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Abstract

Accurate classification of categorical outcomes is essential in a wide range of applications.
Due to computational issues with minimizing the empirical 0/1 loss, Fisher consistent
losses have been proposed as viable proxies. However, even with smooth losses, direct
minimization remains a daunting task. To approximate such a minimizer, various boost-
ing algorithms have been suggested. For example, with exponential loss, the AdaBoost
algorithm (Freund and Schapire, 1995) is widely used for two-class problems and has been
extended to the multi-class setting (Zhu et al., 2009). Alternative loss functions, such as
the logistic and the hinge losses, and their corresponding boosting algorithms have also
been proposed (Zou et al., 2008; Wang, 2012). In this paper we demonstrate that a broad
class of losses, including non-convex functions, achieve Fisher consistency, and in addition
can be used for explicit estimation of the conditional class probabilities. Furthermore, we
provide a generic boosting algorithm that is not loss-specific. Extensive simulation results
suggest that the proposed boosting algorithms could outperform existing methods with
properly chosen losses and bags of weak learners.

Keywords: Boosting, Fisher-Consistency, Multiclass Classification, SAMME

1. Introduction

Accurate classification of multi-class outcomes is essential in a wide range of applications.
To construct an accurate classifier for the outcome C ∈ {1, ..., n} based on a predictor
vector X, the target is often to minimize a misclassification rate, which corresponds to
a 0/1 loss. We assume that the data (C,XT )T is generated from a fixed but unknown
distribution P. Specifically, one would aim to identify f = {f1(⋅), ..., fn(⋅)} that maximizes
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the misclassification rate

L(f) = E [1{C ≠ cf(X)}] = P{C ≠ cf(X)} 1, (1)

under the constraint∑j fj(X) = 0, where 1(⋅) is the indicator function and for any f , cf(X) =

argmaxj fj(X). Obviously, fBayes = {fBayes,j(⋅) = P(C = j ∣ ⋅) − n−1, j = 1, ..., n} minimizes
(1). In practice, one may approximate the Bayes classifier cfBayes

(⋅) by modeling P(C =

j ∣ ⋅) parametrically or non-parametrically. However, due to the curse of dimensionality
and potential model mis-specification, such direct modeling may not work well when the
underlying conditional risk functions are complex. On the other hand, due to both the
discontinuity and the discrete nature of the empirical 0/1 loss, direct minimization is often
computationally undesirable.

To overcome these challenges, many novel statistical procedures have been developed by
replacing the 0/1 loss with a Fisher consistent loss φ such that its corresponding minimizer
can be used to obtain the Bayes classifier. Lin (2004) showed that a class of smooth convex
functions can achieve Fisher consistency (FC) for binary classification problems. Zou et al.
(2008) further extended these results to the multi-class setting. Support vector machine
(SVM) methods have been shown to yield Fisher consistent results for both binary and
multi-class settings (Lin, 2002; Liu, 2007). Relying on these FC results, boosting algorithms
for approximating the minimizers of the loss functions have also been proposed for specific
choices of losses. Boosting algorithms search for the optimal solution by greedily aggregating
a set of “weak-learners” G via minimization of an empirical risk, based on a loss function
φ. The classical AdaBoost algorithm (Freund and Schapire, 1995) for example is based on
the minimization of the exponential loss, φ(x) = e−x, using the forward stagewise additive
modeling (FSAM) approach. Hastie et al. (2009) showed that the population minimizer of
the AdaBoost algorithm corresponds to the Bayes rule cfBayes

(⋅) for the two-class setting.
Zhu et al. (2009) extended this algorithm and developed the Stagewise Additive Modeling
using a Multi-class Exponential (SAMME) algorithm for the multi-class case.

Most existing work on Fisher consistent losses focuses on convex functions such as
φ(x) = e−x and φ(x) = ∣1−x∣+. However, there are important papers advocating the usage of
non-convex loss functions, which we will briefly discuss here. Inspired by Shen et al. (2003),
Collobert et al. (2006) explores SVM type of algorithms with the non-convex “ramp” loss
instead of the typical “hinge” loss in order to speed up computations. Bartlett et al. (2006)
consider the concept of “classification calibration” in the two-class case. Classification
calibration of a loss can be understood as uniform FC, along all possible conditional proba-
bilities on the simplex. They demonstrate that non-convex losses such as 1− tan(kx), k > 0
can be classification calibrated in the two class case. More generally, Tewari and Bartlett
(2007) extend classification calibration to the multiclass case, and provide elegant charac-
terization theorems. We will draw a link between our work and the work of Tewari and
Bartlett (2007) in Section 2.

Asymptotically, procedures such as the AdaBoost based on FC losses would lead to the
optimal Bayes classifier, provided sufficiently large space of weak learner set G. However, in
finite samples, the estimated classifiers are often far from optimal, and the choice of the loss
φ could greatly impact the accuracy of the resulting classifier. In this paper, we consider

1. Here the expectation and probability are both with respect to the unknown true distribution P.
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a broad class of loss functions that are potentially non-convex and demonstrate that the
minimizer of these losses can lead to the Bayes rules for multi-category classification, and in
fact can be used to explicitly restore the conditional probabilities. Moreover, we propose a
generic algorithm leading to local minimizers of these potentially non-convex losses, which as
we argue, can also recover the Bayes rule. The last observation has important consequences
in practice, as global minimization of non-convex losses remains a challenging problem. On
the other hand, non-convex losses, although not commonly used in the existing literature,
could be more robust to outliers (Masnadi-Shirazi and Vasconcelos, 2008). The rest of
the paper is organized as follows. In section 2 we detail the conditions for the losses
and their corresponding FC results. In settings where the cost of misclassification may
not be exchangeable between classes, we generalize our FC results to a weighted loss that
accounts for differential costs. In section 3, we propose a generic boosting algorithm for
approximating the minimizers and study some of its numerical convergence aspects. In
section 4 we present simulation results and real data analysis comparing the performance
of our proposed procedures to that of some existing methods including the SAMME. In
addition in Section 4 we apply our proposed algorithms to identify subtypes of diabetic
neuropathy with EMR data from the Partners. These numerical studies suggest that our
proposed methods, with properly chosen losses, could potentially provide more accurate
classification than existing procedures. Additional discussions are given section 5. Proofs
of the theorems are provided in Appendix A.

2. Fisher Consistency for a general class of loss functions

In this section we characterize a broad class of loss functions which we deem relaxed Fisher
consistent. This class encompasses previous classes of loss functions, provided in Zou et al.
(2008), but also admits non-convex loss functions.

2.1 Fisher Consistency for 0/1 Loss

Suppose the training data available consists of N realizations of (C,XT )T drawn from P,
and let D = {(Ci,X

T
i )

T , i = 1, . . . ,N}. Moreover, we assume throughout that:

min
j∈{1,...,n}

P(C = j∣X) > 0 ∶ almost surely in X. (2)

Assumption (2) states that any class C has a chance to be drawn for all X, except on a
set of measure 0, where determinism in the class assignment is allowed. For a given C,
define a corresponding n × 1 vector YC = (1(C = 1), . . . ,1(C = n))T . Under this notation,
clearly YT

Cf(X) = fC(X). For identifiability the following constraint is commonly used in
the existing literature (Lee et al., 2004; Zou et al., 2008; Zhu et al., 2009, e.g.) :

n

∑
j=1

fj(⋅) = 0. (3)

To identify optimal f(⋅) for classifying C based on f(X), we consider continuous loss
functions φ as alternatives to the 0/1 loss and aim to minimize

Lφ(f) = E[φ{YT
Cf(X)}] = E[φ{fC(X)}] =

n

∑
j=1

E[φ{fj(X)}P(C = j ∣ X)], (4)

3
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under the constraint (3). The loss function φ is deemed Fisher consistent Fisher consistent
if the global minimizer (assuming it exists) fφ = argminf ∶∑j fj=0

Lφ(f) satisfies

cfφ(X) = 2cfBayes
(X). (5)

Hence, with a Fisher consistent loss φ, the resulting argmaxj fφ(x) has the nice property
of recovering the optimal Bayes classifier for the 0/1 loss. Clearly, the global minimizer
fφ(x) also minimizes E[φ{fC(X)} ∣ X = x] for almost all x 3. With a given data D , we may
approximate fφ by minimizing the empirical loss function

L̂φ(f) =
1

N

N

∑
i=1

φ{YT
Cif(Xi)} =

1

N

N

∑
i=1

φ(fCi(Xi)) =
1

N

n

∑
j=1

N

∑
i=1

φ(fj(Xi))I(Ci = j),

to obtain f̂ = argminf ∶∑j fj=0
L̂φ(f).

Existing literature on the choice of φ focuses almost entirely on convex losses other than
a few important exceptions (Bartlett et al., 2006; Tewari and Bartlett, 2007, e.g.). Here,
we propose a general class of φ to include non-convex losses and generalize the concept of
FC as we defined in (5). Specifically, we consider all continuous φ satisfying the following
properties:

φ(x) − φ(x′) ≥ (g(x) − g(x′))k(x′) for all x ∈ R, x′ ∈ S = {z ∈ R ∶ k(z) ≤ 0}, (6)

where g and k are both strictly increasing continuous functions, with g(0) = 1, infx∈R g(x) =
0, supx∈R g(x) = +∞, k(0) < 0 and supz∈R k(z) ≥ 0. This suggests4 that φ{g−1(⋅)} is con-
tinuously differentiable and convex on the set g(S) = {g(z) ∶ z ∈ S}. However, φ itself
is not required to be convex or differentiable. Extensively studied convex losses such as
φ(x) = e−x and φ(x) = log(1 + e−x) both satisfy these conditions. For φ(x) = e−x, (6)
would hold if we let g(x) = ex and k(x) = −e−2x. For the logistic loss φ(x) = log(1 + e−x),
we may let g(x) = ecx and k(x) = −{cecx(1 + ex)}−1 for any positive constant c > 0.
Alternatively, g(x) = ex(1 + ex)/2 and k(x) = −2{ex(1 + ex)(1 + 2ex)}−1 would also sat-
isfy (6) for the logistic loss. Our class of losses also allows non-convex functions. For
example, φ(x) = log(log(e−x + e)) is a non-convex loss and (6) holds if g(x) = ex and
k(x) = −{ex(ex+1 + 1) log(e−x + e)}−1. On an important note, we would like to mention that
all three examples above can be seen to fall into the general class of classification calibrated
loss functions in the two class case, as defined by Bartlett et al. (2006) and hence are FC
in the two-class case. We will see a more general statement relating condition (6) to the
notion of classification calibration in the two class case (see Remark 2.2 below).

Next, we extend the FC property (5), to allow for more generic classification rules. For
a loss function φ, if there exists a functional H such that the minimizer of (4) has the
property:

argmax
j∈{1,...,n}

H{fφ,j(X)} = cfBayes
(X), (7)

2. Formally the“=” in (5) should be understood as “⊆”. For the sake of simplicity, we keep this slight abuse
of notation consistent throughout the paper.

