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Abstract

The dynamics of tumor burden, secreted proteins or other biomarkers over time, is often

used to evaluate the effectiveness of therapy and to predict outcomes for patients. Many

methods have been proposed to investigate longitudinal trends to better characterize

patients and to understand disease progression. However, most approaches assume a

homogeneous patient population and a uniform response trajectory over time and across

patients. Here, we present a mixture piecewise linear Bayesian hierarchical model, which

takes into account both population heterogeneity and nonlinear relationships between bio-

markers and time. Simulation results show that our method was able to classify subjects

according to their patterns of treatment response with greater than 80% accuracy in the

three scenarios tested. We then applied our model to a large randomized controlled phase

III clinical trial of multiple myeloma patients. Analysis results suggest that the longitudinal

tumor burden trajectories in multiple myeloma patients are heterogeneous and nonlinear,

even among patients assigned to the same treatment cohort. In addition, between cohorts,

there are distinct differences in terms of the regression parameters and the distributions

among categories in the mixture. Those results imply that longitudinal data from clinical trials

may harbor unobserved subgroups and nonlinear relationships; accounting for both may be

important for analyzing longitudinal data.

Introduction

Mixed-effects models are particularly useful in medical research because of their ability to han-

dle imbalances in the number of observations across patients and to identify between-subject

and within-subject sources of variability [1–3]. Progress to extend mixed-effects models to

include heterogeneity in data has been made by incorporating a finite mixture into the model

[4, 5]. This extension is particularly relevant to clinical research, since clinical data often con-

tain unobserved categorical variables corresponding to, for example, “responders” or “non-

responders” to a given treatment. Ignoring such mixtures may result in biases in estimates. Xu
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and Hedeker investigated this idea and found there is ample evidence of non-homogeneous

responses in two large psychiatric clinical trials [6]. Ketchum et al. further extended the

mixed-effects mixture models to allow for differences in the variance-covariance matrices [7].

These improvements enable the random-effects models to better characterize heterogeneity in

data. A book chapter by Verbeke and Molenberghs provides an excellent summary of hetero-

geneous mixed models [8].

In addition to population heterogeneity, changes in functional relationships between

response variables and explanatory variables, particularly with time, are ubiquitous in longitu-

dinal studies: HIV-1 viral load [9, 10], hepatitis B/C viral load [11, 12] and BCR-ABL expres-

sion levels in chronic myeloid leukemia [13, 14]. In those examples, biomarkers exhibit

nonlinear changes over time, many of which are bi-phasic in nature—that is, patients bio-

markers have two distinct patterns over time rather than one uniform trajectory. An example

of bi-phasic decline patterns is that in some chronic myeloid leukemia patients, the initial

decline of BCR-ABL expression levels is much faster than later declines, whereas in other

patients the decline is uniform over time [13, 14]. These observations are contrary to the

assumptions of many models that parameters are invariant over time. One method for

accounting for changes in the longitudinal relationships over time is provided by nonlinear

mixed-effects models [15, 16]. Morrel et al. applied a piecewise nonlinear mixed-effects model

to a prostate cancer data set and found that patients with local lesions and metastatic lesions

have similar initial prostate-specific antigen (PSA) trajectories. However, they found that the

rates of PSA increase in a later phase were larger in patients with metastatic lesions than

patients with local lesions. Naumova et al. used a piecewise mixed-effect model to analyze a

prospective study on the development of obesity in female adolescents [17]. Cudeck and

Klebe, and Harring et al. applied similar ideas to psychology-related data sets [18, 19]. Those

examples demonstrate the flexibility of nonlinear mixed-effects models in investigating chang-

ing functional relationships over time.

Both heterogeneity in patient populations and changes in the longitudinal relationship have

been addressed separately in several publications [6, 7, 15–19]; however, only a few publica-

tions have tackled both problems simultaneously. Pauler and Laird introduced a general

framework for finite mixtures of nonlinear hierarchical models; they applied their methods to

investigate non-compliance in a HIV clinical trial [20]. In their application, the mixture con-

sists of a constant mean model for the compliant patients and a piecewise linear model for the

non-compliant patients. Recently, Lu and Huang extended the general framework proposed

by Pauler and Laird [20] to incorporate skewness in the distributions of individual regression

parameters, relaxing the normal assumption [21]; they applied their methods to analyze a HIV

viral load data set [22]. Their underlying nonlinear mixed-effects model was formulated based

on the model structure of an ordinary differential equation (ODE) model describing viral

loads over time [23]. One caveat associated with those approaches is that their models require

extensive prior biological knowledge in order to specify the nonlinear models before analyzing

the data. Misspecification of the model may have detrimental effects on parameter estimation

and patient classification. Particularly, if the differences between categories in the mixture are

not well separated, specifying the model becomes an even more challenging problem.

To address this issue, we developed a piecewise linear random-effects mixture model that

does not require any prior knowledge on the model structure to account for both heterogene-

ity and change in the longitudinal relationship over time. The only assumptions of this model

are that the underlying data may contain a mixture of mono- and bi-phasic observations, and

that the bi-phasic observations are piecewise linear; no further constraints on the intercepts

and slopes are necessary. The primary purpose of this model is to detect unobserved subgroups

in a patient population and nonlinear longitudinal relationships over time. This method is

Mixture piecewise linear Bayesian hierarchical model
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particularly useful for current clinical trials, which often include diagnostic and prognostic

hypotheses. With periodical follow-up visits gathering biomarker data, parameters associated

with heterogeneous changes in biomarker trends can be detected with this method. Given the

usually limited number of follow-up measurements in clinical trials, the current implementa-

tion of this model focuses primarily on mono- vs. bi-phasic changes; however, our model can

easily be generalized to include multi-phasic changes and multi-category mixtures. In addi-

tion, because of the piecewise linear nature of the proposed model, other clinically relevant

covariates can also easily be included.

