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In search of Ultimate-L: 1

The 19th Midrasha Mathematicae Lectures
W. Hugh Woodin

Version: January 30, 2017

Abstract

We give a fairly complete account which first shows that the solution to the inner model problem for one supercompact
cardinal will yield an ultimate version of L and then shows that the various current approaches to inner model theory must be
fundamentally altered to provide that solution.
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1 Introduction

The Inner Model Program began with Gödel’s discovery of L which in the modern view, is the first inner
model. Of course it was Scott’s Theorem, that if V = L then there are no measurable cardinals, which
set the stage for the necessity of the Inner Model Program.

By the early 1970’s, the problem to extend the Inner Model Program to the level of supercompact
cardinals had emerged as a key problem and the expectation was that in solving this problem the way
would be open to extend the solution to much stronger large cardinals. The constructions of Kunen,
solving the inner model problem for measurable cardinals, were generalized to solve the inner model
problem at the level of Woodin cardinals in series of results driven primarily by seminal constructions of
Mitchell and Steel and building on earlier work of Mitchell which had solved the inner model problem
for strong cardinals2.

The levels of Woodin cardinals represent key stages for the inner model program because the inter-
nal definability of the wellordering of the reals becomes progressively more complicated through the
emergence of determinacy consequences.

By the year 2000, the Inner Model Program had been unconditionally extended by Neeman, [14], to
the level of Woodin cardinals which are limits of strong cardinals and conditionally extended, [18], to
the level of superstrong cardinals. The latter constructions require not only large cardinal hypotheses
(an obvious necessity) but also iteration hypotheses which are abstract combinatorial hypotheses for
iterating countable elementary substructures of rank initial segments of V . These basic hypotheses were
first defined and analyzed by Martin and Steel.

The next advance was the extension of the Inner Model Program to the finite levels of supercom-
pact cardinals, [24], again assuming the (same) Iteration Hypothesis that the earlier constructions were
conditioned on.

About the same time in a decadal sense, there was a rather unexpected discovery. This was that if one
could extend the Inner Model Program to the level of one supercompact cardinal then subject to a very
general condition on the relationship of the supercompact cardinal of the inner model constructed and
supercompact cardinals in V , the inner model constructed must be an ultimate version of L. In particular
the Scott Effect would no longer apply.

This changed the entire framework for the Inner Model Program; from a program of the incremen-
tal understanding of large cardinals through the constructions of generalizations of L with V forever
hopelessly out of reach because of Scott’s Theorem and its descendents, into a program for perhaps
understanding V itself.

The point here is that if there is an ultimate version of L which is compatible with all large cardinals
and which must always exist in a version that is very close to V , then perhaps there is some version of
an axiom that V is an ultimate version of L which is arguably true.

In fact a candidate for exactly such an axiom has been isolated, this is the axiom V = Ultimate-L,
implicit in [20] and formally defined in [24].

This axiom strongly couples the width of the universe of sets to its height since in the context of
the axiom V = Ultimate-L, one cannot change the width using Cohen’s method of forcing without then
changing the height. In particular, the axiom V = Ultimate-L renders Cohen’s method of forcing com-
pletely useless as a method for establishing independence from the resulting conception of the universe
of sets.

Coincident with these developments was another unexpected theorem. This is the HOD Dichotomy
Theorem of [20] which is presented here in a more elegant form as Theorem 3.39. This theorem is
arguably just an abstract generalization of Jensen’s covering lemma. For this one simply recasts the
covering lemma as the Jensen Dichotomy Theorem which shows that V must either be very close to L or

2see [6] for a far more thorough and elegant historical account.
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very far from L.
The HOD Dichotomy Theorem generalizes this to HOD, showing that if there is an extendible car-

dinal then V must be either very close to HOD or very far from HOD. The existence of Ultimate-L
would provide the explanation showing that in fact, unlike the Jensen Dichotomy Theorem, the HOD
Dichotomy Theorem is not a dichotomy theorem since HOD must be close to V or equivalently that the
“far” option is vacuous.

Of course HOD is not canonical in the way that L is since one can easily alter HOD by forcing. But
that is not really relevant. The HOD Dichotomy Theorem, which is not a difficult theorem to prove,
establishes an unexpected and deep connection between V and definability.

To illustrate, one curious corollary of the HOD Dichotomy Theorem is that if δ is an extendible
cardinal then δ must be a measurable cardinal in HOD, see Theorem 3.40. Without the hypothesis that
δ is an extendible cardinal, this conclusion need not hold even if δ is assumed to be a supercompact
cardinal.

But maybe this is all just evidence that the inner model program cannot be extended to supercompact
cardinals and moreover that there is an anti-inner model theorem.

Reinforcing this latter speculation are two points. First, the Jensen Dichotomy Theorem is a true
dichotomy theorem since the existence of Silver’s 0#, which is implied by the existence of a measurable
cardinal, implies V is very far from L. So perhaps the HOD Dichotomy Theorem is also a true dichotomy
theorem and we simply have not yet discovered what plays the role of 0#.

Now if the HOD Dichotomy Theorem is not a dichotomy theorem then one obtains a new generation
of inconsistency results for the large cardinal hierarchy in the setting where the Axiom of Choice fails.
This includes a mild strengthening of Reinhardt cardinals and it includes Berkeley cardinals.

Further one also obtains, but now in the context of the Axiom of Choice, that what seem like natural
generalizations of axioms of definable determinacy are also false if sufficient large cardinals are assumed
to exist.

Thus, and this is the second point, one could argue that it is quite reasonable to expect that there are
axioms which play the role of 0# but in the context of the HOD Dichotomy.

In the next section we give a more detailed overview of this presentation and this brings me to a
rather important underlying point. This point concerns the status of the Ultimate-L Project which is the
program to prove the Ultimate-L Conjecture.

The Ultimate-L Conjecture, as defined in a slightly weaker form on page 102 in comparison to the
original version implicit in [20] and defined in [24], is in essence three interrelated conjectures: first
that there is no anti inner model theorem, second that the HOD Dichotomy Theorem is not a genuine
dichotomy theorem, and third that (assuming sufficient large cardinals) Ultimate-L exists in close prox-
imity to V .

The reference [25] is a manuscript in preparation with the goal of showing that if κ is a huge cardinal
then the Ultimate-L Conjecture holds in Vκ+1 in a very slightly weakened form3.

The issue of course is that until the manuscript is in final form, it is just a work in progress, no matter
how confident one is of the eventual outcome.

Given the series of unexpected events to date on this subject, an abundance of caution seems prudent
here. The approach in [25] is discussed in a bit more detail at the end of the next section and then again
on page 89, in the context of the obstructions identified in the account.

Why then write this account now, before these issues are resolved? At the very least, something
noteworthy has happened. The collective impact of all the obstructions which are the focus of this
account, is that there are really very few mathematical options now for the form that any proof of the
Ultimate-L Conjecture must take. This was not the case before and with hindsight that was a part of the
whole problem.

3where the condition of weak Σ2-definability is dropped.
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Thus even if there are more surprises to come, this account presents a current snapshot of what is
surely a critical and interesting point in the final story.

2 Overview

This is an expanded (and revised) version of the material presented first in a tutorial series of four lectures
at the 19th Midrasha Mathematicae Meeting held at the Hebrew University and hosted by the Institute
for Advanced Studies. I would like to thank the organizers and the IAS for their efforts in arranging the
meeting and providing me the opportunity to give this lecture series. Also I wish to thank the participants
for their close attention during the lectures.

Part of this material was given a second time in a week long tutorial series in the Summer School
in Mathematical Logic held in Singapore in June, 2016, and hosted by the Institute for Mathematical
Sciences (IMS) of the National University of Singapore. Here again I owe a considerable debt to the
participants.

The purpose of this article, which was also the goal of the lectures, is to provide a fairly direct and
complete account which first shows that the solution to the inner model problem for one supercompact
cardinal will yield an ultimate version of L and then shows that the various current approaches to inner
model theory must be fundamentally altered to provide that solution.

We examine the current approaches in a progression starting with the natural generalizations of L[U]
and ending with the modern framework based on partial extender models. This involves introducing
many of the central notions of inner model theory.

The material from Section 3 and Section 4 is essentially all from [20] though the presentation is
simplified quite a bit and some of the theorems have been strengthened. The material from Section 5 and
Section 6 is new and combined with the material of Section 4 sets the stage for [25].

In fact, there are several changes here from the material given in the Midrasha Mathematicae lectures,
particularly in Section 5. This was primarily driven by the goal to produce a version of Theorem 5.35
which could be used in [25].

A substantial portion of the final section is also new and deals with various possible formulations
of the axiom, V = Ultimate-L. This revision of the material from the Midrasha Mathematicae lectures
reflects more recent results from [25] and highlights how the AD+-theory of determinacy enters the story
by making possible a formulation of the axiom V = Ultimate-L which does not involve the detailed
level-by-level construction of the actual model, or even the definitions of those levels.

It is interesting to note that for many of the standard generalizations of L which have been identified
and studied, for example the partial extender models of Mitchell-Steel, the internal axiomatic character-
ization is not in general known once the models pass the level of having Woodin cardinals.

There are many reasons for this and not the least of these is the surprising fact that for the Mitchell-
Steel models, most of the models are nontrivially the generic extension of another such model (if these
models are simply assumed to be iterable), one just needs that within the models there is at least one
Woodin cardinal, [24].

The three sections, Section 4, Section 5, and Section 6, indicate critical constraints which must be met
and this turns out to provide sufficient information to convincingly predict what must happen and how.
Part of this is what was expected but a significant part was completely unexpected and this concerns the
issue of whether a construction of a fine-structural hierarchy based only on a general iteration hypothesis
for V , could ever be vacuous. In fact I predict that what happens is much more extreme.

First, assuming the existence of a huge cardinal, the Weak (ω1+1)-Iteration Hypothesis is consistently
false and moreover the Weak Unique Branch Hypothesis outright false.

These iteration hypotheses are defined in Section 4.1 and are weak versions of what have become the
standard iteration hypotheses used when outright constructions (based on just large cardinal hypotheses)

4
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are not known.
More surprising is the reason. This happens because otherwise one can prove the existence of fine-

structural models and contradict the fundamental obstruction identified in Section 5.
The models constructed for this purpose are extender models and they are in the hierarchy of non-

strategic extender models since no additional predicate for iterability is added. In particular even though
the models are iterable, the iteration strategy is not added to the model. This is the traditional form of
the fine-structural generalizations of L.

Thus I predict that a backgrounded construction of fine-structural models which succeeds based on
what seems to be a natural iteration hypothesis can be vacuous.

The second prediction is that the essential core of the Ultimate-L Conjecture holds in Vκ+1 if κ is a
huge cardinal. More precisely, if κ is a huge cardinal then there exists a transitive set M such that

(1) M � “V = Ultimate-L”,

(2) OrdM = κ and M ⊂ HODVκ ,

(3) For some δ < κ, (Vκ,M) � “M is a weak extender model for δ is supercompact”.

So in summary, I believe all the obstacles, along with their resolutions, have been finally identified
and as a result it is now possible to prove that the core elements of Ultimate-L Conjecture, as specified
above, hold in Vκ+1 if κ is a huge cardinal.

The methodology is to build the necessary witnesses for this through the construction of extender
models in the hierarchy of strategic-extender models. This is the hierarchy of (iterable) extender models
where each model is constructed from two predicates, one for the extender sequence and one for the
iteration strategy.

The immediate question that this raises is how the construction of the strategic-extender models nec-
essary to witness that the (strictly speaking, “weak”) Ultimate-L Conjecture holds in Vκ+1 can possibly
succeed when the construction of the simpler nonstrategic-extender models must fail since it is the con-
struction of the latter which leads to the indicated contradiction.

The answer lies again in the problem of iterability. The construction of the strategic-extender models
succeeds because one can prove that the models are iterable which one cannot do in the nonstrategic case.
This is enabled by connecting with the general theory of AD+-models and that connection does not exist
in the nonstrategic case. This connection is through the HOD’s as computed within the AD+-models
which in the relevant cases one verifies is a strategic-extender model as part of the induction.

The main obstacle to proving the Ultimate-L Conjecture in light of the obstructions identified here, is
finding the technical reason why the hierarchy must transition from the nonstrategic-extender hierarchy
to the strategic-extender hierarchy. But this is only a mystery if one accepts that no vacuous construction
is possible because the iteration hypotheses one naturally uses must be provable. It is after surrendering
on this point that the picture becomes what seems now so obvious: there is no obstacle here since the
iteration hypotheses are false and this is because there are vacuous constructions.

Perhaps in the ideal world, this article would have been written a year from now after [25] was
completely finished, thoroughly checked, and circulated. Of course then it would probably be a very
different article and in any case, that is not this world and the making the predictions detailed above
seems really the only option, short of saying nothing.
Acknowledgements
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3 Weak extender models, universality, and the HOD Dichotomy

3.1 Supercompactness

We begin by reviewing the basic notions related to supercompact cardinals. Further details and the
history of the development can be found in [6].

Definition 3.1. Suppose that κ is a regular cardinal and that κ < λ.

(1) Pκ(λ) = {σ ⊂ λ | |σ| < κ}.

(2) Suppose that U ⊆ P (Pκ(λ)) is an ultrafilter.

a) U is fine if for each α < λ,
{σ ∈ Pκ(λ) | α ∈ σ} ∈ U.

b) U is normal if for each function
f : Pκ(λ)→ λ

such that
{σ ∈ Pκ(λ) | f (σ) ∈ σ} ∈ U,

there exists α < λ such that
{σ ∈ Pκ(λ) | f (σ) = α} ∈ U. ut

Definition 3.2. Suppose that κ is an uncountable regular cardinal. Then κ is a supercompact cardinal if
for each λ > κ there exists an ultrafilter U on Pκ(λ) such that:

(1) U is κ-complete,

(2) U is a normal fine ultrafilter. ut

The following basic lemma gives the connection between the two common formulations of super-
compactness. One can require that the transitive class M and the embedding j each be Σ2-definable in V
from parameters.

Lemma 3.3. Suppose κ is an uncountable regular cardinal. Then the following are equivalent.

(1) κ is a supercompact cardinal.

(2) For each λ > κ, there exists an elementary embedding

j : V → M

such that CRT( j) = κ, j(κ) > λ, and such that Mλ ⊂ M.

Proof. Suppose κ is supercompact and λ > κ. Let U be a κ-complete normal fine ultrafilter on Pκ(λ). Let

j : V → M � Ult(V,U)

be the ultrapower embedding. Thus

(1.1) j[λ] ∈ M and j[λ] ∈ j(Pκ(λ)),

(1.2) M = { j( f )( j[λ]) | f ∈ V}.

7
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Suppose h : λ→ M. For each α < λ, let

fα : Pκ(λ)→ V

be a function such that h(α) = j( fα)( j[λ]). The function fα exists by (1.1) and (1.2).
For each σ ∈ Pκ(λ) let

gσ : σ→ V

be the function defined by gσ(α) = fα(σ). Finally define

f : Pκ(λ)→ V

by f (σ) = gσ. Thus
j( f )( j[λ]) : j[λ]→ M

and
j( f )( j[λ]) ◦ j|λ = h.

Therefore h is definable in M from j( f )( j[λ]) and so h ∈ M.
This proves that (1) implies (2). Now suppose that λ > κ and that

j : V → M

is an elementary embedding such that CRT( j) = κ, j(κ) > λ, and such that Mλ ⊂ M. Thus

j[λ] ∈ j (Pκ(λ)) .

Let U be the set of all A ⊂ Pκ(λ) such that

j[λ] ∈ j(A).

Then U is a κ-complete normal fine ultrafilter on Pκ(λ). ut

We shall need a specific variation of Solovay’s Lemma on sets of measure one for normal fine κ-
complete ultrafilters on Pκ(λ) where λ > κ is a regular cardinal.

Lemma 3.4 (Solovay’s Lemma). Suppose that κ < λ are regular cardinals and < is a wellordering of
H(λ+). Then there exists a set X ⊂ Pκ(λ) such that the following hold.

(1) Suppose U is a κ-complete, normal, fine, ultrafilter on Pκ(λ). Then X ∈ U.

(2) Suppose σ, τ ∈ X and sup(σ) = sup(τ). Then σ = τ.

(3) X is uniformly definable in (H(λ+), <) from κ.

Proof. Let S = {α < λ | cof(α) = ω} and let

〈S α : α < λ〉

be the <-least partition of S into λ many stationary sets. Finally let X be the set of all σ ∈ Pκ(λ) such
that

(1.1) ω < cof(sup(σ)) < κ,

(1.2) σ is the set of α < sup(σ) such that S α ∩C , ∅ for all closed cofinal subsets of sup(σ).

Then using the ultrapower embedding

j : V → M � Ult(V,U)

given by U, it follows that j[λ] ∈ j(X) and so X witnesses the lemma. ut

8
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3.2 Weak Extender Models

The Inner Model Problem for supercompact cardinals has been a fundamental open problem for 40
years. Given the first solution of the inner model problem for measurable cardinals, this is the inner
model L[U] defined and analyzed in seminal work of Kunen, [7], and then Silver, a natural requirement
for the solution at the level of a supercompact cardinal is that it should yield, or at least be compatible
with, a weak extender model as defined below.

The original motivation here was to develop the theory of such weak extender models in order to
either discover the relevant clues as to how to construct the fine-structural versions of such inner models,
or conversely to conclude that the program cannot in general succeed. The latter would be an anti-inner
model theorem.

Definition 3.5. A transitive class N � ZFC is a weak extender model for δ is supercompact if for every
γ > δ there exists a δ-complete normal fine measure U on Pδ(γ) such that

(1) N ∩ Pδ(γ) ∈ U,

(2) U ∩ N ∈ N. ut

Analyzing covering properties between transitive models of ZFC has long been a fruitful subject of
study. Such notions arise naturally between V and its generic extensions, and between V and canonical
inner models of V , such as L.

Definition 3.6 (Hamkins [3]). Suppose N is a transitive class and that δ is a regular cardinal. Then N
has the δ-covering property if for each σ ⊂ N such that |σ| < δ, there exists τ ∈ N such that

(1) σ ⊂ τ,

(2) |τ| < δ. ut

Remark 3.7. V has the δ-covering property in V[G] whenever G is V-generic for a partial order P which
is (<δ)-cc in V . ut

Lemma 3.8. Suppose that N is a weak extender model for δ is supercompact. Then N has the δ-covering
property.

Proof. Let σ ⊂ N be a set with |σ| < δ. Since

N � ZFC

we can reduce to the case that σ ⊂ Ord. Let λ > δ be such that σ ⊂ λ. Let U be a δ-complete normal
fine ultrafilter on Pδ(λ) such that

N ∩ Pδ(λ) ∈ U.

Thus since U is fine and δ-complete,

{τ ∈ Pδ(λ) | σ ⊂ τ} ∈ U

and so there must exist
τ ∈ Pδ(λ) ∩ N

such that σ ⊂ τ. ut

Lemma 3.9. Suppose that N is a weak extender model for δ is supercompact and that γ > δ is a regular
cardinal in N. Then (cof(γ))V = |γ|V .

Proof. Let U be a δ-complete normal fine ultrafilter on Pδ(γ) such that

9
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(1.1) N ∩ Pδ(γ) ∈ U,

(1.2) U ∩ N ∈ N.

By Solovay’s Lemma applied within N, there exists a set
X ∈ N ∩ U

such that π is 1-to-1 on X where π(σ) = sup(σ).
Let C ⊂ γ be a closed cofinal set of ordertype (cof(γ))V .
Let

j : V → M

be the ultrapower embedding given by U. Thus j[γ] is the unique element σ of j(X) such that
sup(σ) = sup( j[γ]).

But C is closed cofinal in γ and so
sup( j[γ]) ∈ j(C).

Therefore {
σ ∈ X | sup(σ) ∈ C

}
∈ U.

Further, since U is fine,
∪

{
σ ∈ X | sup(σ) ∈ C

}
= γ.

Therefore |γ|V = |C|V · δ = (cof(γ))V · δ.
Finally γ is a regular cardinal in N and N has the δ-covering property and so

(cof(γ))V ≥ δ.

Thus |γ|V = |C|V · δ = (cof(γ))V · δ = (cof(γ))V . ut

Theorem 3.10. Suppose that N is a weak extender model for δ is supercompact and that γ > δ is a
singular cardinal. Then γ is a singular cardinal in N and

(γ+)N = γ+.

Proof. If γ is a regular cardinal in N then by Lemma 3.9, cof(γ) = |γ|which contradicts that γ is singular.
Let λ = (γ+)N . Then λ is a regular cardinal in N and so again by Lemma 3.9, cof(λ) = |λ| ≥ γ. But

cof(λ) is a regular cardinal and so cof(λ) > γ. This implies that λ = γ+. ut

3.3 Extendible cardinals and Magidor’s Lemma

A natural strengthening of the notion of a supercompact cardinal is given by the notion of an extendible
cardinal. Again [6] is an excellent reference for further details, both historical and mathematical.

Definition 3.11. Suppose that δ is a cardinal. Then δ is an extendible cardinal if for each λ > δ there
exists an elementary embedding

π : Vλ+1 → Vπ(λ)+1

such that CRT(π) = δ and π(δ) > λ. ut

Lemma 3.12 (Magidor, [9]). Suppose that δ is a regular cardinal. Then the following are equivalent.

(1) δ is supercompact.

(2) For each λ > δ there exist δ̄ < λ̄ < δ and an elementary embedding
π : Vλ̄+1 → Vλ+1

such that CRT(π) = δ̄ and such that π(δ̄) = δ. ut

10
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Lemma 3.13. Suppose that N is a weak extender model for δ is supercompact. Then for each λ > δ and
for each a ∈ Vλ, there exist δ̄ < λ̄ < δ, ā ∈ Vλ̄, and an elementary embedding

π : Vλ̄+1 → Vλ+1

such that the following hold.

(1) CRT(π) = δ̄, π(δ̄) = δ, and π(ā) = a.

(2) π(N ∩ Vλ̄) = N ∩ Vλ.

(3) π|(N ∩ Vλ̄) ∈ N.

Proof. By increasing λ and replacing a by the pair (a, λ) if necessary, we can reduce to the case that
λ = |Vλ|

and that cof(λ) = ω. Thus |N ∩ Vλ|
N = λ. Fix a bijection

ρ : λ→ N ∩ Vλ

such that ρ ∈ N.
Let U be a δ-complete normal fine ultrafilter on Pδ(λ) such that

(1.1) N ∩ Pδ(λ) ∈ U,

(1.2) U ∩ N ∈ N.

For each σ ∈ Pδ(λ), let
Xσ = {ρ(α) | α ∈ σ} .

Let Z be the set of all σ ∈ Pδ(λ) such that
Xσ ≺ N ∩ Vσ.

Thus Z ∈ U. For each σ ∈ Z, let Mσ be the transitive collapse of Xσ. The key claim is:

(2.1)
{
σ ∈ Z | Mσ = N ∩ Vα where α is the ordertype of σ

}
∈ U.

This follows easily by working in N and considering the ultrapower embedding,
jW : N → MW � Ult(N,W)

where W = U ∩ N. The relevant points are:

(3.1) jW[λ] ∈ MW ,

(3.2) W = {A ⊂ Pκ(λ) ∩ N | A ∈ N and jW[λ] ∈ jW(A)}.

Now let
jU : V → MU � Ult(V,U)

be the ultrapower embedding (now computed in V). Thus since |Vλ| = λ and since cof(λ) = ω,
(MU)Vλ+1 ⊂ MU

and so jU |Vλ+1 ∈ MU . Further by (2.1),
jU(N ∩ Vλ) ∩ Vλ = N ∩ Vλ.

Thus the following hold where as usual jU(N) denotes that class
jU = ∪ { jU(N ∩ Vα) | α ∈ Ord} .

(4.1) jU |(N ∩ Vλ) ∈ jU(N).

(4.2) (cof(λ))N < δ.

(4.3) jU |(N ∩ Vλ+1) ∈ jU(N) (since jU[λ] ∈ jU(N)).

(4.4) jU(N) ∩ Vλ = N ∩ Vλ.

Note that (4.1)–(4.4) imply that the conclusion of the lemma holds for ( jU(a), jU(λ)) in MU for jU(N).
Therefore the conclusion of the lemma holds in V for (a, λ) relative to N. ut

11
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3.4 Elementary embeddings of weak extender models

We now prove that if δ is an extendible cardinal and N is a weak extender model for δ is supercompact,
then N has a remarkable closure property relative to elementary embeddings of N with critical point at
least δ.

This theorem is in a natural sense a strong generalization of the following corollary of a theorem of
Dodd and Jensen. By a recent result of Jensen and Steel, the analogous theorem holds for essentially all
large cardinal notions below the level of a Woodin cardinal. Here we focus on singular cardinals in V
and N simply because of the conclusion of Theorem 3.10.

Theorem 3.14 (after Dodd-Jensen). Suppose that N � ZFC is an inner model such that
γ+ = (γ+)N

for a proper class of singular cardinals which are singular in N. Suppose in V there is a measurable
cardinal. Then in N, there is an inner model with a measurable cardinal. ut

Theorem 3.14 is just one of a series of theorems which show that if N � ZFC is an inner model such
that

γ+ = (γ+)N

for a proper class of singular cardinals which are singular in N, then N has inner models for various large
cardinal hypotheses that hold in V . For such inner models N which are constructed as enlargements of L,
the large cardinal hypotheses which can hold in V cannot exceed the level of large cardinal hypotheses
which hold in N. At levels beyond that of a Woodin cardinal, the precise generalizations involve some
version of correctness or iterability.

By Theorem 3.10, if N is a weak extender model for the supercompactness of δ, then
γ+ = (γ+)N

and γ is singular in N, for all singular cardinals γ > δ.
Therefore, Theorem 3.14 and its generalizations suggest that N should contain inner models of any

large cardinal hypothesis which holds in V and moreover if N is actually an enlargement of L then these
large cardinal hypotheses should hold in N.

In fact we obtain much more and we shall prove two versions of this, Theorem 3.15 and the more
general Theorem 3.26 which is formulated in terms of extenders.

Theorem 3.15. Suppose that N is a weak extender model for δ is supercompact and γ > δ is a cardinal
in N. Suppose that

j : H(γ+)N → H( j(γ)+)N

is an elementary embedding such that δ ≤ CRT( j). Then j ∈ N.

Proof. Fix λ > j(γ) such that λ = |Vλ|. Letting a = j, by Lemma 3.13, there exist δ̄ < λ̄ < δ, ā ∈ Vλ̄, and
an elementary embedding

π : Vλ̄+1 → Vλ+1

such that the following hold.

(1.1) CRT(π) = δ̄, π(δ̄) = δ, and π(ā) = a.

(1.2) π(N ∩ Vλ̄) = N ∩ Vλ.

(1.3) π|(N ∩ Vλ̄) ∈ N.

Thus ā = j̄ where
j̄ : H(γ̄+)N → H( j̄(γ̄)+)N .

It suffices to prove:

12
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(2.1) j̄ ∈ N;

since π( j̄) = j and since π|(N ∩ Vλ̄) ∈ N.
Let

E =
{
(A, ξ) | A ∈ P(γ̄) ∩ N, ξ < j̄(γ̄), and ξ ∈ j̄(A)

}
We prove that E ∈ N. This implies that

j̄| (P(γ̄) ∩ N) ∈ N

which implies that j̄ ∈ N.
The key point is:

(3.1) π| (H(γ̄+))N
∈ (H(γ+))N .

This is because π|(N ∩ Vλ̄) ∈ N noting that (H(γ+))N is closed under γ-sequences in N.
Let

π∗ = π|
(
H(γ̄+)

)N
∈

(
H(γ+)

)N
.

Thus π∗ ∈ (H(γ+))N and so π∗ ∈ dom( j).
Now fix A ∈ P(γ̄) ∩ N and ξ < j̄(γ̄). Thus

ξ ∈ j̄(A) ⇐⇒ π(ξ) ∈ π( j̄)(π(A))
⇐⇒ π(ξ) ∈ j(π(A))
⇐⇒ π(ξ) ∈ j(π∗(A))
⇐⇒ π(ξ) ∈ j(π∗)( j(A)) = j(π∗)(A).

Thus E can be computed from π| j̄(γ̄) and j(π∗). Both these functions are in N and so E ∈ N. ut

We recall the large cardinal hypothesis that κ is n-huge.

Definition 3.16. Suppose n < ω. Then κ is n-huge if there exists an elementary embedding

j : V → M

such that CRT( j) = κ and such that Mκn ⊂ M where

〈κi : i < ω〉

is the sequence where κ0 = κ = CRT( j) and for all i < ω, κi+1 = j(κi). ut

Note that κ is 0-huge if and only if κ is a measurable cardinal. However if κ is 1-huge then in Vκ there
are extendible cardinals and much more.

The following typical corollary of Theorem 3.15 illustrates the universality, for large cardinal hy-
potheses, of weak extender models for supercompactness.