3. Provided that this minimizer of E[φ{fC(X)} ∣ X] exists on a set of probability 1, and E[∣φ{fC(X)}∣] <∞

so that Fubini’s theorem holds.
4. We provide a formal proof of this fact in Appendix A under Lemma A.1.
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then we call it relaxed Fisher consistent (RFC). Obviously, the RFC property would still
recover the Bayes classifier. Moreover FC losses are special cases of the RFC losses with an
increasing H.

We will now point out a connection between RFC and multiclass classification cali-
bration as defined by Tewari and Bartlett (2007). Re-casting the definition of multiclass
classification calibration to our framework, it requires that for any vector w on the simplex,
the minimizer (assuming that it exists):

F̂(w) = argmin
F∶∑j Fj=0

n

∑
i=1

φ(Fj)wj satisfies argmax
j∈{1,....,n}

H(φ(F̂j)) = argmax
j∈{1,....,n}

wj , (8)

for some functional H. In words, classification calibration ensures that regardless of the
conditional distribution of C ∣X, one can recover the Bayes rule. In contrast, RFC requires
this to happen for the distribution at hand C ∣X, for (P almost) all X. This subtle but
important distinction makes a difference. Example 4 in Tewari and Bartlett (2007) shows
that if φ is positive and convex the conditions in (8) cannot be met for all vectors w on the
simplex, when we have at least 3 classes. On the contrary, in the present paper we argue
that in fact condition (8) remains plausible for both convex and non-convex losses, provided
that we require that the points w are not allowed to be vertexes of the simplex (i.e. wj > 0
for all j), which relates back to assumption (2).

The next result justifies that the proposed losses satisfying (6) are RFC with H(x) =
Hφ(x) ≡ g(x)k(x). We first present in Theorem 2.1 the property of a general constrained
minimization problem, which is key to establishing the RFC.

Theorem 2.1 For a loss φ satisfying (6), consider the optimization problem with some
given wj > 0:

min
F=(F1,...,Fn)T

n

∑
j=1

φ(Fj)wj under the constraint
n

∏
j=1

g(Fj) = 1. (9)

Assume that there exists a minimum denoted by F̂ = (F̂1, ..., F̂n)
T . Then the minimizer F̂

must satisfy

Hφ(F̂j)wj = C for some C < 0. (10)

Moreover, if the function Hφ(⋅) is strictly monotone there is a unique point with the property
described above.

This result indicates that Hφ(F̂j) is inversely proportional to the weight wj . Now, consider
g(x) = exp(x), wj = P(C = j∣X = x), and Fj = fj(x), where we hold x . Then we can
recover cfBayes

(x) by classifying C according to argmaxj{−Hφ(F̂j)}
−1 = argmaxjHφ(F̂j) (the

negative sign comes in because C < 0), which implies that φ is RFC. Note that when Hφ(⋅)

is not increasing, Theorem 2.1 does not immediately imply that φ is a Fisher consistent loss
according to definition (5), because the Bayes classifier need not be recovered by argmaxj F̂j .
Nevertheless, we have the following:

5
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Proposition 2.2 Assume the same conditions as in Theorem 2.1. Then in addition to
(10) we have:

argmax
j∈{1,...,n}

F̂j = argmax
j∈{1,...,n}

wj ,

and hence φ is also FC in the sense of (5).

The validity of Proposition 2.2 can be deduced from Theorem 2.1 and an application of
Lemma 4 of Tewari and Bartlett (2007), but for completeness we include a simple standalone
proof in Appendix A. While Proposition 2.2 states that φ is FC, Theorem 2.1 suggests that
in addition to classification, one can recover conditional probabilities by calculating:

wj =
{Hφ(F̂j)}

−1

∑
n
j=1{Hφ(F̂j)}−1

. (11)

It is also worth noting here that the constraint in (9), generalizes the typical identifiability
constraint (3), and the two coincide when g(⋅) = exp(⋅). We proceed by formulating a
sufficient condition for the optimization problem in Theorem 2.1 to have a minimum without
requiring the convexity or differentiability of φ.

Theorem 2.3 The optimization problem in Theorem 2.1 has a minimum if either of the
following conditions holds:

i. φ is decreasing on the whole R and for all c > 0:

cφ(g−1(x)) + φ(g−1(x1−n)) ↑ +∞, as x ↓ 0, (12)

ii. φ is not decreasing on the whole R.

Remark 2.1 It follows that in any case, problem (9) has a minimum when the loss function
is bounded from below and unbounded from above.

Remark 2.2 Take g = exp to match the constraint in (9) with the constraint considered
by Bartlett et al. (2006). It turns out that a loss function obeying (6) and either i. or ii
in Theorem 2.3. is classification calibrated in the two class case. See and Lemma A.2 in
Appendix A for a formal proof of this fact.

Clearly, by Remark 2.1, problem (9) would have a minimum for all three losses suggested
earlier — the exponential, logistic (for both g(x) = ecx, and g(x) = ex e

x+1
2 ), and log-log loss.

Finally we conclude this subsection, by noting that the assumptions in both Theorem 1
and 2 in Zou et al. (2008) can be seen to imply that the assumptions in Theorems 2.1 and
2.3 hold, thus rendering these theorems as consequences of the main result shown above. For
completeness we briefly recall what these conditions are. In Theorem 1, Zou et al. (2008)
require a twice differentiable loss function φ such that φ′(0) < 0 and φ′′ > 0. In Theorem
2 these conditions are slightly relaxed by allowing for part linear and part constant convex
losses.

6
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2.2 Fisher Consistency for Weighted 0/1 Loss

Although the expected 0/1 loss or equivalently the overall misclassification is an important
summary for the overall performance of a classification, alternative measures may be pre-
ferred when the cost of misclassification is not exchangeable across outcome categories. For
such settings, it would be desirable to incorporate the differential cost when evaluating the
classification performance and consider a weighted misclassification rate. Consider a cost
matrix W = [W (j, )]n×n with W (j, ) representing the cost in classifying the th class to
the jth class. Then, the optimal Bayes classifier is

cWfBayes
(X) = argmin

j

n

∑
=1

W (j, )P(C = ∣X). (13)

SettingW = 1−I corresponds to the 0/1 loss and cWfBayes
= cfBayes

, where I is the identity

matrix. Without loss of generality, we assume that W (j, ) ≥ 0. For φ satisfying (6) and
the condition in Theorem 2.3, we next establish the FC results for the weighted 0/1 loss
parallel to those given in Theorems 2.1 and 2.3.

Proposition 2.4 Define the weighted loss `(F) = ∑
n
j=1 φ(Fj)W (j, ). Then the optimiza-

tion problem:

min
F=(F1,...,Fn)T ∶∏

n
=1 g(F)=1

n

∑
=1

`(F)P(C = ∣X), (14)

7
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has a minimizer F̂W = (F̂W1 , ..., F̂
W
n )T which satisfies the property that:

Hφ(F̂
W
j )wWj = C̃ for some C̃ < 0, (15)

where wWj = ∑
n
=1W (j, )P(C = ∣X) assuming that wWj > 0.

This proposition is a direct consequence of Theorem 2.1, after exchanging summations:

n

∑
=1

n

∑
j=1

φ(Fj)W (j, )P(C = ∣X) =
n

∑
j=1

φ(Fj)w
W
j .

Remark 2.3 Note that the above result hints on how one can relax assumption (2) by using
the loss ` constructed withW = 1−I. Using this particular `, Proposition 2.4 simply requires
wWj > 0, which would be satisfied if we required:

max
j∈{1,...,n}

P(C = j∣X) < 1 ∶ almost surely in X.

This is indeed weaker than (2). If we wanted to recover the conditional probabilities simply
note that P(C = j∣X) = 1 −wWj , and hence:

P(C = j∣X) = 1 −
{Hφ(F̂

W
j )}−1

∑
n
j=1{Hφ(F̂

W
j )}−1

.

The result also suggests that using the modified loss `, we can attain the optimal
weighted Bayes classifier cWfBayes

(X) based on argminHφ(F̂
W
 ).

3. Generic Algorithm for Constructing the Classifier

In this section we provide a generic boosting algorithm, based on the explicit structure (6)
that the RFC loss functions possess, and analyze certain numerical convergence aspects of
the algorithm in the special case when g = exp.

3.1 A Generic Boosting Algorithm

The properties of φ and the results in Theorem 2.1 and 2.3 also lead to a natural iterative
generic boosting algorithm to attain the minimizer.

3.1.1 A Conditional Iteration

In this subsection, we provide an iterative procedure, conditional on X = x, which eventually
leeds to a generic boosting algorithm. The usefulness of this conditional iteration is based
on the following result.

Theorem 3.1 Assume that φ satisfies (6) and the condition in Theorem 2.3. Starting from

F(0) ≡ 0, i.e. F
(0)
j = 0 for all j, define the following iterative procedure:

F(m+1) = argmax
F∶∏ g(Fj)=1

n

∑
j=1

{g(F
(m)
j ) − g(Fj)}k(Fj)wj . (16)

8
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This iteration is guaranteed to converge to a point F∗ with the following property:

g(F ∗
j )k(F

∗
j )wj =Hφ(F

∗
j )wj = C < 0.

In the theorem above, the iterations are defined conditionally on X = x, and Fj can
be understood as fj(x). If Hφ(⋅) turns out to be monotone, the procedure above will
converge to the global minimum, as we can conclude straight from Theorem 2.1. Even if
the procedure does not converge to a global minimum, because of the property of the point
that it converges to, F∗ can be used to recover the Bayes classifier. This observation is
particularly useful for minimizing a non-convex loss functions as in such cases it is often
hard to arrive at the global minimum. Moreover, as before the point F∗ can be used not
only for classification purposes, but also to recover the exact probabilities wj .

In practice, the procedure described in (16) can be used to derive algorithms for boosting.
However, an unconditional version of (16) is needed since wj are unknown in general. Noting
that the expectation of 1(C = j) given X is wj , we have

E
⎛

⎝

n

∑
j=1

[g{F
(m)
j (X)} − g{Fj(X)}]k{Fj(X)}wj

⎞

⎠

=E
⎛

⎝

n

∑
j=1

[g{F
(m)
j (X)} − g{Fj(X)}]k{Fj(X)}1(C = j)

⎞

⎠

=E ([g{YT
CF(m)(X)} − g{YT

CF(X)}]k{YT
CF(X)}) , (17)

where recall that YC = (1(C = 1), ...,1(C = n))T . We next derive a boosting algorithm
iterating based on an empirical version of (17).