Materials and methods

We designed a mixture piecewise linear Bayesian hierarchical model to estimate regression

parameters and to determine the posterior distributions of these parameters, while accounting

for both population heterogeneity and changes in longitudinal relationships over time. We

consider situations in which the patient population consists two latent subpopulations: mono-

phasic and bi-phasic patients. The individual-level trajectories for mono-phasic and bi-phasic

patients are shown in Eq (1). Throughout the text, we use subscripts S and B to denote mono-

(i.e. single-) and bi-phasic patients, respectively. For the ith patient with a total of Mi observa-

tions, the dependent variable yij, corresponding to the quantitative measure of disease burden,

which may either follow a mono-phasic or a bi-phasic regression line, depending on the latent

indicator variable ηi:

Zi ¼ 0 : yij ¼ s0i þ s1itij þ εij; for j ¼ 1:::Mi

Zi ¼ 1 :

( yij ¼ b0i þ b1itij þ εij; for j ¼ 1:::ki

yij ¼ b0
0i þ b0

1itij þ εij; for j ¼ kiþ1:::Mi:

ð1Þ

Here, εij denotes the independent error term, which follows a normal distribution centered

at 0 with variance σ2; ηi denotes the phasic indicator for patient i, with 0 and 1 denoting mono-

and bi-phasic patterns, respectively; ki, a latent variable, denotes the number of observations

belonging to the first phase for patient i, if the response of patient i is bi-phasic. For the indi-

vidual regression parameters, we assume hierarchical normal distributions for si and bi:

si ¼
s0i

s1i

 !

�
iid N

S0

S1

� �

;SS;2�2

� �

¼ NðS;SSÞ ð2Þ

bi ¼

b0i

b1i

b0
0i

b0
1i

0

B
B
B
B
@

1

C
C
C
C
A
�
iid N

B0

B1

B0
0

B0
1

0

B
B
B
@

1

C
C
C
A
;SB;4�4

0

B
B
B
@

1

C
C
C
A
¼ NðB;SBÞ ð3Þ

We first consider the artificial case in which we do not know if a patient follows the mono-

or bi-phasic pattern, but if this patient follows a bi-phasic pattern, the associated bi-phasic

design matrix is known. That is, for each patient regardless phasicity, the true mono- and bi-

phasic design matrices are known; the only unknown quantity is the phasicity, ηi. Assuming

the prior distributions P(σ2) = (σ2)−1, P(λ) = Beta(1, 1) = 1, P(SS) = |SS|
−(2+1)/2 and P(SB) = |

SB|−(4+1)/2, where λ denotes the proportion of bi-phasic patients and ηi * Ber(λ), the posterior

Mixture piecewise linear Bayesian hierarchical model
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distribution is:

PðS;SS;B;SB; s
2; ljY; ZÞ / ðs2Þ

� 1
S� ð2þ1Þ=2

S S� ð4þ1Þ=2

B

YN

i¼1

fð1 � lÞPðYijQ
s
iS;Q

s
iSSðQ

s
iÞ

T
þ Is2Þg

1� Zi
YN

i¼1

flPðYijQ
b
i B;Q

b
i SBðQ

b
i Þ

T
þ Is2Þg

Zi :
ð4Þ

Here η = (η1, . . ., ηN) is the missing indicator variable for phasicity, and Qs
i and Qb

i denote the

individual mono- and bi-phasic design matrices, respectively:

Qs
i ¼

1 ti1

..

. ..
.

1 tik

1 tikþ1

..

. ..
.

1 tiMi

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð5Þ

Qb
i ¼

1 ti1 0 0

..

. ..
. ..

. ..
.

1 tik 0 0

0 0 1 tikþ1

..

. ..
. ..

. ..
.

0 0 1 tiMi

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð6Þ

However, the bi-phasic design matrix for subject i, Qb
i , is not known. The estimation of this

bi-phasic change point is a well-known problem in statistics, mathematics, and computer sci-

ence with many applications in other fields; several methods for addressing this question have

been suggested [24, 25]. Here we employed a Bayesian formulation of the change point prob-

lem, suggested by Carlin et al. [26]. For a particular patient i with Mi observations, there are

Mi − 1 possible change points. The cases in which the bi-phasic transition point occurs before

the first observation or after the last observation are ignored, because in such cases mono- and

bi-phasic subjects are not distinguishable. Thus, for each patient i, there are Mi − 1 possible

design matrices, for example:

Qb
i1 ¼

1 ti1 0 0

0 0 1 ti2

0 0 1 ti3

..

. ..
. ..

. ..
.

0 0 1 tiMi

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

ð7Þ
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Qb
i2 ¼

1 ti1 0 0

1 ti2 0 0

0 0 1 ti3

..

. ..
. ..

. ..
.