Theorem 3.17. Suppose that N is a weak extender model for δ is supercompact. Suppose that for each
n < ω, there is a proper class of n-huge cardinals. Then in N, for each n < ω, there is a proper class of
n-huge cardinals. ut

Theorem 3.18 (Kunen,[8]). Suppose that λ is a cardinal. Then there is no non-trivial elementary em-
bedding

j : Vλ+2 → Vλ+2.

13
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Proof. Let j be given. Note that Vλ+2 is logically equivalent to H(|Vλ+1|
+) and so j yields an elementary

embedding
π : H(λ++)→ H(λ++).

Note that π(λ) = λ and π(λ+) = λ+.
Let S = {α < λ+ | cof(α) = ω} and let 〈S α : α < λ+〉 be a partition of S into stationary sets. Let

〈Tα : α < λ+〉 = π(〈S α : α < λ+〉).

Let C = {α ∈ S | π(α) = α}. Thus C is ω-closed and cofinal in λ+. By the elementarity of π, for each
α < λ+, Tα is a stationary subset of S and so for each α < λ+,

C ∩ Tα , ∅.

Let κ = CRT(π) and choose
ξ ∈ C ∩ Tκ.

Finally choose β < λ+ such that ξ ∈ S β. Then

ξ = π(ξ) ∈ π(S β) = Tπ(β).

This implies π(β) = κ which contradicts that κ = CRT(π). ut

Theorem 3.19. Let N be a weak extender model for δ is supercompact. Then there is no nontrivial
elementary embedding j : N → N such that δ ≤ CRT( j).

Proof. By Theorem 3.15, for each κ > δ, j|(N ∩ Vκ+1) ∈ N. Thus j is amenable to N and in particular
there must exist a cardinal λ of N such that CRT( j) < λ, j(λ) = λ, and such that

j|(Vλ+2 ∩ N) ∈ N.

This contradicts Kunen’s Theorem. ut

3.5 Extenders

For our purposes, the theory ZF\Powerset is formulated with the Collection Axiom in place of the
Replacement Axiom. Over this base theory, the various formulations of the Axiom of Choice are not all
equivalent, and the Wellordering Principle is the strongest among the usual variations. Thus we define
ZFC\Powerset to be the theory ZF\Powerset (with the Collection Axiom) together with the Wellordering
Principle.

The issue which arises from which formulation of the Axiom of Choice to use is the following.
Suppose that M and N are transitive models of ZFC\Powerset and that

π : M → N

is an elementary embedding which is cofinal in the sense that N = ∪ {π(a) | a ∈ M}. Suppose π is the
identity on the ordinals. Must π be the identity?

If one uses the Wellordering Principle, then the answer is yes, π must be the identity. If however one
uses the usual formulation of the Axiom of Choice then the answer is no, π need not be the identity. We
give an example.

Let L[G] be a generic extension of L for adding ωL
2 many Cohen reals and let L[G][g] be a generic

extension of L[G] for adding ωL
2-many Cohen reals.

Now define
M = LωL

2
(RL[G])[G]

and define
N = LωL

2
(RL[G][g])[G][g],

14
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where each is viewed as a transitive set. Thus in each case we are constructing over the reals from an
additional predicate. Note that P(ω) exists in both M and N but for example, P(ω1) does not exist in
either M or N.

It follows by the homogeneity of Cohen forcing that both M and N are models ZFC\Powerset with
the usual formulation of the Axiom of Choice and that the natural map

π : M → N

where π(RM) = RN is an elementary embedding.
Finally for purposes of constructing inner models, one is really only interested transitive models of

ZFC\Powerset which are of the form Lα[P], and in this situation the various possible formulations of
ZFC\Powerset discussed above, are all equivalent.

Definition 3.20. Suppose that M and N are transitive models of ZFC\Powerset and that

π : M → N

is an elementary embedding. Then π is cofinal if

N = ∪ {π(a) | a ∈ M} . ut

Definition 3.21. Suppose that M and N are transitive models of ZFC\Powerset and that

π : M → N

is a cofinal elementary embedding which is not the identity.
Let κ = CRT(π) and suppose that η ∈ OrdN . Let η̂ be least such that

η ≤ π(η̂).

For each a ∈ [η]<ω, let
Ea =

{
A ∈ N ∩ P

(
[η̂]|a|

)
| a ∈ π(A)

}
.

Let E = 〈Ea : a ∈ [η]<ω〉. Then:

(1) E is an M-extender.

(2) η is the length of E.

(3) κ is the critical point of E. ut

Definition 3.22. Suppose that M is a transitive model of ZFC\Powerset and that

E = 〈Ea : a ∈ [η]<ω〉

is an M-extender. Then
Ult0(M, E) = lim

a∈[η]<ω
Ult0(M, Ea). ut

Remark 3.23. Following the conventions in inner model theory we use the notation Ult0(M, E) in-
stead of Ult(M, E). The reason is that in the general case where M is not assumed to be a model of
ZFC\Powerset there can exist more complicated ultrapowers which one can define, these include the
fine-structural ultrapowers Ultn(M, E). ut

Lemma 3.24. Suppose that M is a transitive model of ZFC\Powerset and that

E = 〈Ea : a ∈ [η]<ω〉

is an M-extender. Then:

(1) Ult0(M, E) is wellfounded.

15
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(2) Let ME be the transitive collapse of Ult0(M, E) and let

πE : M → ME

be the ultrapower embedding. Then:

(a) πE is a cofinal elementary embedding.
(b) CRT(πE) < η < OrdME .
(c) Let F be the M–extender of length η given by πE. Then F = E. ut

The following theorem which is the Universality Theorem for weak extender models, is the general
version of Theorem 3.15 and this is formulated simply in terms of N-extenders with no assumptions
whatsoever on the strength of the extenders.

This version of universality is optimal in that it characterizes when an N-extender (which has large
enough critical point) must belong to N in the simplest possible terms.

Remark 3.25. We note that Theorem 3.26 implies Theorem 3.15. The only issue is that given

j : H(γ+)N → H( j(γ)+)N

as in the hypothesis of Theorem 3.15 and letting E be the H(γ+)N-extender of length j(γ) given by j, one
must verify Ult0(N, E) is wellfounded so that E is also an N-extender.

The point here is that if
πE : N → ME � Ult0(N, E)

is the ultrapower embedding then
πE |H(γ+)N = j

and so for each A ∈ P(γ) ∩ N, πE(A) ∈ N.
The wellfoundedness of Ult0(N, E) follows by using j and appealing to the δ-covering property of

N. ut

Theorem 3.26 (The Universality Theorem). Suppose that N is a weak extender model for δ is super-
compact and that E is an N-extender of length η with critical point κE ≥ δ. Let

πE : N → ME � Ult0(N, E)

be the ultrapower embedding. Then the following are equivalent.

(1) For each A ⊂ η, πE(A) ∩ η ∈ N.

(2) E ∈ N.

Proof. Trivially (2) implies (1) and so it suffices to prove (1) implies (2). The proof that (1) implies (2)
is just a reworking of the proof of Theorem 3.15.

Let ι be least such that πE(ι) ≥ η. Thus ι is a cardinal of N. Fix λ > η such that λ = |Vλ| and such that
cof(λ) > ι. Thus

πE(λ) = λ.

By Lemma 3.13, there exist δ̄ < λ̄ < δ, Ē ∈ Vλ̄, and an elementary embedding

π : Vλ̄+1 → Vλ+1

such that the following hold.

(1.1) CRT(π) = δ̄, π(δ̄) = δ, and π(Ē) = E.

(1.2) π(N ∩ Vλ̄) = N ∩ Vλ.

(1.3) π|(N ∩ Vλ̄) ∈ N.

16
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Thus Ē is an N-extender. Let η̄ be the length of Ē, let

πĒ : N → Ult0(N, Ē)

be the ultrapower embedding, and let ῑ be least such that πĒ(ῑ) ≥ η̄. Thus

(2.1) π(ῑ) = ι,

(2.2) π(πĒ ∩ Vλ̄) = πE ∩ Vλ.

Let
PĒ = {(A, ξ) | A ∈ P(ῑ) ∩ N, ξ < η̄ and ξ ∈ πĒ(A)}

We prove that PĒ ∈ N. This implies Ē ∈ N and so E ∈ N since π(Ē) = E.
Now fix A ∈ P(ῑ) ∩ N and ξ < η̄. We have that π|(N ∩ Vλ) ∈ N and so letting

π∗ = π|(N ∩ Vλ)

we have:
ξ ∈ πĒ(A) ⇐⇒ π(ξ) ∈ π(πĒ ∩ Vλ̄)(π(A))

⇐⇒ π(ξ) ∈ πE(π(A))
⇐⇒ π(ξ) ∈ πE(π∗(A))
⇐⇒ π(ξ) ∈ πE(π∗)(πE(A)) = πE(π∗)(A).

Thus PĒ can be computed from π|η̄ and πE(π∗). We have π|η̄ ∈ N but only that

πE(π∗) ∈ ME � Ult0(N, E).

However we only need
{(A, πE(π∗)(A) ∩ η) | A ∈ P(ῑ) ∩ N} ∈ N

in order to show that PĒ ∈ N.
Working in N and since we have both that π∗ ∈ N and that ῑ < δ, we can choose Z ⊂ ι such that

(3.1) Z ∈ N,

(3.2) For all δ ≤ θ ≤ ι,
{(A, π∗(A) ∩ θ) | A ∈ P(ῑ) ∩ N} ∈ L[Z ∩ θ].

But then πE(Z) ∩ η ∈ N and so by the elementarity of πE,

{(A, πE(π∗)(A) ∩ η) | A ∈ P(ῑ) ∩ N} ∈ L[πE(Z) ∩ η] ⊂ N.

This proves Ē ∈ N and so E ∈ N. ut

Remark 3.27. Suppose that E is an L-extender of length η. Then

L � Ult0(L, E)

and so πE(A) ∈ L for all A ∈ L. ut

As a corollary of Theorem 3.26, we obtain the direct transference of Woodin cardinals to weak exten-
der models for supercompactness. This easily generalizes to the appropriate versions of essentially any
current large cardinal hypothesis.

Theorem 3.28. Suppose that N is a weak extender model for δ is supercompact and that θ > δ is a
Woodin cardinal. Then θ is a Woodin cardinal in N.

Proof. By the definition of a Woodin cardinal, θ is a Woodin cardinal if for all A ⊂ Vθ, there exists
δ < κ < θ such that for all κ < λ < θ with |Vλ| = λ, there is a V-extender E such that

(1.1) CRT( jE) = κ, LTH(E) = λ, and jE(κ) > λ,

17
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(1.2) Vλ ⊂ ME and jE(A ∩ Vκ) ∩ Vλ = A ∩ Vλ.

where
jE : V → ME � Ult0(V, E)

is the ultrapower embedding.
But then for all A ∈ P(Vθ) ∩ N, there exists δ < κ < θ such that for all κ < λ < θ with |Vλ| = λ, there

is an N-extender E such that

(2.1) CRT( jE) = κ, LTH(E) = λ, and jE(κ) > λ,

(2.2) jE(N ∩ Vκ) ∩ Vλ = N ∩ Vλ,

(2.3) Vλ ∩ N ⊂ ME and jE(A ∩ Vκ) ∩ Vλ = A ∩ Vλ.

where
jE : N → ME � Ult0(N, E)

is the ultrapower embedding.
By Lemma 3.26 and with E as above, (E|η)|N ∈ N for all η < λ (since κE = κ > δ) and so since λ can

be chosen cofinally large in θ, θ is a Woodin cardinal in N. ut

Definition 3.29. (1) E is an extender if E is a V-extender.

(2) An extender, E, of length η is λ-complete if

ηλ ⊆ M

where M = Ult0(V, E). ut

Suppose that E is an extender with critical point κ, P ∈ Vκ, and G ⊆ P is V-generic. Then E naturally
defines an extender in V[G] and

( jE)V[G]|V = ( jE)V .

Lemma 3.30. Suppose that δ < κ, E is an extender which is δ-complete with critical point κ, and that

j : V → M ⊆ V[G]

is a generic elementary embedding such that

(i) M = { j( f )(α) | α < δ and f ∈ V},

(ii) G is V-generic for some partial order P ∈ V such that |P| ≤ δ in V .

Then ( jE)V[G]|M = ( jF)M where F = j(E).

Proof. By (i), M = Ult0(V,H) where H is a V-extender of length δ.
Let η = LTH(E) and for each a ∈ [η]δ let Ea be the ultrafilter,

Ea =
{
A ⊆ [η̂]δ | a ∈ jE(A)

}
,

where η̂ = min {γ | η ≤ jE(γ)}.
Since E is δ-complete for each a ∈ [η]δ, a ∈ Ult0(V, E) and so Ea is defined.
Suppose that a ⊆ b and b ∈ [η]δ. Then there is a natural elementary embedding,

ja,b : Ult0(V, Ea)→ Ult0(V, Eb).

This defines a directed system indexed by the directed set, ([η]δ,⊆) with limit, Ult0(V, E).
This is just the usual analysis of Ult0(V, E) as the limit of a directed system of ultrapowers except here

the underlying directed set is ([η]δ,⊆) instead of the directed set, ([η]<ω,⊆).
Let X = [η̂]δ. For each a ∈ [η]δ, Ea ⊆ P(X) and Ea is an ultrafilter on X. Fix a ∈ [η]δ.
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We first show the following. Suppose that

f : X → M

is a function in V[G]. Then there exists a function

f ∗ : j(X)→ M

such that f ∗ ∈ M and such that

{y ∈ X | f (y) = f ∗( j(y))} ∈ (Ea)G

where (Ea)G is the ultrafilter in V[G] generated by Ea.
Fix f and work in V[G]. For each y ∈ X there exists a pair (gy, αy) such that

(1.1) αy < δ,

(1.2) gy ∈ V ,

(1.3) f (y) = j(gy)(αy).

This defines a function
F : X → V

where for all y ∈ X, F(y) = (gy, αy).
Since Ea is κ-complete and since |P|V ≤ δ < κ, it follows that there exists Z ∈ Ea and there exists

α < δ such that

(2.1) F|Z ∈ V ,

(2.2) αy = α for all y ∈ Z.

Define
f ∗ : j(X)→ M

by f ∗(t) = 0 if t < j(Z) and if t ∈ j(Z) then

f ∗(t) = j(F)t(α)

where for each y ∈ X, Fy = gy.
Thus for each y ∈ Z,

f ∗( j(y)) = j(F) j(y)(α) = ( j(Fy))(α) = ( j(gy))(α) = ( j(gy))(αy) = f (y),

and so f ∗ is as required.
What we have done is show that for each a ∈ [η]δ the lemma holds with E replaced by Ea. This

special case is due to Steel.
Now we use the hypothesis that E is δ-complete. Suppose b ∈ j([η]δ). Then there exists α < δ and a

function
g : δ→ [η]δ

such that j(g)(α) = b noting that δ ≤ j(δ). Let a = ∪ {g(β) | β < δ}. Thus a ∈ [η]δ, a ∈ V and b ⊆ j(a).
Thus {

j(a) | a ∈ [η]δ
}

is cofinal in the directed set, {
a | a ∈ j([η]δ)

}
,

and so Ult0(M, j(E)) is the limit of Ult0(M, j(Ea)) over the directed set ([η]δ,⊆)V and the lemma follows
by the correspondence of functions established above. ut
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There is a useful corollary of Lemma 3.30 which allows one to generate a variety of weak extender
models for the supercompactness of some cardinal δ, and which have various other properties.

The main motivation for this is to show that weak extender models for supercompactness need not
be so close to V as to render the notion useless as a requirement for inner model theory at the level
of supercompactness. The latter is a natural speculation given for example the Universality Theorem,
Theorem 3.26.

The generic elementary embeddings given by the Stationary Tower at Woodin cardinals δ < κ give
many examples of j which satisfy the conditions of Lemma 3.31 and with any given uncountable regular
cardinal below κ as the critical point.

However, we shall only use Lemma 3.31 (with the partial order P trivial so that V = V[G]) to obtain
Lemma 3.32 which shows that Lemma 3.19 is optimal.

Lemma 3.31. Suppose that δ < κ, κ is supercompact, and that

j : V → M ⊆ V[G]

is a generic elementary embedding such that

(i) M = { j( f )(α) | α < δ and f ∈ V},

(ii) G is V-generic for some partial order P ∈ V such that |P| ≤ δ in V .

Then in V[G], M is a weak extender model for κ is supercompact.

Proof. By Lemma 3.30, for each extender E ∈ V , if (in V),

(1.1) P ∈ VCRT(E),

(1.2) ρ(E) = LTH(E),

(1.3) cof(LTH(E)) > δ,

then in V[G], EG ∩ M ∈ M where EG is the extender in V[G] generated by E. The point is that E is
δ-complete and so by Lemma 3.30,

j(E) = EG ∩ M.

Since κ is supercompact in V , the class of all such extenders, EG, witnesses that κ is supercompact in
V[G]. The corollary follows. ut

Lemma 3.32 shows that the restriction on critical points in Theorem 3.19 is necessary and in addition,
combined with Theorem 3.45 shows that the case where N = HOD is quite different.

Lemma 3.32. Suppose that δ is a supercompact cardinal. Then there is a weak extender model, N, for δ
is supercompact such that for each λ there is a nontrivial elementary embedding

j : N → N

with CRT( j) < δ such that j(λ) = λ.

Proof. Let κ < δ be a measurable cardinal and let U be a normal κ-complete uniform ultrafilter on κ. Let
〈(Mn,Un, jn,n+1) : n < ω〉 be the iteration of (V,U) of length ω. Thus

(1.1) (M0,U0) = (V,U),

(1.2) Mn+1 = Ult0(Mn,Un) and jn,n+1 : Mn → Mn+1 is the ultrapower embedding.

(1.3) Un+1 = jn,n+1(Un).
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Let
Mω = lim

n<ω
Mn

be the direct limit under the composition of the elementary embeddings,

〈 jn,n+1 : n < ω〉.

Thus Mω is wellfounded and so for each λ ∈ Ord,

jn,n+1(λ) = λ

for all sufficiently large n < ω.
Define N = Mω and let

j0,ω : V → N

be the associated elementary embedding.
Let η = j0,ω(κ). Then η < (2κ)+ < δ and

N = Ult0(V, E)

where E is the extender of length η given by j0,ω.
Thus N is a weak extender model for δ is supercompact by Lemma 3.31 (with P trivial so that

V = V[G]).
Finally for all n < ω, jn,n+1(N) = N and so for all λ ∈ Ord, for all sufficiently large n < ω, jn,n+1|N

yields an elementary embedding
j : N → N

such that j(λ) = λ, and this proves the lemma. ut

3.6 The HOD Dichotomy Theorem

Jensen’s Covering Lemma is naturally formulated as a dichotomy theorem:

Theorem 3.33 (Jensen). One of the following holds.

(1) Suppose γ is a singular cardinal. Then γ is singular in L and γ+ = (γ+)L.

(2) Every uncountable cardinal is inaccessible in L. ut

The following theorem is arguably an abstract generalization of the Jensen Covering Lemma when
stated as above in the form of a dichotomy theorem. We shall prove a strong version of Theorem 3.34 as
the HOD Dichotomy Theorem, Theorem 3.39 below.

Theorem 3.34. Assume that δ is an extendible cardinal. Then one of the following holds.

(1) For every singular cardinal γ > δ, γ is singular in HOD and (γ+)HOD = γ+.

(2) Every regular cardinal γ ≥ δ is a measurable cardinal in HOD. ut

Definition 3.35. Let λ be an uncountable regular cardinal. Then λ is ω-strongly measurable in HOD if
there exists κ < λ such that:

(1) (2κ)HOD < λ.

(2) There is no partition 〈S α | α < κ〉 of cof(ω)∩ λ into stationary sets such that 〈S α | α < κ〉 ∈ HOD.ut
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Lemma 3.36. Suppose that λ is an uncountable regular cardinal and that F is a λ-complete uniform
filter on λ. Let

B = P(λ)/I

where I is the ideal dual to F . Suppose that B is γ-cc for some γ such that 2γ < λ. Then |B| ≤ 2γ and B
is atomic.

Proof. It suffices to prove that B is atomic. Equivalently, it suffices to show that if A ⊆ λ and A < I then
there exists B ⊆ A such that B < I and such that B cannot be split into 2 sets each of which is I-positive.

This in turn reduces to simply proving that B has an atom since if B is not atomic then we can replace
I by the ideal generated by I ∪ {A} where A/I is the join in B of all the atoms of B.

Therefore we assume toward a contradiction that B has no atoms. Let

〈(Pα,Zα) : α < Θ〉

be a maximal sequence such that Θ ≤ γ + 1 and such that for all α < β,

(1.1) 2|β| < λ,

(1.2) Zβ ∈ F and Zβ ⊆ Zα,

(1.3) Pα is a partition of Zβ into I-positive sets,

(1.4) Pβ refines Pα,

(1.5) for each B ∈ Pα, there exist distinct X,Y ∈ Pβ such that X ∪ Y ⊂ B.

For each α < Θ, |Pα| < γ since B is γ-cc. We prove

(2.1) 2|Θ| ≥ λ.

Assume toward a contradiction that 2|Θ| < λ. Thus Θ < λ and so Z ∈ F where

Z = ∩ {Zα | α < Θ} .

Define an equivalence relation ∼ on Z by ξ1 ∼ ξ2 if for all α < Θ, for all A ∈ Pα, ξ1 ∈ A if and only if
x2 ∈ A.

We have:

(3.1) 2|Θ| < λ and 2γ < λ,

(3.2) for each α < λ, |Pα| < γ.

Therefore |Z/∼| < λ. But then ZΘ ∈ F where

ZΘ = ∪ {[ξ]∼ | ξ ∈ Z and [ξ]∼ < I}

and where for each ξ ∈ Z, [ξ]∼ is the ∼-equivalence class of ξ.
Define PΘ = {[ξ]∼ | ξ ∈ ZΘ}. This contradicts the maximality of the sequence

〈(Pα,Zα) : α < Θ〉.

This proves that 2|Θ| ≥ λ. But this implies that Θ > γ. Fix ξ ∈ Zγ. For each α < γ, let Xα ∈ Pα be such
that ξ ∈ Xα. Thus

〈Xα : α < γ〉

is a decreasing sequence of I-positive sets and for each α < γ, Xα+1\Xα is I-positive. This yields an
antichain in B is cardinality γ which contradicts that B is γ-cc. ut

Lemma 3.37. Assume λ is ω-strongly measurable in HOD. Then

HOD � λ is a measurable cardinal.
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Proof. Let S =
{
α < λ | (cof(α))V = ω

}
and let

F =
{
A ∈ P(κ) ∩ HOD | S \A is not a stationary subset of λ in V

}
.

Thus F ∈ HOD and in HOD, F is a λ-complete uniform filter on λ. Since λ is ω-strongly measurable in
HOD, there exists γ < λ such that in HOD:

(1.1) 2γ < λ,

(1.2) P(λ)/I is γ-cc where I is the ideal dual to F .

Therefore by Lemma 3.36, the Boolean algebra
(P(λ) ∩ HOD) /I

is atomic. ut

Theorem 3.38. Suppose that δ is an extendible cardinal. Then the following are equivalent.

(1) HOD is a weak extender model for δ is supercompact.

(2) There exists a regular cardinal λ ≥ δ which is not ω-strongly measurable in HOD.

Proof. By Theorem 3.10, (1) implies that for every singular cardinal γ > δ,
γ+ = (γ+)HOD

and by Lemma 3.37, this implies (2).
Thus it suffices to show that (2) implies (1). We first prove:

(1.1) For each α > δ there exists a regular cardinal λ > α such that λ is not ω-strongly measurable in
HOD.

Fix a regular cardinal λ0 ≥ δ such that λ0 is not ω-strongly measurable in HOD. Let κ > λ0 be such that
κ > α and

Vκ ≺Σ2 V.
Thus

Vκ � “λ0 is not ω-strongly measurable in HOD”.
Since δ is extendible, there exists an elementary embedding

π : Vκ+1 → Vπ(κ)+1

such that CRT(π) = δ and π(δ) > κ > α. Thus
Vπ(κ) � “π(λ0) is not ω-strongly measurable in HOD”.

But
(HOD)Vπ(κ) ⊂ HOD

and so π(λ0) is not ω-strongly measurable in HOD. This proves (1.1).
Fix κ0 > δ and let κ > κ0 be such that |Vκ| = κ. Let λ0 > 2κ be a regular cardinal which is not

ω-strongly measurable in HOD and let λ > λ0 be such that
Vλ ≺Σ2 V.

Thus λ = |Vλ| and HOD ∩ Vλ = (HOD)Vλ .
Let S = {α < λ0 | cof(α) = ω}. Thus there exists a partition

〈S α : α < κ〉 ∈ HOD
of S into stationary subsets of S .

Let
π : Vλ+1 → Vπ(λ)+1

be an elementary embedding such that CRT(π) = δ and π(δ) > λ.
Let T = π(S ) and let

〈Tα : α < π(κ)〉 = π(〈S α : α < κ〉).
Thus:

23



To
ap

pe
ar

:B
ul

le
tin

of
Sy

m
bo

lic
L

og
ic

(2
3)

(1
)2

01
7

c ©
20

16
,A

ss
oc

ia
tio

n
of

Sy
m

bo
lic

L
og

ic

(2.1) π(λ0) is a regular cardinal.

(2.2) T = {α < π(λ0) | cof(α) = ω}.

(2.3) 〈Tα : α < π(κ)〉 is a partition of T into stationary sets.

(2.4) 〈Tα : α < π(κ)〉 ∈ (HOD)Vπ(λ) .

Let
Θ = sup {π(ξ) | ξ < λ0} .

Thus Θ < π(λ0). Let σ be the set of all α < π(κ) such that
Tα ∩C , ∅

for all closed cofinal subsets C ⊆ Θ. Therefore
σ = {π(α) | α < κ} .

But σ ∈ (HOD)Vπ(λ) since
〈Tα : α < π(κ)〉 ∈ (HOD)Vπ(λ) .

This proves that
π|κ ∈ (HOD)Vπ(λ) .

But there is a bijection
ρ : κ → HOD ∩ Vκ

such that ρ ∈ (HOD)Vλ and so
π|(HOD ∩ Vκ) ∈ (HOD)Vπ(λ) .

Let U0 be the normal fine ultrafilter on Pδ(κ0) given by π. Thus

(3.1) Pδ(κ0) ∩ HOD ∈ U0,

(3.2) U0 ∩ HOD ∈ (HOD)Vπ(λ) ⊂ HOD.

This proves that HOD is a weak extender model for δ is supercompact. ut

We now come to the HOD Dichotomy Theorem. There are various equivalent versions but the fol-
lowing is sufficient for our purposes.

Theorem 3.39 (HOD Dichotomy Theorem). Suppose that δ is an extendible cardinal. Then one of the
following holds.

(1) Every regular cardinal κ ≥ δ is ω-strongly measurable in HOD. Further:

(a) HOD is not a weak extender for the supercompactness of any λ.
(b) There is no weak extender model N for the supercompactness of some λ such that N ⊆ HOD.

(2) No regular cardinal κ ≥ δ is ω-strongly measurable in HOD. Further:

(a) HOD is a weak extender model for the supercompactness of δ.
(b) Every singular cardinal γ > δ is singular in HOD and

γ+ = (γ+)HOD.

Proof. Assume toward a contradiction that κ and γ are regular cardinals, each greater than or equal to δ,
such that κ is not ω-strongly measurable in HOD and that γ is ω-strongly measurable in HOD.

Since γ is ω-strongly measurable in HOD, there exists a stationary set
S ⊂ {α < γ | cof(α) = ω}

such that
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(1.1) S ∈ HOD,

(1.2) F ∩ (HOD ∩ P(γ)) is an ultrafilter;

where F is the club filter (of V) restricted to S .
Let

U = F ∩ (HOD ∩ P(γ)).

Thus in HOD, U is a γ-complete, normal, uniform ultrafilter on γ.
By Theorem 3.38, HOD is a weak extender model for δ is supercompact. Therefore by Lemma 3.8,

HOD has the δ-covering property and so for each ξ ∈ S ,

(cof(ξ))HOD < δ.

Thus {
ξ < γ | (cof(ξ))HOD < ξ

}
∈ U.

This contradicts that in HOD, U is a γ-complete, normal, uniform ultrafilter on γ. ut

The HOD Dichotomy Theorem has an interesting corollary and a much stronger version is given by
Theorem 5.28.

Theorem 3.40. Suppose that δ is an extendible cardinal. Then δ is a measurable cardinal in HOD.

Proof. By Lemma 3.37, we can reduce to the case that δ is not ω-strongly measurable in HOD. But
then by Theorem 3.39, HOD is a weak extender model for δ is supercompact and so δ is a supercompact
cardinal in HOD. ut

One can by a more careful argument generalize the previous theorem and obtain the following varia-
tion.