3.1.2 The Boosting Algorithm

To derive the boosting algorithm, we let G = {Gb(⋅), b = 1, ...,B} denote the bag of weak
learners with G(X) ∈ {1, ..., n} denoting the predicted class based on learner G. For the bth
classifier in G, define a corresponding vectorized version of Gb, Fb = (Fb1, ..., Fbn), with

Fbj(X) = C− + 1{Gb(X) = j}(C+ − C−),

where C− < 0 and C+ > 0 are chosen such that ∏nj=1 g(Fbj) = 1. Obviously, YT
CFb(⋅) =

C− + 1(Gb(⋅) = C)(C+ − C−). Let G∗ = {Fb(⋅), b = 1, ...,B} denote the bag of vectorized
classification functions corresponding to the classifiers in G.

We next propose a generic iterative boosting algorithm that greedily searches for an
optimal weight and for which weak learner to aggregate at each iteration. The loss function
φ is not directly used, and instead we rely on the g(⋅) and k(⋅) functions as specified in (6).
Specifically, we initialize F(0) ∶= 0. Then for m = 1, ...,M with M being the total number of
desired iterations, we obtain the maximizer of

N

∑
i=1

g{YT
CiF

(m−1)
(Xi)} [1 − g{YT

CiF(Xi)}
β]k (g−1 [g{YT

CiF
(m−1)

(Xi)}g{Y
T
CiF(Xi)}

β
}]) ,

with respect to F ∈ G∗ and β ≥ 0, denoted by F̂ and β̂. Then we update the clas-

sifier coordinate-wise as F
(m)
j = g−1{g(F

(m−1)
j )g(F̂j)

β̂)} so that we have the following

9
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g{YT
CF(m)} = g{YT

CF(m−1)}g{YT
CF̂}β̂ holding for all C. This will ensure that the property

∏
n
j=1 g(F

(m)
j ) = 1 continues to hold throughout the iterations. Thus at each iteration, we

would be greedily maximizing:

N

∑
i=1

[g{YT
CiF

(m−1)
(Xi)} − g{Y

T
CiF

(m)
(Xi)}]k {YT

CiF
(m)

(Xi)} ,

which is exactly the empirical version of (17).
For illustration, consider g(x) = ex with φ being differentiable and hence we may let

k(x) = φ̇(x)e−x. In this special case the update of F(m) simplifies to F(m) = F(m−1) + β̂F̂.
Therefore following the iteration described above we have:

argmin
F∈G∗, β≥0

N

∑
i=1

−{e−βY
T
CiF(Xi) − 1}φ̇{YT

CiF
(m−1)

(Xi) + βYT
CiF(Xi)}. (18)

Note here, the apparent similarity between a coordinate descent (or gradient descent in
a functional space) as proposed in Mason et al. (1999) and Friedman (2001), and the above
iteration. Finally, we summarize the algorithm as follows.

Algorithm 1: Generic Boosting Algorithm

1. Set F(0) = 0

2. For m = 1, . . . ,M

(a) Maximize ∑Ni=1 {g{Y
T
CiF

(m−1)(Xi)} [1 − g{YT
CiF(Xi)}

β]×

k (g−1 [g{YT
CiF

(m−1)(Xi)}g{Y
T
CiF(Xi)}

β}])}

with respect to F ∈ G∗, β ≥ 0 to obtain F̂ and β̂

(b) Update F(m) coordinate-wise as F
(m)
j = g−1{g(F

(m−1)
j )g(F̂j)

β̂)}.

3. Output F(M) and classify via argmaxjHφ(F
(M)
j ).

3.2 Numerical Convergence of the Algorithm when g(⋅) = exp(⋅)

In this subsection we illustrate how algorithm 1 performs in finite samples, if we let it run
until convergence (using potentially infinitely many iterations). More specifically, we study
the properties of the iteration above in the case when g(x) = exp(x), or in other words we
are concerned with the iteration given by (18). In addition, we also want to explore the
relationship between iteration (18) and the following optimization problem:

inf
F∈spanG∗

N

∑
i=1

φ(YT
CiF(Xi)). (19)

To this end we formulate the following:

Definition 3.1 (Looping closure) Let π be a permutation of the numbers {1, . . . , n} into
{π1, . . . , πn}. Consider the following “loop” functions, such that for all i = 1, . . . , n: l(0)(πi) =

10
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πi, l
(1)(πi) = πi+1, l(k)(⋅) = l(1)(l(k−1)(⋅)), where the indexing is mod n, and k = 1, . . . , n−15.

We say that a classifier bag G is closed under “looping” if there exists a permutation π such
that for all G ∈ G it follows that l(k) ○G ∈ G for all k = 0, . . . , n − 1.

In practice, closure under looping can easily be achieved if it is not already present, by
adding the missing classifiers to the bag. Similar bag closures have been considered in the
two class case in Mason et al. (1999). We start our discussion with the following proposition,
providing a property of the algorithm at its limiting points.

Proposition 3.2 Suppose that the loss function φ is decreasing, continuously differentiable,
bounded from below and satisfies (6) with g = exp. Furthermore assume that, the classifier
bag is closed under looping (see Definition 3.1). Then iterating (18), using possibly infinite
amount of iterations until a limiting point F(∞) is reached, guarantees that the following
condition holds:

N

∑
i=1

YT
CiF(Xi)φ̇(Y

T
CiF

(∞)
(Xi)) = 0, (20)

for all F ∈ G∗.

Clearly, all examples of loss functions we considered satisfy the assumptions of Propo-
sition 3.2. In the case when φ is convex, (20) shows that by iterating (18) we would arrive
at an infimum of problem (19). This can be easily seen along the following lines. Assume
that the F̃ is a point of infimum of (19) over the span of G∗. By convexity of φ we have:

N

∑
i=1

φ(YT
CiF̃(Xi)) −

N

∑
i=1

φ(YT
CiF

(∞)
(Xi)) ≥

N

∑
i=1

YT
Ci[F̃(Xi) −F(∞)(Xi)]φ̇(Y

T
CiF

(∞)
(Xi)) = 0.

The last equality follows from (20) and the fact that F̃ −F(∞) is in the span of classifiers.
In the case when φ is not convex, condition (20) remains meaningful, though it doesn’t

guarantee convergence to the infimum. In order for us to relate condition (20) to equation
(11) in the general (non-convex loss) case, and make it more intuitive, we consider a simple
and illustrative example. We restrict our attention to the two class case (n = 2), but the
example can be easily generalized.

Example 3.1 Consider a (disjoint) partition of the predictor support: X – X1, . . . ,XB.
Construct classifiers based on that partition in the following manner:

Gb(x) =

⎧⎪⎪
⎨
⎪⎪⎩

1, if x ∈ Xb

2 otherwise
,

and close them under looping. It is easily seen that, under this framework the vector F(∞)(x)

is constant for x ∈ Xb for a fixed b. Denote the value of this constant with F
(∞)

b . Plugging

in the bth classifier in equation (20) we obtain: Nbφ̇(Y
T
1 F
(∞)

b ) − (N −Nb)φ̇(Y
T
2 F
(∞)

b ) = 0,

5. Note that the loop functions depend on the permutation π, but we suppress this dependence for clarity
of exposition.

11
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where Nb is the number of observations correctly classified by the bth classifier, or in other
words:

{φ̇(YT
1 F
(∞)

b )}−1

{φ̇(YT
1 F
(∞)

b )}−1 + {φ̇(YT
2 F
(∞)

b )}−1
=
Nb

N
.6 (21)

The LHS of (21) is an estimate of the probability P(C = 1∣X ∈ Xb), which in turn is a proxy
to the Bayes classifier. For the RHS of (21), note that our probability recovering rule (11)
with g = exp becomes:

{φ̇(YT
j F(∞)(x))}−1

{φ̇(YT
1 F(∞)(x))}−1 + {φ̇(YT

2 F(∞)(x))}−1
,

in the two class case. This expression is in complete agreement with the RHS of (21).

3.2.1 Convergence Analysis

In the convex loss function case, property (20) will be matched by a gradient descent
methods in the function space such as AnyBoost (Mason et al., 1999). This motivates us
to consider the question of the convergence rate of the newly suggested algorithm — is it
slower, faster or the same as a gradient descent in the convex loss function case? At first
glance the rate might appear to be slower as we are not using the “fastest” decrease at
each iteration using simply the exp function. In the end of this subsection we establish a
geometric rate of convergence under certain assumptions, which matches the convergence
rate for gradient descent under similar assumptions.

As we argued in the previous subsection, in the case of a convex loss φ, (20) guarantees
that iteration (18) converges to the infimum of problem (19). Let YT

Ci
F(∞)(Xi) be the

limiting (allowed to be ±∞) values achieving the infimum above. Before we formalize the
convergence rate result, we will characterize the behavior of YT

Ci
F(∞)(Xi). This question is

of interest in its own right, as this characterization remains valid regardless of what boosting
algorithm one decides to use to obtain the minimum/infimum.

For what follows we consider a loss function φ which satisfies a mildly strengthened
condition (12). Namely, let φ be decreasing and for any α, c > 0 it satisfies the following
condition:

φ(x) + cφ(−αx) ↑ +∞ as x ↑ +∞ (22)

It is worth noting that if condition (12) is satisfied for all n (recall that g = exp here)
this would imply (22). Denote with B the total number of weak learners in the bag. Let
D ∶= {YT

CiFj(Xi)}j,i be a B × N matrix each entry of which is either C+ or C−. Again,
we assume that the bag is closed under looping. Let v ∈ RN be a vector. Consider the
equation DTα = v for some vector α ∈ RB0,+, where R0,+ = [0,∞). Note that because of

the looping closure7 the linear equation above has solution iff the equation DTα = v has a
solution with α ∈ RB, since without loss of generality we can add a large positive constant

6. Here we assume that φ̇(YT
j F

(∞)
b ) ≠ 0, j ∈ {1,2}, which can be ensured if φ is unbounded from above

7. Looping closure (Definition 3.1) implies that the column sums of D are 0.

12
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to the coordinates of α. It follows that the equation DTα = v has a solution α ∈ RB0,+ iff
v ∈ row(D).

To see the connection between the linear equation above and optimization problem (19)
consider the following simple example:

Example 3.2 The function ∑Ni=1 φ(∑
B
j=1 αjY

T
CiFj(Xi)) cannot have a minimum, if there

exists a vector v ∈ RN+ , such that the equation DTα = v has a solution — α̂ ∈ RB0,+, where
R+ = (0,∞) . To see this, suppose the contrary, take an arbitrary constant R > 0 and note
that:

N

∑
i=1

φ(
B

∑
j=1

Rα̂jY
T
CiFj(Xi)) =

N

∑
i=1

φ(Rvi).

Take the limit R →∞, and it is clear that the infimum Nφ(+∞) is achieved.

Example 3.2 illustrates that if we want to have a solution smaller than Nφ(+∞), D cannot
have rank N . Denote the rank of D with r.