0 0 1 tiMi

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

ð8Þ

For each corresponding design matrix Qb
ij, the probability associated with the j-th bi-phasic

design matrix is denoted by πij. Assuming all patients comply with their clinic visit schedules,

such that t11 = t21 = . . . = tN1, . . ., and t1M1
= t2M2

= . . . = tNMN
, and assuming an uninformative

Dirichlet prior, Dir(α1 = α2 = . . . = αMi−1 = 1), the posterior function is:

PðS;B;SS;SB; l;p; s
2jY; x; ZÞ / ðs2Þ

� 1
S� ð2þ1Þ=2

S S� ð4þ1Þ=2

B

YN

i¼1

½ð1 � lÞNðYijQ
s
iS;Q

s
i

SSðQs
iÞ

T
þ Is2Þ�

1� Zi ½l
YMi� 1

j¼1

fpijNðYijQ
b
ijB;Q

b
ijSBðQ

b
ijÞ

T
þ Is2Þg

xij �
Zi

ð9Þ

where ξij is the unobserved indicator for the jth bi-phasic design matrix for subject i, such that

PMi � 1

j¼1

xij ¼ 1 and ξij * Multinomial(πij), and ξi = (ξi0, . . ., ξiMi
) and ξ = (ξ1, . . ., ξN); and πij is the

probability that the j-th bi-phasic design matrix is selected for the i-th patient. Note that the

inclusion of the Dirichlet prior results in a constant scaling factor, and hence it is not included

in Eq (9).

Given the complexity of the model, we first used the Expectation Maximization (EM) algo-

rithm to search for the mode of the posterior distribution, which was then used as the starting

value for the Gibbs sampler. To implement the EM algorithm and to obtain Empirical Bayes

estimators, we utilized the procedures derived by Verbeke and Lesaffre [5] and Xu and Hede-

ker [6]. Following the notation used in Xu and Hedeker, the Empirical Bayes estimators for

individual regression parameters and the covariance matrices are given by

ŝi ¼ Sþ ðS� 1

S þ ðQ
s
iÞ

T
ðs2IiÞ

� 1Qs
iÞ
� 1Qs

iðs
2IiÞ

� 1
ðYi � Qs

iSÞ

Ŝsi
¼ ðS� 1

S þ ðQ
s
iÞ

T
ðs2IiÞ

� 1Qs
iÞ
� 1

b̂ij ¼ Bþ ðS� 1

B þ ðQ
b
ijÞ

T
ðs2IiÞ

� 1Qb
ijÞ
� 1Qb

ijðs
2IiÞ

� 1
ðYi � Qb

ijBÞ

Ŝbij
¼ ðS� 1

B þ ðQ
b
ijÞ

T
ðs2IiÞ

� 1Qb
ijÞ
� 1
:

ð10Þ

for a given set of S, B, SS, and SB.

Mixture piecewise linear Bayesian hierarchical model
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In the expectation step, the quantity

zij ¼ Pðxij ¼ 1jB;SB; s
2;YiÞ ¼

pijNðYijQb
ijB;Q

b
ijSBðQb

ijÞ
T
þ Is2Þ

XMi � 1

j¼1

pijNðYijQ
b
ijB;Q

b
ijSBðQ

b
ijÞ

T
þ Is2Þ

ð11Þ

is calculated. zij denotes the probability of the j-th bi-phasic matrix for the i-th patient is

selected to be bi-phasic design matrix, and zi = (zi1, zi2. . .ziMi
). Similarly, the expected value for

ηi can be calculated as

zi ¼ PðZi ¼ 1jS;B;SS;SB; l;s
2;YiÞ ¼

lexpðEqð14ÞÞ

ð1 � lÞexpðEqð13ÞÞ þ lexpðEqð14ÞÞ
; ð12Þ

where

2logNðYijQs
iS;Q

s
iSSðQs

iÞ
T
þ Is2Þ ð13Þ

2log
XMi � 1

j¼1

pijNðYijQ
b
ijB;Q

b
ijSBðQ

b
ijÞ

T
þ Is2Þ

 !

ð14Þ

and where Eqs (13) and (14) are the posteriors for the mono- and bi-phase pieces. However, in

practice, given the added model complexity of the bi-phasic model compared to the mono-

phasic model, the bi-phasic model has a larger likelihood than the single phasic model, result-

ing in most patients being classified as bi-phasic. To compensate for the difference in model

complexity, we instead of using Eqs (13) and (14) to differentiate each patient’s phasicity, we

used the negative Bayesian Information Criteria (BIC) for the mono- and bi-phasic models,

respectively:

2logNðYijQs
iS;Q

s
iSSðQs

iÞ
T
þ Is2Þ � 2logðMiÞ ð15Þ

2log
XMi � 1

j¼1

pijNðYijQ
b
ijB;Q

b
ijSBðQ

b
ijÞ

T
þ Is2Þ

 !

� 4logðMiÞ; ð16Þ

The additional terms, −2log(Mi) and −4log(Mi) are constant factors, which can be seen as prior

odds for distinguishing between mono- and bi-phasic models for each patient. Because they

are constants, they only result in a proportional change in the posterior function, Eq (9). Simi-

lar methods of using BIC to determine the posterior model probabilities have been imple-

mented and discussed by Kass and Raftery [27]. BIC corrects for the improvement in fitting

associated with increasing model complexity and BIC has been shown to be a consistent

model selector due to its quickly increasing penalty as a function of the sample size [28–30].

We also investigated AIC as an alternative penalty function. However, as the sample size

increases, the penalty becomes too weak, resulting in mono-phasic patients being misclassified

as bi-phasic patients. In addition, the use of BIC for model selection is analogous to the use of

DIC (Deviance Information Criterion) in Bayesian mixture model [31].

