar patterns of
RT data, it is difficult for behavioral measures alone to
distinguish between them. However, these models
predict very different patterns of eye movements. In
order to test the predictions of these models, we
performed a conceptual replication of Wolfe’s (2012)
previous work while tracking eye movements. The data
from this experiment provide strong evidence that Os
tend to search through the memory set while fixating
individual targets rather than, for example, searching
through part of the memory set on each of several
searches through the visual set.

In addition to providing a means by which to evaluate
different models of how hybrid search is accomplished,
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the eye-tracking data from this paradigm provide a
method to examine how manipulating the number of
potential targets alters the way in which we approach a
scene. Previous work has demonstrated that manipulat-
ing search difficulty results in a series of reliable changes
in how search is accomplished. For instance, Young and
Hulleman (2013) found that increasing search task
difficulty via increasing target—distractor similarity led to
an increased number of fixations, but fixation dwell time
and saccadic amplitude were not strongly influenced. The
most striking effects of task difficulty were observed in
measures of function visual field (FVF). The FVF,
sometimes also referred to as perceptual span, is a popular
metric that is proposed to quantify the spatial range over
which information can be effectively processed in a single
fixation. Young and Hulleman found that FVF generally
decreases as the complexity of the task increases (Rayner
& Fisher, 1987, 2013; Young & Hulleman, 2013).

In a search task, the FVF is typically calculated by
placing virtual circles around each fixation and asking
how big the radius of those circles needs to be in order
for the circles to cover some percentage of the items in a
display. There are multiple constraints on the ability to
process items away from the point of fixation. There
are basic limits due to the decline in acuity away from
the fovea and due to peripheral crowding (Levi, 2008).
These are captured by performance measures such as
the useful field of view (Ball, Beard, Roenker, Miller, &
Griggs, 1988). Attention also plays a role (Williams,
1989). The FVF attempts to measure the effective
number of items that can be processed on each fixation
as that number varies with the search task. Thus, if Os
are searching for a red item among green, all items can
be processed at once, and the resulting FVF would be
very large. Harder tasks produce smaller FVFs. The
FVF is tightly coupled to the number of fixations
required in a task. As the number of fixations goes up,
FVF typically declines. One exception to this general
rule would be instances in which there are many
refixations on the same location. Under these circum-
stances, one could see a decoupling of these two metrics
as more fixations could theoretically lead to no change
in the FVF estimate. Whether one sees the FVF as
causal (Hulleman & Olivers, 2017) or as side effect of
RT and fixation (Wolfe, 2017) is a matter of some
ideological debate. Nevertheless, because the measure is
of current interest, we will report those analyses here.

Fourteen Os (mean age: 32.6, SD: 9.4, six women)
were each tested on five blocks, each with a different
MSS of one, four, 16, 32, or 100 unique objects. Sample
size was chosen to exceed the sample size of 10 from
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Figure 1. Experimental design and sample stimulus.

Wolfe’s (2012) hybrid search experiments. Block order
was randomized across Os. Each block of the
experiment began with a memorization procedure in
which Os were asked to memorize the set of targets.
Each target object was presented in isolation for 3 s in
the center of the screen (Figure 1a). During the memory
test phase (Figure 1b), Os saw a total of 2X objects
(where is X is the MSS for the current block). Half of
these objects were targets. Os identified each item as
being a member of the memory set or a novel item. Os
had to perform this recognition test twice with an
accuracy of more than 90%. Failing to do so resulted in
a repeat presentation of the memory set and another
recognition test. Once above threshold, Os could move
onto the next, hybrid search portion of the experiment.

On each hybrid search trial, Os searched for any one
of their memorized targets in visual displays of eight or
16 items. Targets were present on 50% of trials. Os were
asked to localize a target, if present, by using the mouse
to click on it directly. If no target was present, they
were instructed to click on the “absent” box along the
left side of the screen (see Figure 1). Os completed 12
practice trials and 160 experimental trials (640 total) for
each of the five memory blocks.

All Os gave informed consent, were compensated
$10 per hour, had at least 20/25 acuity with correction,
and passed the Ishihara color blindness test. During the
experiments, Os sat at a chin rest positioned 60 cm
from a 20-in. CRT monitor (Mitsubishi Diamond Pro
91TXM) with resolution set to 1280 X 960 pixels and an

Part 2: Search Phase

85-Hz refresh rate. Experimental sessions were carried
out on a Macintosh G4 computer running Mac OS
10.5. Experiments were written in Matlab 7.5 (The
Mathworks) using the Psychophysics Toolbox (Brai-
nard, 1997; Pelli, 1997), Version 3. Stimuli were
photographs of objects that subtended 2.39°.