Theorem 3.41. Suppose there exists an elementary embedding

j : Vκ+ω → V j(κ)+ω

with CRT( j) = κ. Then there is a measurable cardinal in HOD. ut

3.7 The HOD Hypothesis

Definition 3.42 (The HOD Hypothesis). There exists a proper class of regular cardinals λ which are not
ω-strongly measurable in HOD. ut

Remark 3.43. (1) It is not known if there can exist 4 regular cardinals which are ω-strongly measur-
able in HOD.

(2) Suppose γ is a singular strong limit cardinal of uncountable cofinality. It is not known if γ+ can
ever be ω-strongly measurable in HOD. ut

The following theorem is an immediate corollary of the HOD Dichotomy Theorem.

Theorem 3.44 (HOD Hypothesis). Suppose that δ is an extendible cardinal. Then HOD is a weak ex-
tender model for δ is supercompact. ut

Comparing the next theorem with Lemma 3.32 shows that the case of HOD being a weak extender
model for the supercompactness of some δ, is quite different than the case of an arbitrary transitive class
N.
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Theorem 3.45 (HOD Hypothesis). Suppose that there is an extendible cardinal. Then there is an ordinal
λ such that for all γ > λ, if

j : HOD ∩ Vγ+1 → HOD ∩ V j(γ)+1

is an elementary embedding with j(λ) = λ then j ∈ HOD.

Proof. Let δ be an extendible cardinal and let λ0 = δ+ω be the ω-th cardinal above δ. Clearly
(cof(λ0))HOD = ω. Further by Theorem 3.10 and Theorem 3.44,

(λ+
0 )HOD = λ+

0 .

Therefore if η < λ+
0 then (cof(η))HOD < λ0. Let κ0 be least such that{

η < λ+
0 | cof(η) = ω and (cof(η))HOD = κ0

}
is stationary in λ+

0 .
Define λ = λ0 + κ0. We show that λ is as required. Suppose γ > λ and

j : HOD ∩ Vγ+1 → HOD ∩ V j(γ)+1

is an elementary embedding such that j(λ) = λ. By Theorem 3.44, if j|δ is the identity then j ∈ HOD.
Therefore we have only to prove that j|δ is the identity. Since κ0 < λ0 and since j(λ) = λ, j(λ0) = λ0 and
j(κ0) = κ0.

Clearly j induces canonically an elementary embedding
j∗ :

(
H(λ++

0 )
)HOD

→
(
H(λ++

0 )
)HOD

with the property that j|λ0 = j∗|λ0.
Let

S =
{
η < λ+

0 | cof(η) = ω and (cof(η))HOD = κ0

}
.

Thus since S is stationary in λ+
0 and since

(λ+
0 )HOD = λ+

0 ,

there is a partition
〈S α : α < λ+

0 〉 ∈ HOD
of S into stationary sets. Let

〈Tβ : β < λ+
0 〉 = j∗(〈S α : α < λ+

0 〉).
Note that if η ∈ S and if η is closed under j∗ then j∗(η) = η. This is because (cof(η))HOD = κ0 and
because j∗(κ0) = κ0.

Therefore for all β < λ+
0 , Tβ ∩ S is stationary in λ+

0 if and only if β = j∗(α) for some α < λ+
0 . This

implies that {
j∗(α) | α < λ+

0
}
∈ HOD

since
{
β < λ+

0 | Tβ ∩ S is stationary in λ+
0

}
∈ HOD. But by the elementarity of j∗ and since j∗(S ) = S ,

for all β < λ+
0 ,

HOD � “Tβ ∩ S is stationary in λ+
0 ” ,

which implies (since
{
j∗(α) | α < λ+

0

}
∈ HOD) that j∗|λ+

0 is the identity. Thus
CRT( j) > δ

and so by Theorem 3.15 and Theorem 3.44, j ∈ HOD. ut

Theorem 3.46 (HOD Hypothesis). Suppose that there exists an extendible cardinal. Then there is no
sequence of non-trivial elementary embeddings,

ji : HOD→ HOD
such that the direct limit,

lim
i<ω

ji ◦ · · · ◦ j0(HOD),

is wellfounded.
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Proof. Assume toward a contradiction that the direct limit is wellfounded. Then for every ordinal λ,

ji(λ) = λ

for all sufficiently large i < ω. Therefore by Theorem 3.45, ji must be the identity for all sufficiently
large i < ω. ut

Theorem 3.47 (HOD Hypothesis). Suppose that there exists an extendible cardinal. Let T be the Σ2-
theory of V with ordinal parameters. Then there is no non-trivial elementary embedding,

j : (HOD,T )→ (HOD,T ).

Proof. By Theorem 3.45, there exists λ ∈ Ord such that for all γ > λ , if

k : HOD ∩ Vγ+1 → HOD ∩ Vk(γ)+1

is an elementary embedding with k(λ) = λ, then k ∈ HOD. Let λ0 be the least such λ. Clearly λ0 is
definable in V and so λ0 is definable in (HOD,T ).

Suppose toward a contradiction that

j : (HOD,T )→ (HOD,T )

is a non-trivial elementary embedding. Therefore j(λ0) = λ0 and so for all γ > λ0,

j| HOD ∩ Vγ+1 ∈ HOD,

which is a contradiction. ut

3.8 The HOD Conjecture

The HOD Dichotomy Theorem together with the speculation that there is an extension of inner model
theory to the level of supercompact cardinals suggests the following conjecture. Of course one could
modify the conjecture by replacing the theory

ZFC + “There is a supercompact cardinal”

with the theory
ZFC + “There is an extendible cardinal”

or even by a still stronger theory, but at this stage its seems rather unlikely that this is actually necessary.
However, the weaker conjecture obtained from the stronger theory given by some (reasonable) large
cardinal hypothesis might be easier to prove.

Definition 3.48 (HOD Conjecture). The theory

ZFC + “There is a supercompact cardinal”

proves the HOD Hypothesis. ut

We end this section by listing several consequences of the HOD Conjecture. These are in the context
of just ZF and suggest there may be rather surprising approximations to the Axiom of Choice which
simply follow from the existence of large cardinals (such as extendible cardinals). Details can be found
in [20]. There is a much stronger version of Theorem 3.49 in [25] but for the purposes of this account
that version is not really relevant. The stronger version simply reduces the rank of the parameter a to
nearly the least supercompact cardinal (where supercompactness is as defined in [20]).

Theorem 3.49 (ZF). Assume the HOD Conjecture. Suppose δ is an extendible cardinal. Then there is a
transitive class M ⊆ V such that:

(1) M � ZFC.
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(2) M is Σ2(a)-definable for some a ∈ Vδ.

(3) Every set of ordinals is generic over M for some partial order P ∈ Vδ.

(4) M � “δ is an extendible cardinal”. ut

Theorem 3.50 (ZF). Assume the HOD Conjecture. Suppose δ is an extendible cardinal. Then for all
λ > δ there is no non-trivial elementary embedding j : Vλ+2 → Vλ+2. ut

Theorem 3.49 suggests the following conjecture which if provable would show an extraordinary con-
nection between the existence of extendible cardinals and the Axiom of Choice.

Definition 3.51 (Axiom of Choice Conjecture (ZF)). Suppose that δ is an extendible cardinal and that
G ⊂ Coll(ω,Vδ) is V-generic. Then the Axiom of Choice holds in V[G]. ut

For the statement of the following theorem L(P(Ord)) denotes the transitive class given by the union:

∪ {L(P(α)) | α ∈ Ord} .

This is the smallest inner model of ZF which contains all sets of ordinals.

Theorem 3.52 (ZF). Assume the HOD Conjecture. Suppose that δ is an extendible cardinal. Then the
following hold in L(P(Ord)).

(1) δ is an extendible cardinal.

(2) The Axiom of Choice Conjecture. ut

We make a final comment. Assuming ZF, the Axiom of Choice holds if and only if

L(P(Ord)) � Axiom of Choice.

Thus while proving the Axiom of Choice Conjecture would argue for the Axiom of Choice just from
the existence of an extendible cardinal, by Theorem 3.52, just proving the HOD Conjecture would also
suffice for this purpose.
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4 The coding obstruction

If one can prove the following conjecture then one verifies a minor weakening of the HOD Conjecture.

Conjecture 4.1. Suppose δ is an extendible cardinal. Then there exists a weak extender model N for δ
is supercompact such that

N ⊆ HOD. ut

Defining a weak extender model for δ is a measurable cardinal in the natural fashion, Kunen’s theory
of L[U] yields:

Theorem 4.2 (after Kunen). Suppose that δ is a measurable cardinal. Then there exists a weak extender
model N for δ is measurable such that

N ⊆ HOD. ut

Thus one just needs to generalize Kunen’s construction of L[U] to the level of supercompact cardi-
nals. The purpose of this section is to show that this cannot easily be done. Before giving the details
we introduce the key notion of an iteration tree which is the basis on which iterability hypotheses are
formulated. Iteration trees were first defined by Steel and the basic theory is given in [11]. The definition
we give is from [20] and is more general in that a wider class of extenders is allowed.

We also prove a preliminary positive result, Theorem 4.31, which implies one of the results implicit
in [11], that assuming a natural iteration hypothesis, Kunen’s theorem can be (directly) generalized far
beyond the level of measurable cardinals and up to the level of superstrong cardinals. Superstrong
cardinals are defined at the beginning of Section 5.

4.1 Iteration trees and iteration hypotheses

We review some definitions from [20]. To be consistent with the terminology used in the fine-structure
theory of extender models, the premice of [20] we shall call coarse premice. The definition of a coarse
premouse is below.

Definition 4.3. A coarse premouse is a pair (M, δ) such that M is transitive, δ ∈ M, and:

(1) M � ZC + Σ2-Replacement.

(2) Suppose that F : Mδ → M ∩ Ord is definable from parameters in M, then F is bounded in M.

(3) δ is strongly inaccessible in M. ut

We fix some notation.

Definition 4.4. If E is an extender then:

(1) jE : V → ME � Ult0(V, E) is the ultrapower embedding.

(2) ξ is a generator of E if ξ , jE( f )(s) for all s ∈ [ξ]<ω and f ∈ V .

(3) νE = sup
{
ξ + 1 | ξ is a generator of E

}
.

(4) κE = CRT(E) = CRT( jE) and κ∗E = jE(κE).

(5) ρ(E) = sup {α | Vα ⊂ Ult0(V, E)}.

(6) ιE = sup {α | jE(α) < νE}.
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(7) SP(E) is the set of all cardinals γ ≤ ιE such that there is a generator ξ of E such that
sup( jE[γ]) ≤ ξ < jE(γ).

(8) E is ω-huge if ρ(E) = λ where λ > κE is least such that jE(λ) = λ. ut

Remark 4.5. (1) Note that ρ(E) ≥ κE + 1, ιE is a cardinal, and ιE = sup(SP(E)). However assuming for
example that there is a supercompact cardinal, it is not always that case that ιE ∈ SP(E).

(2) SP(E) is the set of cardinals ι for which E induces uniform ultrafilters on ι, these are the spaces
associated to the (uniform) ultrafilters of E. Every cardinal ι ∈ SP(E) must have cofinality at least
κE, however SP(E) need not contain even all the regular cardinals ι such that κE ≤ ι < ιE. ut

Definition 4.6. Suppose that (M, δ) is a coarse premouse. An iteration tree, T , on (M, δ) of length η is a
tree order <T on η with minimum element 0 and which is a suborder of the standard order, together with
a sequence

〈Mα, Eβ, jγ,α : α < η, β + 1 < η, γ <T α〉

such that the following hold.

(1) M0 = M,

(2) jγ,α : Mγ → Mα for all γ <T α < η,

(3) Suppose that α + 1 < η. Then α + 1 has an immediate predecessor, α∗, in the tree order <T and:

a) Eα ∈ j0,α(M ∩ Vδ) and Mα � “Eα is an extender which is not ω-huge” ;

b) If α∗ < α then ιEα + 1 ≤ min
{
ρ(Eβ) | α∗ ≤ β < α

}
;

c) Mα+1 = Ult0(Mα∗ , Eα) and
jα∗,α+1 : Mα∗ → Mα+1

is the associated embedding.

(4) If 0 < β < η is a limit ordinal then the set of α such that α <T β is cofinal in β and Mβ is the limit
of the Mα where α <T β relative to the embeddings; jα,β. ut

Definition 4.7. Suppose that (M, δ) is a coarse premouse and that T is an iteration tree on (M, δ) with
associated sequence,

〈Mα, Eβ, jγ,α : α < η, β + 1 < η, γ <T α〉.

Suppose that θ ∈ Ord. Then the iteration tree, T , is a (+θ)-iteration tree if for all α + 1 < η,

sup
{
ιEβ | β

∗ ≤ α < β
}

+ θ ≤ ρ(Eα)

where for each β + 1 < η, β∗ is the T predecessor of β + 1. ut

Remark 4.8. By the definition of an iteration tree, if β∗ ≤ α < β then necessarily

ιEβ + 1 ≤ ρ(Eα).

Thus every iteration tree is a (+0)-iteration tree and every iteration tree of finite length is a (+1)-iteration
tree. ut

Definition 4.9. Suppose that (M, δ) is a coarse premouse. An iteration strategy of order ω1 +1 for (M, δ)
is a function I such that the following hold.

(1) Suppose that T is an iteration tree on (M, δ) of limit length such that LTH(T ) ≤ ω1. Then
T ∈ dom(I) and I(T ) is a maximal wellfounded branch of T of limit length.
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(2) Suppose that T is an iteration tree on (M, δ) of limit length such that LTH(T ) ≤ ω1. Suppose that
for all limit η < LTH(T ), I(T |η) = {ξ < η | ξ <T η}. Then I(T ) is a cofinal wellfounded branch of
T . ut

Definition 4.10. Suppose that (M, δ) is a coarse premouse and that T is an iteration tree on (M, δ) with
associated sequence,

〈Mα, Eβ, jγ,α : α < η, β + 1 < η, γ <T α〉.

The iteration tree T is strongly closed if for all α + 1 < η:

(1) T is a (+1)-iteration tree; and

(2) LTH(Eα) is strongly inaccessible in Mα and ρ(Eα) = LTH(Eα) in Mα. ut

Definition 4.11. Suppose that (M, δ) is a coarse premouse. A strongly closed iteration tree

T = 〈Mα, Eβ, jγ,α : α < η, β + 1 < η, γ <T α〉

on (M, δ) is a 0-strongly closed iteration tree if for all α + 1 < η,

LTH(Eα) ≤ jEα
(
κEα

)
where for each α + 1 < η,

jEα : Mα → Ult0(Mα, Eα)

is the ultrapower embedding (as computed in Mα). ut

Definition 4.12. Suppose that (M, δ) is a coarse premouse and that T is a 0-strongly closed iteration tree
on (M, δ) with associated sequence,

〈Mα, Eβ, jγ,α : α < η, β + 1 < η, γ <T α〉.

Then

(1) T is maximal if LTH(Eβ) ≤ κEα for all β < α∗ < α + 1 < η.

(2) T is strongly maximal if κ∗Eβ ≤ κEα for all β < α∗ < α + 1 < η.

(3) T is non-overlapping if κ∗Eβ ≤ κEα for all β + 1 ≤T α + 1 < η. ut

Definition 4.13 (Weak (ω1 + 1)-Iteration Hypothesis). Suppose that (M, δ) is a countable coarse pre-
mouse and that

π : M → VΘ

is an elementary embedding. Then (M, δ) has an iteration strategy of order ω1 + 1 for 0-strongly closed
maximal iteration trees on (M, δ). ut

Definition 4.14 (Weak Unique Branch Hypothesis). Suppose that (VΘ, δ) is a coarse premouse that T
is a countable 0-strongly closed maximal iteration tree on (VΘ, δ) of limit length. Then T has at most
one cofinal wellfounded branch. ut

Remark 4.15. The Weak (ω1 + 1)-Iteration Hypothesis and the Weak Unique Branch Hypothesis are
special cases of the fundamental iteration hypotheses of [11]. The necessity of the restriction to strongly
closed iteration trees for the Weak Unique Branch Hypothesis is given in Theorem 4.16. Note that
0-strongly closed iteration trees which are strongly maximal are necessarily non-overlapping. ut

We give two counterexamples to the attempt of formulating variations of the iteration hypotheses
above by weakening the requirement that the iteration trees be 0-strongly closed and maximal. The
proofs are given in [20].
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Theorem 4.16. Suppose that there is a supercompact cardinal. Then there exist an extender E such that

νE =
(
22κ

)ME

where κ = κE and ME = Ult0(V, E), and a 0-strongly closed strongly maximal iteration tree
T = 〈Mα, Eβ, jγ,α : α < η, β + 1 < ω, γ <T α〉

on ME of length ω such that:

(1) κEα > κ
∗
E for all α < ω,

(2) T has two wellfounded branches. ut

Theorem 4.17. Suppose that there is a supercompact cardinal. Then there exist an extender E such that

νE =
(
22κ

)ME

where κ = κE and ME = Ult0(V, E), and a 0-strongly closed strongly maximal iteration tree
T = 〈Mα, Eβ, jγ,α : α < η, β + 1 < ω, γ <T α〉

on ME of length ω2 such that:

(1) κEα > κ
∗
E for all α < ω2,

(2) T has only one cofinal branch and that branch is not wellfounded. ut

4.2 Martin-Steel extender sequences

An important precursor to the fine structural models of Mitchell-Steel of [12] are the Martin-Steel inner
models of [11] and these represent the natural generalization of the definition of L[U] to larger inner
models.

Before giving the relevant definitions we note that replacing U by a single extender cannot work. Of
course this requires being a bit careful about defining L[E] where E is an extender.

Definition 4.18. Suppose E = 〈Ea : a ∈ [η]<ω〉 is an extender. Then L[E] denotes L[PE] where
PE = {(a, B) | B ∈ Ea}. ut

The following lemma shows that using just one extender cannot suffice to generate even an inner
model with 2 measurable cardinals (if that extender is short in the sense that LTH(E) ≤ κ∗E). This may
seem surprising at first since a single extender, even with the requirement LTH(E) ≤ κ∗E, can witness the
existence of large cardinals far beyond the level of a single measurable cardinal.

Lemma 4.19. Suppose that E is an extender such that LTH(E) ≤ jE(κ) where
jE : V → ME � Ult0(V, E)

is the ultrapower embedding. Let U be the normal ultrafilter on κ given by jE. Then L[E] = L[U]. ut

Using longer extenders does not really help but the requisite analysis is more involved since if there
are two measurable cardinals then there is an extender E such that in L[E] there is an inner model with
two measurable cardinals and so

L[E] , L[U]

where U is the normal measure on κE given by E.

Theorem 4.20. Suppose that F is an extender and E = F| jF(ξ) for some ξ < jF(κF) such that
Vη+ω ⊂ MF � Ult0(V, F)

where η = jF(ξ). Then in L[E] there is no inner model with a Woodin cardinal. ut
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Remark 4.21. If one drops the requirement that E = F|η for some η < ρ(F) (still requiring η < jF(ξ)
for some ξ < jF(κF)) then it is relatively consistent (from a proper class of measurable cardinals) that in
all set-generic extensions of V , the following holds:

(1) For every set A, there exists an extender E such that A ∈ L[E] and such that LTH(E) < jE(ξ) for
some ξ < jE(κE).

A natural conjecture is that if sufficient large cardinals exist in V , then (1) must hold outright in V . ut

Thus one really needs to consider sequences of extenders and the Martin-Steel extender models are
of the form L[Ẽ] where

Ẽ ⊆ (Ord × Ord) × V

is a predicate defining a sequence of (total) extenders. The predicate Ẽ is defined such that for all
(α, β) ∈ dom(Ẽ), the set, {

a ∈ V | ((α, β), a) ∈ Ẽ
}
,

is an extender which we denote by Eα
β . In the case of the Martin-Steel inner models, the extender Eα

β is
the extender derived from an elementary embedding

j : V → M

such that Pω(α) ⊆ M and such that α < j(κ).
For (α, β) ∈ dom(Ẽ), Ẽ|(α, β) is the extender sequence given by restricting Ẽ to the set of all (η, γ)

such that (η, γ) <L (α, β) in the lexicographical ordering of pairs of ordinals:

Ẽ|(α, β) =
{
((η, γ), a) ∈ Ẽ | (η, γ) <L (α, β)

}
;

and L[Ẽ|(α, β)] is formally defined as L[P] where P is obtained from Ẽ|(α, β) in the natural fashion as
defined above in the case of a single extender.

Definition 4.22. An extender sequence,

Ẽ = 〈Eα
β : (α, β) ∈ dom(Ẽ)〉

is a Martin-Steel extender sequence if for each pair (α, β) ∈ dom(Ẽ):

(1) (Coherence) There exists an extender F such that:

a) α < ρ(F) and ρ(F) is strongly inaccessible.
b) Eα

β = F|α.
c) (shortness) α ≤ jF(κF).
d) jF(Ẽ)|(α + 1, 0) = Ẽ|(α, β).

(2) (Novelty) For all β∗ < β, (α, β∗) ∈ dom(Ẽ) and

Eα
β∗ ∩ L[Ẽ|(α, β)] , Eα

β ∩ L[Ẽ|(α, β)]

(3) (Initial Segment Condition) Suppose that

κ < α∗ < α

where κ is the critical point associated to Eα
β .

Then there exists β∗ such that (α∗, β∗) ∈ dom(Ẽ) and such that

Eα∗

β∗ ∩ L[Ẽ|(α∗ + 1, 0)] = (Eα
β |α
∗) ∩ L[Ẽ|(α∗ + 1, 0)]. ut
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The Martin-Steel extender models are actually defined in [11] as L[P] where P is a predicate de-
fined from a sequence of sets of extenders. Such sequences are called Doddages and the approach of
constructing extender models from Doddages has the advantage that the resulting inner model can be
ordinal definable.

Definition 4.23. A Doddage is a sequence Ẽ such that

dom(Ẽ) ⊆ Ord × Ord

and such that for all (α, β) ∈ dom(Ẽ), Ẽ(α, β) is a set of extenders of length α. ut

Definition 4.24. Suppose that Ẽ is a Doddage. Then L[Ẽ] denotes L[PẼ] where PẼ is the set of all
(α, β, s, a) such that

(1) (α, β) ∈ dom(Ẽ),

(2) s ∈ [α]<ω,

(3) a ∈ E(s) for all E ∈ Ẽ(α, β). ut

Suppose Ẽ is a Doddage. For each (α, β) ∈ dom(Ẽ) we denote Ẽ(α, β) by Eαβ .

Definition 4.25. A Doddage,
Ẽ = 〈Eαβ : (α, β) ∈ dom(Ẽ)〉

is a Martin-Steel Doddage if for each pair (α, β) ∈ dom(Ẽ) and for each extender E ∈ Eαβ ,

(1) (Coherence) There exists an extender F such that

a) α < ρ(F) and ρ(F) is strongly inaccessible,
b) E = F|α,
c) (shortness) α ≤ jF(κF),
d) jF(Ẽ)|(α + 1, 0) = Ẽ|(α, β).

(2) (Novelty) For all β∗ < β, (α, β∗) ∈ dom(E) and for all E∗ ∈ Eαβ∗ ,

E∗ ∩ L[Ẽ|(α, β)] , E ∩ L[Ẽ|(α, β)]

(3) (Initial Segment Condition) Suppose that

κE < α
∗ < α,

Then there exists (α∗, β∗) ∈ dom(Ẽ) and there exists E∗ ∈ Eα
∗

β∗ such that

E∗ ∩ L[Ẽ|(α∗ + 1, 0)] = (E|α∗) ∩ L[Ẽ|(α∗ + 1, 0)]. ut

Definition 4.26. Suppose Ẽ is a Martin-Steel Doddage. Then Ẽ is good if for all (α, β) ∈ dom(Ẽ), for
all E0, E1 ∈ E

α
β , E0 ∩ L[Ẽ] = E1 ∩ L[Ẽ]. ut

Theorem 4.27 (Martin-Steel). Suppose that the Weak (ω1 + 1)-Iteration Hypothesis holds and that Ẽ is
a Martin-Steel Doddage such that Ẽ ∈ Vδ for some strongly inaccessible Mahlo cardinal δ. Then Ẽ is
good. ut

Theorem 4.28 (Martin-Steel). Suppose that the Weak (ω1 + 1)-Iteration Hypothesis holds and that there
is a supercompact cardinal. Then there exists a Martin-Steel Doddage Ẽ such that there is a superstrong
cardinal in L[Ẽ]. ut
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The following lemma follows from the definition of the coherence condition.

Lemma 4.29. Suppose that Ẽ is a Martin-Steel Doddage, (α, β) ∈ dom(Ẽ), and that F is an extender of
minimum length which witnesses the coherence condition for Ẽ at (α, β). Then κF = ιF . ut

Remark 4.30. (1) Theorem 4.31, which is from [20], is the generalization of Kunen’s theorem that
L[U] is uniquely specified by the measurable cardinal κ associated to U. We include the proof
for the sake of completeness and because it provides a good introduction to the basic comparison
arguments of inner model theory.

(2) The assumption that (Ẽ0, Ẽ1) ∈ Vδ for some strongly inaccessible Mahlo cardinal δ is only necessary
because of how the Weak (ω1 + 1)-Iteration Hypothesis is formulated. Similarly for Theorem 4.27.
One really just needs that (Ẽ0, Ẽ1) ∈ Vδ for some strongly inaccessible δ such that

Vδ � “Ẽ0 and Ẽ1 are Martin-Steel Doddages”

which must hold if δ is strongly inaccessible and Mahlo.
Alternatively, one could just assume there is a proper class of strongly inaccessible cardinals. ut

Theorem 4.31. Suppose that the Weak (ω1 + 1)-Iteration Hypothesis holds. Suppose that Ẽ0 and Ẽ1 are
Martin-Steel Doddages such that

dom(Ẽ0) = dom(Ẽ1)

and such that (Ẽ0, Ẽ1) ∈ Vδ for some strongly inaccessible Mahlo cardinal δ. Then

L[Ẽ0] = L[Ẽ1],

and moreover for all (α, β) ∈ dom(Ẽ0), for all E0 ∈ Ẽ0(α, β), for all E1 ∈ Ẽ1(α, β),

E0 ∩ L[Ẽ0] = E1 ∩ L[Ẽ1].

Proof. We sketch the proof. Fix δ such that

(Ẽ0, Ẽ1) ∈ Vδ

and such that δ is a strongly inaccessible Mahlo cardinal.
It is convenient to fix some notation. Suppose that Ẽ and F̃ are Martin-Steel Doddages such that

dom(Ẽ) = dom(F̃ ). Define Ẽ ≡ F̃ if:

(1.1) L[Ẽ] = L[F̃ ].

(1.2) For all (α, β) ∈ dom(Ẽ), for all E ∈ Ẽ(α, β), for all F ∈ F̃ (α, β),

E ∩ L[Ẽ] = F ∩ L[F̃ ].

Fix (Ẽ0, Ẽ1, δ) and suppose toward a contradiction that the theorem fails.
Suppose that (VΘ, δ) is a premouse such that Ẽ0 ∈ Vδ and such that there exists a countable elementary

substructure,
X ≺ (VΘ, δ)

such that (M, δM) has an (ω1 + 1)-iteration strategy for 0-strongly closed maximal iteration trees where
(M, δM) is the transitive collapse of X.

Thus
Vδ � Ẽ0 . Ẽ1.

Fix a countable elementary substructure,
X ≺ (VΘ, δ),

such that (M, δM) has an (ω1 + 1)-iteration strategy where (M, δM) is the transitive collapse of X.
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By the elementarity of X we can suppose without loss of generality that (Ẽ0, Ẽ1, δ) ∈ X. Let
(ẼM

0 , Ẽ
M
1 ) ∈ M be the image of (Ẽ0, Ẽ1) under the collapsing map. Thus

M ∩ VδM � Ẽ
M
0 . ẼM

1 .

Fix an (ω1 + 1)-iteration strategy for (M, δM) and following this strategy we shall define two iteration
trees

T = 〈MT
α , E

T
β , jTγ,α : α ≤ ω1, β < ω1, γ <T α〉

and
S = 〈MS

α , E
S
β , jSγ,α : α ≤ ω1, β < ω1, γ <S α〉

on (M, δM) each of length ω1 + 1 such that for all β < ω1, the predecessor of β + 1 relative to each of the
two iteration trees is as small as possible for that iteration tree.