More generally, our next result provides a characterization of how many (and which) of
the values YT

Ci
F(∞)(Xi) are set to +∞ at the infimum of (19). Consider the perp space of

the row space of the matrix D, E ∶= row(D)⊥. Out of all possible bases of E including the 0
vector, select the one e1, . . . ,es (s = min(N,B)− r+1) for which the vector e1 has the most
strictly positive entries at I coordinates and zeros at the rest8. We have the following:

Proposition 3.3 Let φ be a decreasing loss function satisfying (22). Set M ∶= N −I, where
I ∈ {0, . . . ,N}. We have that:

(N −M − 1)φ(0) + (M + 1)φ(+∞) < inf
F∈spanG∗

N

∑
i=1

φ(YT
CiF(Xi)) ≤ (N −M)φ(0) +Mφ(+∞).

Moreover, exactly M of the values YT
Ci

F(∞)(Xi) (i will be corresponding to the 0 coordinates
of e1) will be set to +∞ at the infimum.

Proposition 3.3 characterizes the cases when one should expect problem (19) to have
a minimum. In fact, in the cases where I > 0, we can simply delete the observations
corresponding to the rows of e1 that are 0, and solve the optimization only on the set of
observations left, as it can be seen from the proof.

Next we formulate the speed of the convergence of the algorithm we suggested, in the case
when the function φ is convex. For simplicity we assume that the matrix of classifier entries,
D, is such that there is a strictly positive vector in the perp of the row space of D. If that is
not the case as argued we can delete observations that will be set to +∞ at the maximum,
and work with the rest. Denote with S = {v ∶ DTα = v with α ≥ 0,∑Ni=1 φ(vi) ≤ Nφ(0)}.
Proposition 3.3 then implies that, the set S is bounded coordinate-wise. Next we formulate
the result:

Theorem 3.4 Let the convex, decreasing loss function φ be strongly convex with Lipchitz
and bounded derivative on any compact subset of R, and satisfies (22) and (6) with g = exp.
Furthermore, assume that there is a stricly positive vector in row(D)⊥, and define the

8. We allow I = 0, in which case e1 would simply represent the 0 vector.
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set S as above. Let F∗ ∈ spanG∗ achieves the minimum in problem (19). Denote with
εm = ∑

N
i=1 φ(Y

T
CiF

(m)(Xi)) −∑
N
i=1 φ(Y

T
CiF

∗(Xi)), where F(m) is produced iteratively using
(18). Then there exists a constant K < 1 depending on the matrix D, the sample size N
and the set S, such that:

εm+1 ≤ εmK.

As we can see from Theorem 3.4 if we use this algorithm in the convex loss function
case, we wouldn’t lose convergence speed to gradient descent (see Nesterov (2004) Theorem
2.1.14), but in the non-convex function case which still obeys (6) this algorithm will be
converging to a local minimum. In the latter case we will still be capable of recovering the
Bayes classifier, as indicated by equation (20).

4. Numerical Studies and Data Examples

In this section we validate empirically the performance of the generic boosting algorithm
developed in the previous section with various choices of φ, comparing it to popular clas-
sification algorithms such as SVM and SAMME on simulated datasets, real benchmark
datasets from the UCI machine learning, as well as an EMR study on diabetic neuropathy
conducted at the Partners Healthcare.

For each dataset, we evaluated our proposed boosting algorithm based on (i) φ(x) =

log(1+e−x) (Logistic) with g(x) = ex and k(x) = −{ex(1+ex)}−1; (ii) φ(x) = log(log(e−x+e))
(LogLog) with g(x) = ex and k(x) = {ex(ex+1 + 1) log(e−x + e)}−1. We also experimented
with g(x) = ecx for different values of c, and our results (not reported) were robust with
respect to the choice of c. We also compare each of these algorithms to the commonly used
LASSO (Friedman et al., 2010)/Multinomial Logistic Regression and SVM procedures. The
SVM was trained with RBF kernel where the tuning parameter for the kernel function was
chosen via the sigest function of ksvm library. The sigest procedure outputs three quan-
tiles — 0.1, 0.5, 0.9 of the distribution of ∥X −X ′∥−22 where X and X ′ are two predictors
sampled from the matrix X, and we take the mean of these quantiles as the tunning pa-
rameter in the RBF kernel for robustness. The fitting was performed with the kernlab

R package implementation – ksvm which uses the “one-against-one”-approach to deal with
multi-class problems see Hsu and Lin (2002) for example. The LASSO procedure with X
being the predictors was based on an `1 penalized logistic regression through the glmnet

implementation, and the tuning parameter was selected based on 5-fold CV. Throughout,
the bag of classifiers for all boosting algorithms consisted of decision trees and multinomial
logistic regressions weak learners, the predictors in each of which represented a subsample
of the whole predictor set.

4.1 Simulation Studies

To distinguish the performance of our algorithm to the classical SAMME algorithm we
chose a simulation setting with a complicated decision boundary. We borrow the idea of
this simulation from the celebrated paper by Friedman et al. (2000).

The predictor matrix is generated as follows X ∼ [N(0, I10×10)]10. Next for each obser-
vation Xi it’s `1 or `2 norms were calculated. The class assignment was then performed
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based on:

Ci =
n

∑
j=1

j1(rj ≤ ∥Xi∥` < rj+1),

where 0 = r1 ≤ r2 ≤ . . . ≤ rn+1 =∞, ` ∈ {1,2} and for X ∈ Rp we have ∥X∥` ∶= (∑
p
i=1 ∣Xi∣

`)1/`.
The thresholds rj were selected in such a way so that each class got an approximately
equal number of observations. Geometrically the classes C = {1, . . . , k} for k < n were
observations belonging to a 10 dimensional `1 or `2 sphere. Moreover, the more cutoffs rj ,
the more classes the problem has, and hence the more complicated classification becomes.

We compared 5 algorithms – the SAMME, our algorithm with the logistic and loglog
losses, the SVM and the LASSO logistic regression algorithm. Each simulation, 3200 ob-
servations were generated, 200 of which were used for training and 3000 were left out for
testing purposes. We performed in total of 500 simulation for each scenario. The results
are summarized in the tables 1 and 2 below:

Table 1: Percent misclassification for `1 Spheres
n = 3 n = 4 n = 5 n = 6

SVM 17.9% (0.46) 29.4% (0.45) 37.6% (0.81) 46.6% (1.21)
LASSO 7.8% (11.6) 27.6% (5.00) 30.4% (20.0) 43.9% (15.9)

SAMME 6.9% (0.31) 10.7% (0.20) 16.4%(0.33) 28.4% (0.34)
Logistic 6.5% (22.6) 10.0% (16.4) 15.1% (22.3) 25.1% (23.6)
LogLog 6.6% (32.7) 9.8% (24.0) 15.0% (33.5) 25.2% (34.5)

Table 2: Percent misclassification for `2 Spheres
n = 3 n = 4 n = 5 n = 6

SVM 17.0% (0.44) 28.0% (0.78) 36.6% (0.83) 44.1% (1.15)
LASSO 8.7% (11.8) 26.7% (5.70) 31.9% (19.7) 45.0% (14.6)

SAMME 8.2% (0.33) 12.9% (0.46) 19.7% (0.30) 28.9% (0.29)
Logistic 7.5% (23.4) 11.7% (25.3) 17.3% (24.6) 25.4% (23.5)
LogLog 7.7% (33.7) 11.5% (35.6) 17.9% (35.7) 25.8% (35.7)

As we can see our boosting based procedures dominated in all scenarios with the dif-
ference becoming more pronounced the more number of classes we have. We observed that
our algorithms seem to combine classifiers from the bag more efficiently as compared to the
SAMME algorithm in this scenario, especially so when the number of classes was large.

4.2 Experiments with UCI Benchmark Datasets

To present a more comprehensive assessment of our procedure, we analyzed 5 datasets from
the UCI machine learning repository. The summaries of the characteristics of the datasets
we used can be found in Table 3.

We compare results from SAMME, LogLog and Logistic from our proposed methods,
SVM and a multinomial logistic regression (referred to as MLogisticReg). The MLogisticReg

9. Originally 10 classes; Extreme classes were grouped together for balanced class counts.
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Table 3: Summary of datasets
Dataset Train Set / Test Set Size # Features # Classes

IS Image Segmentation 210/2100 19 7
LED Led Display 200/5000 7 10

RWQ9 Red Wine Quality 700/899 11 4
SE Seeds 100/110 7 3
EC Ecoli 100/236 7 8

was used instead of the LASSO procedure, as these datasets have relatively few features, and
the LASSO procedure generally performs worse than the standard. As before all boosting
algorithms were ran for 50 iterations.

For the analysis of all 5 datasets, the bag of weak learners we used consisted of decision
trees and multinomial logistic regressions with subsampled prefixed number of predictors.

Table 4: Percent misclassifications (run time in seconds)

IS RWQ SE LED EC

SVM 16.19% (0.44) 29.37% (0.28) 8.18% (0.08) 28.64% (1.26) 37.28% (0.27)
MLogisticReg 10.57% (0.08) 28.59% (0.09) 5.45% (0.04) 28.34% (0.06) 41.52% (0.04)

SAMME 5.09% (0.17) 30.14% (0.74) 4.55% (0.02) 29.36% (0.04) 22.45% (0.02)
Logistic 5.00% (13.6) 27.36% (35.3) 3.64% (1.61) 27.02% (1.53) 19.49% (1.22)
LogLog 4.95% (16.9) 28.36% (48.8) 3.64% (1.30) 27.00% (2.01) 19.49% (1.45)

We observe that in nearly all cases the newly suggested procedure performed better
than the SAMME procedure, which typically converged too fast failing to include enough
classifiers. The misclassifications rates of both the Logistic and LogLog based boosting
algorithms were also better compared to the SVM and logistic regression in all 4 datasets.

4.3 Summary of Simulation Results and Benchmark Data Analyses

The results provided above demonstrate that the suggested algorithms can be used in suc-
cessfully practice, and can outperform existing algorithms in many cases. The proposed
boosting algorithm with LogLog loss appears to perform well across all settings considered
with respect to classification accuracy. The robustness and gained accuracy of our proposed
procedures come at the price of being more computationally intensive than the competi-
tors. The slow speed is mostly due to the optimization with respect to β (see Algorithm 1)
required at each iteration for each classifier in the bag. The SAMME algorithm avoids this
search as an explicit solution to its corresponding optimization problem exists.

Further computational complexity in boosting procedures comes from two sources: one
of them is the complexity of the classifiers in the bag, and the other is the number of
classifiers in the bag. For massive datasets (with both high numbers of observations and of
predictors) the optimization involved in our algorithm might be prohibitive if one decides
to include a lot of weak learners. The methods we suggest could work in a reasonable time,
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if one opts for sampling not too many classifiers. A relaxation of the procedure might be
warranted in cases where a lot of classifiers will be used, and such relaxed algorithms are
left for future work.