Eye-tracking analysis

Eye tracking was carried out using a desktop-mounted
Eyelink 1000 (SR Research, ON, Canada) which
sampled the x- and y-positions of the eye at 500 Hz. We
calibrated the eye tracker using a nine-point calibration
procedure. An eye movement was classified as a saccade
when its distance exceeded 0.5° and its velocity reached
35 °/s (or acceleration reached 9500 °/s%). Viewing was
binocular, but data from only one eye was recorded.

Eye movements were analyzed by placing 122 X 122
pixel areas of interest around each item in the search
array. Based on these regions of interest, we measured
fixations, refixations, cumulative dwell time, and the
percentage of objects visited as a function of MSS.

FVF analyses
To calculate FVF, we used the gaze coordinates of

each fixation and subsequently calculated the percent-
age of distractors contained within a variable circular
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Figure 2. FVF calculations.

window around this point. Items falling within this
circular window were considered attended. As previ-
ously stated, Young and Hulleman (2013) systemati-
cally varied the size of the radius around each fixation
until at least 50% of the items were viewed on target-
present trials. If search were random over the course of
an experiment the O would need to visit, on average,
50% of the items prior to finding the target on present
trials. Therefore, the threshold is set to half of the
items. We conducted this analysis for each MSS as
outlined in Figure 2. We increased the radius around
each fixation from 0.38 degrees of visual angle (DVA)
to 13.2 DVA, then found the point at which 50% of the
distractors were visited for each O as function of MSS.
Following Young and Hulleman, we then used the
FVF estimate generated from present trials to estimate
the proportion of items visited (i.e., coverage) on absent
trials.

Behavioral results

Figure 3 shows RT as a function of VSS (Figure 3a)
and MSS (Figure 3b). Throughout the Results section,
the Greenhouse—Geisser correction was applied in cases
in which violations of sphericity were detected, and
generalized eta squared (g-n°) is reported as a measure
of effect size. The behavioral data provide a conceptual
replication of Wolfe’s (2012) previous work. As in
previous work, error rates were quite low. Even with a
MSS of 100 objects, Os were correct 86% of the time.
There was a main effect of both the presence of a target
item and MSS on response accuracy: target presence,
Fgl, 13)=31.19, p < 0.001, generalized eta squared (g-
Nn~, a measure of effect size) =0.26; MSS, F(1.45, 18.86)
=88.81, p < 0.001, g-n*> = 0.52, and the two factors
interacted significantly, F(1.48, 19.31) =23.78, p <

0.001, g-n° = 0.05. RT data on correct trials followed
the same pattern of large main effects for both factors:
target presence, F(1, 13)=28.72, p < 0.001, g-n*=0.25;
MSS, F(1.38, 17.89) = 83.82, p < 0.001, g-n* = 0.52,
and a significant interaction between the two, F(2.46,
31.94) = 24.26, p < 0.001, g-n* = 0.04.

In order to evaluate whether the RT increase
associated with increasing MSS followed a linear or
log-linear function, we used the data from MSS one,
four, and 16 to predict data from 100 items in memory
(Drew & Wolfe, 2014). As can be observed in Figure 3,
the log-linear model does a much better job of
predicting actual behavior than the linear model in all
conditions. The log-linear estimate was reliably closer
to the observed value than the linear estimate in all
cases (all ¢z values > 7, all p values < 0.001). For
example, with 100 items in memory, it took the average
O 4.5 s to finish an absent trial with eight visual items
to search. Although the log-linear model predicted
these trials would take 4.9 s, the linear model predicted
they would take 13.8 s. The slight overestimate of RT
by the log-linear model probably reflects a modest
speed—accuracy trade-off because errors are greatest at
the largest MSS.

Turning to the slope of the RT X VSS functions,
slope was significantly influenced by target presence,
F(1, 13) =37.26, p < 0.001, g—n2 =0.28. In addition,
there was a significant effect of MSS on search slope,
F(1.35, 17.49) = 45.45, p < 0.001, g-n> = 0.47. In sum,
the behavioral results are in strong agreement with
previous work by Wolfe and subsequent work by Drew
and Wolfe using a rapid serial visual presentation
stream of objects and letters (Drew & Wolfe, 2014).