Mixture piecewise linear Bayesian hierarchical model
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The maximization consists of the following steps:

l̂new ¼
1

N

XN

i¼1

zi

Ŝnew ¼

XN

i¼1

ð1 � ziÞŝi

XN

i¼1

ð1 � ziÞ

Ŝnew
S ¼

XN

i¼1

ð1 � ziÞðŜsi
þ ðŝi � ŜnewÞðŝi � ŜnewÞ

T
Þ

XN

i¼1

ð1 � ziÞ þ 2

B̂new ¼

XN

i¼1

XMi

j¼0

zizijb̂ij

XN

i¼1

zi

Ŝnew
B ¼

XN

i¼1

XMi

j¼0

zizijðŜbij
þ ðb̂ij � B̂newÞðb̂ij � B̂newÞ

T
Þ

XN

i¼1

zi þ 2

ŝ2new ¼

XN

i¼1

ð1 � ziÞ½u
s
iðu

s
iÞ

T
þ Qs

iŜsi
ðQs

iÞ
T
�

XN

i¼1

ð1 � ziÞ þ 2

þ

XN

i¼1

XMi

j¼0

zizij½u
b
ijðu

b
ijÞ

T
þ Qb

ijŜbij
ðQb

ijÞ
T
�

XN

i¼1

zi þ 2

;

ð17Þ

where ub
ij ¼ Yi � Qb

ijb̂ij.

Updating the probability weight for πij, if all patients adhere to the visit schedule, is straight-

forward by averaging zij. However, in practice, patients often miss scheduled visits entirely or

have unscheduled visits. Such departure from the trial design creates misalignments in

patients’ observation intervals. For instance, two bi-phasic patients, i and i0, are identical except

for their j + 1th visits. Patient i’s j + 1th visit is 1 week later than the scheduled time and patient

i0 is on time. Because of this difference in visit time, zij and zi0j can no longer be simply aver-

aged to update πij. Instead, to account for misalignments, the transition probability πij associ-

ated with bi-phasic transition design matrix Qij needs to adapt to each patient’s actual visit

time. The phasic transition density as a function of time is

yðtÞ ¼
PN

i¼1

PMi� 1

j¼1
zijIðtij < t < tiðjþ1ÞÞZi

R T
0

PN
i¼1

PMi � 1

j¼1
zijIðtij < t < tiðjþ1ÞÞZidt

: ð18Þ

, where T denotes the maximum follow-up time for all patients. The denominator is the

weighted sum of time interval lengths in which phasic transitions occur; this denominator

serves as the normalizing factor to ensure θ(t) integrates to 1. Eq (14) results in a numeric step-

wise function specifying the transition density at a given t based on the E-step. The weight for

Mixture piecewise linear Bayesian hierarchical model
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each interval for each patient can be updated by integrating over its corresponding interval:

pij ¼

Z tiðjþ1Þ

tij

yðtÞdt: ð19Þ

The starting values for the EM algorithm are obtained using an ad hoc grid search proce-

dure as outlined in S1 File.

The estimated parameter mode from the EM algorithm are used as the starting values for

the Gibbs’ sampler to simulate the posterior distributions of the parameters from the model

specified in Eq (9), as outlined below:

1. Calculate zi for each patient, using Eq (11).

2. For each patient, draw a ξi vector from a multinomial distribution with a parameter vector

zi, and obtain the corresponding bi-phasic design matrix Qbij, such that ξij = 1.

3. Calculate zi based on the mono-phasic design matrix Qsi and the bi-phasic design matrix Qbij
from step (2).

4. Draw ηi from a Bernoulli distribution with parameter zi for each patient.

5. Update θ(t) using Eq (18), with zij replaced by ξij and zi replaced by ηi.

6. Draw a vector πi from a Dirichlet distribution with a parameter vector

ð
R ti2
ti1 yðtÞdt þ 1; :::;

R tiMi � 1

tiMi � 2
yðtÞdt þ 1Þ, for each patient.

7. Draw λ from a Beta distribution with parameters (
PN

i¼1

Zi þ 1,
PN

i¼1

ð1 � ZiÞ þ 1).

8. Sampling si and bi:

si � Nðŝi; Ŝsi
Þ

bi � Nðb̂ij; Ŝbij
ÞÞ

ð20Þ

where ŝi and Ŝsi
and b̂ij and Ŝbij

are from Eq (12). The design matrix for the bi-phasic is

drawn from step (2).

9. Sampling S and B from si and bi:

S � N

XN

i¼1

ð1 � ZiÞsi

XN

i¼1

ð1 � ZiÞ

;
SS

XN

i¼1

ð1 � ZiÞ

0

B
B
B
B
@

1

C
C
C
C
A

B � N

XN

i¼1

Zibi

XN

i¼1

Zi

;
SB

XN

i¼1

Zi

0

B
B
B
B
@

1

C
C
C
C
A

ð21Þ
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10. Sampling SS and SB:

SS � Inv � Wishart
XN

i¼1

ð1 � ZiÞ � 1;
XN

i¼1

ð1 � ZiÞðsi � SÞðsi � SÞt
 !

SB � Inv � Wishart
XN

i¼1

ðZiÞ � 3;
XN

i¼1

ðZiÞðbi � BÞðbi � BÞt
 ! ð22Þ

11. Sampling σ2:

Inv � w2

 
XN

i¼1

Mi;

1

XN

i¼1

Mi

XN

i¼1

fð1 � ZiÞðYi � Qs
isiÞ

t
ðYi � Qs

isiÞ þ ðZiÞðYi � Qb
i biÞ

t
ðYi � Qb

i biÞg

!
ð23Þ

The proposed Gibbs’ sampler is similar to the methods used for variable selection via Gibbs

sampling proposed by George and McCulloch [32], and, Carlin and Chib [33]. The only differ-

ence between our methods and the model by Carlin and Chib is the lack of pseudoprior for the

transition probability between mono- and bi-phasic models. An important consequence of

this is that, as noted in Carlin and Chib’s publication, “it is tempting to skip the generation of

actual pseudoprior values . . . although seemingly reasonable, such an algorithm is clearly not a

Gibbs sampler in the strict sense, since the nodes visited are determined by the current value

in the realized Markov Chain.” However, in practice, as shown by our simulation studies, this

heuristic Gibbs sampler performs well. Other methods such as reversible-jump MCMC may

also be used to sample the posterior distributions [34]; however given the simplicity of the

Gibbs sampler and its close relationship with the EM algorithm, we decided to use Gibbs’ sam-

pler to implement the MCMC chain.