4.4 Application to an EMR Study of Diabetic Neuropathy

To illustrate our proposed generic boosting algorithm and demonstrate the advantage of
having multiple losses, we apply our procedures to an electronic medical record (EMR)
study, conducted at the Partners Healthcare, aiming to identify patients with different sub-
types of diabetic neuropathy. Diabetic neuropathy (DN), a serious complication of diabetes,
is the most common neuropathy in industrialized countries with an estimate of about 20-30
million people affected by symptomatic DN worldwide (Said, 2007). Increasing rates of
obesity and type 2 diabetes could potentially double the number of affected individuals by
the year 2030. The prevalence of DN also increases with time and poor glycemic control
(Martin et al., 2006). Although many types of neuropathy can be associated with diabetes,
the most common type is diabetic polyneuropathy and pain can develop as a symptom of di-
abetic polyneuropathy (Thomas and Eliasson, 1984; Galer et al., 2000). Pain in the feet and
legs was reported to occur in 11.6% of insulin dependent diabetics and 32.1% of noninsulin
dependent diabetics (Ziegler et al., 1992). Unfortunately, risk factors for developing painful
diabetic neuropathy (pDN) are generally poorly understood. pDN has been reported as
more prevalent in patients with type 2 diabetes and women (Abbott et al., 2011). Prior
studies have also reported an association between family history and pDN, suggesting a
potential genetic predisposition to pDN (Galer et al., 2000). To enable a genetic study of
pDN and non-painful DN (npDN), an EMR study was performed to identify patients with
these two subtypes of DN by investigators from the informatics for integrating biology to the
bedside (i2b2), a National Center for Biomedical Computing based at Partners HealthCare
(Murphy et al., 2006, 2010).

To identify such patients, we created a datamart compromising 20,000 patients in the
Partners Healthcare with relevant ICD9 (International Classification of Diseases, version
9) codes. Two sources of information were utilized to classify patients’ DN status and
subtypes: (i) structured clinical data searchable in the EMR such as ICD9 codes; and (ii)
variable identified using natural language processing (NLP) to identify medical concepts in
narrative clinical notes. Algorithm development and validation was performed in a training
set of 611 patients sampled from the datamart. To obtain the gold standard disease status
for these patients, several neurologists performed chart reviews and classified them into no
DN, pDN and npDN. The distribution of the classes was 64%,14%,22% respectively. To
train the classification algorithms, we included a total of 85 predictors most of which are
NLP variables, counting mentions of medical concepts such as “pain”,“hypersensitivity”,
and “diabetic neuropathy”.

We trained boosting classification algorithms to classify these 3 disease classes. We used
decision stumps as weak learners. They only have two nodes with the first node deciding
between class C1 vs C2 and C3 and the other node deciding between C2 vs C3, where
{C1,C2,C3} is a permutation of {no DN,pDN,npDN}. In order to illustrate the algorithms
we used 311 observations as a training set and the rest 300 patients we set off as a test set.

17



Neykov, Liu and Cai

We report the percentage mis-classifications in Table 5. The boosting results show some
improvement, as compared to standard methods. We can also see that the generic boosting
algorithm performs slightly better than SAMME in this situation with both the logistic and
the LogLog losses. It warrants further research whether picking richer tree structures as
opposed to using stumps, would yield an even better performance on this dataset.

Table 5: Percent misclassifications (run time in seconds)
% incorrect

SVM 43.67% (0.26)
LASSO 37.00% (15.8)

SAMME 33.33% (0.21)
Logistic 31.67% (9.55)
LogLog 31.67% (12.5)

5. Discussion

For multi-category classification problems, we described in this paper a class of loss functions
that attain FC properties and provided theoretical justifications for how such loss functions
can ultimately lead to optimal Bayes classifier. We extended the results to accommodate
differential costs in misclassifying different classes. To approximate the minimizer of the
empirical losses, we demonstrated that a natural iterative procedure can be used to de-
rive generic boosting algorithms for any of the proposed losses. Numerical results suggest
that non-convex losses such as LogLog could potentially lead to algorithms with better
classification performance. Although the LogLog loss appears to perform well across dif-
ferent settings considered in the numerical studies, choosing an optimal loss for a given
dataset warrants further research. Our preliminary studies (results not shown) suggest that
procedures such as the cross-validation can potentially be used for loss selections.

Our proposed algorithm not only depends on the choice of φ but also the associated g(⋅)
and k(⋅) functions as indicated in (6). We can think of g as a positive deformation of the real
line and even with the same φ, changing g could also change the classifiers. Most existing
boosting algorithms correspond to g(x) = ex, in which case the constraint ∏nj=1 g(Fj) = 1
simplifies to the commonly seen condition ∑j Fj = 0. Moreover if φ is smooth and convex,

one may let k(x) = φ̇(x)/ex. Thus, under convexity, Hφ(x) = φ̇(x) = dφ(x)/dx is an
increasing function and φ is Fisher consistent in the traditional sense. We also saw, that
even when φ is not convex, our suggested losses are Fisher consistent in the standard sense.
Moreover, we argued that loss functions satisfying (6), can be used to recover the exact
conditional probabilities. It would be interesting to develop adaptive boosting procedure
where we use different g functions in the process of boosting adaptively. For example, in
the suggested logistic loss boosting with g(x) = ecx, we can adaptively select the parameter
c, for better convergence results of the algorithm which will potentially result in a better
classification results. We were provided a property of the limiting point of the algorithm in
the case where g = exp. Furthermore, we characterized when the problem has a minimum
in the finite sample case under certain assumptions on φ. The resemblance of the proposed
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generic boosting algorithm with coordinate descent, helped us to establish geometric rate
of convergence in the convex loss function case. The consistency of the algorithm under
conditions such as finite VC dimension of the classifier bag, warrants future research.
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Appendix A. Proofs

Lemma A.1 Assumption (6) implies that the function φ(g−1(z)) is continuously differen-
tiable and convex for all z ∈ g(S).

Proof [Proof of Lemma A.1] Set z ∶= g(x), z′ ∶= g(x′) in (6). When x,x′ ∈ S we have
z, z′ ∈ g(S) and vice versa. Now (6) can be rewritten as:

φ(g−1(z)) − φ(g−1(z′)) ≥ (z − z′)k(g−1(z′)). (23)

Changing the roles of z and z′ and using the fact that both z, z′ ∈ g(S) we obtain:

φ(g−1(z′)) − φ(g−1(z)) ≥ (z′ − z)k(g−1(z)).

The above two inequalities, combined with the fact that k and g−1 are increasing, give that
for any z ≠ z′, z, z′ ∈ g(S) we have:

min{k(g−1(z)), k(g−1(z′))} ≤
φ(g−1(z′)) − φ(g−1(z))

z′ − z
≤ max{k(g−1(z)), k(g−1(z′))}. (24)

By the continuity of k and g we have that the composition k(g−1(⋅)) is also continuous.
Taking the limit z′ → z in (24) shows that the function φ(g−1(z)) is differentiable on g(S)
with a continuous derivative equal to k(g−1(z)). Now the convexity of φ(g−1(z)) follows
from (23).

Proof [Proof of Theorem 2.1] To show that Hφ(F̂j)wj = C for some C < 0, define Ω = {F =

(F1, . . . , Fn) ∶ Fj ∈ S, j = 1, ..., n}, where recall that S = {z ∈ R ∶ k(z) ≤ 0}. From (6),

n

∑
j=1

φ(F̂j)wj ≥
n

∑
j=1

φ(Fj)wj +
n

∑
j=1

{g(F̂j) − g(Fj)}k(Fj)wj for any F ∈ Ω. (25)

Since F̂ minimizes ∑nj=1 φ(Fj)wj , (25) implies that

n

∑
j=1

g(Fj)k(Fj)wj ≥
n

∑
j=1

g(F̂j)k(Fj)wj for any F ∈ Ω. (26)
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For any given constant C < 0, let F̃Cj be the solution to g(F̂j)k(F̃Cj)wj = C or equiv-
alently F̃Cj = k−1[C/{g(F̂j)wj}]. Obviously F̃C ∈ Ω for all C < 0. We next show that
there exists C0 < 0 such that ∏nj=1 g(F̃C0j) = ∏

n
j=1 g(k

−1[C0/{g(F̂j)wj}]) = 1. Since g and

k are continuous and strictly increasing functions, it suffices to show that ∏nj=1 g(F̃0j) > 1

and ∏nj=1 g(F̃Cj) ≤ 1 for some C. Obviously ∏nj=1 g(F̃0j) > 1 since g{k−1(0)} > g(0) = 1.

Now let C1 = k(0)maxj{g(F̂j)wj} < 0. Then for all j, C1/{g(F̂j)wj} ≤ k(0) and thus
g(k−1[C1/{g(F̂j)wj}]) ≤ g(0) = 1. Then by continuity of g and k, there exists C0 ∈ [C1,0)
such that ∏nj=1 g(F̃C0j) = 1. Thus, the constructed F̃C0 possesses several properties: (i)

g(F̂j)k(F̃C0j)wj = C0; (ii) ∏nj=1 g(F̃C0j) = 1; and (iii) k(F̃C0j) < 0 and hence F̃C0 ∈ Ω. It then
follows from the AM-GM inequality that

n

∑
j=1

g(F̃C0j){−k(F̃C0j)}wj ≥ n

⎡
⎢
⎢
⎢
⎢
⎣

n

∏
j=1

g(F̃C0j){−k(F̃C0j)}wj

⎤
⎥
⎥
⎥
⎥
⎦

n−1

= n

⎡
⎢
⎢
⎢
⎢
⎣

n

∏
j=1

g(F̂j){−k(F̃C0j)}wj

⎤
⎥
⎥
⎥
⎥
⎦

n−1

= −nC0,

where we used the fact that ∏nj=1 g(F̃C0j) =∏
n
j=1 g(F̂j) = 1. This, together with (26), implies

that

nC0 ≥
n

∑
j=1

g(F̃C0j)k(F̃C0j)wj ≥
n

∑
j=1

g(F̂j)k(F̃C0j)wj = nC0

and hence nC0 = ∑
n
j=1 g(F̃C0j)k(F̃C0j)wj . Thus, the equality holds in the AM-GM inequality

above, which also implies that g(F̃C0j)k(F̃C0j)wj = C0. Since g(F̂j)k(F̃C0j)wj = C0, k(F̃C0j) ≠
0 and g is strictly increasing, we have g(F̂j) = g(F̃C0j) and hence F̂j = F̃C0j . Therefore,

g(F̂j)k(F̂j)wj =Hφ(F̂j)wj = C0. (27)

Obviously if Hφ(⋅) is strictly monotone then F̂j =H
−1
φ (C0/wj) which is unique.