Eye-tracking results and models of hybrid search
All Os searched the same arrays of random items,

which were generated prior to the experiment—the only
exception being the target item, which was unique for
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Figure 3. Behavioral results showing RT, error rate and RT X VSS slope as a function of MSS. Note logarithmic scaling of the x-axis.

each O. Thus, target-absent trials were identical across
Os, and target-present trials were identical except for
the actual target. This allowed us to create heat maps,
which provide a useful depiction of how the pattern of
fixations changed as a function of MSS. Figure 4 shows
samples of absent trials. It is clear Os do not need to
fixate every item on the absent trials of this task,
particularly when the MSS is small. Below, we report
the data from all correct trials as a function of both
target presence and MSS. However, we focus most of
discussion on target-absent trials because the interpre-
tation of these trials is more straightforward for present
purposes. Target-present trials can be terminated when
the target is found. Target absent trials do not have this
early exit option and are, thus, better suited to testing
models of hybrid search that posit repeated searches
through the same display.

In the eye-tracking data, we examined the following
measures: proportion of distractors fixated, dwell time
on all distractors, dwell time on fixated distractors,
number of visits per distractor, and rate of refixation
for distractors. For all of these measures, there is an
unequivocal effect of MSS (all F values > 7, all p values
< 0.001). There was a significant effect of target
presence (all F values > 7, p < 0.05) on all measures
except dwell time on fixated distractors, F(1, 13)=2.01,
p=0.18, g-n? = 0.02. In all cases, the two factors
interacted such that the effect of target presence
became larger as MSS increased (all Fs > 6, all ps <
0.005).

What is clear to the eye in Figure 4 is born out in the
eye-tracking results shown in Figure 5. Figure 5a shows
that the percentage of distractors fixated on absent
trials increases significantly from an average of 23% per

i Q, : 12088 ( “\? H
C = & E e Q & 500
ol
£
S|
b - i T g
3
: :
1 R~ "4.
Af‘g ] A & ~ & 0
-

Memory Set Size = 1
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Figure 4. Heat maps for two target-absent trials averaged across all 14 Os. In this example, this indicates that 0/14 Os fixated the
computer in the search array on the left. Note that these heat maps assume a 2 DVA FVF for both conditions.
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O per trial to 73% as the MSS increases from one to 100
items, F(1.75, 22.87) = 56.9, p < 0.001, g-n* = 0.55.
Dwell time on each distractor increased from 53 to 291
ms, F(1.25, 16.24) =27.98, p < 0.001, g-n*> =0.37. This
result replicates if we restrict the analysis to only
distractors that were fixated, F(1.28, 16.58)=13.56, p <
0.0035, g-n° = 0.24; see Figure 5b). As shown in Figure
5¢, Os are more likely to refixate an item when the MSS
is larger. Total fixations per item on absent trials rose
from 0.26 with one item in memory to 1.27 with 100
items in memory, F(1.26, 16.32) =29.23, p < 0.001, g-
n? = 0.36. If we restrict our analysis to items that have
been fixated at least once, the chance that an item will
be fixated again rises from 10% for a MSS of one to
60% at an MSS of 100, F(1.17, 15.23) =13.54, p <
0.001, g-n* =0.19.

One might have proposed that Os would need to
perform one visual search for each of the members of
the memory set; e.g., is there a frying pan present? Is
there a truck present? Such a model would predict a
linear increase in RT as a function of MSS, and as
noted, that is not the case in the current data or
previous work. Once again, RT increases with the log
of MSS. Certainly, nothing in the eye-movement data
suggests that a MSS of 100 requires 100 searches
through the visual display. On target-absent trials, the
mean rate of visits per distractor did increase from 0.26
with one item in memory to 1.27 with 100 items in
memory, F(1.26, 16.32) =29.23, p < 0.001, g-n*=0.36.
However, this increase of ~4.8X is far from that
hundredfold increase that would have been expected if
each additional item in memory led to an additional
visual search.

Given the increase in RT with the log of MSS, it
could be proposed that Os perform a smaller set of
sequential searches. Logarithmic RTs can be obtained,
for example, by a process that eliminates some
percentage (e.g., half) of items on each iteration. Does
the display contain any of these 50 memory set items? If
yes, the search can be terminated and the O can
respond to the item; if not, check with 25 of the
remaining memory items and continue until the item is