Results

Simulation results

We designed three simulation studies to test the model’s abilities to categorize patients and to

estimate associated parameters, Fig 1. All three scenarios have the same population-level

regression parameters, as shown in Table 1; the differences between the three scenarios lie in

the covariance matrices specifying between-patient variability. The first simulation scenario

assumes that there is no between-patient variability; for the second scenario, there is between-

patient variability in the intercepts and slopes in both mono- and bi-phasic patients but no

correlation among these parameters, i.e. all non-diagonal entries in Ss and Sb are zero. The

third scenario assumes a correlation of 0.5 between the first and second slopes among the bi-

phasic patients. In each scenario, we simulated N = 100 patients. The probability of being a bi-

phasic patient is λ = 0.60. According to a hypothetical clinical protocol, patient data are col-

lected every 21 days with 1 at baseline and 17 at follow-up visits for a total follow-up duration

of 357 days. In this simulation study, the actual visit time may deviate within ± 5 days from the

scheduled time. The true individual regression parameters are drawn from multivariate nor-

mal distributions with respective population parameters and covariance matrices, (S, SS) or

Mixture piecewise linear Bayesian hierarchical model
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(B, SB), depending on patients’ phasicity. For each simulated bi-phasic patient i, the phasic

transition time occurs at t ¼ bi0 � b0i0
b0i1 � bi1

.

We first applied the EM algorithm to estimate the parameter values that maximize the mar-

ginal likelihood. The true and estimated parameters, excluding the covariance for the three

scenarios, are shown in Table 1. In all three scenarios, the proposed model was able to provide

parameter estimates that are close to the true parameter values, except for the bi-phasic pro-

portion parameter λ, which is biased towards the mono-phasic model in scenarios 2 and 3.

Estimating the covariance matrices for scenarios two and three is more challenging, as shown

in Table 2. In particular, we found that the proposed model consistently over-estimates the

variance term associated with the second intercept for the bi-phasic patients. Three possible

causes for this over-estimation are 1) the bi-phasic design matrices must be estimated and mis-

classification of observations between the first and second phases may result in an enlarged

variance term for the second intercept; 2) estimation of the second intercept requires projec-

tion back to time zero, and any uncertainty is magnified by this projection; and 3) the phasic

transition time in our simulated data is distributed according the Gaussian ratio distribution,

Fig 1. Longitudinal trajectories for the simulated patients in the three scenarios. Blue lines indicate mono-phasic patients’ trajectories, and

red lines, bi-phasic patients’ trajectories. Vertical solid lines indicate the median time at which phasic transitions occur for the bi-phasic patients;

vertical dashed lines indicate the 10th% and 90th% phasic transition time. All bi-phasic patients have the same phasic transition time in scenario

one; hence, the dashed and solid lines coincide.

https://doi.org/10.1371/journal.pone.0180756.g001

Table 1. The true and the means of the estimated parameters in the three simulation scenarios.

S0 S1 B0 B1 B0
0

B0
1 σ λ

Truth 90 −0.25 91 −0.35 55 −0.15 5.0 0.6

Scenario One 90

(0.33)

−0.25

(0.001)

91

(0.19)

−0.35

(0.002)

57

(1.2)

−0.16

(0.004)

4.9

(0.066)

0.60

(<0.001)

Scenario Two 90

(0.43)

−0.257

(0.005)

90.6

(0.49)

−0.347

(0.006)

56.9

(1.14)

−0.150

(0.005)

5.0

(0.10)

0.50

(0.031)

Scenario Three 89

(0.41)

−0.250

(0.002)

90.8

(0.09)

−0.346

(0.005)

57.5

(0.20)

−0.157

(0.002)

5.1

(0.09)

0.53

(0.007)

The means of the EM estimated parameters over 1000 simulations are shown for each scenario. Standard deviations are shown in parentheses.

https://doi.org/10.1371/journal.pone.0180756.t001

Mixture piecewise linear Bayesian hierarchical model

PLOS ONE | https://doi.org/10.1371/journal.pone.0180756 July 19, 2017 10 / 19

https://doi.org/10.1371/journal.pone.0180756.g001
https://doi.org/10.1371/journal.pone.0180756.t001
https://doi.org/10.1371/journal.pone.0180756


with heavy tails [35]; thus, bi-phasic patients with extreme transition times may not be classi-

fied correctly. In addition to parameter estimation, the proposed method performed well in

classifying patients according to their phasicities, as shown in Table 3

In addition to the three scenarios outlined above, we also performed sensitivity analyses to

test the effects of variability in population-level intercepts and slopes, S0; S1;B0;B1;B00; and B0
1
,

on the classification accuracy, Fig 2. For each of the three scenarios, we tested a grid of values

Table 2. The true and the means of estimated covariance components in the three simulation scenarios.