Proof [Proof of Proposition 2.2] The function φ is strictly decreasing on the set S′ ∶= {z ∶
k(z) < 0}, as from (6) for any x < x′, x, x′ ∈ S′ we have:

φ(x) − φ(x′) ≥ (g(x) − g(x′))k(x′) > 0.

Furthermore, it follows from Theorem 2.1, that F̂j ∈ S
′ since by (27) k(F̂j) < 0 for all j.

Next we show that if w > wj we must have φ(F̂) ≤ φ(F̂j). This observation follows since:

φ(F̂)w + φ(F̂j)wj ≤ φ(F̂)wj + φ(F̂j)w,

or else F̂ cannot be a minimum of (9), as we can swap F̂ and F̂j to obtain a strictly smaller
value while still satisfying the constraint. Furthermore by Theorem 2.1, w ≠ wj implies
that F̂ ≠ F̂j because otherwise Hφ(F̂) = Hφ(F̂j) and hence w = wj by (10). Since φ is
strictly decreasing on S′ it also implies φ(F̂) ≠ φ(F̂j). Hence w > wj implies φ(F̂) < φ(F̂j).
Finally, the last observation gives:

argmin
j∈{1,...,n}

φ(F̂j) =
10 argmax
j∈{1,...,n}

wj .
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The fact that φ is decreasing on S′ completes the proof.

Proof [Proof of Theorem 2.3] To show that a finite minimizer F̂ exists, it suffices to show
that g(F̂j) is finite and bounded away from 0, for j = 1, ..., n. To this end, we note that the
condition (12) is equivalent to,

lim
x↓0

c1φ(g
−1

(x)) + c2φ(g
−1

(x−(n−1))) = +∞ for all c1, c2 > 0. (28)

We next show that at the minimizer F̂, m̂ = minj g(F̂j) = g(F̂j∗) is bounded away from 0,
where j∗ = argminj g(F̂j). Since 1 = ∏

n
j=1 g(F̂j) ≥ g(F̂j)m̂

n−1, we have F̂j ≤ g
−1(m̂−(n−1))

for j = 1, ..., n. If φ is decreasing over R, then

φ(0)
n

∑
j=1

wj ≥
n

∑
j=1

φ(F̂j)wj = wj∗φ{g
−1

(m̂)} + ∑
j≠j∗

wjφ(F̂j)

≥ wj∗φ{g
−1

(m̂)} + ∑
j≠j∗

wjφ{g
−1

(m̂−(n−1)
)}.

From (28) with c1 = wj∗ and c2 = ∑j≠j∗ wj , we conclude that m̂ must be bounded away

from 0 since ∑nj=1 φ(F̂j)wj →∞ if m̂ → 0. Thus, there exists m0 > 0 such that m̂ ≥m0 and
consequently

0 <m0 ≤ g(F̂j) ≤m
−(n−1)
0 <∞, j = 1, ..., n.

Now, if φ is not decreasing on the whole R, then there must exist F ∗ <∞ such that k(F ∗) = 0
since φ is strictly decreasing on S′ = {z ∶ k(z) < 0}.

Now we show that F̂ ∈ Ω ≡ {F = (F1, . . . , Fn) ∶ Fj ∈ S, j = 1, . . . , n} as defined in
Theorem 2.1. To this end, we note that φ is strictly decreasing on S′ and (−∞,0] ⊂ S′.
We next argue by contradiction that F̂j ∈ S or equivalently F̂j ≤ F ∗ for all j. For any
F > F ∗, φ(F ) − φ(F ∗) ≥ {g(F ) − g(F ∗)}k(F ∗) = 0 by (6). Let A = {j ∶ F̂j > F

∗} and
F̂ ∗
j = 1(j ∈ A)F ∗+1(j ∉ A)F̂j . If A is not an empty set, then ∑nj=1 φ(F̂

∗
j )wj ≤ ∑

n
j=1 φ(F̂j)wj

and ∏nj=1 g(F̂
∗
j ) < 1. Since g(F ∗) > 1, there must exist some F̂ ∗∗

j with F ∗ ≥ F̂ ∗∗
j ≥ F̂j for

j ∉ A and F̂ ∗∗
j = F ∗ for j ∈ A such that ∏nj=1 g(F̂

∗∗
j ) = 1 and F ∗ ≥ F̂ ∗∗

j > F̂j for some j ∉ A.

Since φ is strictly decreasing on S, ∑nj=1 φ(F̂
∗∗
j )wj < ∑

n
j=1 φ(F̂

∗
j )wj ≤ ∑

n
j=1 φ(F̂j)wj , which

contradicts that F̂ is the minimum. Therefore, F̂ ∈ Ω.
Hence F̂j ≤ F

∗ and g(F̂j) ≤ g(F
∗) =m1 ∈ (0,∞). On the other hand, since ∏nj=1 g(F̂j) =

1, we have g(F̂j) ≥m
−(n−1)
1 and thus g(F̂j) is also bounded away from 0 and finite.

Remark A.1 As a useful remark we mention that the same argument shows that given
any finite vector F̂, the vectors F with ∑j φ(Fj)wj ≤ ∑j φ(F̂j)wj are located on a compact

set (provided that F̂j < F
∗ for all j in the second case).

10. Recall that “=” should be interpreted as “⊆”.

21



Neykov, Liu and Cai

Lemma A.2 Any loss function φ satisfying (6) with g = exp, and either i. or ii. from
Theorem 2.3 is classification calibrated in the two class case.

Remark A.2 Recall that a loss function φ is classification calibrated in the two class case
if, for any point w1 +w2 = 1 with w1 ≠

1
2 and w1,w2 > 0, we have:

inf
x∈R

(w1φ(x) +w2φ(−x)) > inf
x∶x(2w1−1)≤0

(w1φ(x) +w2φ(−x)).

Proof [Proof of Lemma A.2] Denote the two (distinct) class probabilities with w1 +w2 = 1.
Without loss of generality we distinguish two cases: w1 > w2 > 0 and w1 = 1,w2 = 0. First,
consider the case when w1 > w2 > 0. Since the conditions of Theorem 2.3 hold, we know
that the optimization problem (9) has a minimum, and hence by Proposition 2.2 we have
that argmaxj∈{1,2} F̂j ⊆ {1}. Hence it follows that F̂1 > 0, F̂2 < 0 at the minimum. This
implies that inequality in Remark A.2 is strict.

Next assume that w1 = 1,w2 = 0. This case is not covered by our results as we assume
that the probabilities are bounded away from 0. As we argued earlier φ is strictly decreasing
on the set S′ and by assumption (−∞,0] ⊊ S′. Thus by:

F̂ = argminF∶F1+F2=0w1φ(F1) +w2φ(F2) = argminF∶F1+F2=0 φ(F1),

we must have F̂1 > 0 and hence φ(0) > φ(F̂1). This finishes the proof.

Lemma A.3 Let F(m) be defined as in iteration (16) starting from F(0) = 0. Then we must
have F(m) ∈ Ω for all m, where Ω = {F = (F1, . . . , Fn) ∶ Fj ∈ S, j = 1, ..., n}.

Proof [Proof of Lemma A.3] If S = R there is nothing to prove. Assume that there
exists F ∗ ∈ R such that k(F ∗) = 0. We show the statement by induction. By definition
F(0) ∈ Ω. Assume that F(m−1) ∈ Ω for some m ≥ 1. We now show that F(m) ∈ Ω. To
arrive at a contradiction, assume the contrary. Let A = {j ∶ F

(m)
j > F ∗} ≠ ∅. Define

F
∗(m)
j = 1(j ∈ A)F

(m−1)
j + 1(j ∉ A)F

(m)
j . Since F(m−1) ∈ Ω, it follows that F∗(m) ∈ Ω and

∏
n
j=1 g(F

∗(m)
j ) < 1. More importantly, observe that for all j ∈ A we have:

0 = (g(F
(m−1)
j ) − g(F

∗(m)
j ))k(F

∗(m)
j )wj > (g(F

(m−1)
j ) − g(F

(m)
j ))k(F

(m)
j )wj ,

as g(F
(m−1)
j ) ≤ g(F ∗) < g(F

(m)
j ) and k(F

(m)
j ) > k(F ∗) = 0, and hence:

n

∑
j=1

(g(F
(m−1)
j ) − g(F

∗(m)
j ))k(F

∗(m)
j )wj >

n

∑
j=1

(g(F
(m−1)
j ) − g(F

(m)
j ))k(F

(m)
j )wj .

Define the index set B = {j ∶ F
∗(m)
j < F

(m−1)
j }. Since ∏nj=1 g(F

∗(m)
j ) < 1 and F(m−1) ∈ Ω it

follows that B is not empty and A ∩ B = ∅. Next for λ ∈ [0,1] define for all j:

F
∗(m),λ
j ∶= [1(j ∈ A) + 1(j ∉ A)1(j ∉ B)]F

∗(m)
j + 1(j ∈ B)((1 − λ)F

∗(m)
j + λF

(m−1)
j ).
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Note that when λ = 0, we have F
∗(m),0
j ≡ F

∗(m)
j . Now we show that for any λ ∈ [0,1] the

following inequality holds:

n

∑
j=1

(g(F
(m−1)
j ) − g(F

∗(m),λ
j ))k(F

∗(m),λ
j )wj ≥

n

∑
j=1

(g(F
(m−1)
j ) − g(F

∗(m)
j ))k(F

∗(m)
j )wj . (29)

For any λ ∈ (0,1]: F
∗(m),λ
j ≠ F

∗(m),λ
j iff j ∈ B. Next note that for any j the function

(g(F
(m−1)
j ) − g(x))k(x)wj is an increasing function for x ≤ F

(m−1)
j . The last two observa-

tions imply (29). Finally since ∏nj=1 g(F
∗(m),0
j ) = ∏

n
j=1 g(F

∗(m)
j ) < 1 and ∏nj=1 g(F

∗(m),1
j ) ≥

∏
n
j=1 g(F

(m−1)
j ) = 1, by the continuity of g there exists a λ ∈ (0,1] such that∏nj=1 g(F

∗(m),λ
j ) =

1. These facts and inequality (29) imply that F(m) would not be a maximum in the iteration
which is a contradiction.

Proof [Proof of Theorem 3.1] By construction we have that on the mth iteration the value

F(m) satisfies ∏mj=1 g(F
(m)
j ) = 1, and Lemma A.3 guarantees that F(m) ∈ Ω for all m. Hence,

since F
(m)
j are viable values for F

(m+1)
j , the iteration also guarantees that:

n

∑
j=1

{φ(F
(m)
j ) − φ(F

(m+1)
j )}wj ≥

n

∑
j=1

{g(F
(m)
j ) − g(F

(m+1)
j )}k(F

(m+1)
j )wj ≥ 0.