found or you have exhausted all your items. The low
revisitation rates in the eye-tracking data argue against
this account. If an item was fixated, the chance that it
would be refixated on that trial increased from 10% to
60% as MSS increased from one to 100 items. Although
this is a signiﬁcant increase, F(1.17, 15.23)=13.54, p <
0.001, g-n~=0.19, items were not even fixated twice, on
average, even at the highest MSS. The difference
between this model of how hybrid search is accom-
plished and the data is particularly evident on target-
absent trials. Here, a model based on eliminating 50%
of the potential targets on each trial predicts more than
five revisits on each distractor for a memory set of 100.
In our data, each distractor was revisited less than one
time per trial. In addition, although overall error rate
does increase with MSS, the relatively low (~14%)
error rate at MSS 100 is not consistent with perfor-
mance in which the O never looked for a large
percentage of the potential targets. If we assume that
there is perfect memory for rejected distractors, an item
that is fixated more than once could be taken as
evidence for a search strategy that involves comparing
a visual item to a subset of mnemonic representations.
If memory for distractors is imperfect, revisits could be
due to reselection of a forgotten distractor. In fact, Os
do not even fixate each item twice, even when searching
for one of 100 potential targets. We believe that this
strongly argues against the idea that hybrid search is
accomplished by looking first for one object or set of
objects and then for others. Thus, the data appear to be
most consistent with a single search through the display
with imperfect memory for rejected distractors. Other
data suggest that memory for rejected distractors is
imperfect (Horowitz & Wolfe, 1998).

FVF analyses

At lower MSS, far fewer items are fixated. This
clearly indicates that some distractors can be processed
and rejected without fixation. Otherwise, we would
need to predict a miss error rate of about 74% when
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MSS is one because only 26% of items are fixated on
absent trials in that case. The actual miss error rate is
just 1%. This indicates that the FIV'F (Rayner & Fisher,
1987; Young & Hulleman, 2013) changes as a function
of MSS. Our estimates of FVF demonstrate a strong
effect of MSS, F(3, 39) = 100, p < 0.001, g-n> = 0.81.
Using this metric, we estimate the size of the FVF
decreased from ~10 DVA when searching for a single
item to ~6 DVA when searching for one of 100 items.
Following Young and Hulleman (2013), we then
estimated the proportion of distractors visited (i.e.,
coverage) on absent trials based on our estimate of
FVF (see Figure 6b, d). In sharp contrast to more
traditional methods of coverage that assume a constant
FVF (See Figures 4 and 5), this metric of coverage did
not vary as a function of MSS, F(3, 39) =2.03, p =
0.126, g-n>=0.08; See Figure 6d). Based on this metric,
roughly 76% of the distractors were processed on
absent trials irrespective of MSS.

These results underline the “functional” aspect of the
functional field of view. Because the FVF changes
dramatically with MSS in the absence of any change in
the actual stimulus, the size of the FVF cannot be
simply attributed to simple effects of acuity or
crowding. The task modulates the FVF.

In sum, the eye-tracking data support an account in
which Os make a single search through the visual image
in a hybrid search. The amount of time required to
process each visual item increases as a function of the
log of the MSS. At low MSS, the demands of the
memory search are moderate enough to allow the
observer to determine that some objects near the
current fixation can be rejected without additional
foveal processing. Thus, high performance can be
obtained despite Os having fixated only about one
quarter of the items on the screen. As a corollary, the

FVF is relatively large. At large MSS, it takes longer to
process each item. Indeed, by the time MSS is 100, the
memory search burden is so great that determining
whether a single item is a target occupies the entire
dwell time. We did not test if Os could determine if an
item was one of 100 target types while not fixating on
the object. Left to their normal devices, Os undoubt-
edly fixated the current object of attention while
determining if it was in the memory set. Some items are
refixated, perhaps because memory for rejected dis-
tractors is imperfect. MSS increases the time required
to handle each visual item that is selected. Other
changes in the visual search appear to follow from
changes in that memory search time.

This work is related to a number of recent studies
that have investigated the role of the target template in
visual search. According to this line of research, Os
determine where to look for potential targets primarily
on the basis of three sources of information: low-level
salience, scene context, and target template information
(Malcolm & Henderson, 2010). Target templates are
held in memory, then compared to visual information
in order to determine whether a given item is a target
(Olivers, Peters, Houtkamp, & Roelfsema, 2011;
Zelinsky, 2008). As a result, distractors that are more
similar to the target are more likely to be fixated
(Findlay, 1997; Zelinsky, 2008). In the current study,
low-level salience and scene context were carefully
equated across conditions, so in this view, only
differences in the target template would modulate
behavior. Previous research has demonstrated that
searching for more than one category of targets results
in less efficient guidance toward target features
(Menneer et al., 2012). Similarly, Godwin, Hout, and
Menneer (2014) manipulated the fidelity of the target
template by providing a target cue picture that either
exactly or approximately matched the target. They
found that RT, scan-path ratio (which measures the
efficiency of the eye-movement path to the target), and
decision time (which measures the time that elapses
between first fixating a target and an affirmative button



Journal of Vision (2017) 17(11):5, 1-10

press) all increased when targets were less well defined.
Thus, increasing the number of potential targets
appears to result in similar changes in behavioral and
eye-tracking differences observed when the target
template is deliberately weakened.