Scenario 1

b0 b1 b0
0

b0
1

0 (1.0) 0 (−0.007) 0 (0.242) 0 (−0.001) b0

0 (<0.001) 0 (−0.007) 0 (0.000) b1

s0 0 (0.6) 0 (14.8) 0 (−0.051) b0
0

s1 0 (−0.003) 0 (<0.001) 0 (<0.001) b0
1

s0 s1

Scenario 2

b0 b1 b0
0

b0
1

4 (6.1) 0 (−0.019) 0 (1.43) 0 (−0.005) b0

0.0009 (0.0006) 0 (−0.011) 0 (<0.001) b1

s0 4 (4.5) 4 (14.8) 0 (−0.051) b0
0

s1 0 (0.004) 0.0009 (0.0011) 0.0009 (0.0009) b0
1

s0 s1

Scenario 3

b0 b1 b0
0

b0
1

4 (3.4) 0 (−0.006) 0 (0.768) 0 (0.009) b0

0.0009 (0.0005) 0 (−0.014) 0.0005 (0.0005) b1

s0 4 (4.1) 4 (10.1) 0 (−0.036) b0
0

s1 0 (0.011) 0.009 (0.001) 0.0009 (0.0009) b0
1

s0 s1

True values are shown outside of the parentheses and estimated values are shown inside the parentheses. The lower triangular components of the mono-

phasic covariance matrix and the upper triangular components of the bi-phasic covariance matrix are shown. The means of the estimated covariance

components are calculated based on 1,000 simulation runs for each scenario.

https://doi.org/10.1371/journal.pone.0180756.t002

Table 3. Classification accuracy for the three scenarios.

Representative examples Scenario 1 Scenario 2 Scenario 3

Estimated Truth Truth Truth

Mono-phasic Bi-phasic Mono-phasic Bi-phasic Mono-phasic Bi-phasic

Mono-phasic 40 0 40 7 40 1

Bi-phasic 0 60 0 53 0 59

Sensitivity/Specificity 100% 100% 100% 88% 100% 98%

Averages of 1,000 simulations 100% 100% 99.99% 82.57% 99.99% 88.40%

A representative example for each scenario and the averages of 1,000 simulation runs are shown. A hard cut-off for calling a patient mono- or bi-phasic is

used based on the expected probabilities of being bi-phasic. Patients with expected bi-phasic probabilities exceeding 0.5 are classified to be bi-phasic,

otherwise mono-phasic.

https://doi.org/10.1371/journal.pone.0180756.t003
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for the bi-phasic first slope, B1 (−0.45, . . ., −0.26), and the second slope, B0
1

(−0.24, . . ., −0.05),

centering around the mono-phasic slope S1 = −0.25. For this sensitivity analysis, the second

intercept for the bi-phasic patients was kept at values such that the population-level phasic

transition times occurred in the middle of the time span of the trial (178 days). All other

parameters, S0, S1, B0, σ and λ, were kept at the values used in the previous three scenarios. The

covariance matrices, if applicable, were also kept at the values used in the three scenarios. As

expected, as the bi-phasic first and second slopes approached the value of the mono-phasic

slope, the specificity diminished in all three scenarios such that more bi-phasic patients were

misclassified as mono-phasic patients. Due to the strong penalty induced by the BIC correc-

tion in deciding on patients’ phasicities, the proposed model is biased toward the mono-phasic

model. Sensitivity is close to 100% in all three scenarios; hence, the contour plots for sensitivity

are not shown. In addition, we also investigated the effects of the numbers of observations per

patient and the effects of the numbers of patients on the method’s ability to distinguish

between mono- and bi-phasic patterns. As expected, as the number of observations per patient

decreases, specificity decreases. Interestingly, the model is not very sensitive towards the total

number of patients as shown in Fig 3.

We also compared our model and its estimates with a standard mixture model package,

Flexmix, a publicly available package in R [36, 37]. For each simulation, we ran the Flexmix

package with and without providing the true design matrix, and true mixture identity as the

initial values. The true design matrix groups data points from the same phase together for each

subject; the true mixture identity provides the initial clustering of data points from the same

phase across different patients together. The means of the parameters from 1,000 simulations

are shown in Table 4. Because the Flexmix package is not designed to estimate the change

point, the primary comparison of interest is to compare Flexmix’s ability to identify and esti-

mate parameters associated with the three components of the mixture: single-phasic, bi-phasic

first phase, and bi-phasic second phase. For scenario 1, in which is no between-subject

Fig 2. Specificity as a function of true bi-phasic slopes. True mono-phasic slope is kept at −0.25; bi-phasic first slopes vary between −0.45 and −0.26;

bi-phasic second slopes vary between −0.24 and −0.05. Population-level mono-phasic slope and bi-phasic first intercepts are 90 and 91 respectively; the

second slopes for bi-phasic patients are selected such that the population-level phase transition occurs at 178 days, which is in the middle of 357-day trial

period. Each graph is generated based on the averages of 10 simulations. Sensitivity is omitted since it is at 100% for all given scenarios; please refer to

Table 3.

https://doi.org/10.1371/journal.pone.0180756.g002
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variability, without providing both true design matrix and mixture identity, the mixture model

was not able to estimate the parameters accurately, as compared to our model Table 1. Provid-

ing the true design matrix and mixture identity greatly improves the mixture model’s ability to

estimate the parameters; however, this improvement is only limited to the case in which there

is no between-subject variability. Once between-subject variability is introduced in scenarios 2

and 3, the mixture model was not able to estimate these parameters correctly.

In addition to obtaining the maximum likelihood parameter estimates, Gibbs’ sampling

was implemented to obtain the posterior densities for the estimated parameters for the three

scenarios. The key parameter of interest in this simulation study is the coverage probability for

the proposed model. We simulated 1,000 independent data sets using identical parameter val-

ues for each scenario. The EM algorithm was first applied to maximize the likelihood; using

the maximum likelihood parameter estimates as starting values, a Markov Chain Monte Carlo

Table 4. Comparison of estimates from a mixture model with and without a true design matrix and true cluster identity using the Flexmix package.