To define S and T , we define a continuous increasing sequence

〈(βS, βT ) : β ≤ ω1〉

of pairs of ordinals and define (S|βS,T |βT ) by induction on β with (0S, 0T ) = (0, 0). The limit stages are
immediate. Therefore we can suppose that β < ω1 and that

jS0,βS : M → MS
βS

and
jT0,βT : M → MT

βT

are given. We define ((β + 1)S, (β + 1)T ) and at the same time we will define ESβS if (β + 1)S , βS and
define ETβT if (β + 1)T , βT . It is convenient to use the following notation. Suppose A, B are subsets of
Ord × Ord, then

A ≤L B

if A = B or if A is an initial segment of B relative to the lexicographical order on Ord × Ord.
Case 1. Suppose that there exists

(η, γ) ∈ jS0,βS
(
dom(ẼM

0 )
)
∩ jT0,βT

(
dom(ẼM

0 )
)

such that

(2.1) jS0,βS
(
dom(ẼM

0 )
)
|(η, γ) = jT0,βT

(
dom(ẼM

0 )
)
|(η, γ),

(2.2) there exist
ES ∈

(
jS0,βS

(
ẼM

0

))
(η, γ) ∪

(
jS0,βT

(
ẼM

1

))
(η, γ)

and
ET ∈

(
jT0,βT

(
ẼM

0

))
(η, γ) ∪

(
jT0,βT

(
ẼM

1

))
(η, γ)

such that
ES ∩ MS

βS
∩ MT

βT
, ET ∩ MS

βS
∩ MT

βT
.

Let (η, γ) be the least such pair (relative the lexicographical order) and define ESβS to be an extender
in MS

βS
which witnesses the coherence condition for ES relative to jS0,βS(Ẽ

M
0 ) if

ES ∈
(

jS0,βS
(
ẼM

0

))
(η, γ)

or witnesses coherence condition for ES relative to jS0,βS(Ẽ
M
1 ), with LTH(ESβS) as small as possible such

that
LTH(ESβS) = ρ(ESβS)

and such that LTH(ESβS) is strongly inaccessible in MS
βS

. Since both jS0,βS
(
ẼM

0

)
and jS0,βS

(
ẼM

1

)
are Martin-

Steel Doddages in MS
βS

and since E0,E1 ∈ Vδ, it follows that ESβS exists.
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Similarly, define ETβT to be an extender in MT
βT

which witnesses the coherence condition for ET relative
to either jT0,βT (ẼM

0 ) if

ET ∈
(

jT0,βT
(
ẼM

0

))
(η, γ)

or witnesses coherence condition for ET relative to jT0,βT (ẼM
1 ) otherwise, with LTH(ETβT ) and small as

possible such that
LTH(ETβT ) = ρ(ETβT )

and such that LTH(ETβT ) is strongly inaccessible in MT
βT

. Exactly as above, since both jT0,βT
(
ẼM

0

)
and

jT0,βT
(
ẼM

1

)
are Martin-Steel Doddages in MT

βT
and since E0,E1 ∈ Vδ, it follows that ETβT exists.

Define ((β + 1)S, (β + 1)T ) = (βS + 1, βT + 1).

Case 2. Otherwise. Then
jT0,βT

(
dom(ẼM

0 )
)
�L jS0,βS

(
dom(ẼM

0 )
)

and
jS0,βS

(
dom(ẼM

0 )
)
�L jT0,βT

(
dom(ẼM

0 )
)
.

Let (η, γ)T = min
(

jT0,β
(
dom(ẼM

0 )
)
\ jS0,β

(
dom(ẼM

0 )
))

and let

(η, γ)S = min
(

jS0,β
(
dom(ẼM

0 )
))
\ jT0,β

(
dom(ẼM

0 )
)
,

where in each case the minimum is relative to the lexicographical order.
Thus (η, γ)S , (η, γ)T . There are two subcases. If (η, γ)S < (η, γ)T then let ESβS ∈ MS

βS
be an extender

which witnesses the coherence condition for some extender
E ∈

(
jS0,βS

(
ẼM

0

))
((η, γ)S)

with LTH(ESβS) as small as possible such that

LTH(ESβS) = ρ(ESβS)

and such that LTH(ESβS) is strongly inaccessible in MS
βS

. Exactly as above, since jS0,βS
(
ẼM

0

)
is a Martin-

Steel Doddage in MS
βS

and since E0 ∈ Vδ it follows that ESβS exists.
Define ((β + 1)S, (β + 1)T ) = (βS + 1, βT ).
If (η, γ)T < (η, γ)S then let ETβT ∈ MT

βT
be an extender which witnesses the coherence condition for

some extender
E ∈

(
jT0,βT

(
ẼM

0

))
((η, γ)T )

with LTH(ETβT ) as small as possible such that

LTH(ETβT ) = ρ(ETβT )

and such that LTH(ETβT ) is strongly inaccessible in MT
βT

.
Define ((β + 1)S, (β + 1)T ) = (βS, βT + 1).
This completes the definition of S and T . If at some stage β neither case applies then it follows that

(interchanging S and T if necessary):

(3.1) jS0,βT
(
dom(ẼM

0 )
)
≤L jT0,βT

(
dom(ẼM

0 )
)
,

(3.2) for all (η, γ) ∈ jT0,βS
(
dom(ẼM

0 )
)
,

E ∩ MS
βS
∩ MT

βT
= F ∩ MS

βS
∩ MT

βT
.

for all
E ∈

(
jS0,βS

(
ẼM

0

))
(η, γ) ∪

(
jS0,βT

(
ẼM

1

))
(η, γ)

and for all
F ∈

(
jT0,βT

(
ẼM

0

))
(η, γ) ∪

(
jT0,βT

(
ẼM

1

))
(η, γ).
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If
jS0,βS

(
dom(ẼM

0 )
)

= jT0,βT
(
dom(ẼM

0 )
)
,

then either
MS

βS
∩ V jS0,βS

(δM) � jS0,βS(Ẽ
M
0 ) ≡ jS0,βS(Ẽ

M
1 )

or
MT

βT
∩ V jT0,βT

(δM) � jT0,βT (ẼM
0 ) ≡ jT0,βT (ẼM

1 )

(depending on whether jS0,βS(δM) ≤ jT0,βT (δM) or whether jT0,βT (δM) ≤ jS0,βS(δM) ) and this contradicts the
choice of (M, ẼM

0 , Ẽ
M
1 , δM).

If jS0,βS
(
dom(ẼM

0 )
)

is a proper initial segment of jT0,βT
(
dom(ẼM

0 )
)

then it follows that

MS
βS
∩ V jS0,βS

(δM) � jS0,βS(Ẽ
M
0 ) ≡ jS0,βS(Ẽ

M
1 )

and this again is a contradiction.
To see this latter claim fix (η0, γ0) ∈ jT0,βT

(
dom(ẼM

0 )
)

such that

jS0,βS
(
dom(ẼM

0 )
)

= jT0,βT
(
dom(ẼM

0 )
)
|(η0, γ0).

Since jT0,βT
(
ẼM

0

)
(η0, γ0) is defined it follows that

MT
β ∩ V jT0,β(δM) � “(L[Ẽ])# and (L[F̃ ])# exist”

where Ẽ = jT0,βT (ẼM
0 )|(η0, γ0) and where F̃ = jT0,βT (ẼM

1 )|(η0, γ0). Further since (MT
βT
, jT0,βT (δM)) is iterable,(

(L[Ẽ])#
)MTβT = (L[Ẽ])#

and (
(L[F̃ ])#

)MTβT = (L[F̃ ])#.

Now by (3.2), it follows that

MS
βS
∩ V jS0,βS

(δM) � jS0,βS(Ẽ
M
0 ) ≡ jS0,βS(Ẽ

M
1 )

as claimed. Therefore at every stage β < ω1, either Case 1 holds or Case 2 holds.
Note that for each extender, E, occurring in either S or T , in the model from which E is chosen there

exists λ such that

(4.1) λ = |Vλ| and ρ(E) = LTH(E) = λ,

(4.2) κE = ιE,

(4.3) λ is not a limit of inaccessible cardinals.

To see that (4.2) holds it suffices to see that if E is a Martin-Steel Doddage, (α, β) ∈ dom(E) and if F is
an extender which witnesses the coherence condition for E(α, β) then necessarily (α, β) ∈ jF(Vκ) where
κ = κF .

This has two consequences. First, (4.1)–(4.3) imply that both S and T are non-overlapping; in fact,
for all β1 < β2 if β1 + 1 <S β2 + 1 then LTH(ESβ1

) < CRT(ESβ2
), and similarly for T . This is a slightly

stronger condition. Second, by (4.2) both S and T are iteration trees involving only short extenders,
and so (4.1)–(4.3) imply that both S and T are (+1)-iteration trees (which implies that they are each
(+θ)-iteration trees where θ is the least measurable cardinal of M). Therefore the iteration strategy fixed
for (M, δM) must supply cofinal, wellfounded, branches at all limit stages β ≤ ω1.

We note that unlike the usual comparison arguments, it is not obviously the case that the lengths of the
extenders in these iteration trees are nondecreasing, more precisely it is not obvious that for all β1 < β2,
LTH(ESβ1

) ≤ LTH(ESβ2
). For example, suppose that ESβ1

is chosen to witness the coherence condition relative
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to jS0,β1
(ẼM

0 ). Then there is no reason to expect that ESβ1
coheres jS0,β1

(ẼM
1 ) and so at the next stage of the

construction of (S,T ) there may be an “earlier” disagreement.
We obtain a contradiction is the usual fashion. Let

Z ≺ H(ω2)

be a countable elementary substructure such that {S,T } ∈ Z. Let

bS = {β < ω1 | β <S ω1}

and let bT = {β < ω1 | β <T ω1}. Thus bS and bT are each closed cofinal subsets of ω1. Let βZ = Z ∩ω1.
The image of (S,T ) under the transitive collapse of Z is (S|(βZ + 1),T |(βZ + 1)).

Let N be the transitive collapse of X and let

π : N → H(ω2)

invert the transitive collapse. Thus βZ ∈ bS ∩ bT and

(5.1) π(MS
βZ

) = MS
ω1

and π|MS
βZ

= jSβZ ,ω1
,

(5.2) π(MS
βZ

) = MS
ω1

and π|MS
βZ

= jSβZ ,ω1
.

We now come to the key points. Let αSZ be such that βZ = (αSZ )∗ computed relative to <S, and let αTZ
be such that βZ = (αTZ )∗ computed relative to <T .

By (5.1)–(5.2) and since the iteration trees are non-overlapping:

(6.1) For all β > βZ, LTH(ESβ ) > βZ and LTH(ETβ ) > βZ;

(6.2) For all β > βZ,
MS

β ∩ VβZ+ω = MS
βZ
∩ VβZ+ω

and
MT

β ∩ VβZ+ω = MT
βZ
∩ VβZ+ω;

(6.3) Either
ES
αSZ
∩ MS

βZ
∩ MT

βZ
=

(
ET
αTZ
|LTH(ES

αSZ
)
)
∩ MS

βZ
∩ MT

βZ
,

or
ET
αTZ
∩ MS

βZ
∩ MT

βZ
=

(
ES
αSZ
|LTH(ET

αTZ
)
)
∩ MS

βZ
∩ MT

βZ
;

(6.4) For each α such that αSZ < α < ω1, LTH(ES
αSZ

) < LTH(ESα ),

(6.5) For each α such that αTZ < α < ω1, LTH(ET
αTZ

) < LTH(ETα ).

The third of these claims, (6.3), follows from (5.1) and (5.2) since both S and T are non-overlapping.
To see that (6.4) holds, suppose toward a contradiction that αSZ < α < ω1 and that

LTH(ES
αSZ

) ≥ LTH(ESα ). Let α̂ be such that

(α̂)∗ = sup {β ≤ α | β ∈ bS} ,

and such that α̂ + 1 ∈ bS, where (α̂)∗ is computed relative to <S. Then α̂ ≥ α and (α̂)∗ ≥ αSZ + 1 since
α > αSZ and αSZ + 1 ∈ bS. But

CRT(ESα̂ ) < min
{
ρ(ESβ ) | (α̂)∗ ≤ β < α̂

}
≤ LTH(ESα ) ≤ LTH(ES

αSZ
)

and since S is non-overlapping, LTH(ES
αSZ

) ≤ CRT(ESα̂ ). This is a contradiction. The proof that (6.5) holds

is similar as is the proof of (6.1). Finally (6.2) follows from (6.1) since each of the extenders, ESβ and ETβ ,
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is an extender of minimum possible length which witnesses the coherence condition for a Martin-Steel
Doddage (such extenders cannot have length which is a limit of inaccessible cardinals).

We fix some notation. Suppose that β ≤ ω1 and that (η, γ) ∈ jS0,β(dom(Ẽ0)). LetMS

Ẽ0,β
(η, γ) denote

the structure, (
L
[
jS0,β

(
ẼM

0

)
|(η, γ)

]
, jS0,β

(
ẼM

0

)
|(η, γ) ∩ L

[
jS0,β

(
ẼM

0

)
|(η, γ)

])
,

and letMS

Ẽ1,β
(η, γ) denote structure,(

L
[
jS0,β

(
ẼM

1

)
|(η, γ)

]
, jS0,β

(
ẼM

1

)
|(η, γ) ∩ L

[
jS0,β

(
ẼM

1

)
|(η, γ)

])
.

Similarly, suppose that β ≤ ω1, and that (η, γ) ∈ jT0,β(dom(Ẽ0)). LetMT

Ẽ0,β
(η, γ) andMT

Ẽ1,β
(η, γ) denote

the analogous structures defined relative to T .
Let (η, γ)S ∈ jS

0,αSZ
(dom(Ẽ0)) be the element involved in the definition of ES

αSZ
. By (6.4) and the fact

that the extenders ESα are chosen of minimal length to witness the coherence condition:

(7.1) Suppose that αSZ < α < ω1. Let (η, γ) be the element of jS0,α(dom(Ẽ0)) involved in the definition
of ESα . Then ηS < η where (ηS, γS) = (η, γ)S.

We claim that for all β such that αSZ ≤ β ≤ ω1:

(8.1) jS
0,αSZ

(dom(Ẽ0))|(η, γ)S = jS0,β(dom(Ẽ0))|(η, γ)S = jT0,β(dom(Ẽ0))|(η, γ)S;

(8.2) Let (ηS, γS) = (η, γ)S, then if αSZ < β,

jS0,β(dom(Ẽ0))|(η, γ)S = jS0,β(dom(Ẽ0))|(ηS + 1, 0)
and

jT0,β(dom(Ẽ0))|(η, γ)S = jT0,β(dom(Ẽ0))|(ηS + 1, 0);

(8.3) For all (η∗, γ∗) ∈ jS0,β(dom(Ẽ0))|(η, γ)S,

E ∩ MS
β ∩ MT

β = F ∩ MS
β ∩ MT

β ,

for all
E ∈

(
jS0,β(Ẽ0)

)
(η∗, γ∗) ∪

(
jS0,β(Ẽ1)

)
(η∗, γ∗)

and for all
F ∈

(
jT0,β(Ẽ0)

)
(η∗, γ∗) ∪

(
jT0,β(Ẽ1)

)
(η∗, γ∗);

(8.4) MS

Ẽ0,β
((η, γ)S) =MS

Ẽ1,β
((η, γ)S) =MS

Ẽ0,α
S
Z
((η, γ)S) =MS

Ẽ1,α
S
Z
((η, γ)S);

(8.5) MT

Ẽ0,β
((η, γ)S) =MT

Ẽ1,β
((η, γ)S) =MT

Ẽ0,α
S
Z
((η, γ)S) =MT

Ẽ0,α
S
Z
((η, γ)S);

(8.6) MS

Ẽ0,α
S
Z
((η, γ)S) =MT

Ẽ1,α
S
Z
((η, γ)S);

(8.7)
(
MS

Ẽ0,α
S
Z
((η, γ)S)

)#
∈ MS

β ∩ MT
β .

The only potential issue is (8.7); (8.1)–(8.6) follow from (6.1)–(6.5) and (7.1) by relatively standard
arguments. The proof of (8.7) uses (8.1)–(8.6) and the definition of S and T . There are two additional
relevant points. First,

ω1 ⊆ MS
ω1

and so for all a ∈ MS
ω1

, if
MS

ω1
� “a# exists”
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then a# ∈ MS
ω1

(and similarly for MT
ω1

). Second, if Ẽ is a Martin-Steel Doddage and if (η, γ) ∈ dom(Ẽ)

then since Ẽ(η, γ) is defined, necessarily
(
L[Ẽ|(η, γ)]

)#
exists.

Similarly, let (η, γ)T ∈ jT
0,αTZ

(dom(Ẽ0)) be the element involved in the definition of ET
αTZ

. By (6.5), for

all β such that αTZ ≤ β ≤ ω1;

(9.1) jT
0,αTZ

(dom(Ẽ0))|(η, γ)T = jT0,β(dom(Ẽ0))|(η, γ)T = jS0,β(dom(Ẽ0))|(η, γ)T ;

(9.2) Let (ηT , γT ) = (η, γ)T , then if αTZ < β,

jS0,β(dom(Ẽ0))|(η, γ)T = jS0,β(dom(Ẽ0))|(ηT + 1, 0),
and

jT0,β(dom(Ẽ0))|(η, γ)T = jT0,β(dom(Ẽ0))|(ηT + 1, 0);

(9.3) For all (η∗, γ∗) ∈ jT0,β(dom(Ẽ0))|(η, γ)T ,

E ∩ MS
β ∩ MT

β = F ∩ MS
β ∩ MT

β ,

for all
E ∈

(
jS0,β(Ẽ0)

)
(η∗, γ∗) ∪

(
jS0,β(Ẽ1)

)
(η∗, γ∗)

and for all
F ∈

(
jT0,β(Ẽ0)

)
(η∗, γ∗) ∪

(
jT0,β(Ẽ1)

)
(η∗, γ∗);

(9.4) MS

Ẽ0,β
((η, γ)T ) =MS

Ẽ1,β
((η, γ)T ) =MS

Ẽ0,α
T
Z
((η, γ)T ) =MS

Ẽ1,α
T
Z
((η, γ)T );

(9.5) MT

Ẽ0,β
((η, γ)T ) =MT

Ẽ1,β
((η, γ)T ) =MT

Ẽ0,α
T
Z
((η, γ)T ) =MT

Ẽ0,α
T
Z
((η, γ)T );

(9.6) MS

Ẽ0,α
T
Z
((η, γ)T ) =MT

Ẽ1,α
T
Z
((η, γ)T );

(9.7)
(
MT

Ẽ0,α
T
Z
((η, γ)T )

)#
∈ MS

β ∩ MT
β .

Using (8.1)–(8.7) and (9.1)–(9.7), the argument is now very much like the standard arguments in a
comparison proof.

By the definition of S, ES
αSZ

witnesses in MS

αSZ
the coherence condition for ES

αSZ
|ηS relative to either

jS
0,αSZ

(Ẽ0) or jS
0,αSZ

(Ẽ1) where as in (8.2), ηS is the first coordinate of (η, γ)S.

Similarly, by the definition of T , ET
αTZ

witnesses in MT

αTZ
the coherence condition for ET

αTZ
|ηT relative

to either jT
0,αTZ

(Ẽ0) or jT
0,αTZ

(Ẽ1) where as in (9.2), ηT is the first coordinate of (η, γ)T .
By (6.3), (8.1)–(8.7), and (9.1)–(9.7), and the novelty and initial segment conditions for Martin-Steel

Doddages,
ηS = ηT

and (η, γ)S = (η, γ)T . This implies that both ES
αSZ

and ET
αTZ

were chosen according to (Case 1) in the
construction of S and T and moreover the corresponding stages of the construction are the same, i.e.,
for some β < ω1,

(βS, βT ) = (αSZ , α
T
Z ).

and ((β + 1)S, (β + 1)T ) = (αSZ + 1, αTZ + 1). But

(ES
αSZ
|η) ∩ MS

βS
∩ MT

βT
= (ET

αTZ
|η) ∩ MS

βS
∩ MT

βT

where η = ηS = ηT , and this contradicts the disagreement which must have been satisfied in the definition
of (ESβS , E

T
βT

). ut
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4.3 Martin-Steel extender sequences with long extenders

Eliminating the shortness requirement, (1c) of Definition 4.22, in the definition of Martin-Steel extender
sequences one obtains the natural extension of Martin-Steel extender sequences to the case of long
extenders.

Definition 4.32. An extender sequence,
Ẽ = 〈Eα

β : (α, β) ∈ dom(Ẽ)〉

is a generalized Martin-Steel extender sequence if for each pair (α, β) ∈ dom(Ẽ):

(1) (Coherence) There exists an extender F such that

a) α < ρ(F) and ρ(F) is strongly inaccessible,
b) Eα

β = F|α,

c) jF(Ẽ)|(α + 1, 0) = Ẽ|(α, β).

(2) (Novelty) For all β∗ < β, (α, β∗) ∈ dom(Ẽ) and
Eα
β∗ ∩ L[Ẽ|(α, β)] , Eα

β ∩ L[Ẽ|(α, β)]

(3) (Initial Segment Condition) Suppose that
κ < α∗ < α

where κ is the critical point associated to Eα
β .

Then there exists β∗ such that (α∗, β∗) ∈ dom(Ẽ) and such that
Eα∗

β∗ ∩ L[Ẽ|(α∗ + 1, 0)] = (Eα
β |α
∗) ∩ L[Ẽ|(α∗ + 1, 0)]. ut

4.4 Fast club forcing

We fix some notation. For each strongly inaccessible cardinal δ, let Qδ be the following partial order
(which adds a fast club at δ). Conditions are pairs (c, X) where c is a bounded closed subset of δ and X
is a set of closed cofinal subsets of δ with |X| < δ.

Suppose (d,Y), (c, X) ∈ Qδ. Then (d,Y) ≤ (c, X) if the following hold.

(1) c = d ∩ (sup(c) + 1) and d\c ⊆ ∩X,

(2) X ⊆ Y .

Thus Qδ is (<δ)-closed. Suppose G ⊂ Qδ is V-generic and let
CG = ∪ {c | (c, X) ∈ G} .

Then CG is a closed cofinal subset of δ such that for all closed cofinal sets D ⊂ δ with D ∈ V , CG\D is
bounded in δ (so CG is a fast club in δ).

Lemma 4.33. Suppose κ is strongly inaccessible and A ⊆ κ. Suppose G ⊂ Qκ is V-generic and in V[G]
there is a club D ⊆ CG such that

D ∩ γ ∈ L[A]
for all γ < κ. Then Vκ ⊂ L[A].

Proof. Fix a term τ for D. By the homogeneity of Qκ, we can suppose
1  “τ ∩ γ ∈ L[A] for all γ < κ”

and that
1  “τ is closed, cofinal in CG”.

For each γ < κ, let Dγ be the set of (c, X) ∈ Qκ such that
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(1.1) γ < sup(c),

(1.2) for all α < sup(c), either (c, X)  “α ∈ τ” or (c, X)  “α < τ”,

(1.3)
{
α < sup(c) | (c, X)  “α ∈ τ”

}
is cofinal in sup(c).

Thus for each γ < κ, Dγ is dense in Qκ. Further Dγ is (<κ)-closed. More precisely if

〈(cα, Xα) : α < η〉

is a decreasing sequence in Dγ where η < κ, then

(c, X) ∈ Dγ

where

(2.1) c = (∪ {cα | α < η}) ∪
{
sup (∪ {cα | α < η})

}
,

(2.2) X = ∪ {Xα | α < η}.

Let D =
{
Dγ | γ < κ

}
. Thus a filter F ⊂ Qκ is D-generic if and only if for each γ < κ there exists

(c, X) ∈ D0 ∩ F such that γ < sup(c).
If F is a D-generic filter let DF be the interpretation of τ by F . Thus DF is closed cofinal in κ and

for all γ < κ, DF ∩ γ ∈ L[A]. The key claim is the following.

(3.1) For each B ⊆ κ, there exists a pair (F0,F1) of D-generic filters such that if

〈ηα : α < κ〉

is the increasing enumeration of DF0 ∩ DF1 then for all α < κ, α ∈ B if and only if

min
{
η ∈ DF0 | ηα < η

}
< min

{
η ∈ DF1 | ηα < η

}
.

Since for all γ < κ, (DF0 ∩ γ,DF1 ∩ γ) ∈ L[A], (3.1) implies that for all γ < κ, B ∩ γ ∈ L[A] and the
lemma follows.

The proof of (3.1) follows by noting the following. Suppose (c0, X0) ∈ Qκ and that either (c0, X0) ∈ D
or c0 = ∅. Then for each η < κ such that sup(c0) < η, there exists (c1, X1) ∈ D such that

(4.1) (c1, X1) < (c0, X0),

(4.2) η < sup(c1),

(4.3) c1 ∩ η = c0.

One uses this to construct decreasing sequences

〈(c0
α, X

0
α) : α < κ〉

and
〈(c1

α, X
1
α) : α < κ〉

of conditions in D0 by induction on α such that for all α the following hold.

(5.1) c0
0 ∩ c1

0 = ∅.

(5.2) c0
α+1 ∩ c1

α+1 = c0
α ∩ c1

α.

(5.3) If α > 0 and α is a limit then

a) c0
α = ∪

{
c0
β | β < α

}
∪ sup

(
∪

{
c0
β | β < α

})
,

b) c1
α = ∪

{
c1
β | β < α

}
∪ sup

(
∪

{
c1
β | β < α

})
,

c) max(c0
α) = max(c1

α),
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d) if α is the η-th nonzero limit ordinal then η ∈ B if and only if

min(c0
α+1\c

0
α) < min(c1

α+1\c
1
α).

The filters

(6.1) F0 generated by
{
(c0
α, X

0
α) : α < κ

}
,

(6.2) F1 generated by
{
(c1
α, X

1
α) : α < κ

}
,

witness (3.1) since:

(7.1) DF0 ∩ DF1 =
{
max(c0

α) | α is a nonzero limit ordinal
}
.

(7.2) DF0 ∩ DF1 =
{
max(c1

α) | α is a nonzero limit ordinal
}
. ut

4.5 Weakly Σ2-definable inner models

Definition 4.34. A sequence
N = 〈Nα : α ∈ Ord〉

is weakly Σ2-definable if there is a formula φ(x) such that:

(1) For all β < η1 < η2 < η3, if (Nφ)Vη1 |β = (Nφ)Vη3 |β then

(Nφ)Vη1 |β = (Nφ)Vη2 |β = (Nφ)Vη3 |β;

(2) For all β ∈ Ord, N|β = (Nφ)Vη |β for all sufficiently large η,

where for all γ, (Nφ)Vγ = {a ∈ Vγ | Vγ � φ[a]}. ut

Definition 4.35. Suppose that N ⊂ V is an inner model and N � ZFC. Then N is weakly Σ2-definable if
the sequence

〈N ∩ Vα : α ∈ Ord〉

is weakly Σ2-definable. ut

Remark 4.36. Inner models N which are Σ2-definable are weakly Σ2-definable and so as a special case
HOD, being Σ2-definable, is weakly Σ2-definable.

More generally, for each α ∈ Ord, let Tα be the Σ2-theory of V with parameters from Vα. Then the
sequence

〈Tα : α ∈ Ord〉

is weakly Σ2-definable. ut

Remark 4.37. The increasing enumeration 〈δα : α ∈ Ord〉 of all supercompact cardinals is weakly
Σ2-definable. ut

Definition 4.38. Suppose that N is a transitive inner model of ZFC which is weakly Σ2-definable and
Vδ ≺Σ2 V . Then (N)Vδ denotes the union of the sequence

〈N∗α : α < δ〉 = (Nφ)Vδ

where φ is a formula which witnesses that

〈N ∩ Vα : α ∈ Ord〉

is weakly Σ2-definable. ut
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Remark 4.39. This is well-defined in the sense that it does not depend on the choice of the formula φ
which witnesses that 〈N ∩ Vα : α ∈ Ord〉 is weakly Σ2-definable. ut

Definition 4.40. A cardinal κ is a strong cardinal if for every λ there is an elementary embedding

j : V → M

such that CRT( j) = κ, j(κ) > λ, and such that Vλ ⊂ M. ut

Lemma 4.41. Suppose that
N = 〈Nα : α ∈ Ord〉

is weakly Σ2-definable and δ is a strong cardinal. Then N ∩ Vδ = (N)Vδ .

Proof. Let φ(x) be a formula which witnesses that N is weakly Σ2-definable.
Assume toward a contradiction that N|δ , (N)Vδ . Then there exists η > δ and β < δ such that

N|β = (Nφ)Vη |β , (Nφ)Vδ |β.

Since δ is a strong cardinal, Vδ ≺Σ2 V and so there exists β < η0 < δ such that

N|β = (Nφ)Vη0 |β.

But then

(1.1) β < η0 < δ < η,

(1.2) (Nφ)Vη0 |β = (Nφ)Vη ,

(1.3) (Nφ)Vη0 |β , (Nφ)Vδ |β,

which is a contradiction. ut

Lemma 4.42. Suppose that N is a transitive inner model of ZFC, N is weakly Σ2-definable, δ is an
extendible cardinal, and that

Vδ ⊂ N.

Then V = N.

Proof. Let φ be a formula which witnesses that

〈N ∩ Vα : α ∈ Ord〉

is weakly Σ2-definable. Since δ is a strong cardinal, by Lemma 4.41,

〈Vα : α < δ〉 = (Nφ)Vδ .

Since δ is an extendible cardinal, for a proper class of κ,

Vδ ≺ Vκ

and so for a proper class of κ,
〈Vα : α < κ〉 = (Nφ)Vκ .