Now, from Remark A.1, F
(m+1)
j lie on a compact set for all j, since for our starting point

we have F
(0)
j ≡ 0 ∈ Ω. Therefore there must exist a subsequence {m`, ` = 1, ...} such that

F(m`) converges coordinate-wise on this subsequence, and denote with F∗ its limit.

The function φ is continuous and hence we have that∑nj=1 φ(F
(m`)
j )wj−∑

n
j=1 φ(F

(m`+1)
j )wj →

0. However by the construction of our iteration, the sequences ∑nj=1 φ(F
(m`+1)
j )wj are

decreasing for all `. Therefore we have that: ∑nj=1 φ(F
(m)
j )wj − ∑

n
j=1 φ(F

(m+1)
j )wj → 0

holds for all m, not only on the subsequence. But this implies that ∑nj=1(g(F
(m)
j ) −

g(F
(m+1)
j ))k(F

(m+1)
j )wj → 0, which again by the construction is non-negative for all m.

Takem` in place ofm in the limit above, and let L be the set of all limit points lim`→∞F(m`+1).
By our construction we have the following inequality holding for any point Fl ∈ L:

0 =
n

∑
j=1

{g(F ∗
j ) − g(F

l
j)}k(F

l
j)wj ≥

n

∑
j=1

{g(F ∗
j ) − g(Fj)}k(Fj)wj , (30)

for any F ∈ Ω with ∏nj=1 g(Fj) = 1. Just as in the proof of Theorem 2.1 select F̃ so that

g(F ∗
j )k(F̃j)wj = C for all j for some C < 0. By the AM-GM inequality we get:

n

∑
j=1

g(F̃j){−k(F̃j)}wj ≥ n

⎡
⎢
⎢
⎢
⎢
⎣

n

∏
j=1

g(F̃j){−k(F̃j)}wj

⎤
⎥
⎥
⎥
⎥
⎦

n−1

= n

⎡
⎢
⎢
⎢
⎢
⎣

n

∏
j=1

g(F ∗
j ){−k(F̃j)}wj

⎤
⎥
⎥
⎥
⎥
⎦

n−1

=
n

∑
j=1

g(F ∗
j ){−k(F̃j)}wj = −nC.
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Now by (30) it follows that equality must be achieved in the preceding display, which implies
that g(F ∗

j )k(F̃j)wj = C = g(F̃j)k(F̃j)wj and yields F̃j = F
∗
j for all j. Hence g(F ∗

j )k(F
∗
j )wj =

C for all j.
Thus we showed that on subsequences the iteration converges to points satisfying the

equality described above. We are left to show, that all these subsequences converge to the
same point. Next, take equation (30). By what we showed it follows that for any Fl ∈ L,
we have that g(F lj)k(F

l
j)wj = C

l for some Cl < 0. Then we have:

n

∑
j=1

g(F ∗
j ){−k(F

l
j)}wj ≥ n

⎡
⎢
⎢
⎢
⎢
⎣

n

∏
j=1

g(F ∗
j ){−k(F

l
j)}wj

⎤
⎥
⎥
⎥
⎥
⎦

n−1

= n

⎡
⎢
⎢
⎢
⎢
⎣

n

∏
j=1

g(F lj){−k(F
l
j)}wj

⎤
⎥
⎥
⎥
⎥
⎦

n−1

=
n

∑
j=1

g(F lj){−k(F
l
j)}wj = −nC

l.

Equation (30) implies that the above inequality is in fact equality which shows that:

g(F ∗
j )k(F

l
j) = g(F

l
j)k(F

l
j) for all j.

Thus since k(F lj) ≠ 0 (recall that all values on the iteration F(m) ∈ Ω) we conclude that

g(F ∗
j ) = g(F

l
j), and hence F∗ = Fl. This shows that for any converging subsequence m` the

limiting value coincides with that of the sequence m` + 1, which finishes our proof.

Proof [Proof of Proposition 3.2.] It is sufficient to show that for all F ∈ G∗ we have:

N

∑
i=1

YT
CiF(Xi)φ̇(Y

T
CiF

(∞)
(Xi)) ≥ 0.

The condition above is sufficient, because of the looping closure of G. Writing the inequality
for all “looped” versions of F and noting that they sum up to 0, gives us that the inequality
is in fact an equality.

Note that with each iteration (18), we decrease the value of the target function. This
can be seen by the following inequality:

N

∑
i=1

φ(YT
CiF

(m−1)
(Xi))−

N

∑
i=1

φ(YT
CiF

(m)
(Xi)) ≥

N

∑
i=1

[exp(−βYT
CiF(Xi))−1]φ̇(YT

CiF
(m)

(Xi)) ≥ 0,

where F(m) = F(m−1)+βF. As a remark, the inequality in the preceding display holds, since
φ is decreasing and thus by (6) we have S = R.

Take a limiting point11 F(∞) of iteration (18), where it is possible having coordinates
of F(∞)(Xi) equal to ±∞ for some i. Since φ is bounded from below, by our previous
observation we have that for any β ≥ 0 and F ∈ G∗:

N

∑
i=1

φ(YT
CiF

(∞)
(Xi)) −

N

∑
i=1

φ(YT
CiF

(∞)
(Xi) + βYT

CiF(Xi)) ≤ 0.

11. The existence of a limiting point is guaranteed as any sequence contains a monotone subsequence.
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Let A = {i ∶ ∣YT
Ci

F(∞)(Xi)∣ ≠∞}. Then the latter inequality also implies that:

∑
i∈A

φ(YT
CiF

(∞)
(Xi)) −∑

i∈A

φ(YT
CiF

(∞)
(Xi) + βYT

CiF(Xi)) ≤ 0.12

Applying inequality (6) the above implies:

∑
i∈A

[exp(−βYT
CiF(Xi)) − 1]φ̇(YT

CiF
(∞)

(Xi) + βYT
CiF(Xi)) ≤ 0,

and after a Taylor expansion of the exponent, and division by β ≥ 0 we get:

∑
i∈A

−YT
CiF(Xi)φ̇(Y

T
CiF

(∞)
(Xi))

+∑
i∈A

−YT
CiF(Xi)[φ̇(Y

T
CiF

(∞)
(Xi) + βYT

CiF(Xi)) − φ̇(Y
T
CiF

(∞)
(Xi))]

+O(β)∑
i∈A

φ̇(YT
CiF

(∞)
(Xi) + βYT

CiF(Xi)) ≤ 0.

Letting β → 0, by the continuity of φ̇ we get:

∑
i∈A

YT
CiF(Xi)φ̇(Y

T
CiF

(∞)
(Xi)) ≥ 0. (31)

Next we argue that φ̇(+∞) = limx→+∞ φ̇(x) = 0. As stated in the main text φ̇(x) = k(x)ex.
Let K = infx∈R φ(x). For any ε > 0, take a point x′ such that φ(x′) −K ≤ ε. Then for any
x ∈ R, by (6):

ε ≥ φ(x′) − φ(x) ≥ (ex
′
− ex)k(x),

and thus ε − ex
′
k(x) ≥ −φ̇(x) ≥ 0. Taking the limit x → +∞ and letting ε → 0 shows that

φ̇(+∞) = 0.
Now consider two cases for φ. Suppose that φ is unbounded from above. We argue that

YT
Ci

F(∞)(Xi) ≠ −∞ for all i. Since we start form the point 0, and as we argued we are
decreasing the target function we have that:

Nφ(0) ≥
N

∑
i=1

φ(YT
CiF

(∞)
(Xi)) ≥ max

i
φ(YT

CiF
(∞)

(Xi)) + (N − 1)K,

and hence maxi φ(Y
T
Ci

F(∞)(Xi)) ≤ Nφ(0)−(N −1)K. Since φ is decreasing and unbounded

from above it follows that YT
Ci

F(∞)(Xi) ≠ −∞ for all i. In the second case suppose that φ

is bounded from above, and let M = supx∈R φ(x). We show that φ̇(−∞) = 0. For any ε > 0
take x so that ε ≥M − φ(x). Applying (6) for any x′ ∈ R yields:

ε ≥ φ(x′) − φ(x) ≥ (ex
′
− ex)k(x).

This gives ε − ex
′
k(x) ≥ −φ̇(x) ≥ 0. Taking x′ → −∞ gives that ε ≥ −φ̇(x) ≥ 0 for any x such

that ε ≥ M − φ(x). Since φ is decreasing we are allowed to take the limit x → −∞, and

12. Observe that since φ is bounded from below the values of φ at infinite points of the iteration i.e. φ(±∞)

have to be bounded.
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taking ε→ 0 shows that φ̇(−∞) = 0. In any case, all of the above arguments imply that we
can substitute A in (31) to the whole index set {1, . . . ,N}, to finally conclude:

N

∑
i=1

YT
CiF(Xi)φ̇(Y

T
CiF

(∞)
(Xi)) ≥ 0,

for all F ∈ G∗. As argued in the beginning the looping closure gives us that in fact the “≥”
can be replaced with “=”. This concludes the proof.

Proof [Proof of Proposition 3.3] First consider the case when I = N . Denote with e11, e
2
1, . . . , e

N
1

the positive coordinates of e1. For any vector v which is a solution to DTα = v we must have

∑
N
i=1 e

i
1vi = 0. Clearly then, if v is non-zero some of the vi need to be negative. Let l = min vi.

We know that l < 0. This immediately implies an upper bound on the maximal positive vi
— maxi vi ≤ ∣l∣[∑Ni=1 e

i
1/minj e

j
1 − 1]. We now show that ∣l∣ is bounded, for all vectors v such

that ∑Ni=1 φ(vi) ≤ Nφ(0). Note that ∑Ni=1 φ(vi) ≥ φ(l) + (N − 1)φ(∣l∣[∑Ni=1 e
i
1/minj e

j
1 − 1]),

and thus (22) gives that ∣l∣ is bounded. This in turn shows that all vi are bounded as well.
We next consider the case where I < N . Without loss of generality, upon rearrangement,

we can assume that the positive coordinates of e1 are located at the first I places. Let
EN×s = (e1, . . . ,es). Let Ẽ(N−I)×(s−1) denote the sub-matrix corresponding to the 0 entries

of e1 (excluding e1) (see (32) for a visualization). Note that the matrix Ẽ cannot be of full
column rank, because otherwise we would have that a vector with positive coordinates is
inside the column space which is a contradiction (we can always scale it by a small number
and add to e1). Thus we can eliminate all extra columns that do not contribute to the rank
of Ẽ, by doing a linear manipulation on the columns of the whole matrix E (see (32)). In
doing so, we can eliminate extra columns of the matrix Ẽ so that we end up with a Ẽ matrix
where the number of non-zero columns matches the rank, and some columns of E have 0
coefficients on the lower part. Here, observe that the columns of E with 0 sub-columns in Ẽ,
are part of the space row(D−)

⊥, where D− corresponds to the matrix D with observations
corresponding to 0’s of e1 removed.