True Parameter Values

Between-Subject Variability True Design Matrix Provided True Cluster Identity Provided S0 S1 B0 B1 B1 B2 σ λ
90 −0.25 91 −0.35 55 −0.15 5.0 0.60

Scenario 1 No No 86 −0.26 86 −0.31 89 −0.25 5.5 0.61

No Yes 85 −0.26 88 −0.33 88 −0.25 5.3 0.59

Yes No 90 −0.25 91 −0.35 57 −0.25 5.1 0.61

Yes Yes 90 −0.25 91 −0.35 55 −0.15 5.0 0.60

Scenario 2 No No 89 −0.26 86 −0.30 90 −0.22 6.2 0.54

No Yes 89 −0.26 86 −0.30 90 −0.22 6.2 0.55

Yes No 87 −0.25 87 −0.31 87 −0.22 6.8 0.58

Yes Yes 89 −0.24 88 −0.30 65 −0.16 6.7 0.64

Scenario 3 No No 88 −0.26 86 −0.30 89 −0.22 6.3 0.54

No Yes 88 −0.26 86 −0.31 90 −0.22 6.3 0.54

Yes No 87 −0.26 87 −0.31 88 −0.21 6.8 0.60

Yes Yes 89 −0.24 88 −0.31 64 −0.16 6.8 0.61

The means of the estimates from 1,000 simulation runs are shown.

https://doi.org/10.1371/journal.pone.0180756.t004

Fig 3. Specificity as a function of the numbers of observations per patient and the total numbers of

patients per simulated data set. Parameter values are identical to those used in the three scenarios. The

numbers of observations per patient vary in the figure on the left; these observations are evenly distributed

between day 0 and day 357. The total numbers of patients, N, vary in the figure on the right; the number of

observations per patient is kept at 18.

https://doi.org/10.1371/journal.pone.0180756.g003
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simulation was performed for each data set, with the number of iterations per simulation equal

to 30,000. With samples generated from the posterior distributions, we constructed a 95%

simultaneous rectangular credible region for each simulated data set, using the method out-

lined by Held [38, 39]. The coverage probability is calculated as the probabilities of the simulta-

neous credible regions covering all 8 parameters for scenario one and covering all 21

parameters for scenarios two and three, out of the 1,000 simulated data sets. The coverage

probabilities are 80.1%, 71.5% and 65.9% for the three scenarios, respectively. The convergence

of the Gibbs’ sampler is shown in S1 File.

We then performed detailed analyses to determine the parameter with the worst coverage

probability in each scenario. For scenario one, the second intercept for the bi-phasic patients,

B0
0
, had the worst coverage probability of only 80.1%. Further analyses of scenarios two and

three revealed that the variance component for the bi-phasic second intercept had the lowest

coverage rate among all parameters; the 95% simultaneous credible regions for all 21 parame-

ters were able to cover the covariance term for the second intercept only at rates of 82.5% and

80.1% for scenarios two and three, respectively. In this case, the covariance components

obtained from the Gibbs’ sampler were consistently higher than the true covariance used in

the simulated data. The same reasons used to explain the enlarged covariance structure for the

EM results can be applied here.

Another parameter of particular interest is the correlation between the first and second

slopes in scenario three. Focusing only on this parameter, our model was able to detect a corre-

lation in 62.1% of the simulation runs; detection refers to 0 being excluded from the 95% credi-

ble region. Overall, the actual coverage probabilities from the proposed model are lower than

the nominal probabilities. Model complexity appears to contribute to this poor coverage, as

previous research has shown that even in the simple binomial case, the coverage probability

rarely agrees with the nominal probability [40]. In addition, the parameter values, particularly

the slopes, used in our simulation have considerable overlaps, which renders identifying

patients’ phasicities difficult, and hence lowers the coverage probabilities.

Application results

To further demonstrate the utility of the proposed methods, we applied it to the M-protein

data from the Velcade as Initial Standard Therapy in Multiple Myeloma: Assessment with Mel-

phalan and Prednisone (VISTA) trial [41]. Briefly, the VISTA trial is a randomized, open-label

phase III study, consisting of 682 patients with newly diagnosed, previously untreated, symp-

tomatic, measurable multiple myeloma. In this study, patients were randomized to treatment

with either melphalan and prednisone with (VMP cohort) or without (MP cohort) bortezomib

(Velcade, Johnson & Johnson Pharmaceutical R&D and Millennium). Measurable disease was

defined as the presence of quantifiable M-protein in serum or urine, or measurable soft-tissue

or organ plasmacytomas. The longitudinal M-protein data from patients in the VISTA trial are

shown in Fig 4.

The parameter estimates from our model revealed several interesting features associated

with the M-protein dynamics, Table 5. First, the differences between the first and second

slopes for the bi-phasic patients in both cohorts are striking. For the bi-phasic patients, the gra-

dient of the first slope was lower than the second slopes in both cohorts, judging by the poste-

rior credible regions. Second, more patients in the VMP cohort displayed bi-phasic

trajectories than in the MP cohort. Third, the gradient of the bi-phasic first slope in the VMP

cohort is lower than that of the bi-phasic first slope in the MP cohort. Fourth, the bi-phasic

first intercepts are similar in both cohorts. Fifth, the long-term declines for the bi-phasic

patients in both cohorts are similar. Sixth, in both cohorts, the intercepts for the mono-phasic

Mixture piecewise linear Bayesian hierarchical model
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patients tend to be substantially smaller than the first intercepts of the bi-phasic patients.