Therefore
〈Vα : α ∈ Ord〉 = 〈N ∩ Vα : α ∈ Ord〉

and so V = N. ut

Theorem 4.43. Suppose that there is an extendible cardinal. Then there is a class-generic extension
V[G] of V in which the following hold.

(1) V[G] = (HOD)V[G].
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(2) V[G]γ = Vγ where γ is the least strongly inaccessible cardinal of V .

(3) Every extendible cardinal of V is an extendible cardinal in V[G].

(4) Suppose E ⊂ Ord and δ are such that the following hold.

(a) L[E] is weakly Σ2-definable.
(b) δ is an extendible cardinal in V[G].
(c) Let X ⊂ δ be the set of all κ < δ such that there is an elementary embedding,

j : V[G]λ+1 → V[G] j(λ)+1

with CRT( j) = κ and j(κ) = δ, where λ is the least strongly inaccessible cardinal above κ. Then
there exists Y ⊂ X such that Y ∩ ξ ∈ L[E] for all ξ < δ and such that

sup(Y) = sup(X) = δ.

Then L[E] = V[G].

Proof. Let G be V-generic for the backward Easton iteration

〈Pα : α ∈ Ord〉

where the following hold for each α.

(1.1) If α is strongly inaccessible and Mahlo in VPα then

Pα+1 = Pα ∗ B ∗ Q

where B adds a Cohen generic subset to α+ and Q is the fast-club forcing Qγ defined in VPα∗B

with γ = α.

(1.2) If α = β + 1 and β is strongly inaccessible and Mahlo in VPβ then

Pα+1 = Pα ∗ H

where H codes (Gα,Vα+1, 〈Pξ : ξ ≤ α〉) into the powerset function before the next strongly
inaccessible cardinal above. The set being coded is naturally a set of ordinals by the definition of
of Pβ+1 as the iteration Pβ ∗ B ∗ Q, and so H can be chosen canonically.

(1.3) Otherwise Pα+1 = Pα.

By standard lifting arguments, every extendible cardinal of V remains extendible in V[G].
We note that the following must hold in V[G] where for each strongly inaccessible Mahlo cardinal γ

of V[G], Cγ is the fast club added by Gγ+1.

(2.1) Suppose that
π : V[G]κ+1 → V[G]π(κ)+1

is an elementary embedding such that CRT(π) < κ and such that κ is strongly inaccessible in V[G].
Let γ = CRT(π). Then π(Cγ) = Cπ(γ) and

Cπ(γ) ∩ γ = Cγ.

We have:

(3.1) X ⊂ δ is the set of all κ < δ such that there is an elementary embedding,

j : V[G]λ+1 → V[G] j(λ)+1

with CRT( j) = κ and j(κ) = δ where λ is the least strongly inaccessible cardinal above κ.

Therefore by (2.1)
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(4.1) X ⊂ Cδ, where C is the fast-club added by G at stage δ.

Thus:

(5.1) Y is a cofinal subset of Cδ such that Y ∩ ξ ∈ L[E] for all ξ < δ.

Since E is weakly Σ2-definable in V[G] and since δ is a strong cardinal in V[G], by Lemma 4.41:

(6.1) L[E] ∩ V[G]δ = (L[E])V[G]δ .

Further since δ is strongly inaccessible and Mahlo in V[G],

(7.1) V[G]δ ⊂ V[G|δ].

Therefore by Lemma 4.33 and (5.1)
V[G]δ ⊂ L[E].

But then by Lemma 4.42, V[G] = L[E]. ut

Theorem 4.43 has quite a number of implications which constrain the possibilities for defining weak
extender models for supercompactness which generalize L.

We end with this section with two theorems which deal with generalized Martin-Steel extender se-
quences. The first theorem is a corollary of the proof of Theorem 4.43 and the basic argument is given
in [24]. The second theorem is a corollary of Theorem 4.43.

Theorem 4.44. Suppose that V = HOD and that there is an extendible cardinal. Then there is a gener-
alized Martin-Steel extender sequence Ẽ such that Ẽ is Σ2-definable,

V = L[Ẽ],

and such that for each (α, β) ∈ dom(Ẽ),
α ≤ κ∗Eα

β
+ 1. ut

Theorem 4.44 could just simply indicate that one needs additional conditions in the definition of gen-
eralized Martin-Steel extender sequences beyond the Novelty Condition and the Initial Segment Condi-
tion. The following variation of Theorem 4.43 essentially rules this out.

Theorem 4.45. Assume that there is an extendible cardinal. Then there is a class-generic extension
V[G] of V in which the following hold.

(1) V[G] = (HOD)V[G].

(2) Every extendible cardinal of V is an extendible cardinal in V[G].

(3) Suppose that Ẽ is a generalized Martin-Steel extender sequence such that Ẽ is Σ2-definable and
such that

V[G] , L[Ẽ].

Then for all (α, β) ∈ dom(Ẽ), if κEα
β

is an extendible cardinal in V[G] then

α ≤ κ∗Eα
β

+ 1.

Proof. Let V[G] be the generic extension given by Theorem 4.43.
Suppose (α, β) ∈ dom(Ẽ), κEα

β
is an extendible cardinal of V[G], and that

α > κ∗Eα
β

+ 1.

Let δ = κEα
β

and X ⊂ δ be the set of all κ < δ such that there is an elementary embedding,

j : V[G]λ+1 → V[G] j(λ)+1
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with CRT( j) = κ and j(κ) = δ, where λ is the least strongly inaccessible cardinal above κ.
Let

Y =

{
κEδ+1

η
| (δ + 1, η) ∈ dom(Ẽ) and δ = κ∗Eδ+1

η

}
.

By the Novelty and Initial Segment Condition,

(1.1) sup(Y) = δ.

By the Coherence Condition, Y ⊂ X. Therefore by Lemma 4.33, the Coherence Condition again, and
the proof of Theorem 4.43, V[G] = L[Ẽ]. ut
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5 The comparison obstruction

Definition 5.1. A cardinal κ is superstrong if there is an elementary embedding

j : V → M

such that CRT( j) = κ and such that V j(κ) ⊂ M. ut

Theorem 4.45 arguably rules out any direct generalization of Kunen’s L[U] at the level of one measur-
able cardinal to the levels past superstrong. The point is that if Ẽ is a generalized Martin-Steel extender
sequence such that

α ≤ κ∗Eα
β

+ 1

for all (α, β) ∈ dom(Ẽ) then for all (α, β) ∈ dom(Ẽ), if E is the L[Ẽ]-extender given by Eα
β , then in L[Ẽ],

ρ(E) ≤ νE ≤ κ
∗
E.

Therefore a new approach is needed and a reasonable candidate is the family of partial extender
models, first defined by Mitchell–Steel, [12].

5.1 Partial extender models

Recall that a transitive set M is rudimentarily closed if

(1) for all a, b ∈ M, {a, b} ∈ M, and ∪a ∈ M,

(2) for all a ∈ M, if b ⊂ [a]n for some n < ω and b is Σ0-definable with parameters from M, then
b ∈ M.

The property that a transitive set M be rudimentary closed is formally defined as being closed under
the functions generated by the following schemes, these are the rudimentary functions, Jensen [4].

(1) f (a0, . . . , an) = ai.

(2) f (a0, . . . , an) = ai\a j.

(3) f (a0, . . . , an) =
{
ai, a j

}
.

(4) f (a0, . . . , an) = h(g0(a0, . . . , an), . . . , gm(a0, . . . , an)).

(5) f (a0, . . . , an) = ∪ {g(b, a1, . . . , an) | b ∈ a0}.

Definition 5.2. Suppose P is a set. Then Jα[P] is defined by induction on α as follows, [4].

(1) J0[P] = ∅.

(2) Jα+1[P] = M where M is the smallest transitive rudimentarily closed set such that Jα[P] ∈ M and
such that for each b ∈ M, P ∩ b ∈ M.

(3) Jα[P] = ∪
{
Jβ[P] | β < α

}
if α > 0 and α is a limit ordinal. ut

Lemma 5.3. Suppose P ∈ V , α ∈ Ord, and

Jα[P] � ZF\Powerset.

Then
Jα[P] � Axiom of Choice. ut
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Definition 5.4. Suppose that P ∈ V and α ∈ Ord. Then Jα[P] is strongly acceptable if for all β < α and
for all κ < β, if

P(κ) ∩ Jβ[P] , P(κ) ∩ Jβ+1[P]

then |Jβ[P]| ≤ κ in Jβ+1[P]. ut

Definition 5.5. E is an partial extender if E is an M-extender for transitive set such that
M � ZFC\Powerset. ut

Definition 5.6. Suppose E = 〈Eα : α ∈ dom(E)〉 is a sequence of partial extenders and that for all
α ∈ dom(E), LTH(Eα) ≤ α. Then for all η ∈ Ord,

JEη = Jη[PE]
where PE = {(α, a, x) | α ∈ dom(E), (a, x) ∈ Eα}. ut

Definition 5.7. Suppose that M is transitive,
M � ZFC\Powerset

and that E is an M-extender. Let
jE : M → N � Ult0(M, E)

be the ultrapower embedding. Then:

(1) κE = CRT( jE) and κ∗E = jE(κE).

(2) An ordinal ξ < LTH(E) is a generator of E if for all f ∈ M, for all a ∈ [ξ]<ω,
jE( f )(a) , ξ.

(3) νE = sup
{
ξ + 1 | ξ is a generator of E

}
; νE is the natural length of E.

(4) The M-extender E is a short extender if νE ≤ jE(κE) and E is a long extender if jE(κE) < νE.

(5) ιE is the least cardinal γ of M such that νE ≤ jE(γ).

(6) F is the Jensen completion 8 of E|νE if F is the M-extender of length η given by jE where
η = (( jE(ιE))+)N .

(7) ν∗E is the least θ ≤ νE such that E|θ < N. ut

In the following definition, the requirement that JEα � ZFC\Powerset follows from the indexing re-
quirement, but we repeat it for emphasis.

Definition 5.8. Suppose that E is a partial extender sequence and α ∈ dom(E). Then E is a good partial
extender sequence at α if the following hold where E is the partial extender Eα.

(1) JEα is strongly acceptable and JEα � ZFC\Powerset.

(2) E is a JEα -extender.

(3) (Indexing) E is the Jensen completion of E|νE and α = LTH(E).

(4) (Coherence) Let
jE : JEα → Ult0(JEα , E)

be the elementary embedding given by E. Then
jE(E|α)|(α + 1) = E|α. ut

8The Jensen completion was suggested by Sy Friedman as an alternative to the indexing scheme of Mitchell-Steel [12], and Jensen [5] was the first to
develop the detailed fine-structure theory based on this indexing scheme.
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5.2 Comparison by least disagreement

We consider a fairly general class of structures and we shall use the following definition repeatedly.

Definition 5.9. Suppose M � ZFC, M is transitive, E is a sequence of partial extenders from M, and
δ < λ < OrdM. Then δ is witnessed by the partial extenders on the sequence E to be λ-supercompact in
M if there exists α ∈ dom(E) such that

(1) E is an M-extender,

(2) κE = δ and λ ≤ ιE,

(3) jE[λ] ∈ ME,

where E is the partial extender given by Eα and where
jE : M → ME � Ult0(M, E)

is the ultrapower embedding. ut

We consider transitive structures of the form
(M,E) � ZFC

such that the following hold for all β ∈ dom(E) such that E is an M-extender, where E is the partial
extender given by Eβ.

Suppose that κE < ιE,
jE :M→ME � Ult0(M, E)

is the ultrapower embedding, and let ι = ιE. Then:

(1) ι < κ∗E.

(2) (First Supercompactness Condition) Suppose that jE[ι] < ME and let δ ≤ ι be least such that
jE[δ] <ME. Then the following hold.

a) Suppose that δ < ι and that κE is supercompact inM. Then (cof(δ))M < κE and ι = (δ+)M.
b) Suppose δ = ι. Then ι is a limit cardinal ofM.

(3) (Second Supercompactness Condition) Suppose that jE[ι] ∈ ME. Then for some ξ ∈ OrdM:

a) (Largest Generator Condition) νE < jE(ι) and νE = ξ + 1.
b) (First Initial Segment Condition) E|η ∈ ME for all η < ξ.
c) (Second Initial Segment Condition) if E|ξ <ME then (cof(ξ))ME < jE(κE).

(4) (Coherence Condition)M|β =ME |β and β = sup( jE[γ]) = jE(γ), γ = (ι+)M.

(5) (Suitability Condition) No δ < κE is (<κE)-supercompact inM.

Thus we are assuming that Jensen indexing is being used and thatM|β makes sense. IfM is of the
form of L[E] then this is immediate, but we are not assuming thatM has this form.

We really have in mind that
M = (Jα[P], P ∩ Jα[P]),

for some set P ∈ V , Jα[P] is strongly acceptable, and that
E = P|dom(E).

But there is no need to be so explicit at this stage. With notation as above and by any reasonable
notion of coherence

M|β = Ult0(M, E)|β.
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Further β is a successor cardinal in Ult0(M, E) and so Ult0(M, E)|β makes perfect sense by setting

Ult0(M, E)|β = (H(β))Ult0(M,E)

ifM were simply a transitive set, and making the obvious adjustments for the additional predicates of
M ifM itself is a structure.

We assume that as part of the structure (M,E), there is a wellordering <M of length OrdM such that
for all uncountable regular cardinals γ ofM,

<M ∩ (H(γ))M

is a wellordering of (H(γ))M in length γ.
Thus we are really considering structures

(M,E) � ZFC + GCH

whereM itself is a structure with additional predicates including the wellordering, <M. All of this we
suppress to simplify notation.

Therefore for every element a ∈ M, a is definable in the structure

(M,E)

from ordinal parameters, and this will be an important feature for us.

Remark 5.10. The requirement (3) combined with (4) implies:

(1) νE ≤ ν
∗
E + 1,

(2) νE = ν∗E if and only if ν∗E is not a limit of generators.

This is a very natural version of a weak initial segment condition, see Definition 6.31 on page 86, and
it would be a reasonable requirement to impose on all the partial extenders on the sequence E but we will
not need this for our abstract treatment.

We do not impose the weak initial segment condition (which would imply in requirement (2) that
δ = ι) and instead use the more complicated requirements listed above (which are slightly more general
than we need in [25]) because we need in [25] to apply our main negative theorem, Theorem 5.35.

There are fairly general arguments, see Remark 5.13, that for the structures one is ultimately interested
in for this account, one can always require the weak initial segment condition to hold whenever ιE is a
successor cardinal except in the situation where

ιE = (δ+)M

and (cof(δ))M < κE.
This accounts for the formulation of the First Supercompactness Condition. The sequences defined

in [25] allow for more complicated failures of the weak initial segment condition if κE is not already
ιE-supercompact at the stage where E is indexed.

It is because of the coding constraints of Section 4 that one must allow failures of the weak initial
segment condition. ut

For the remainder of this section, writing (M,E) � ZFC indicates that (M,E) is a transitive structure
satisfying the conditions specified above, though for emphasis, we will also occasionally explicitly add
the hypothesis of transitivity.

Definition 5.11. Suppose that (M,E) � ZFC.

(1) (M,E) is finitely generated if for some a ∈ M, every element b ∈ M is definable in (M,E) from a.

(2) X ≺ (M,E) is finitely generated if for some a ∈ M, X is the set of all b ∈ M such that b is definable
in (M,E) from a. ut
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Clearly, X ≺ (M,E) is finitely generated if and only if (MX,EX) is finitely generated where (MX,EX)
is the transitive collapse of X. Further since every element a ∈ M is definable in the structure

(M,E)

from ordinal parameters, every a ∈ M belongs to a ⊆-least finitely generated elementary substructure of
(M,E).

We need an abstract notion of backgrounding. A rather weak version is defined below and suffices
for our purposes.

Definition 5.12. Suppose (M,E) � ZFC and that (M,E) is transitive.

(1) (M,E) is weakly backgrounded at κ if for allM-extenders E given by E with κ = κE, if κE < γ, if

jE[γ] ∈ ME � Ult0(M, E),

and if U is the normal measure on (Pκ(γ))M given by E, then κ is a cardinal in V which is
γ-supercompact in V and there is a normal fine κ-complete ultrafilter U∗ on Pκ(γ) such that
U = U∗ ∩M.

(2) (M,E) is weakly backgrounded if (M,E) is weakly backgrounded at κ for all κ ∈ OrdM. ut

Remark 5.13. Suppose M is a transitive set and M � ZFC. Following Hamkins [3], for each uncountable
regular cardinal κ of M and for each cardinal γ of M, M satisfies the κ-approximation property at γ if for
all A ⊂ γ, if A ∩ σ ∈ M for all σ ∈ M with |σ|M < κ then A ∈ M.

A very conservative version of a backgrounded construction is as follows and here we are motivating
the formulation of the First Supercompactness Condition, the other conditions are strongly motivated by
current constructions.

The final model (M∞,E∞) is constructed as a limit of approximations (Mα,Eα), constructed at some
ordinal stage α, where in passing from (Mα,Eα) to (Mα+1,Eα+1) one only adds an extender in the fol-
lowing situation and for this discussion we set

(M,EM) = (Mα,Eα).

There exists an elementary embedding

j : V → M

such that:

(1) (M,EM) � ZFC.

(2) V j(λ)+1 ⊂ M, CRT( j) < λ < j(CRT( j)), λ is strongly inaccessible.

(3) j(M,EM)| j(λ) = (M,EM)| j(λ).

(4) There exists θ < λ such that (F|θ) ∩M <M where F is the V-extender of length λ given by j.

Let θ < λ be least such that (F|θ) ∩M <M where F is the V-extender of length λ given by j, let E
be theM-extender given by (F|θ) ∩M, and let

N = j(M)|(sup( j[(ι+E)M])) =ME | jE((ι+E)M)

where
jE : (M,EM)→ (ME,EME ) � Ult0((M,EM), E)

is the ultrapower embedding.
The natural step would be to add OrdN to dom(EM) with E as the next extender. The coding con-

straints of Section 4 strongly suggest that one should only do this if (in essence) there exists σ ∈ N such
that
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• |σ|N < κ∗E and E|σ <M.

Therefore this is the requirement which must be (in essence) satisfied in order to change EM in defining
the next approximation toM∞. That this suffices is by strong acceptability:

• Adding a new bounded subset of κ∗E must (lead to the) collapse of κ∗E in generating the next (sound)
approximation to the final model.

The issue arises when one can be sure that the required set σ exists. We claim that if no such set σ
exists then necessarily:

j(ιE) = sup( j[ιE]) = θ.

We verify this. First note that if sup( j[ιE]) = j(ιE) then by the definition of θ, necessarily θ = j(ιE). This
is because if sup( j[ιE]) = j(ιE) then necessarily ιE is a limit cardinal inM.

Now suppose that sup( j[ιE]) < j(ιE). We claim:

• M must satisfy the κE-approximation property for all γ < ιE.

Suppose A ⊂ γ and A ∩ σ ∈ M for all σ ∈ M with |σ|M < κE. Applying j, j(A) ∩ τ ∈ M for all τ ∈ M
with |τ|M < j(κE) (since j(M) =M). Further E| j(γ) ∈ M and so j[γ] ∈ M. Thus j(A) ∩ j[γ] ∈ M and
this implies that A ∈ M.

SinceM has that κE-approximation property at γ for all γ < ιE and since j(M) =M:

• M has the j(κE)-approximation property at γ for all γ < j(ιE).

Therefore if θ < j(ιE)M has the j(κE) approximation property at |θ|M and it follows easily that σ exists.
If θ = j(ιE) then j[ιE] ∈ M and so arguing as above, M has the κE-approximation property at ιE. The
only potential issue here is if

ιE = (ι+)M.
But then θ ≥ j(ι) and so E| j(ι) ∈ M and this implies j[ιE] ∈ M.

This implies thatM has the j(κE)-approximation property at j(ιE) ≥ θ and so again σ must exist.
This verifies the claim above that if no such a set σ exists then necessarily:

j(ιE) = sup( j[ιE]) = θ.

Now suppose that σ does not exist, κE is witnessed to be (<λ)-supercompact inM by EM, and that
(M,EM) is weakly backgrounded. Thus M has the κE-approximation property at all γ < λ and so M
has the j(κE)-approximation property at all γ < j(λ). This implies that the following must hold.

(1) cof(ιE) < κE.

(2) There exists σ ∈ M| j((ι+E)M) such that |σ|M < κ∗E and such that E|σ <M

Now again the coding constraints of Section 4 strongly suggest that if one changes EM then one
should use E∗|θ∗ where E∗ = F ∩M and where θ∗ < j((ι+E)M) is least such that (2) is witnessed to hold
by some set

σ ∈ Ult0(M, E∗|θ∗).
Thus since no such σ exists inN , which implies that θ∗ > θ, necessarily θ∗ = ξ + 1 for some ξ which is a
generator of E and this puts one in the situation corresponding to the First Supercompactness Condition.

ut

We define a fairly general notion of iteration.

Definition 5.14. Suppose (M,E) � ZFC and (M,E) is transitive. A semi-iteration of (M,E) is a contin-
uous (linearly) directed system

((Nα,Fα), πα,β, Eα : α < β ≤ η)
(with η > 0) such that the following hold for all α < η and for all α < β < η.
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(1) (N0,F0) = (M,E) and Nα is transitive for all α ≤ η.

(2) Eα is an Nα-extender, Nα+1 = Ult0(Nα, Eα), and

πα,α+1 : Nα → Nα+1

is the ultrapower embedding.

(3) (Suitability Condition) No δ < κEα is (<κEα)-supercompact in Nα.

(4) (Non-overlapping Condition) ιEα < κ
∗
Eα ≤ κEβ .

(5) (First Supercompactness Condition) Suppose that πα,α+1[ιEα] < Nα+1 and let δ ≤ ιEα be least such
that πα,α+1[δ] < Nα+1. Then the following hold.

a) Suppose δ < ιEα and that κEα is (δ+)Nα-supercompact in Nα. Then (cof(δ))Nα < κEα and
ιEα = (δ+)Nα .

b) Suppose δ = ιEα . Then ιEα is a limit cardinal of Nα.

(6) (Second Supercompactness Condition) Suppose that πα,α+1[ιEα] ∈ Nα+1 and that κEα < ιEα . Then
there exists a generator ξ of Eα such that:

a) (Generator Condition) Either ν∗Eα = ξ or ν∗Eα = ξ + 1.
b) (Initial Segment Condition) If ν∗Eα = ξ then ξ is a limit of generators and

(cof(ξ))Nα+1 < πα,α+1(κEα).

(7) (Third Supercompactness Condition) Suppose that πα,α+1[ιEα] ∈ Nα+1, ιEα is a limit of strongly
inaccessible cardinals inNα and let ι be the least cardinal ofNα+1 with ν∗Eα < ι < πα+1(ιEα) such that

Nα+1|ι � ZFC.

Suppose that Eα has a generator υ such that

ν∗Eα < υ < ι

and let υ0 be the least such generator. Then there exist a transitive (N ,EN ) � ZFC and an N-
extender F such that:

a) For all a ∈ [LTH(F)]<ω, Fa ∈ N ,
b) Nα+1|ι = Ult0(N , F)|ι, κEα < κF , jF(κF) = κ∗Eα , and jF(ιF) = ι.
c) No δ < κF is (<κF)-supercompact in N .
d) For some γ ≤ ιF , υ0 = sup( jF[γ]), and either

jF[γ] ∈ Ult0(N , F)

or γ = (δ+)N = ιF and (cof(δ))N < κF .

(8) (Closeness Condition) For all a ∈ [LTH(Eα)]<ω, (Eα)a ∈ Nα. ut

Remark 5.15. Note that with notation as in the statement of the Third Supercompactness Condition, υ0

cannot be a limit of generators of Eα. Further by the Second Supercompactness Condition there exists a
generator ξ of Eα such that either ν∗Eα = ξ or ν∗Eα = ξ + 1 and necessarily υ0 is just the least generator υ of
Eα such that υ > ξ. Therefore if γ witnesses the requirement (7d) then one of the following must hold.

(1) γ = κF .

(2) ν∗Eα = ξ + 1 and γ =
(
|ξ̂|+

)N
where jF(ξ̂) = ξ.
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(3) ν∗Eα = ξ and γ =
(
|ξ̂|+

)N
where jF(ξ̂) = ξ.

The point here is that since υ0 = sup( jF[γ]), |ξ|Nα must be in the range of jF . Also note that in the case
where ν∗Eα = ξ,

(cof(ξ))Nα+1 < κ∗Eα

and so jF(ξ̂) = sup( jF[ξ̂]). ut

Remark 5.16. These conditions are motivated by the elementary embeddings produced by iteration
trees. The proof of the main theorem, Theorem 5.35, would be a bit simpler if we eliminated the Third
Supercompactness Condition and required as part of the Second Supercompactness Condition that

νEα = ν∗Eα + 1
if ν∗Eα+1 is a limit of generators and

νEα = ν∗Eα
otherwise.

This is true for the iteration embeddings (of ZFC structures) which can be generated by (maximal)
iteration trees at the finite levels of supercompact, such as those in [24].

However at the infinite levels of supercompact, this stronger condition can fail. But in the proof of
Theorem 5.35, this potential failure is handled by the Third Supercompactness Condition.

The reason the stronger condition can fail is that Eα might originate as the last extender of an active
structure which occurs as a model in the iteration tree before the stage where Eα is chosen. In this case
the active structure with Eα as the last extender is the model at the stage where Eα is chosen and moreover
this model is a semi-iterate of that earlier model.

Finally if ιEα is not a successor cardinal then there can exist many cardinals between ν∗Eα and the
Jensen index of Eα. In this case the identity νE ≤ ν

∗
E + 1 need not be preserved under semi-iterations and

so νEα ≤ ν
∗
Eα + 1 might fail. ut

We isolate in two definitions, Definition 5.17 and Definition 5.24, the key assumptions that we shall
need. Our position based on the results of [24] is that these should follow under very general assumptions
from any theory of weakly background structures for which comparison can be proved through iterations
by least disagreement. In fact we shall only need Definition 5.24 but Definition 5.17 provides a clearer
context for motivating both the definitions.

Definition 5.17. Suppose that (M,E) � ZFC and that (M,E) is transitive. Then (M,E) satisfies com-
parison if for all

X ≺ (M,E)
and all

Y ≺ (M,E)
the following hold where (MX,EX) is the transitive collapse of X and (MY ,EY) is the transitive collapse
of X.

Suppose that X and Y are finitely generated, (MX,EX) , (MY ,EY), and
X ∩ R = Y ∩ R.

Suppose that neither (MX,EX) or (MY ,EY) is a semi-iterate of the other. Then there exists semi-
iterations,

((NX
α ,F

X
α), πX

α,β, E
X
α : α < β ≤ ηX)

of (MX,EX), and
((NY

α ,F
Y
α), πY

α,β, E
Y
α : α < β ≤ ηY)

of (MY ,EY) such that:
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(1) (NX
ηX
,FX

ηX
) = (NY

ηY
,FY

ηY
).

(2) (First Disagreement Condition) EX
0 , EY

0 .

(3) (Second Disagreement Condition) Suppose that ιEX
0
< λ, ιEY

0
< λ, and that

P(λ) ∩MX = P(λ) ∩MY .

Then
πX

0,ηX
|P(λ) , πY

0,ηY
|P(λ). ut

Remark 5.18. (1) The larger the structure (M,E) the stronger the requirement that comparison hold
is.
For example if every element of M is definable in (M,E) then there are no non-trivial finitely
generated X ≺ (M,E) and comparison holds vacuously. However if cof(OrdM) > ω then X ∈ M
for every finitely generated X ≺ (M,E).

(2) We comment briefly on why the requirements specified in Definition 5.17 are reasonable.
Condition (2) is clearly the result of comparison through least disagreement where the semi-
iterations are given by the cofinal branches of the maximal iteration trees.
Finally the last condition, (3), lies at the core of comparison by least disagreement. Having this
provably fail (while maintaining EX

0 , EY
0 ) would seem to require an entirely new approach to inner

model theory.
In fact we could weaken (3) for our purposes and add the assumption that λ is strongly inaccessible
inMX with ιEX

0
< λ and ιEY

0
< λ. ut

Remark 5.19. Suppose that with notation as in Definition 5.17, (MY ,EY) is a semi-iterate of (MX,EX).
More precisely suppose that

π : (MX,EX)→ (N ,EN ) = (MY ,EY)

is given by a semi-iteration of (MX,EX).
One can show by appealing to the fact that (MY ,EY) is finitely generated, that the semi-iteration

giving π must have finite length and moreover that it must be an internal iteration with each extender
being the extender generated by a single ultrafilter. Thus these cases of X and Y are really rather special.

ut

The following theorem is a corollary of the main theorem of [24] and results of [25] but the only
relevant result of [25] is one which allows one to exploit the Weak Unique Branch Hypothesis (which
only allows short extenders in the iteration trees) versus a slightly stronger iteration hypothesis.