We next note that if we discard the observations corresponding to 0 coordinates in
e1, and optimize the problem on the rest of the observations we will obtain some optimal
solution v = (v̂1, . . . , v̂I)

T , the entries of which are bounded as argued in the first case.
We next show that we can populate the vector v with positive numbers p1, . . . , pN−I to
ν = (v̂1, . . . , v̂I , p1, . . . , pN−I)

T , so that ν is “perpendicular” to the matrix E (i.e. ETν = 0),
and thus can be written in the form DTα. Moreover, we will show that p1, . . . , pN−I , can
become arbitrarily large, which will complete the proof.

E =

e1 e2 . . . es

I

e11
⋮

eI1

N − I
0

⋮ Ẽ
0

→

e1 . . . ẽl+1 ẽl+2 . . . ẽs
e11
⋮ G

eI1
0 0 . . . 0

⋮
̃̃E ⋮ . . . ⋮

0 0 . . . 0

(32)
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Note that the only part of the matrix E that would be potentially non-zero upon mul-
tiplication by ν would be the part corresponding to the non-zero parts of Ẽ, because as we
argued earlier the columns of E with 0 sub-columns in Ẽ belong to row(D−)

⊥ and on the

other hand v ∈ row(D−). Denote with ̃̃E(N−I)×l the full-rank sub-matrix of Ẽ, where l is

the rank of Ẽ, and let GI×l be the sub-matrix of E above ̃̃E (see (32)). Clearly l < N − I
as otherwise there is a positive vector in the column space, and we argued previously that
would be a contradiction with the maximality property of e1. We need to find a positive

vector p such that (
̃̃E(N−I)×l)

Tp(N−I)×1 = −(GI×l)
TvI×1 = Kl×1. Therefore the proof will

be completed, if we can find arbitrary large positive vectors p solving the system ̃̃ETp = K,

where l < N − I and ̃̃ET has the property that any non-zero linear combination of its rows
results into a vector with at least one positive and one negative entry.

Since ̃̃E is full-rank and l < N − I, the linear system ̃̃ETp = K has a solution. Consider

the homogeneous system ̃̃ETp = 0. We will show that the homogeneous equation admits
arbitrary large positive solutions, which would complete the proof. Fix the value of the

ith parameter to be 1. The system then becomes ̃̃ET
−ip−i = −̃̃ei, where by indexing with

−i we mean removing the ith column or element and ̃̃ei is the ith column of ̃̃ET . Next we
apply Farkas’s lemma to show that the last equation has a non-negative solution. Assume

that there is a vector yl×1 such that ̃̃E−iy ≥ 0 (coordinate-wise) and −̃̃eTi y < 0. This is

clearly a violation with the property that ̃̃E satisfies. Therefore by Farkas’s lemma the

equation ̃̃ET
−ip−i = −

̃̃ei has a non-negative solution. Since we can achieve this for any index

i, averaging these solutions yields a positive solution to the homogeneous system ̃̃ETp = 0,
and thus this system admits arbitrarily large positive solutions.

Proof [Proof of Theorem 3.4] Without loss of generality for the purposes of the proof we
will consider C+ = 1 and C− = −1/(n − 1) (it’s equivalent to rescaling the β in the iteration).

By the iteration’s construction we know:

εm − εm+1 ≥ max
β≥0,F∈G∗

N

∑
i=1

{e
−βYT

Ci
F(Xi) − 1}φ̇{YT

CiF
(m)

(Xi) + βYT
CiF(Xi)}.

Note that we have the following simple inequality holding for exp(−x) ≤ 1−x+x2 for values
of −1/2 ≤ x ≤ 1/2. Since ∣YT

Ci
F(Xi)∣ ≤ C+ = 1 and φ is decreasing, for values of 0 ≤ β ≤ 1/2

we have that:

N

∑
i=1

{e
−βYT

Ci
F(Xi) − 1}φ̇{YT

CiF
(m)

(Xi) + βYT
CiF(Xi)}

≥ −
N

∑
i=1

(βYT
CiF(Xi) − β

2
)φ̇{YT

CiF
(m)

(Xi) + βYT
CiF(Xi)}.

Let L denote the Lipschitz constant of φ̇ on the set S. Consequently we have:
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−
N

∑
i=1

(βYT
CiF(Xi) − β

2
)φ̇{YT

CiF
(m)

(Xi) + βYT
CiF(Xi)} =

N

∑
i=1

−(βYT
CiF(Xi) − β

2
)φ̇{YT

CiF
(m)

(Xi)}

−
N

∑
i=1

(βYT
CiF(Xi) − β

2
)[φ̇{YT

CiF
(m)

(Xi) + βYT
CiF(Xi)} − φ̇{Y

T
CiF

(m)
(Xi)}] ≥

N

∑
i=1

−(βYT
CiF(Xi) − β

2
)φ̇{YT

CiF
(m)

(Xi)} −L ∣βYT
CiF(Xi) − β

2∣ ∣βYT
CiF(Xi)∣ ≥

N

∑
i=1

−(βYT
CiF(Xi) − β

2
)φ̇{YT

CiF
(m)

(Xi)} −
3

2
LNβ2.

Thus we have established:

εm − εm+1 ≥ β (
N

∑
i=1

(−YT
CiF(Xi) + β)φ̇{Y

T
CiF

(m)
(Xi)} −

3

2
LNβ) ,

for any 0 ≤ β ≤ 1/2. We select β so that we maximize the RHS in the expression above. It
turns out that this happens for:

β0 =
1
2 ∑

N
i=1 YT

Ci
F(Xi)φ̇{Y

T
Ci

F(m)(Xi)}

−3
2LN +∑

N
i=1 φ̇{Y

T
Ci

F(m)(Xi)}
.

Since φ̇ is always negative and as we mentioned ∣YT
Ci

F(Xi)∣ ≤ 1, provided that the
numerator is ≤ 0, we have that 0 ≤ β0 ≤ 1/2. Then we would have:

εm − εm+1 ≥ −
1

2
β0

N

∑
i=1

YT
CiF(Xi)φ̇{Y

T
CiF

(m)
(Xi)}. (33)

Next we show that there exists a classifier, such that the above expression is strictly
positive, which will also ensure that 0 ≤ β0 ≤ 1/2 is in the correct range. Denote with B
the total number of classifiers in the bag. Consider the representation F∗(⋅) − F(m)(⋅) =

∑
B
j=1 αjFj(⋅). Here the α vector is any vector that yields a correct representation (note

that we will have many possible α vectors, in the case when B > N).
By convexity of φ we have:

−εm =
N

∑
i=1

φ(YT
CiF

∗
(Xi)) − φ(Y

T
CiF

(m)
(Xi)) ≥

N

∑
i=1

[YT
CiF

∗
(Xi) −YT

CiF
(m)

(Xi)]φ̇(Y
T
CiF

(m)
(Xi))

=
B

∑
j=1

N

∑
i=1

αjY
T
CiFj(Xi)φ̇(Y

T
CiF

(m)
(Xi)).

By the pigeonhole principle it is clear that there exists an index j ∈ {1, . . . ,B} such that:

εm
Bmaxj ∣αj ∣

≤
εm
B∣αj ∣

≤ − sign(αj)
N

∑
i=1

YT
CiFj(Xi)φ̇(Y

T
CiF

(m)
(Xi)).
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Now if sign(αj) = 1 we already have a “decent” lower bound. Otherwise if sign(αj) = −1,
using the fact that the loop closed classifiers wrt to Fj sum up to 0, we can claim that for
one of the looped classifiers Fl

j we would have a bound:

εm
B(n − 1)maxj ∣αj ∣

≤ −
N

∑
i=1

YT
CiF

l
j(Xi)φ̇(Y

T
CiF

(m)
(Xi)).

So that in both cases we established the existence of a classifier such that F ∈ G∗ and:

εm
B(n − 1)maxj ∣αj ∣

≤ −
N

∑
i=1

YT
CiF(Xi)φ̇(Y

T
CiF

(m)
(Xi))

We then know from (33) that:

εm − εm+1 ≥ −
1

2
β0

N

∑
i=1

YT
CiF(Xi)φ̇{Y

T
CiF

(m)
(Xi)}

≥
1

4

ε2m

B2(n − 1)2 maxj α2
j(

3
2LN −∑

N
i=1 φ̇{Y

T
Ci

F(m)(Xi)})
.

Notice that the derivative is bounded on the set S and therefore collapsing all constants
above into one constant say T we get the following:

εm − εm+1 ≥
ε2m

T maxj α2
j

.

Here T depends on the number of classifiers, number of classes, and the bound on the
first derivative φ̇ on the set S. We will proceed to bound the maxj α

2
j for some of the

representations from above.
Because on the set S, φ is also strongly convex (with a constant say l), we have the

following:

εm =
N

∑
i=1

φ(YT
CiF

(m)
(Xi)) −

N

∑
i=1

φ(YT
CiF

∗
(Xi))

≥
N

∑
i=1

[YT
CiF

(m)
(Xi) −YT

CiF
∗
(Xi)]φ̇(Y

T
CiF

∗
(Xi))

+ l
N

∑
i=1

⎛

⎝

B

∑
j=1

αjY
T
CiFj(Xi)

⎞

⎠

2

.

The expression ∑Ni=1[Y
T
Ci

F(m)(Xi)−YT
Ci

F∗(Xi)]φ̇(Y
T
Ci

F∗(Xi)) is 0, as F∗ is the mini-

mum, φ is convex and the classifier bag is closed under looping. Let D = {YT
Ci

Fj(Xi)}j,i is
the B×N matrix, each entry of which is either C+ or C−. Let the rank of D is r ≤ min(N,B).

We then have ∑Ni=1 (∑
B
j=1 αjY

T
Ci

Fj(Xi))
2
= αTDDTα. Since, all the bounds above are true

for any of the α representations, we could have picked the representation corresponding
to the r ×N sub matrix of D, Dr with rank r for which the smallest eigenvalue of DrD

T
r
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is the largest. Let this eigenvalue be λr > 0. For this eigenvalue and this choice of α we
clearly have αTDDTα = αTDrD

T
r α ≥ λr ∣∣α∣∣22 ≥ λr maxj α

2
j . (in the second equality we

abuse notation deleting zeros from the α). Consequently we get:

εm ≥ lλr max
j
α2
j .

Thus:

εm+1 ≤ εm −
ε2m

T maxj α2
j

≤ εm (1 −
lλr
T

) .

Since both εm+1, εm ≥ 0 we must have 1− lλr
T ≥ 0. Furthermore, by construction we have

lλr
T > 0, which concludes the proof.

Remark A.3 Since S is bounded we did not need to require that the first derivative — φ̇
is bounded since we already assumed its Lipschitz continuity.
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