Lastly, in the MP cohort, despite the large differences in the rates of initial declines, the long-

term declines are very similar between the mono-phasic and the bi-phasic patients, as shown

by the similarity in the estimates for S1 and B0
1
. Those observed differences in the M-protein

dynamics between cohorts suggest that the tumor dynamics of multiple myeloma are highly

complex.

Discussion

We have proposed a piecewise linear mixture random-effects model to investigate the extent

of heterogeneity and time-varying functional relationships in longitudinal biomarker data.

The combination of heterogeneity and a time-varying functional relationship is where the

innovation in the proposed model lies. Our model assumes a simple yet robust piecewise linear

functional form. The major advantage of this piecewise linear functional form over other more

complex nonlinear functions is that the likelihood can be maximized analytically, using empir-

ical Bayes estimators and standard expectation-maximization algorithms. No prior knowledge

of the functional relationship other than the piecewise assumption is required; thus this

method is particularly useful for initial exploratory analyses. In addition, the ease of interpreta-

tion of the parameter estimates is another advantage of the proposed model. Lastly, in the

extreme case in which all patients are mono-phasic, the proposed model completely reduces to

linear mixed-effects model.

One minor drawback of our approach is that for the bi-phasic patients, the proposed model

produces a point of discontinuity between ki and ki+1 observations Eq (1). Nonlinear models,

such as the broken-stick model, Bacon Watts model, and the polynomial model suggested by

Matthews et al. offer potential solutions to this problem [42]; however, analytical solutions do

not exist for those nonlinear functions. Another minor problem is that there is a small bias for

the parameter denoting the proportion of bi-phasic patients, λ, in the EM algorithm and

Gibbs’ sampler. Closer investigation reveals that this bias is not due to our proposed model;

rather, it is an artifact of the data generation process for the simulation studies (see S1 File for

Fig 4. Longitudinal trajectories for patients in the VISTA trial separated by treatment cohorts. The

mono-phasic (blue) and bi-phasic (red) lines indicate the population-mean trajectories based on the maximum

likelihood estimates from the EM algorithm.

https://doi.org/10.1371/journal.pone.0180756.g004

Table 5. 95% simultaneous credible regions for the MP and VMP cohorts in the VISTA trial.

Cohorts S0 S1 B0 B1 B0
0

B0
1 σ λ

MP (2.34, 3.06) (−0.004, −0.002) (4.35, 5.46) (−0.036, −0.016) (2.23, 3.20) (−0.005, −0.001) (0.25, 0.29) (0.359, 0.592)

VMP (1.06, 2.67) (−0.003, −0.000) (4.00, 4.70) (−0.077, −0.053) (1.12, 1.69) (−0.003, −0.001) (0.22, 0.34) (0.794, 0.938)

https://doi.org/10.1371/journal.pone.0180756.t005
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detail). The simulated data for the bi-phasic patients are generated using a multivariate normal

distribution. An unwanted implication of this generation mechanism is that the phasic transi-

tion time follows a Gaussian Ratio distribution, with heavy tails, such that for some bi-phasic

patients the actual transition time may exceed the window of observation. This problem is par-

ticularly confounding in the case in which the first and second slopes are close in value to the

slope of the true single-phasic slope parameter. As a result, such bi-phasic patients are indistin-

guishable from single-phasic patients. Thus, this small bias indicates that our proposed method

was able to classify these bi-phasic patients “correctly” as single-phasic, based on the observed

data. Fig A in S1 File shows a few such examples. The four figures in the bottom left corner of

Fig A in S1 File are from true bi-phasic patients; however given the late phasic transitions and

steep second slopes, our algorithm is likely to classify them as mono-phasic. This “misclassifi-

cation” is due to the similarity of those patients’ trajectories to those mono-phasic patients

rather than a systematic mistake in our algorithm. Lastly, the MCMC algorithm requires a

large sample size to be implemented due to its model complexity—21 parameters in total. We

recommend a sample size of at least 100 patients and with sufficient numbers of mono- and

bi-phasic patients, greater than 40 each, to ensure that the number of patients is greater than

the number of parameters.

When applying this algorithm to a data set from the VISTA trial, although from our analysis

we have not found a significant correlation between phasicities and patients outcomes, the dis-

tinct mono- and bi-phasic trajectories may have significant medical implications warranting

further investigation and validation. Those findings on the distinct treatment responses for

patients randomized to the same treatment arm may help generate new hypotheses for

improving patient prognosis and disease management.

From the prospective of clinical trial design, one interesting question is how to design a

trial to maximize phasicity detection, if phasicity is important for patient management. Our

linear framework may offer a simple approach to address these issues. In addition, our model

can be extended beyond between-patient variability to include additional layers inside the

hierarchy. For instance, patients with metastatic solid tumors or multiple tumors at different

sites may demonstrate a large degree of similarity in terms of individual tumor trajectories,

yet also exhibit kinetic differences depending on an individual tumor’s microenvironment.

Modeling treatment responses in such scenarios would then require the incorporation of

between-patient variability and within-patient/between-tumor variability into the model. Fur-

thermore, our model can be extended to include multi-category and multi-phasic changes.

The computational tractability problem associated with multi-phasic changes can be addressed

from a practical point of view, such as restricting the number of minimum observations in

each phase to be greater than 5 data points. These additional extensions can further enrich our

proposed model.

Supporting information

S1 File. EM starting value search algorithm, additional EM examples, and assessment of

Gibbs’ sampler convergence.

(PDF)
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