Recall that κ is m-extendible, where m < ω, if there is an elementary embedding

j : Vκ+m → V j(κ)+m

such that CRT( j) = κ.

Theorem 5.20 (Weak Unique Branch Hypothesis). Assume that for each m < ω, there is a proper class
of m-extendible cardinals. Then there exists a partial extender sequence

E = 〈Eα : α ∈ dom(E)〉

such that the following hold.

(1) L[E] is weakly backgrounded and L[E] is weakly Σ2-definable.

(2) (Lα[E],E|α) satisfies comparison for each ordinal α such that (Lα[E],E|α) � ZFC.
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(3) For each ξ and for each m < ω, there exists α ∈ dom(E) such that

(a) α > ξ,
(b) Eα is an L[E]-extender which witnesses that κ is m-extendible in L[E] where κ = CRT(Eα).

(4) L[E] � “The Weak Unique Branch Hypothesis”. ut

Thus one also gets an equivalence.

Theorem 5.21. The following are equivalent.

(1) There exists a countable transitive set M � ZFC such that

(a) M � “For each m < ω, there is a proper class of m-extendible cardinals”.

(b) M � “The Weak Unique Branch Hypothesis”.

(2) There exists a countable transitive (M,E) � ZFC such that

(a) (M,E) � “For each m < ω, there is a proper class of m-extendible cardinals”.

(b) (M,E) � “The Weak Unique Branch Hypothesis”.

(c) (M,E)|α satisfies comparison for each α such that (M,E)|α � ZFC. ut

We need a version of Definition 5.17 for pairs.

Definition 5.22. Suppose that (M0,E0) � ZFC and that (M1,E1) � ZFC. Suppose each structure is
transitive and κ is a regular cardinal of both structures. Then the pair

((M0,E0), (M1,E1))

is a coherent pair at κ if
(κ+)M0 = (κ+)M1

and
(M0,E0)|(κ+)M0 = (M1,E1)|(κ+)M1 . ut

Definition 5.23. Suppose that
((M0,E0), (M1,E1))

is a coherent pair at κ. A semi-iteration at κ of the (ordered) pair,

((M0,E0), (M1,E1))

is a continuous (linearly) directed system

((Nα,Fα), πα,β, Eα : α < β ≤ η)

such that the following hold for all α < β < η.

(1) (N0,F0) ∈ {(M0,E0), (M1,E1)} and

((Nα,Fα), πα,β, Eα : α < β ≤ η)

is a semi-iteration of (N0,F0).

(2) If N0 =M1 then κ < ι for some ι ∈ SP(E0). ut
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Definition 5.24. Suppose that (M,E) � ZFC, (M,E) is transitive, κ is a measurable cardinal in V , U is
a normal measure on κ, and U ∩M ∈ M. Let

(MU ,EU) = Ult0 ((M,E),U)

and suppose that
((M,E), (MU ,EU))

is a coherent pair at κ. Then (MU ,EU) satisfies comparison backed up by (M,E) at κ if the following
hold.

Suppose X ≺ (M,E), X is finitely generated, U ∩M ∈ X,

(MX,EX)

is the transitive collapse of X, κX is the image of κ under the transitive collapse, and

(MX
U ,E

X
U)

is the image of (X∩MU , X∩EU) under the transitive collapse. Suppose that (MX
U ,E

X
U) is not a semi-iterate

of (MX,EX). Then there exist semi-iterations,

((N0
α,F

0
α), π0

α,β, E
0
α : α < β ≤ η0)

of (MX,EX), and
((N1

α,F
1
α), π1

α,β, E
1
α : α < β ≤ η1)

of the pair
(
(MX,EX), (MX

U ,E
X
U)

)
at κX such that:

(1)
(
N0
η0
,F0

η0

)
=

(
N1
η1
,F1

η1

)
.

(2) (First Disagreement Condition) E0
0 , E1

0.

(3) (Second Disagreement Condition) Suppose that ιE0
0
< λ, ιE1

0
< λ, and that

P(λ) ∩ N0
0 = P(λ) ∩ N1

0 .

Then
π0

0,η0
|P(λ) , π1

0,η1
|P(λ). ut

Remark 5.25. We will only use condition (3) in the situation where λ is strongly inaccessible in
MX = N0

0 with
max(ιE0

0
, ιE1

0
) < λ

and much more. ut

Remark 5.26. The semi-iteration of the coherent pair
(
(MX,EX), (MX

U ,E
X
U)

)
is not like the iteration of

a phalanx in [12]. It really is closer to a semi-iteration of MX where UX is allowed to be the initial
extender. But even that is not completely accurate since the next extender can act onMX

U and yet have
critical point strictly below jX

U(κX) where

jX
U : (MX,EX)→ Ult0 ((MX,EX),UX) � (MX

U ,E
X
U)

is the ultrapower embedding. ut

The following lemma shows that the requirement in Definition 5.24 that

U ∩M ∈ M

is necessarily satisfied in many cases. This lemma is a weak variation of the Universality Theorem,
Theorem 3.26.
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Lemma 5.27. Suppose that (M,E) � ZFC, (M,E) is weakly backgrounded, δ < OrdM, and that δ is
witnessed by theM-extenders on the sequence E to be supercompact inM. Suppose δ < κ < OrdM and
that U is a δ-complete ultrafilter on κ. Then U ∩M ∈ M.

Proof. Let λ = |Vκ+ω ∩M|
M and let µ be a δ-complete normal fine ultrafilter on Pδ(λ) such that

(1.1) M∩Pδ(λ) ∈ µ,

(1.2) µ ∩M ∈ M.

The ultrafilter µmust exist sinceM is weakly backgrounded and since δ is witnessed by theM-extenders
on the sequence E to be supercompact inM.

Fix a bijection
π : λ→ Vκ+ω ∩M

with π ∈ M and let I be the set of all σ ∈ Pδ(λ)∩M such that for each ξ < κ there exists η < λ such that

(2.1) η ∈ σ,

(2.2) π(η) is a δ-compete ultrafilter in κ inM,

(2.3) for all A ∈ P(κ) ∩ π[σ], A ∈ π(η) if and only if ξ ∈ A.

The key point is that I ∈ µ. This is easily verified by working in M and using that in M, µ ∩ M is a
δ-complete normal fine ultrafilter on Pδ(λ).

Define
f : I → λ

by f (σ) = η such that

(3.1) π(η) is a δ-complete ultrafilter on κ inM,

(3.2) η ∈ σ,

(3.3) π(η) ∩ π[σ] = U ∩ π[σ].

Since I ∈ µ, there must exist η0 < λ such that
{σ ∈ I | f (σ) = η0} ∈ µ.

Thus π(η0) = U ∩M and this proves the lemma. ut

As a corollary of Lemma 5.27, we obtain the following strong version of Theorem 3.40.

Theorem 5.28. Suppose that δ is an extendible cardinal and that κ ≥ δ is a measurable cardinal. Then
κ is a measurable cardinal in HOD.

Proof. By Lemma 3.37, we can reduce to the case that κ is not ω-strongly measurable in HOD. But
then by Theorem 3.39, HOD is a weak extender model for δ is supercompact and so by (the proof of)
Lemma 5.27, κ is a measurable cardinal in HOD. ut

We prove three easy lemmas and the latter two are quite useful. These require a definition. For
this definition and these three lemmas, the notation (M,E) and (N ,F) indicates that the structures are
transitive.

Definition 5.29. Suppose that (M,E) � ZFC and that
π : (M,E)→ (N ,F)

is an elementary embedding which is cofinal. Then π is close to (M,E) if for each X ∈ M and each
a ∈ π(X),

{Z ∈ P(X) ∩M | a ∈ π(Z)} ∈ M. ut
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The following lemma which is essentially immediate from the definition of close embedding, identi-
fies a useful feature of close embeddings. This feature is a weak form of coherence.

Lemma 5.30. Suppose that (M,E) � ZFC and that

π : (M,E)→ (N ,F)

is an elementary embedding which is close to (M,E). Suppose ι < OrdM and

π[ι] ∈ N .

Then P(ι) ∩M = P(ι) ∩ N .

Proof. Clearly P(ι) ∩M ⊆ P(ι) ∩ N . Now suppose A ∈ P(ι) ∩ N . Then π[A] ∈ N . Let

a = (π[A], π[ι])

and let X ∈ M be a transitive set such that a ∈ π(X). Since π is close toM, U ∈ M where

U = {Z ∈ P(X) ∩M | a ∈ π(Z)} .

Thus A ∈ Ult0(M,U) ⊆ M and so P(ι) ∩ N ⊆ P(ι) ∩M. ut

Lemma 5.31. Suppose that (M,E) � ZFC and that

π : (M,E)→ (N ,F)

is an elementary embedding which is given by a semi-iteration of (M,E). Then π is close to (M,E).

Proof. The key point is that the composition of close embeddings is close. We verify this.
Suppose that

π0 : (M0,E0)→ (M1,E1)

and
π1 : (M1,E1)→ (M2,E2)

are each close embeddings. Fix Y ∈ M0 and a ∈ π1 ◦ π0(Y). We must show that

{Z ∈ P(Y) ∩M0 | a ∈ π1 ◦ π0(Z)} ∈ M0.

Let
W = {Z ∈ P(π0(Y)) ∩M1 | a ∈ π1(Z)} .

Then W ∈ M1 and inM1, W is an ultrafilter on π0(Y).
Let

W∗ = {Z ∈ P(P(P(Y))) ∩M0 | W ∈ π0(Z)} .

Then W∗ ∈ M0 and inM0, W∗ is an ultrafilter on β(Y), the space of all ultrafilters on Y .
Fix Z ∈ P(Y) ∩M0. Then

a ∈ π1 ◦ π0(Z)

if and only if
π0(Z) ∈ W.

Let
Z∗ = {U ∈ P(P(Y)) ∩M0 | Z ∈ U} .

Thus π0(Z) ∈ W if and only if W ∈ π0(Z∗). But W ∈ π0(Z∗) if and only if Z∗ ∈ W∗.
Therefore a ∈ π1 ◦ π0(Z) if and only if Z∗ ∈ W∗, and this implies

{Z ∈ P(Y) ∩M0 | a ∈ π1 ◦ π0(Z)} ∈ M0.

This proves π1 ◦ π0 is close to (M0,E0).
The lemma now follows easily by induction of the length of semi-iterations. ut
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The next lemma is an abstract version of the uniqueness of iteration embeddings.

Lemma 5.32. Suppose that (M,E) � ZFC and is finitely generated. Suppose that

π0 : (M,E)→ (N ,F)

and
π1 : (M,E)→ (N ,F)

are elementary embeddings each of which is close to (M,E). Then π0 = π1.

Proof. Let ξ ∈ M0 ∩ Ord be such that every element ofM is definable in (M,E) from ξ. It suffices to
show that

π0(ξ) = π1(ξ).

Let ξ0 = π0(ξ) and let ξ1 = π1(ξ). Assume toward a contradiction that ξ0 < ξ1. Let

U = {Z ⊂ ξ | ξ0 ∈ π1(Z)} .

Thus U ∈ M. Let
jU : (M,E)→ (MU ,EU)

be the ultrapower embedding given by U and let

kU : (MU ,EU)→ (N ,F)

be the factor embedding such that π1 = kU ◦ jU . Let ξU
0 be the element ofMU such that kU(ξU

0 ) = ξ0.
Let (NX,FX) be the transitive collapse of X where X is the set of all a ∈ N such that a is definable in

(N ,F) from ξ0. Then
(NX,FX) = (M,E).

But X ⊂ kU[MU] since ξ0 = kU(ξU
0 ) and since π1 = kU ◦ jU .

Thus we have:

(1.1) ξU
0 < jU(ξ) since kU(ξU

0 ) = ξ0 < ξ1 = π1(ξ) = kU ◦ jU(ξ).

(1.2) Let XU be the set of all a ∈ MU such that a is definable in (MU ,EU) from ξU
0 , and let (MXU ,EXU )

be the transitive collapse of X. Then

(MXU ,EXU ) = (M,E)

and necessarily ξ is the image of ξU
0 under the transitive collapse of XU .

Let
πU : (M,E)→ (MU ,EU)

invert the transitive collapse of XU . Thus πU(ξ) = ξU
0 < jU(ξ) and there is a canonical elementary

embedding
j : Ult0(M,U)→ Ult0(MU , πU(U)).

Now one can generate an illfounded iteration ofM of length ω which is induced by a linear iteration
of a rank initial segment ofM, and this is a contradiction. ut

Remark 5.33. Suppose M � ZFC is a transitive set in which there is a supercompact cardinal with OrdM

as small as possible. Then there is a linear iteration of M in length ω, by ultrapowers, such that the direct
limit is not wellfounded.

In fact, any linear iteration
T = 〈(Mi,Ui), ji,k : i < k < ω〉

by ultrapowers such that
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(1) for all α < OrdM there exists i < ω such that λi > j0,α(α), where Ui ∈ Mi is a normal fine κi-complete
ultrafilter on

(
Pκi(λi)

)Mi and where κi = CRT( jUi),

(2) there exists κ < OrdM such that CRT( jUi) ≤ j0,i(κ) for all i < ω,

must have ill-founded direct limit.
This is by the minimality of OrdM (taking a generic collapse and then appealing to Σ

∼
1
1-absoluteness)

and since by (1)–(2), OrdM is in the wellfounded part of the direct limit.
Thus in the proof of Lemma 5.32, it is critical that the linear iteration of length ω have the simple

form of being induced by a linear iteration of a rank initial segment ofM. ut

Lemma 5.34. Suppose (M,E) � ZFC is finitely generated, U ∈ M, and that inM, U is a κ-complete
normal ultrafilter on κ. Let

(MU ,EU) = Ult0((M,E),U).

Then the following are equivalent.

(1) (MU ,EU) is a semi-iterate of (M,E).

(2) No δ < κ is witnessed to be (<κ)-supercompact inM by E.

Proof. Clearly (2) implies (1) and the witness is the semi-iteration

((Nα,Fα), πα,β, Eα : α < β ≤ η)

of (M,E) where η = 1 and E0 is the extender given by U.
Now suppose that (1) holds and that

π : (M,E)→ (MU ,EU)

is given by a semi-iteration of (MU ,EU). Let

πU : (M,E)→ (MU ,EU)

be the ultrapower embedding.
By Lemma 5.32, π = πU and this implies (2) since κ = CRT(πU). ut

We now come to our main theorem. The fundamental idea is to simply use the basic arguments from,
for example [12], for establishing that various extenders which belong to an iterable structure, must be on
the sequence of an iterable structure. The definitions of a coherent pair and of comparison for such pairs
were formulated by isolating very general features sufficient for the implementation of these arguments.

The situation here however is quite different because by universality (for example, Lemma 5.27) there
can be extenders which belong to the structure whose associated critical point cannot be the critical point
of any extender on the sequence (because of the Suitability Condition).

The issue then is exactly how is this potential conflict resolved. The theorem shows that the only
resolution is through a failure of comparison based on least disagreement.

Theorem 5.35. Suppose that δ is supercompact and that Ω > δ is a a strongly inaccessible cardinal.
Then there is no weakly backgrounded structure (M,E) � ZFC such that the following hold.

(1) Ω = OrdM and δ is witnessed by theM-extenders on the sequence E to be supercompact inM.

(2) There exists a measurable cardinal δ < κ < Ω and a normal measure U on κ such that the following
hold where

(MU ,EU) = Ult0 ((M,E),U) .

(a) ((M,E), (MU ,EU)) is a coherent pair at κ.
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(b) U ∩M ∈ M.

(c) (MU ,EU) satisfies comparison backed up by (M,E) at κ.

Proof. Assume toward a contradiction that (M,E) is weakly backgrounded and that (M,E), U, and κ
satisfy (1) and (2). Note that by Lemma 5.27, the requirement (2b) follows from the assumption that
(M,E) is weakly backgrounded.

Let
eU : (M,E)→ (MU ,EU)

be the ultrapower embedding as defined in (M,E) using U ∩M. Let

X ≺ (M,E)

be the elementary substructure given by the set of all a ∈ M such that a is definable in (M,E) from
{U ∩M}.

(1.1) Let
(
MX

U ,E
X
U

)
be the transitive collapse of (X ∩MU , X ∩ EU).

(1.2) Let (MX,EX) be the transitive collapse of X and let κX be the image of κ under the transitive
collapse of X.

(1.3) Let δX be the image of δ under the transitive collapse of X.

(1.4) Let UX be the image of U ∩M under the transitive collapse of X.

(1.5) Let
eX

U : (MX,EX)→ (MX
U ,E

X
U)

be the image of eU under the transitive collapse of X.

By Lemma 5.34, (MX
U ,E

X
U) is not a semi-iterate of (MX,EX). Therefore, since (MU ,EU) satisfies

comparison backed up by (M,E) at κ, there exist semi-iterations

((N0
α,F

0
α), π0

α,β, E
0
α : α < β ≤ η0)

of (MX,EX), and
((N1

α,F
1
α), π1

α,β, E
1
α : α < β ≤ η1)

of the pair
(
(MX,EX), (MX

U ,E
X
U)

)
at κX such that:

(2.1)
(
N0
η0
,F0

η0

)
=

(
N1
η1
,F1

η1

)
.

(2.2) E0
0 , E1

0.

(2.3) Suppose that ιE0
0
< θ, ιE1

0
< θ, and that

N0
0 ∩ P(θ) = N1

0 ∩ P(θ).

Then π0
0,η0
|P(θ) , π1

0,η1
|P(θ).

We prove the following.

(3.1) (N1
0 ,F

1
0) =

(
MX

U ,E
X
U

)
.

(3.2) π0
0,η0

= π1
0,η1
◦ eX

U .
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Assume toward a contradiction that (N1
0 ,F

1
0) = (MX,EX). Then

π0
0,η0

: (MX,EX)→ (N0
η0
,F0

η0
)

and
π1

0,η1
: (MX,EX)→ (N1

η0
,F1

η1
)

are each embeddings of the finitely generated (MX,EX) into the same structure and by Lemma 5.31, each
embedding is close to (MX,EX). Therefore by Lemma 5.32,

π0
0,η0

= π1
0,η1

and this contradicts (2.3).
This proves (3.1). Thus (N1

0 ,F
1
0) =

(
MX

U ,E
X
U

)
and so

π0
0,η0

: (MX,EX)→ (N0
η0
,F0

η0
)

and
π1

0,η1
◦ eX

U : (MX,EX)→ (N1
η0
,F1

η1
)

are each embeddings of the finitely generated (MX,EX) into the same structure.
By Lemma 5.31, π0

0,η0
is close to (MX,EX) and π1

0,η1
is close to (MX

U ,E
X
U). But eU is trivially close to

(MX,EX) and so since close embeddings are closed under compositions (see the proof of Lemma 5.31),
π1

0,η1
◦ eX

U is close to (MX,EX). Therefore by Lemma 5.32, π0
0,η0

= π1
0,η1
◦ eX

U . This proves (3.1) and (3.2).
By the Suitability Condition, Definition 5.14(3), of semi-iterations,

(4.1) κE0
0
≤ δX,

(4.2) κE1
0
≤ δX.

We next prove the following.

(5.1) κE0
0

= δX, ιE0
0

= κX and κX ∈ SP(E0
0).

(5.2) κE1
0

= δX and ιE1
0
> κX.

Assume toward a contradiction that κE0
0
, δX. Then κE1

0
, δX and by the three properties of semi-

iterations specified as the Suitable Condition, the First Supercompactness Condition, and the Closeness
Condition; both

κE0
0
≤ ιE0

0
< δX

and
κE1

0
≤ ιE1

0
< δX.

But then by (3.2), and for all sufficiently large
θ < δX,

we have:

(6.1) SP(E0
0) ∪ SP(E1

0) ⊂ θ,

(6.2) θ < κX,

(6.3) π0
0,η0
|P(θ) = π1

0,η1
|P(θ).

This contradicts (2.3). This proves that κE0
0

= δX. Note that we have only used the much weaker version
of the Second Disagreement Condition (see Definition 5.24) where one requires in addition that λ be
strongly inaccessible in the models.

By (3.2), and since κE0
0

= δX, necessarily κE1
0

= δX. We now prove the rest of the claims in each of
(5.1) and (5.2).

If ιE1
0
≤ κX then N1

0 =MX and so by (3.1), ιE1
0
> κX. We now use (3.1) and (3.2) to show that:
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(7.1) κX ∈ SP(E0
0).

(7.2) ιE0
0

= κX.

This will finish the proof of (5.1) and (5.2).
Since ιE1

0
> κX, by the First Supercompactness Condition (5) in the definition of a semi-iteration,

Definition 5.14 on page 54, necessarily

π1
0,η1

[κX] ∈ N1
η1

= N0
η0

and so by (3.1)–(3.2),
π0

0,η0
[κX] ∈ N0

η0
.

But then by backwards induction,

(8.1) π0
0,1[κX] ∈ N0

1 .

Thus since κE0
0

= δX, necessarily κX ∈ SP(E0
0). This proves (7.1).

Assume toward a contradiction that ιE0
0
> κX. Then again by the First Supercompactness Condition of

semi-iterations,
π0

0,1[ε] ∈ N0
1

where
ε =

(
(κX)+)N0

0 .

By Lemma 5.30 and the closeness of π0
0,1 to N0

0 , this implies that

P(ε) ∩ N0
0 = P(ε) ∩ N0

1 ,

and so since CRT(π0
1,η0

) ≥ π1
0,1(κE0

0
) > ε,

P(ε) ∩ N0
0 = P(ε) ∩ N0

η0
.

Let G0 be the N0
0 -extender given by π0

0,η0
. Then

G0|π
0
0,η0

(κX) ∈ N0
η0

= N1
η1

and so by (3.2),
UX ∈ N

1
η1
.

But we have that ιE1
0
> κX and ιE1

0
≥ ε. Therefore by the First Supercompactness Condition of semi-

iterations,
π1

0,1[ε] ∈ N1
1

and so just as above
P(ε) ∩ N1

0 = P(ε) ∩ N1
η1
.

But
N0
η0

= N1
η1

and so UX ∈ N
1
0 which is a contradiction since by (3.1), N1

0 =MX
U = Ult0(MX,UX).

This proves (7.1) and (7.2), and finishes the proof of (5.1) and (5.2).
We continue with G0 as specified above and let G1 be the N1

0 -extender given by π1
0,η1

. Let ξ0 be least
such that G0|ξ0 < N

0
η0

. Let ξ0
0 be least such that E0

0 |ξ
0
0 < N

0
1 . We note (then prove) the following.

(9.1) ξ0 < π
0
0,η0

(κX).

(9.2) ξ0 = π0
1,η0

(ξ0
0).

(9.3) ξ0 = π1
0,η1

(κX) + 1.
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(9.4) There exists κ0 ∈ N
0
1 such that π0

1,η0
(κ0) = π1

0,η1
(κX).

The last claim, (9.4), follows trivially from (9.1)–(9.3), and it is (9.4) that we need.
It is useful to note, while proving (9.1)–(9.3), that since

j0
0,η0

= j1
0,η1
◦ eX

U ,

and since κX < ιE1
0
, necessarily

(10.1) G0| j1
0,η1

(κX) = G1| j1
0,η1

(κX),

(10.2) G1| j1
0,η1

(κX) ∈ N1
η1

= N0
η0

.

Further for all A ∈ P(κX) ∩MX = P(κX) ∩MX
U :

A ∈ UX ⇐⇒ κX ∈ eU
X (A)

⇐⇒ j1
0,η1

(κX) ∈ j1
0,η1
◦ eU

X (A)
⇐⇒ j1

0,η1
(κX) ∈ j0

0,η0
(A).

By our general assumptions, in particular the Second Supercompactness Condition in the definition
of semi-iterations on page 55, together with (8.1), there is a generator ξ of E0

0 such that:

(11.1) either ν∗
E0

0
= ξ or ν∗

E0
0

= ξ + 1,

(11.2) ξ < π0
0,1(ιE0

0
) = π0

0,1(κX),

(11.3) if ν∗
E0

0
= ξ then ξ is a limit of generators of E0

0 and (cof(ξ))N
0
1 < π0

0,1

(
κE0

0

)
.

Therefore:

(12.1) ξ0
0 = ξ + 1 or ξ0

0 = ξ and (cof(ξ))N
0
1 < π0

0,1

(
κE0

0

)
.

The key point is that by (12.1), if ξ0
0 = ξ then

π0
1,η0

(ξ0
0) = sup(π0

1,η0
[ξ0

0]).

Therefore, since:

(13.1) G0|LTH(H) = H where

a) H = π0
1,η0

(E0
0 |ξ) if ξ0

0 = ξ + 1, and

b) H is the extender given by π0
1,η0

[E0
0 |ξ

0
0] if ξ0

0 = ξ,

(13.2) π0
1,η0

is close to N0
1 ;

necessarily
π0

1,η0
(ξ0

0) = ξ0.

The claims (9.1)–(9.3) now follow from (3.1), (3.2), (5.1), and (5.2).
Let κ0 ∈ N

0
1 be such that

π0
1,η0

(κ0) = π1
0,η1

(κX)

Thus κ0 is strongly inaccessible in N0
1 and

κ0 < π
0
0,1(κX) = π0

0,1

(
ιE0

0

)
.

Further

(14.1) ν∗
E0

0
= κ0 + 1.
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Let
λ0 =

(
(κ0)+)N0

1

and let
λ1 =

(
κ+

X
)N1

0 .

Thus π0
1,η0

(λ0) = π1
0,η1

(λ1). Let λ = π0
1,η0

(λ0) = π1
0,η1

(λ1).
Let

δ∗ = π0
0,η0

(δX) = π1
0,η1

(δX) = π1
0,η1
◦ eX

U(δX)

and let
Y∗ ⊂ (Pδ∗(λ))N

0
η0 = (Pδ∗(λ))N

1
η1

be the least Solovay set (see Lemma 3.4) which is definable in N∗|ι∗ where

N∗ = N0
η0

= N1
η1

and where ι∗ is the least strongly inaccessible cardinal of N∗ above λ. For each θ < λ, let (Y∗)θ = σ if
σ ∈ Y∗ and sup(σ) = θ. This is well-defined.

We prove:

(15.1) ν∗
E0

0
< νE0

0
.

Assume toward a contradiction that ν∗
E0

0
= νE0

0
. Let 1 ≤ η < η0 be least such that

π0
1,η(λ0) ∈ SP(E0

η)

where here and below we set π0
1,1 to be the identity. Since

π0
1,η0

(λ0) = π1
0,η1

(λ1)

and since
sup(π1

0,η1
[λ1]) < π1

0,η1
(λ1)

it follows that η must exist. The relevant points are:

(16.1) sup(π0
1,η0

[λ0]) = sup
(
π0

1,η0
(λ0) ∩

{
π0

1,η0
( f )(π0

1,η0
(κ0)) | f ∈ N0

1

})
.

(16.2) sup(π1
0,η1

[λ1]) = sup
(
π1

0,η1
(λ1) ∩

{
π1

0,η1
( f )(π1

0,η1
(κX)) | f ∈ MX

U

})
.

Note and this is a key point:
νE0

0
= κ0 + 1

and so
N0

1 =
{
π0

0,1( f )(a) | a ≤ κ0, f ∈ MX

}
.

This implies

(17.1) sup(π0
1,η0

[λ0]) = sup
(
π0

1,η0
(λ0) ∩

{
π0

0,η0
( f )(π0

1,η0
(κ0)) | f ∈ MX

})
.

Thus by (16.1), (16.2), and (17.1),

(18.1) sup(π0
1,η0

[λ0]) = sup(π1
0,η1

[λ1])

By the choice of η,

(19.1) sup(π0
1,η0

[λ0]) = sup(π0
η,η0

[π0
1,η(λ0)]).
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We have that λ0 = (κ+
0 )N

0
1 and that κ0 is strongly inaccessible in N0

1 . Therefore by the properties of
semi-iterations and the choice of η,

π0
η,η+1[π0

1,η(λ0)] ∈ N0
η+1,

and this implies that
π0
η,η0

[π0
1,η(λ0)] ∈ N0

η0

since CRT(π0
η+1,η0

) ≥ π0
η,η+1

(
κE0

η

)
> π0

1,η(λ0).
Let

θ0 = sup(π0
η,η0

[π0
1,η(λ0)]) = sup(π0

1,η0
[λ0]) = sup(π1

0,η1
[λ1]).

Thus

(20.1) (Y∗)θ0 = π0
η,η0

[π0
1,η(λ0)],

(20.2) (Y∗)θ0 = π1
0,η1

[λ1].

This is a contradiction since
π0
η,η0

[π0
1,η(λ0)] ∩ π0

0,η0
(δX) = κE0

η

and
π1

0,η1
[λ1] ∩ π1

0,η1
(δX) = κE1

0
,

noting that κE1
0

= δX and
π0

0,η(δX) = CRT(π0
η,η0

) > δX.

This proves (15.1).
Let υ0 be the least generator of E0

0 such that ν∗
E0

0
< υ0 noting that since ν∗

E0
0

= κ0 + 1, ν∗
E0

0
cannot be a

generator of E0
0.