As noted above, these results demonstrate that the
FVF is not a simple product of the physical stimulus. In
the same display, given a particular fixation, an object
away from the point of fixation may be successfully
processed when MSS is one but not processed when
MSS is 100. This can be seen as an example of a form of
tunnel vision produced by cognitive load—in this case,
a memory load (de Haas, Schwarzkopf, Anderson, &
Rees, 2014; Mackworth, 1965; Williams, 1985). Based
on this interpretation, one might imagine that some-
thing like the dramatic inattentional blindness effects of
Mack and Rock (1998) could be obtained with the
larger MSS.

The large changes observed in our estimates of FVF
illustrate an important aspect of eye-tracking research
that is often overlooked. Many studies of visual
attention necessarily make assumptions about the size
of the FVF although it is unusual to see these
assumptions formalized. Any time we estimate the
percentage of an image that has been covered by the
eyes and any time we estimate the dwell time on an
object, we are making an assertion about how far away
an object can be from fixation and still be processed.
Indeed, the heat maps in Figure 4 use this same line of
reasoning, which is why coverage for MSS one appears
so much lower than MSS 100. However, by estimating
coverage based on the functional field of view size in
target-present trials, we saw that the coverage estimate
did not vary with the MSS in target-absent trials.
Closely examining the data with FVF in mind reveals
that this simple shortcut of assuming a constant FVF
across conditions may lead to misleading conclusions if
taken at face value. One illustrative example of this
comes from the medical image perception literature.
Many studies have shown that experts make far fewer
fixations and longer saccades than novices evaluating
the same medical image (e.g., Bertram et al., 2016;
Kundel & La Follette Jr., 1972). It is therefore likely
that simple measures of coverage would suggest that
experts examine less of the image yet find more
abnormalities. We predict that a FVF analysis would
produce larger FVFs in experts than in novices. This
could reflect an expert’s ability to pull more meaningful
information from the periphery thanks to years of
experience. Alternatively, it could reflect the expert’s
knowledge of where not to look. Either way, traditional
methods of estimating coverage based on a static
estimate of FVF may lead to misleading results,
particularly when analyzing between-subject differences
in expertise.
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Using the methods of Young and Hulleman (2013),
we could use our estimate of FVF from present trials to
estimate the proportion of items that were processed on
these trials as a function of MSS. Young and Hulleman
estimated that between ~71% and ~89% of the items
were processed, depending on the difficulty of their
search tasks. If the remainder of items were not
processed, one would expect overall error rates to be
approximately 100% minus the percentage coverage.
Thus, when our FVF calculation yields a coverage of
~T76%, this means that 24% of items were not processed
and that 24% of targets should be missed. Moreover,
our estimate of this rate did not vary with MSS. This
prediction is at odds with the actual error data. Error
rates are generally too low and the false-alarm rate
clearly increases with MSS. Young and Hulleman note
that such apparent discrepancies suggest that the
methods of deriving FVF may be underestimating the
actual size of the FVF. Clearly more work needs to be
done to map out the implications of this issue.

Conclusions

Although the bulk of the visual search literature has
been focused on the intricacies of searching for a single
potential target, in the real world we frequently engage
in hybrid searches in which there is more than one
potential target. The current study is one of the first to
use eye tracking to examine how the relatively well-
understood mechanisms that underlie search for a
single target are modulated by manipulating the size of
the O’s target set.

The growing hybrid search literature makes it clear
that increasing the number of potential targets de-
creases the efficiency of visual search. As the first study
to explore this paradigm using eye tracking, the current
data provide strong evidence that this manipulation
yields changes in eye-movement behavior that are
consistent with a search process in which each item in
the visual display is compared to all the targets in the
memory set. With more items in that memory set, more
time is required; however, the search through memory
is not a linear function of the set size. Instead the
memory search time is a logarithmic function of the set
size such that the memory search comparing an item in
the visual field to one of 16 possible targets in memory
takes roughly 4X (not 16X) as long as the comparison
of one visual item to one item in memory. The current
study contributes to our growing understanding of this
process by demonstrating that both dwell time on
distractors and proportion of distractors fixated
reliably increased with MSS. We interpret these
findings to provide strong evidence that hybrid search
is accomplished via a single visual search with multiple
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memory searches in which increased dwell time reflects
increased time searching memory.

Keywords. visual search, eye tracking, memory
search, target templates
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