We can reduce to the case that
υ0 = ((κ0)+)Ult0(MX ,E∗)

where E∗ = E0
0 |ν
∗

E0
0
, since otherwise,

((κ0)+)Ult0(MX ,E∗) = ((κ0)+)Ult0(MX ,E0
0) = ((κ0)+)N

0
1 ,

and we can simply repeat the proof of (15.1) to again obtain a contradiction.
By (7.2), ιE0

0
= κX and so since κX is a measurable cardinalMX, ιE0

0
is a limit of strongly inaccessible

cardinals inMX.
Therefore π0

0,1(ιE0
0
) is a limit of strongly inaccessible cardinals inN0

1 . Let ι be the least cardinal ofN0
1

with ν∗
E0

0
< ι < π0

0,1(ιE0
0
) such that

N0
1 |ι � ZFC.

By the Third Supercompactness Condition of semi-iterations, and since υ0 < ι, there exist a transitive
(N̂ ,EN̂ ) � ZFC and an N̂-extender F such that:

(21.1) for all a ∈ [LTH(F)]<ω, Fa ∈ N̂ ,

(21.2) N0
1 |ι = Ult0(N̂ , F)|ι, κE0

0
< κF , jF(κF) = κ∗

E0
0
, and jF(ιF) = ι.

(21.3) No cardinal of N̂ below κF is (<κF)-supercompact in N̂ .

(21.4) For some γ ≤ ιF , υ0 = sup( jF[γ]), and either

jF[γ] ∈ Ult0(N̂ , F)

or for some cardinal δF of N̂ , γ = (δ+
F)N̂ = ιF and (cof(δF))N̂ < κF .
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Fix γ as given by (21.4). Since υ0 = sup( jF[γ]) and since

υ0 = ((κ0)+)Ult0(MX ,E∗)

where E∗ = E0
0 |ν
∗

E0
0
, necessarily γ = ((κ̂)+)N̂ for some strongly inaccessible cardinal N̂ such that

κF < κ̂ < ιF .

The point here is that κ0 must be in the range of jF and so κ̂ is the strongly inaccessible cardinal of N
such that jF(κ̂) = κ0. Therefore by (21.4)

(22.1) jF[γ] ∈ Ult0(N̂ , F),

(22.2) π0
1,η0

[ jF[γ]] ∈ N0
η0

,

noting that (22.1) implies (22.2).
Now we can just repeat the proof of (15.1) one last time and obtain a contradiction, finishing the proof

of the theorem. Note:

(23.1) π0
1,η0

(υ0) = sup(π0
1,η0

[υ0]).

(23.2) sup(π0
1,η0

[υ0]) = sup
(
π0

1,η0
(λ0) ∩

{
π0

0,η0
( f )(π0

1,η0
(κ0)) | f ∈ MX

})
.

(23.3) sup(π1
0,η1

[λ1]) = sup
(
π1

0,η1
(λ1) ∩

{
π1

0,η1
( f )(π1

0,η1
(κX)) | f ∈ MX

U

})
.

(23.4) sup(π1
0,η1

[λ1]) = sup
(
π1

0,η1
(λ1) ∩

{
π1

0,η1
◦ eX

U( f )(π1
0,η1

(κX)) | f ∈ MX

})
.

Thus

(24.1) sup(π0
1,η0

[υ0]) = sup(π1
0,η1

[λ1]).

Let
θ = π0

1,η0
(υ0) = sup(π0

1,η0
[υ0]) = sup(π1

0,η1
[λ1]).

Therefore:

(25.1) (Y∗)θ = π1
0,η1

[λ1],

(25.2) (Y∗)θ = π0
1,η0

( jF[γ]) = π0
1,η0

[ jF[γ]],

since υ0 = sup( jF[γ]). But
π1

0,η1
[λ1] ∩ δ∗ = δX = κE1

0

and
π0

1,η0
[ jF[γ]] ∩ δ∗ = κF > δX.

This is again a contradiction. ut
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6 The amenability obstruction

We show that there is no inner model with a supercompact cardinal which is a fine structure model such
that every level is an amenable sound structure. There is no abstraction of comparison or iterability in-
volved here and we shall also prove versions where the amenability condition is significantly weakened.
Thus these constraints apply to a much wider class of inner models than the comparison constraints of
the previous section.

We actually show there is no such inner model (with amenable and sound levels) in which there is a
cardinal κ which is κ+ω-supercompact.

The nonstrategic-extender models of [24], which reach the finite levels of supercompactness, are
amenable and sound at every level, and so the extent of those constructions in reaching levels of the
large cardinal hierarchy is best possible.

Further the variations on amenability that we consider include both the cases where at each level the
predicate is only required to be amenable to an initial segment of the structure, or even more generally,
simply specifies an ω-sequence of predicates each which is only required to be amenable to some initial
segment of the structure.

These generalizations exclude a variety of natural attempts to extend the structures of [24] to the
infinite levels of supercompactness.

Finally we shall show in Lemma 6.29 that these generalizations are all equivalent and moreover just
corollaries of the theorem of Shelah, [16], that if the Approachability Property holds at κ+(ω+1) then κ
cannot be κ+ω-supercompact.

6.1 Soundness

We define an abstract notion of soundness. This is just the natural definition given, for example, the
basic definitions of modern fine structure theory, and here we follow the basic framework of [12].

Definition 6.1. (1) Let L(gen) be the language of set theory together with unary predicates Ṗ and Ṗ.

(2) Suppose thatM = (Jα[P],P|α,Pα) and that Pα ⊆ Jα[P]. ThenM defines an L(gen)-structure where
Ṗ interpreted by P|α and Ṗ interpreted by Pα.

(3) Suppose M is a (transitive) L(gen)-structure. Then PM is the interpretation of Ṗ and PM is the
interpretation of Ṗ. ut

Remark 6.2. We shall always assume that an L(gen)-structure is either of the form

M = (Jα[P],P|α,Pα)

in the Ṗ-active case, or of the form
M = (Jα[P],P|α)

in the Ṗ-passive case. In particular we are restricting to transitive structures. ut

For the following definition we implicitly restrict to L(gen)-structures which are weakly amenable,
see Remark 6.17. The case of more general structures will involve altering the definition of a (L(gen))Σ1-
formula, see the discussion after Remark 6.17.

Definition 6.3. L+
(gen) is L(gen) expanded by adding 3-ary predicates Ṫn for 1 ≤ n < ω. Suppose θ is a

formula of L+
(gen).

(1) θ is (L(gen))Σ1 if θ is a Σ1-formula relative to L(gen).
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(2) θ is (L(gen))Σn+1 if there is a Σ1-formula φ(x0, . . . , xm, xm+1, xm+2) of L(gen) such that

θ = ∃xm∃xm+1∃xm+2

(
Ṫn(xm, xm+1, xm+2) ∧ φ

)
. ut

Definition 6.4. (1) For each formula φ(x0, . . . , xn, xn+1) of L+
(gen) (with free occurrences of xn+1),

τφ(x0, . . . , xn) is the Skolem term given by φ and for each 1 ≤ n < ω, (L(gen))Skn is the smallest
collection of terms closed under composition and containing all the terms τφ where ψ is (L(gen))Σn.

(2) A formula ψ is a generalized (L(gen))Σn-formula, where 1 ≤ n < ω, if for some (L(gen))Σn-formula
φ[x0, . . . , xm], collection of terms closed under composition and containing all the terms τφ where
ψ is (L(gen))Σn. Thus for any L+

(gen)-formula φ, the arity of τφ is m where m is largest such that xm+1 is
a free variable of ψ (and τφ is defined only if m ≥ 1).

(3) A formula ψ is a generalized (L(gen))Σn-formula, where 1 ≤ n < ω, if for some (L(gen))Σn-formula
φ[x0, . . . , xm],

ψ = φ(x0, . . . , xm : σ0, . . . , σm)

where

a) for each i ≤ m, σi ∈ (L(gen))Skn, and σi is free for xi in φ,
b) φ(x0, . . . , xm : σ0, . . . , σm) is the formula obtained from ψ by substituting σi for each free

occurrence of xi. ut

SupposeM is a L(gen)-structure. By induction on 1 ≤ n < ω, we define the interpretation of Ṫn inM,
denoted TMn , and the n-th projectum ofM, denoted ρMn . Simultaneously we define the interpretations of
τφ which we denote τMφ . To simplify notation a bit we adopt the following conventions.

(1) φ(x0, . . . , xm) indicates the free variables of ψ are included in {x0, . . . , xm} and that xm is a free
variable of φ.

(2) Suppose φ(x0, . . . , xm) is a formula, m > 0, and s ∈ |M|<ω. We write M � φ[s̄] to indicate both
|s| = m + 1 and that

M � φ[s0, . . . , sm].

Definition 6.5. SupposeM is a L(gen)-structure. Suppose 1 ≤ n < ω.

(1) Suppose that φ(x0, . . . , xm+1) is a (L(gen))Σn-formula and that τφ(x0, . . . , xm+1) is the corresponding
(L(gen))Skn-term. Then for each

〈ai : i ≤ m〉 ∈ |M|<ω,

〈ai : i ≤ m〉 ∈ dom(τMφ ) and for each b = τMφ (a0, . . . , am) if

a) M � φ[a0, . . . , am, b],
b) for all c <M b,M � (¬φ)[a0, . . . , am, c].

(2) For each X ⊆ |M|,

ThMn (X) =
{
(φ, s) | s ∈ X<ω, ψ is generalized (L(gen))Σn,M � φ[s̄]

}
.

(3) ρMn is the least ordinal ρ ≤ α, such that Thn(ρ∪ {q}) < |M| for some q ∈ |M|, where α = |M| ∩Ord.

(4) TMn (α, q, b) if and only if α < ρMn , q ∈ |M|, and b = ThMn (α ∪ {q}). ut

Definition 6.6. SupposeM is a L(gen)-structure. Suppose X ⊆ |M|, X , ∅, 1 ≤ n < ω, and ρMk > 0 for
all 0 < k < n.
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(1) SMn (X) =
{
τM(s) | s ∈ dom(τMφ ) ∩ X<ω and τ ∈ (L(gen))Skn

}
.

(2) HMn (X) is the L(gen)-structure given by the transitive collapse of(
SMn (X),PM ∩ SMn (X), PM ∩ SMn (X)

)
. ut

Definition 6.7. SupposeM is an amenable L(gen)-structure. ThenM is ω-sound if for each k + 1 < ω,
one of the following hold.

(1) k > 0 and ρMk = 0.

(2) There exists a ∈ M such thatM = HMk+1(ρMk+1 ∪ {a}). ut

Remark 6.8. The definition of soundness here does not involve any notion of a standard parameter or
any properties of the standard parameters such as solidity. Thus it is far weaker than the usual notions of
soundness. ut

Remark 6.9. We illustrate why sound structures are so useful. Suppose M is an amenable ω-sound,
L(gen)-structure, 0 < k < ω, and

ρM
k > 0.

Let ρ = ρMk and let q ∈ M be such that

M = HMk (ρ, {q}).

Let N = (M|ρ,T ) where T = ThMk (ρ ∪ {q}), naturally coded as a subset ofM|ρ.

(1) N is an amenable L(gen)-structure.

(2) N is ω-sound and ρN1 = ρMk+1.

(3) Suppose A ⊂ M|ρ. Then the following are equivalent.

a) A is (L(gen))Σ1-definable in N from parameters.
b) A is (L(gen))Σk+1-definable inM from parameters. ut

6.2 The amenability obstruction

Definition 6.10. Suppose that P ⊂ Ord × V . Then J[P] is amenable if for all α ∈ dom(P), the following
hold.

(1) (Jα[P],P|α) � Comprehension

(2) Pα ⊆ Jα[P].

(3) For all β < α, Pα ∩ Jβ[P] ∈ Jα[P]. ut

Remark 6.11. The requirement that if α ∈ dom(P) then

(Jα[P],P|α) � Comprehension

just simplifies things conceptually and is not necessary. For example if α > ω, it implies that α is a limit
ordinal.

Note that in the case where P is a good partial extender sequence, we require (see Definition 5.8) that
if α ∈ dom(P) then

(Jα[P],P|α) � ZFC\Powerset,

which is of course a much stronger condition. ut
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We now include soundness and define when J[P] is amenable and sound. We shall define soundness
more generally just after Remark 6.17 but that definition will be based on a reformulation of the definition
of (L(gen))Σn-formulas together with a reformulation of Definition 6.7 to include the case when M is not
amenable, see Definition 6.22.

Definition 6.12. Suppose that P ⊂ Ord × V and that J[P] is amenable. Then J[P] is sound if for each
α ∈ Ord:

(1) (Jα[P],P|α, ∅) is ω-sound,

(2) if α ∈ dom(P) then (Jα[P],P|α,Pα) is ω-sound. ut

Of course, if J[P] is amenable then for each α ∈ dom(P), the structure
(Jα[P],P|α, ∅)

is trivially ω-sound since (Jα[P],P|α) � Comprehension
The following lemma is immediate from the definitions.

Lemma 6.13. Suppose that P ⊂ Ord × V , J[P] is amenable, and J[P] is sound. Then GCH holds in
J[P]. ut

Remark 6.14. Assuming GCH, if κ is κ+ω-supercompact then necessarily κ is κ+(ω+1)-supercompact.
Rephrased (and now not assuming GCH), if

j : V → M
is an elementary embedding with critical point κ, the following are equivalent.

(1) j[Vκ+ω] ∈ M.

(2) j[Vκ+ω+1] ∈ M.

More generally for any set X and for any γ < κ, if
j[X] ∈ M

then j[Xγ] ∈ M. ut

Lemma 6.15 (GCH). Suppose that κ is κ+ω-supercompact and that P ⊂ Vκ. Then there exist δ < κ and
an elementary embedding

π :
(
H(γ),P ∩ H(γ)

)
→

(
H(π(γ)),P ∩ H(π(γ))

)
such that

(1) π ∈ Vκ and CRT(π) = δ.

(2) γ = δ+(ω+1) and π(γ) = (π(γ))+(ω+1).

Proof. Since GCH holds, κ is κ+(ω+1)-supercompact. Let
j : V → M

be an elementary embedding such that CRT( j) = κ and Mλ ⊂ M where
λ = κ+(ω+1) = |Vκ+ω+1| = |H(κ+(ω+1))|.

Let N = j(M) and let
j( j) ◦ j : V → N

be the iteration embedding. Then
j|H(κ+(ω+1)) ∈ j( j) ◦ j(Vκ) = N j( j(κ))

witness that the conclusion of lemma holds in N at j( j) ◦ j(κ) for j( j) ◦ j(P). ut
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Theorem 6.16. Suppose that P ⊂ Ord × V and that J[P] is amenable and sound. Then

J[P] � “There are no cardinals κ which are κ+ω-supercompact”.

Proof. We work in (J[P],P). Assume toward a contradiction that there exists κ such that κ is κ+ω-
supercompact. Therefore by Lemma 6.13 and Lemma 6.15, there exist δ < κ and an elementary em-
bedding

π : (Jγ[P],P|γ)→ (Jπ(γ)[P],P|π(γ))

such that

(1.1) γ = δ+(ω+1) and CRT(π) = δ,

(1.2) π(γ) = (π(δ))+(ω+1).

Let η = sup(π[γ]). The key point is that there can be no closed set C ⊂ η such that

(2.1) |C| < π(δ+ω),

(2.2) C is cofinal in η,

(2.3) C ∩ ξ ∈ Jη[P] for all ξ < η.

Note that this claim implies that weak-� must fail at δ+ω. In fact the relevant principle isAPκ+ which
is an even weaker principle. See Definition 6.25.

Assume toward a contradiction that C exists. Let

D = {ξ < γ | π(ξ) ∈ C} .

Thus D is ω-closed and by (2.3), D is cofinal in γ. Let ξ0 ∈ D be such that

|D ∩ ξ0| ≥ δ
+ω.

Then C ∩ π(ξ0) covers π[D ∩ ξ0] and by (2.1),

P(C ∩ π(ξ0)) ∈ Jη[P].

This implies that π[δ+ω] ∈ Jη[P] and so

π|H(δ+ω) ∈ Jη[P].

But then π[γ] is definable from parameters in Jη[P] and this is a contradiction since

(Jη[P],P|η) � ZFC\Powerset.

This proves the claim.
Let α > η be least such that for some 0 < k < ω,

ρMk < η

whereM = (Jα[P],P|α) if α < dom(P) and

M = (Jα[P],P|α,Pα)

otherwise. We assume α ∈ dom(P). The case that α < dom(P) is easier.
Fix k to be least such that ρMk < η. Thus

ρMk = π(δ)+ω.

We first prove:

(3.1) k > 1.
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Assume toward a contradiction that k = 1. By soundness, there exists q ∈ Jα[P] such that

M = HM1 (ρM1 ∪ {q}) = SM1 (ρM1 ∪ {q}).

Thus there is a partial function
f : π(δ)+ω → η

such that f is a surjection and such that f is generalized (L(gen))Σ1-definable inM from parameters. Be-
causeM is amenable, we can reduce to the case that f is Σ1-definable from parameters in the structure

M = (Jα[P],P|α,Pα).

Fix a Σ1-formula φ(x0, x1, x2) and c0 ∈ Jα[P] such that

f = {(a, b) ∈ Jα[P] | (Jα[P],P|α,Pα) � φ[a, b, c0]}

We can require that φ(x0, x1, x2) has the form

(∃ξ < α)ψ
[
x0, x1, x2,Pα ∩ Jξ[P]

]
where ψ is a (L(gen))Σ1-formula not mentioning Ṗ, the predicate for Pα.

Fix π(δ)+ω < α0 < α such that c0 ∈ Jα0[P]. For each α0 < β < α, let fβ be the set of all (a, b) ∈ Jβ[P]
such that

(Jβ[P],P|β) � ψ[a, b, c0,Pα ∩ Jξ[P]]

for some ξ < β such that Pα ∩ Jξ[P] ∈ Jβ[P].
Thus fβ ⊆ f , fβ ∈ Jα[P], and

f = ∪
{
fβ | α0 < β < α

}
There are two cases.

Case 1: cof(α) , δ+(ω+1).

There must exist π(δ)+ω < β < α such that fβ has range cofinal in η. But

fβ ∈ Jα[P].

This contradicts the choice of α.

Case 2: cof(α) = δ+(ω+1).

Let θ < π(δ)+ω be least such that f |θ has cofinal range in η. Thus

cof(θ) = cof(η) = δ+(ω+1).

Fix X ⊂ θ such that

(4.1) |X| = δ+(ω+1),

(4.2) f |X has cofinal range in η.

We have H(π(δ)+ω) ⊂ Jα[P] and so clearly X ∈ Jα[P]. This implies there is an increasing cofinal
continuous function

g : δ+(ω+1) → η

such that g is Σ1-definable from parameters in (Jα[P],P|α,Pα) and such that

g|ξ ∈ Jα[P]

for each ξ < δ+(ω+1). Let C be the range of g. Then C satisfies (2.1)–(2.3) which is a contradiction.
This proves (3.1). Let n = k − 1 > 0. Thus

ρMn > η

and either ρMn = α or ρMn is a cardinal of Jα[P]. Let ρ = ρMn and fix q ∈ Jα[P] such that

M = HMn (ρ ∪ {q}).
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The structure,
N = (Jρ[P],T )

is amenable where T = ThMn (ρ ∪ {q}) (naturally coded as a subset of ρ) since

(Jρ[P],P|ρ) � Comprehension.

In fact since ρ is a cardinal of Jα[P], either

(Jρ[P],P|ρ) � ZFC\Powerset

or
(Jρ[P],P|ρ) � ZFC\Replacement,

which is a much strong claim.
The key point is that

ρN1 = ρMn+1

and that for some p ∈ Jρ[P]
N = HN1 (ρN1 ∪ {p})

We can now just repeat the proof of (3.1). ut

One can weaken the notion of amenability quite a bit and still prove Theorem 6.16. The point here
is that the definition of soundness does not require amenability though we will alter the basic definitions
slightly when generalizing to non-amenable structures.

As we have already indicated, these generalizations rule out many natural approaches to extending
the constructions of [24] in an attempt to reach the infinite levels of supercompactness.

Remark 6.17. Define P to be weakly amenable if for all α ∈ dom(P), there exists a limit ordinal γ < α
such that:

(1) Pα ⊆ Jγ[P].

(2) For all β < γ, Pα ∩ Jβ[P] ∈ Jα[P].

Then the proof of Theorem 6.16 adapts to prove the corresponding theorem for weakly amenable P. This
requires dealing with more cases since there are now two relevant cofinalities, cof(α) and cof(γ). Note
though that if γ < α and Pα < Jα[P] then necessarily

ρM1 ≤ γ

whereM = (Jα[P],P|α,Pα). Thus the additional cases only arise in proving (3.1) in the proof of The-
orem 6.16 and the rest of the proof is exactly the same. We leave the details to the reader since there
is a more general theorem, Theorem 6.30, which we shall obtain as a corollary of Theorem 6.16 and
Lemma 6.29.

In fact all these theorems are really equivalent since we shall prove in Lemma 6.29 that if J[P] is
ω-weakly amenable and sound as defined below then there exists P∗ such that

J[P] = J[P∗]

and such that J[P∗] is amenable and sound. ut

Remark 6.18. The backgrounding scenario described in Remark 5.13 illustrates how one might natu-
rally be led to consider weakly amenable structures which are not amenable. We continue that discussion
and focus just on the case whereM is weakly backgrounded and EM witnesses that κE is λ-supercompact
inM. Notation now is as in Remark 5.13.

We have set
N =M| sup( j[(ι+E)M]) =M| sup( jE(ι+E)M)
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and the coding obstruction of Section 4 has been interpreted to require that one must (in general) have
that there exists a set σ ∈ N such that |σ|N < κ∗E and such that E ∩ σ <M. Otherwise one cannot add E
to the sequence to construct the next approximation to the final model.

If no such σ exists then we argued that cof(ιE) < κE which implies that

j(ιE) = sup( j[ιE]).

Now replace N with
N∗ =M|

(
j
(
(ι+E)M

))
.

Thus sinceM is weakly backgrounded and since EM witnesses that κE is supercompact inM, there does
exist

σ ∈ N∗

such that |σ|N
∗

< κ∗E and such that E ∩ σ <M. The structure

(N∗, E)

is weakly amenable since θ = j(ιE).
This suggests altering the indexing scheme to allow in this situation that E be added with index OrdN

∗

so that
(N∗,EN∗ , E)

is that next approximation to the final model, and so this suggests developing an alternative fine-structural
hierarchy which allows such generalized indexing schemes.

But this cannot work to reach the infinite levels of supercompact. ut

One can further generalize by only requiring that for each α ∈ dom(P), Pα specifies an ω-sequence of
predicates each of which is weakly amenable to Jα[P].

Definition 6.19. Suppose that α ∈ dom(P) and α is a limit ordinal. Then

(Jα[P],P|α,Pα)

is ω-weakly amenable if
Pα ⊂ ω × Jα[P]

and for each n < ω, there exists a limit ordinal γn ≤ α such that

(1) (Pα)n ⊂ Jγn[P],

(2) (Pα)n ∩ Jξ[P] ∈ Jα[P] for each ξ < γn. ut

Definition 6.20. Suppose that P ⊂ Ord × V . Then P is ω-weakly amenable if for all α ∈ dom(P),

(1) (Jα[P],P|α) � Comprehension,

(2) (Jα[P],P|α,Pα) is ω-weakly amenable. ut

The notion of soundness is exactly as defined for the case of amenable P except that (L(gen))Σn-formulas
are redefined as follows.

Definition 6.21. L−(gen) is L(gen) reduced by eliminating Ṗ. ut

Definition 6.22. Suppose θ is a formula of L(gen)
+.

(1) θ is (L(gen))Σ1 if there is a Σ1-formula φ(x0, x1) of L−(gen) such that

θ = ∃x0

(
“x0 ⊂ Ṗ ” ∧ “x0 is finite” ∧ φ

)
.
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(2) θ is (L(gen))Σn+1 if there is a Σ1-formula φ(x0, . . . , xm, xm+1, xm+2) of L−(gen) such that

θ = ∃xm∃xm+1∃xm+2

(
Ṫn(xm, xm+1, xm+2) ∧ φ

)
. ut

For the amenableL(gen)-structures, this change in the definition of (L(gen))Σn-formulas amounts to simply
replacing P with P∗ where

dom(P) = dom(P∗)

and for each α ∈ dom(P),
P∗α =

{
Pα ∩ Jξ[P] | ξ < α

}
.

Therefore we could have simply made this part of our abstract definitions in Section 6.1 of L(gen)-
structures and (L(gen))Σn-formulas.

With this change, we can naturally define when an L(gen)-structureM is ω-sound without restricting
to the case thatM is an amenable L(gen)-structures which we did in Definition 6.7. Thus we can define
when J[P] is sound for an arbitrary class

P ⊂ Ord × V,

and this we do in the following definition.

Definition 6.23. Suppose that P ⊂ Ord × V . Then J[P] is sound if for each α ∈ Ord, M is ω-sound
whereM = (Jα[P],P|α, ∅) if α < dom(P), and

M = (Jα[P],P|α,Pα)

otherwise. ut

Lemma 6.24. Suppose that P ⊂ Ord × V and J[P] is sound. Then GCH holds in J[P]. ut

6.3 Weak amenability and the Approachability Property

The analysis of J[P] which are ω-weakly amenable and sound involves the Approachability Property,
AP.

Definition 6.25 (Foreman-Magidor). Suppose that κ is an infinite cardinal. Then APκ+ holds if there is
a sequence

〈Cα : α < κ+〉

such that for all limit α < κ+:

(1) Cα is a closed cofinal subset of α and ordertype(Cα) ≤ κ.

(2) If cof(α) < κ then |Cα| < κ.

(3) For all β < α, Cα ∩ β = Cγ for some γ < α. ut

Remark 6.26. (1) APκ+ holds for all regular cardinals κ assuming GCH and we are only really inter-
ested in the situation where GCH holds.

(2) The usual definition of APκ+ is slightly different. The definition above highlights the principle
APκ+ as a very weak version of �κ.
Note that in clause (3) of the definition, if one required γ to be a limit ordinal whenever β is a limit
point of Cα then one has a �κ sequence.

(3) One advantage of formulatingAPκ+ as in Definition 6.25 is that it gives the notion of a witness for
APκ+ and we shall use this freely. ut
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The following lemma implicit in the introductory remarks of [2] gives the two equivalent formulations
of APκ+ . We also refer the reader to [2] for an historical perspective noting that the AP family of
principles have origin in prior work of Shelah [16].

Lemma 6.27 (Foreman–Magidor:[2]). Suppose that κ is an infinite cardinal. Then the following are
equivalent.

(1) APκ+ holds.

(2) For all
X ≺ H(κ++)

if |X| = κ and κ ⊂ X then there exists a closed cofinal subset C ⊂ X ∩ κ+ such that

(a) ordertype(C) ≤ κ,
(b) if cof(X ∩ κ+) < κ then |C| < κ,

(c) C ∩ ξ ∈ X for all ξ < sup(X ∩ κ+).

Proof. We first show that (1) implies (2). Assume thatAPκ+ holds and that

X ≺ H(κ++)

is such that both |X| = κ and κ ⊂ X. Thus there exists a sequence

C = 〈Cα : α < κ+〉

such that C witnessesAPκ+ and such that C ∈ X. The key point is that there is an enumeration

〈Zθ : θ < κ+〉 ∈ X

of bounded subsets of κ+ and closed unbounded set D ⊂ κ+ such that

(1.1) D ∈ X,

(1.2) for all ξ ∈ D, for all β < ξ, Cξ ∩ β ∈ {Zθ | θ < ξ}.

Let C = Cα0 where α0 = X ∩ κ+. Then

(2.1) ordertype(C) ≤ κ,

(2.2) if cof(X ∩ κ+) < κ then |C| < κ,

(2.3) C ∩ ξ ∈ X for all ξ < X ∩ κ+.

This proves (2). Now suppose (2) holds and let

X = 〈Xη : η < κ+〉

be a continuous elementary chain such that for all η < κ+:

(3.1) Xη ≺ H(κ++) and Xη ∈ Xη+1.

(3.2) κ ⊂ Xη and |Xη| = κ.

For each η < κ+, let αη = Xη ∩ κ
+ and let Cαη be a closed cofinal subset of αη such that:

(4.1) ordertype(Cαη) ≤ κ.

(4.2) If cof(Xη ∩ κ
+) < κ then |Cαη | < κ.

(4.3) Cαη ∩ ξ ∈ Xη for all ξ < X ∩ κ+.

80



To
ap

pe
ar

:B
ul

le
tin

of
Sy

m
bo

lic
L

og
ic

(2
3)

(1
)2

01
7

c ©
20

16
,A

ss
oc

ia
tio

n
of

Sy
m

bo
lic

L
og

ic

These sets exist by (2). Since X is continuous, for each limit η < κ+, and for each ξ < η,

Cαη ∩ ξ ∈ Xθ

for all sufficiently large θ < η. Thus the sequence

〈Cαη : η < κ+〉

can easily be expanded to a sequence
〈Cα : α < κ+〉

which witnessesAPκ+ . The relevant point here is that for each κ < η0 < η1 < κ
+, one can always choose

a sequence
〈Dξ : αη0 < ξ < αη1〉

which witnessesAPκ+ on the interval (αη0 , αη1). ut

The following easy lemma shows that GCH is in some sense equivalent to soundness. Lemma 6.29,
which we prove below, shows that GCH together withAP is in the same sense equivalent to soundness
and amenability.

Lemma 6.28. Suppose that P ⊂ Ord × V . Then the following are equivalent.

(1) J[P] � GCH.

(2) There exists P∗ ⊂ Ord × V such that:

(a) J[P∗] is sound.

(b) J[P] = J[P∗].
(c) P∗ is Σ2-definable in (J[P],P). ut

Lemma 6.29 also shows that Theorem 6.16 and its generalization to the case ofω-weak amenable J[P]
are equivalent and moreover just corollaries of the theorem of [16] that if the Approachability Property
holds at κ+(ω+1) (this isAPλ where λ = κ+(ω+1)) then κ cannot be κ+ω-supercompact.

Lemma 6.29. Suppose that P ⊂ Ord × V and that J[P] � GCH. Then the following are equivalent.

(1) For each uncountable cardinal κ of J[P],APκ+ holds in J[P].

(2) There exists P∗ ⊂ Ord × V such that:

(a) J[P∗] is amenable and sound.

(b) J[P] = J[P∗].
(c) P∗ is Σ2-definable in (J[P],P).

(3) There exists P∗ ⊂ Ord × V such that:

(a) J[P∗] is ω-weakly amenable and sound.

(b) J[P] = J[P∗].
(c) P∗ is Σ2-definable in (J[P],P).

Proof. We work in (J[P],P). It suffices to prove that (1) implies (2) and that (3) implies (1).
We first assume (1) and prove (2). Suppose κ is an uncountable cardinal and let

C = 〈Cα : κ < α < κ+〉

be the (J[P],P)-least witness thatAPκ+ holds.
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Let
D =

{
κ < α < κ+ | (Jα[P],P|α,C|α) ≺ (Jκ∗[P],P|κ+,C)

}
.

Given P∗|κ such that
Jκ[P∗] = H(κ),

define P∗|κ+ to be the (J[P],P)-least set
H ⊂ κ+ × J[P]

such that

(1.1) H|κ = P∗|κ.

(1.2) If (Jη[H],H|η) 6� ZFC\Powerset then Hη = ∅;

and such that the following hold for all κ < η < κ+ such that

(Jη[H],H|η) � ZFC\Powerset.

(2.1) κ is the largest cardinal of Jη[H].

(2.2) Suppose cof(η) < cof(κ). ThenHη is a cofinal closed subset of η such that ordertype(Hη) = cof(η)
and such that Hη ∩ ξ ∈ Jη[H] for all ξ < η.

(2.3) Suppose cof(η) = cof(κ). Let η∗ ∈ D be the least element of D above η. Then there is a set E ⊂ κ
which codes

(Jη∗[P],P|η∗,C|η∗)

and there are increasing continuous cofinal functions

f : cof(κ)→ η

and
g : cof(κ)→ κ

such that
Hη = {( f (ξ), g(ξ) ∩ E) | ξ < cof(κ)} .

(2.4) Suppose that cof(η) > cof(κ). Then η ∈ D,

Jη[P] ⊆ Jη[H]

and Hη = Cη.

Note that in (2.3), since GCH holds, since κ is the largest cardinal of Jη[H], and since cof(η) = cof(κ),
for each ξ < η and for each γ < cof(κ),

(Jξ[H])γ ∈ Jη[H].

Therefore the set Hη is necessarily amenable to Jη[H] where Hη is as defined in (2.3) but for any choice
of ( f , g) and for any set E ⊂ κ.

Also note the following regarding (2.4). Suppose κ < η < κ+ and

(Jη[H],H|η) � ZFC\Powerset.

Then either cof(η) = ω or the set {
ξ < η | (Jξ[H],H|ξ) ≺ (Jη[H],H|η)

}
is closed and cofinal in η.

With these two observations it follows that for any choice of P∗|κ such that

Jκ[P∗] = H(κ),

H exists satisfying (1.1), (1.2), and satisfying (2.1)–(2.4) for all κ < η < κ+.
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It follows that J[P∗] is amenable and sound, and that J[P] = J[P∗]. Clearly P∗ is Σ2-definable in
(J[P],P). This proves that (1) implies (2).

We now assume (3). Clearly we can just reduce to the case that P = P∗. Fix

X ≺ (Jκ+[P],P|κ+)

such that κ ⊂ X and |X| = κ. We prove that there exists C ⊂ X ∩ κ+ such that

(3.1) C is closed cofinal in X ∩ κ+,

(3.2) ordertype(C) ≤ κ and if cof(X ∩ κ+) < κ then |C| < κ,

(3.3) C ∩ ξ ∈ X for each ξ < X ∩ κ+.

By Lemma 6.27, this impliesAPκ+ holds.
Let γ = cof(κ). We can reduce to the case that

cof(X ∩ κ+) > γ

for otherwise the existence of C is immediate since for each α ∈ X ∩ κ+,

Pγ(α) ⊂ X.

Let X ∩ κ+ < α < κ+ be least such that
ρMn = κ

for some n < ω whereM = (Jα[P],P|α,Pα) if α ∈ dom(P) andM = (Jα[P],P|α) if α < dom(P).
We can further reduce to the case that α ∈ dom(P) and n = 1 since otherwise we can reduce to the

case that M is an amenable structure in which case by the proof of Theorem 6.16, C exists satisfying
(3.1)–(3.3).

The structureM is 1-sound and so

M = HM1 (κ ∪ {p})

for some p ∈ M. Thus there is a partial surjection

f : κ → X ∩ κ+

such that f is generalized (L(gen))Σ1-definable inM from p. Arguing as in the proof of Theorem 6.30, for
some m < ω, the partial function

f(m) : κ → X ∩ κ+

has cofinal range and is generalized (L(gen))Σ1-definable inM(m) from p where

M(m) = (Jα[P],P|α,Pα|m)

where
Pα|m = Pα ∩ (m × Jα[P]).

Here f(m) is simply f as defined inM(m).
Since cof(κ) < cof(X∩κ+) < κ, there exists ξ < κ such that range( f(m)|ξ) is cofinal in X∩κ+. Therefore

letting δ = cof(X ∩ κ+), there exist q ∈ M and a cofinal continuous function

g : δ→ X ∩ κ+

such that g is generalized (L(gen))Σ1-definable inM(m). We assume that m is as small as possible over all
possible choices of H yielding

MH = (Jα[P],P|α,H),

such that
H ⊂ m × Jα[P]

and such that for each k < m there exists θ < α such that
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(4.1) Hk ⊂ Jθ[P],

(4.2) Hk ∩ Jβ[P] ∈ Jα[P] for all β < α;

and relative to all possible generalized (L(gen))Σ1-formulas with parameters. If m = 0 thenMH is amenable,
and by the proof of Theorem 6.16, C exists satisfying (3.1)–(3.3). Therefore we can reduce to the case
that m > 0.

For each k < m, let θk = sup((Pα)k) and let I be the set of all finite sequences 〈βk : k < m〉 such that
βk < θk for each k < m. For each a ∈ I, let

Ma = (Jα[P],P|α,Pa)

where Pa is the set of all (k, b) such that k < m and b ∈ (Pα)k|βk, and a = 〈βk : k < m〉. Let ga be g as
interpreted in the structureMa. Thus:

(5.1) The set I is directed under the order a < b if ai < bi for all i < m.

(5.2) For each η < δ, there exists a ∈ I such gb(η) = g(η) for all b > a.

We claim:

(6.1) For each k < m, cof(θk) = δ.

Let
s = {i < m | cof(θk) < δ}

and let
t = {i < m | cof(θk) > δ} .

For each η < δ, let aη ∈ I be such that
g(η) = ga(η)

for all a > aη. There must exist a cofinal set A0 ⊂ δ and c ∈ I such that for all η ∈ A0 and for all i ∈ s,

(aη)i < ci.

Therefore by the minimality of m, it follows that s = ∅. Similarly there must exist d ∈ I such that for all
η < δ and for all i ∈ t,

(aη)i < di.

This implies t = ∅, again by the minimality of m. This proves (6.1).
Note that by (5.2) and (6.1),

(7.1) For each η < δ, there exists a ∈ I such that g|η = ga|η.

There are two cases.
Case 1: cof(α) ≥ δ.

For each a ∈ I and for each sup(a) < β < α, let g(β,a) be g as interpreted in the structure

M(β,a) = (Jβ[P],P|β,Pa)

where as above Pa is the set of all (k, b) such that k < m and b ∈ (Pα)k|βk and

〈βk : k < m〉 = a.

This all makes perfect sense even though we cannot require that

(Jβ[P],P|β) � Comprehension

which we have generally imposed at active stages.
Since cof(α) ≥ δ it follows that for each η < δ there exists a ∈ I and β < α such that

g|η = g(β,a)|η.
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For each a ∈ I,M(β,a) ∈ Jα[P], and so for each η < δ,

g[η] ∈ Jα[P].

Therefore letting C = g[δ], C witnesses (3.1)–(3.3).
Case 2: cof(α) < δ.

Since cof(α) < δ there must exist β0 < α such that for all k < m,

(8.1) θk < β0,

(8.2) (P)k ∩ Jξ[P] ∈ Jβ0[P] for all ξ < θk.

Again since cof(α) < δ, there must exist limit ordinal β such that, β0 < β < α, an elmement r ∈ Jβ[P],
and a cofinal increasing continuous function

h : δ→ X ∩ κ+

such that h is generalized (L(gen))Σ1-definable from r in the structure

(Jβ[P],P|β,Pα|m).

For each a ∈ I, let ha be h as interpreted in the structure

M(β,a) = (Jβ[P],P|β,Pa)

where Pa is as defined above.
Thus exactly as for g andM(m):

(9.1) For each η < δ, there exists a ∈ I such hb(η) = h(η) for all b > a.

By (6.1) and (9.1):

(10.1) For each η < δ, there exists a ∈ I such that h|η = ha|η.

Finally exactly as in Case 1, for each a ∈ I,M(β,a) ∈ Jα[P], and so for each η < δ,

h[η] ∈ Jα[P].

Therefore letting C = h[δ], C witnesses (3.1)–(3.3). ut

As an immediate corollary we obtain the following generalization of Theorem 6.16.

Theorem 6.30. Suppose that P ⊂ Ord × V and that J[P] is ω-weakly amenable and sound. Then

J[P] � “There are no cardinals κ which are κ+ω-supercompact”.

Proof. By Lemma 6.29 there exists P∗ ⊂ Ord × V such that:

(1.1) J[P∗] is amenable and sound.

(1.2) J[P] = J[P∗].

(1.3) P∗ is Σ2-definable in (J[P],P).

The theorem is an immediate corollary of this by Theorem 6.16. ut
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6.4 Good partial extender sequences revisited

Definition 6.31. Suppose that E is a good partial extender sequence and α ∈ dom(E). Let E be the
Jα[E]-extender given by E at α and let

jE : Jα[E]→ Ult0(Jα[E], E)

be the ultrapower embedding. Then E satisfies the weak initial segment condition at α if

E| jE(η) ∈ Jα[E]

for all η < ιE. ut

The weak initial segment condition at α is equivalent to a level of supercompactness for the associated
extender E.

Lemma 6.32. Suppose that E is a good partial extender sequence and α ∈ dom(E). Let E be the Jα[E]-
extender given by E at α and let

jE : Jα[E]→ Ult0(Jα[E], E)

be the ultrapower embedding. Then the following are equivalent.

(1) E satisfies the weak initial segment condition at α.

(2) Suppose ι < ιE is a cardinal of Jα[E] and γ = (ι+)Jα[E]. Then jE[γ] ∈ Ult0(Jα[E], E).

Proof. We first assume (1) and prove (2). Let η = jE(ι). Thus

E| jE(η) ∈ Jα[E]

and
Jα[E] = Ult0(Jα[E], E)|α.

By the elementarity of jE,
Ult0(Jα[E], E) � ZFC\Powerset

and thus (2) holds.
Now assume (2) holds and fix η < ιE. Let ι = |η|Jα[E] and let γ = (ι+)Jα[E]. Thus by (2),

jE[γ] ∈ Ult0(Jα[E], E).

But this implies that
jE[Jγ[E]] ∈ Ult0(Jα[E], E)

since
Ult0(Jα[E], E)|α = Jα[E].

By the strong acceptability of Jα[E],
P(ι) ∩ Jα[E] ⊂ Jγ[E]

and so it follows that
E| jE(η) ∈ Ult0(Jα[E], E).

Finally by the strong acceptability of Ult0(Jα[E], E) and since

α = jE(λ)

where λ = (ι+E)Jα[E], this implies that E| jE(η) ∈ Jα[E]. ut

Lemma 6.33. Suppose that E is a good partial extender sequence which satisfies the weak initial seg-
ment condition at all α ∈ dom(E). Then for all α ∈ dom(E), Eα can be coded by a set E such that for
some β ≤ α,
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(1) Either (Jβ[E],E|β) � ZFC\Powerset or (Jβ[E],E|β) � ZFC\Replacement.

(2) E ⊂ Jβ[E] and E ∩ Jξ[E] ∈ Jβ[E] for all ξ < β.

(3) (Jβ[E], E) and (Jα[E],Eα) are logically equivalent. ut

The main theorems from [24] actually yield amenable structures at the finite levels of supercompact-
ness because of satisfying the weak initial segment condition.

These can easily be extended to the levels of ω-extendible cardinals where one obtains the close
version of amenability indicated in the previous lemma. But since the focus of [24] is the finite levels of
supercompact, we restrict the statement of Theorem 6.35 to such levels as well.

Remark 6.34. In some sense, Theorem 6.35 represents, modulo the iteration hypothesis, the strongest
possible result for the extent of a fine-structural hierarchy of inner models where some version of
amenability holds at all active stages.

Thus the finite levels of supercompactness emerges as a canonical and natural threshold within the
large cardinal hierarchy beyond which a new approach is required for the construction of fine-structural
inner models, [25]. ut

The results of [24] combined with those of [25] yield the following theorem. Just as for Theorem 5.20,
the only use here of the results of [25] is to reduce the iteration hypothesis to the Weak Unique Branch
Iteration Hypothesis.

Theorem 6.35 (Weak Unique Branch Hypothesis). Assume that for each m < ω, there is a proper class
of m-extendible cardinals. Then there exists a good partial extender sequence E = 〈Eα : α ∈ dom(E)〉
such that the following hold.

(1) J[E] is weakly backgrounded and L[E] is weakly Σ2-definable.

(2) J[E] satisfies comparison.

(3) For each ξ and for each m < ω, there exists α ∈ dom(E) such that

(a) α > ξ,
(b) Eα is a J[E]-extender which witnesses that κ is m-extendible in J[E] where κ = κEα .

(4) E satisfies the weak initial segment condition at all α ∈ dom(E). ut

6.5 Weak extender models and comparison

The definition of comparison, Definition 5.17, can naturally be generalized to arbitrary inner models.
There are many possible versions and a natural rather weak version is as follows where the notion of
close embedding is as given in Definition 5.29 but applied to all elementary embeddings, j : M → N,
where M and N are transitive models of ZFC.

Definition 6.36. Suppose that N is a weak extender model for δ is supercompact and that

N � “V = HOD”.

Then N satisfies weak comparison if for all X,Y ≺Σ2 N the following hold where NX is the transitive
collapse of X and NY is the transitive collapse of Y .

Suppose that NX and NY are finitely generated models of ZFC, NX , NY , and

NX ∩ R = NY ∩ R.
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Then there exist a transitive set N∗ and elementary embeddings

πX : NX → N∗

and
πY : NY → N∗

such that πX is close to NX and πY is close to NY . ut

Remark 6.37. The elementary embeddings witnessing weak comparison are not required to have any
special form. Thus suppose there is an elementary embedding

π : NX → NY

such that π is close to NX and that N∗ is the ultrapower of NY by a countably complete non-principal
ultrafilter of N. Then there trivially exist elementary embeddings

πX : NX → N∗

and
πY : NY → N∗

such that πX is close to NX and πY is close to NY .
Thus one can require that the elementary embeddings witnessing weak comparison each be

nontrivial. ut

The conclusion of weak comparison is downward absolute to N and moreover the definition of
weak comparison can be applied with N = V provided there is a supercompact cardinal in V and that
V = HOD.

Thus the following is a natural test question for the existence of a generalization of L at the level
of supercompact cardinals based on anything like the current methodology for the construction of such
inner models.

Question 6.38. Suppose that there is a supercompact cardinal and that V = HOD. Can weak compari-
son hold?

The results we have discussed arguably show that for the construction of fine structural extender
models which are weakly backgrounded, going beyond the level of ω-extendible cardinals requires:

(1) Allowing the weak initial segment condition to fail.

(2) Allowing levels which are not even ω-weakly amenable.

(3) Altering how comparison is proved if one can provably (from some large cardinal hypothesis) reach
the level a weak extender model for supercompactness

Therefore we cannot just use good partial extender sequences to generate these models with anything
remotely like the current methodology. A natural alternative is to augment extender models with their
iteration strategies. These are strategic-extender models.
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7 Epilogue

The emerging picture based on the results we have surveyed in the previous sections is that in gener-
alizing inner models to level of weak extender models for supercompactness, one must not only have
failures of the weak initial segment condition but moreover that the hierarchy cannot consist of models
constructed from just a sequence of partial extenders.

The only alternative at present is an inner model theory based on a strategic premice–this is a hier-
archy of structures constructed from both a partial extender sequence and the iteration strategy for the
initial segments of the structure–for backgrounded structures this would be the iteration strategy inherited
from V assuming (some version of) the Weak Unique Branch Hypothesis.

Of course if one must pass to the strategic hierarchy then the strategic-extender structures can no
longer be layered and so a fundamentally new approach to the strategic-extender hierarchy is required
compared to the current approach, [15]. This is all the subject of [25].

Remark 7.1. From the broader perspective here is the picture which is emerging.

(1) At the lowest levels, reaching past measurable cardinals, the fine-structure models can be simply
defined (at reasonable closure points) and there is no distinction between the extender and strategic-
extender hierarchies.

(2) Ascending to levels below that of one Woodin cardinal there is still no distinction (again at reason-
able closure points) between the extender and strategic-extender hierarchies.

(3) Passing one Woodin cardinal and up to the finite levels of supercompactness, the extender and
strategic-extender hierarchies strongly diverge but both exist.

(4) Reaching the infinite levels of supercompactness requires a complete failure of amenability and
moreover at some point past the finite levels of supercompact, the extender hierarchy fails and one
is left with just the strategic-extender hierarchy. ut

The following summarizes, in more detail and within the context of the obstructions identified in the
previous sections, the approach of [25] and the key issue is what happens with the iterability problem.

The coding obstruction is handled by ensuring that at all extender-active stages, the projectum is at
most the image of the critical point. This strategy has already been used in unpublished work of Steel
and Neeman-Steel. This is discussed at length in [24].

This approach also facilitates the comparison proof and so there are a number of reasons to take this
path.

The amenability obstruction is handled because in meeting the coding obstruction one must allow
the weak initial segment condition to fail, and so one is forced to allow structures which are not even
ω-weakly amenable at their extender-active stages. These structures arise naturally in the backgrounded
construction and previous approaches would attempt to circumvent them.

The comparison obstruction is handled because one compares (in the general case), suitably iterable
structures against backgrounded structures restricting to the situation where the backgrounded struc-
ture does not move. This is forced by passing into the hierarchy of strategic-extender structures. Steel
has independently realized that this methodology is the key to extending the fine-structure theory of
nonstrategic-extender models to the hierarchy of strategic-extender models, and he has developed the
machinery for this.

Finally one is forced into the strategic-extender hierarchy in order to connect with AD+ for the proof
of iterability (which is an induction). The proof of iterability is only possible by connecting with the
general theory of AD+-models and that connection does not exist in the nonstrategic case. This con-
nection is through the HOD’s as computed within the AD+-models. These models are already known
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(in many cases) to be strategic-extender models and known under fairly general conditions to never be
nonstrategic-extender (or pure extender) models.

The fundamental reason for the necessity of this methodology is the following. If one assumes iter-
ability, for example the Weak Unique Branch Hypothesis, and that there is a huge cardinal then there
is nothing which prevents the construction of the much simpler nonstrategic-extender models up to the
level where one violates the comparison obstruction, Theorem 5.35.

Therefore the Weak Unique Branch Hypothesis must be false and the construction is vacuous. Further
in this case, the only credible possibility which remains is that iterability is proved by induction and not
on the basis of some general iteration hypothesis for V .

Verifying this is in fact what happens is the main task ahead [25]. In particular it is necessary to verify
that there are no further hidden obstructions and that can only be done by carefully working through all
the details.

As conjectured in [20], one can formulate the axiom, V = Ultimate-L, based on the strategic-extender
models, without referring to the detailed fine-structure theory of these models, or even using the defini-
tion of the structures yielding the levels of the models.

The main point here is that in the context of a proper class of Woodin cardinals, there are naturally
defined approximations to Ultimate-L and the collection is rich enough to make a definiton of the axiom,
V = Ultimate-L, possible without specifying the detailed level-by-level definition of Ultimate-L.

The approximations form a hierarchy and it has been verified that for an initial segment of the hier-
archy, the approximations are strategic-extender models. The conjecture of course is that all the approx-
imations are strategic-extender models and there is quite a bit of evidence for this conjecture. However
this is not the key issue.

The key issue is whether the axiom V = Ultimate-L formulated in terms of these approximations
must necessarily hold in some weak extender model for supercompactness assuming that there is an
extendible cardinal. Presumably any proof of this must yield as a corollary that these approximations are
all strategic-extender models.

Before giving the requisite preliminary definitions, we note that the situation is analogous to being
able to formulate the axiom, V = L, without specifying the definition of L. This is easily done as
illustrated by the following lemma.

Lemma 7.2. The following are equivalent.

(1) V = L.

(2) For each Σ2-sentence φ, if V � φ then there exists a countable ordinal α such that
N � φ

where N = ∩
{
M | M � ZFC\Powerset and OrdM = α

}
. ut

We recall the definition of the universally Baire sets, [1].

Definition 7.3 (Feng-Magidor-Woodin). A set A ⊆ R is universally Baire if for all topological spaces
Ω and for all continuous functions π : Ω → R, the preimage of A by π has the property of Baire in the
space Ω. ut

If there is a proper class of Woodin cardinals then the collection of the universally Baire sets has very
strong closure properties. Large cardinal hypotheses are necessary for this since for example, if V = L
then every set A ⊂ R is the image of a universally Baire set by a continuous function, f : R→ R.

Theorem 7.4. Suppose that there is a proper class of Woodin cardinals and that A ⊆ R is universally
Baire. Then every set

B ∈ P(R) ∩ L(A,R)
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is universally Baire. ut

Theorem 7.4 combined with the seminal Martin-Steel Theorem [10], which shows that if A ⊂ R is
universally Baire and there is a Woodin cardinal with a measurable cardinal above, then A is determined,
one obtains the following theorem which is central to analyzing the structure of the universally Baire
sets.

The axiom, AD+, is a technical variation of the axiom, AD, which asserts that all sets A ⊂ R are
determined. While it remains an interesting open question whether AD+ and AD are equivalent (over
ZF + DCR), the AD-models of interest are all AD+-models.

Theorem 7.5. Suppose that there is a proper class of Woodin cardinals and that A ⊆ R is universally
Baire. Then

L(A,R) � AD+. ut

Definition 7.6. Suppose that A ⊆ R is universally Baire. Then ΘL(A,R) is the supremum of the ordinals α
such that there is a surjection, π : R→ α, such that π ∈ L(A,R). ut

If A ⊂ R is universally Baire and there is a proper class of Woodin cardinal then ΘL(A,R) is a measure
of the complexity of A.

The connection with inner models for large cardinals begins with the following theorem.

Theorem 7.7. Suppose that there is a proper class of Woodin cardinals and that A is universally Baire.
Then ΘL(A,R) is a Woodin cardinal in HODL(A,R). ut

For the formulation of V = Ultimate-L we give and the analysis we shall do, it is convenient to use the
following notation from the theory of AD+. The definition of the Solovay Sequence originates in [17].

Definition 7.8 (ZF + AD+). (1) Θ denotes the supremum of the set of α ∈ Ord such that there is a
surjection π : R→ α.

(2) (Solovay Sequence) 〈Θα : α ≤ Ω〉 is the sequence defined by induction on α as follows.

a) Θ0 is the supremum of the set of ξ ∈ Ord such that there is a surjection π : R → ξ such that π
is OD.

b) Θα+1 the supremum of the set of ξ ∈ Ord such that there is a surjection π : P(Θα) → ξ such
that π is OD.

c) Θα = sup
{
Θβ | β < α

}
if α is a nonzero limit ordinal.

d) Θ = ΘΩ. ut

Remark 7.9. Assume AD+ and that V = L(P(R)). Let

〈Θα : α ≤ Ω〉

be the Solovay sequence. Suppose that α ≤ Ω and that either α = 0 or α is not a limit ordinal. Then the
following hold.

(1) Θα is a Woodin cardinal in HOD.

(2) Let δ be the largest Suslin cardinal such that δ < Θα. Then δ is a strong cardinal in HOD ∩ VΘα
.

Thus if V = L(A,R) and the largest Suslin cardinal is on the Solovay sequence then it must be both a
limit of Woodin cardinals and a strong cardinal in HODL(A,R) ∩ VΘ. ut

We fix some notation to simplify various statements.
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Definition 7.10. Assume there is a proper class of Woodin cardinals.

(1) Γ∞ is the set of all universally Baire sets.

(2) Γ C Γ∞ if the following hold.

a) Γ ( Γ∞ and Γ = P(R) ∩ L(Γ,R),
b) L(Γ,R) � ¬ADR. ut

We note the following lemma from the basic theory of AD+. With notation as in this lemma, ΘL(Γ,R)

is a Woodin cardinal in HODL(Γ,R) and δ is a strong cardinal in

HODL(Γ,R)|ΘL(Γ,R),

where δ is the largest Suslin cardinal of L(Γ,R).

Lemma 7.11. Suppose there is a proper class of Woodin cardinals and that Γ C Γ∞. Then there is a
largest Suslin cardinal in L(Γ,R). ut

The following theorems are from [23]. These theorems connect aspects of the large cardinal structure
of the HOD of an AD+ which satisfies V = L(P(R)), with the structure of the Suslin cardinals in that
determinacy model.

Theorem 7.12. Suppose there is a proper class of Woodin cardinals, Γ ( Γ∞, and that

Γ = P(R) ∩ L(Γ,R).

Then Γ C Γ∞ if and only if ΘL(Γ,R) is a Woodin cardinal in HODL(Γ,R). ut

Theorem 7.13. Suppose there is a proper class of Woodin cardinals and that Γ C Γ∞. Let δ be the
largest Suslin cardinal of L(Γ,R). Then the following are equivalent.

(1) δ is a limit of Woodin cardinals in HODL(Γ,R).

(2) δ < ΩL(Γ,R) and δ = (Θδ)L(Γ,R). ut

Assume there are infinitely many Woodin cardinals with a measurable cardinal above them all (for
example assume there is a proper class of Woodin cardinals). Then for many universally Baire sets
A ⊂ R, the inner model,

HODL(A,R),

has been verified to be a strategic-extender model. The natural conjecture is that (assuming there are
infinitely many Woodin cardinals with a measurable cardinal above) this must be true for all universally
Baire sets.

This suggests how to formulate the axiom V = Ultimate-L and the following is the formulation of the
axiom V = Ultimate-L implicitly defined in [20], except that the large cardinal hypothesis is altered.

Definition 7.14 (V = Ultimate-L). (1) There is a proper class of Woodin cardinals.

(2) For each Σ2-sentence φ, if φ holds in V then there exists a universally Baire set A ⊆ R such that

HODL(A,R) � φ ut

The following version of the axiom is given in [22].

Axiom 1. (1) There is a proper class of Woodin cardinals.

(2) There is a proper class of strong cardinals.
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(3) For each Σ4-sentence φ, if φ holds in V then there exists Γ C Γ∞ such that

HODL(Γ,R) ∩ VΘ � φ

where Θ = ΘL(Γ,R). ut

This version of the axiom implies the following intermediate version which therefore became an
elegant candidate for the formulation of V = Ultimate-L.

Axiom 2. (1) There is a strong cardinal which is a limit of Woodin cardinals.

(2) For each Σ3-sentence φ, if φ holds in V then there exists a universally Baire set A ⊆ R such that

HODL(A,R) ∩ VΘ � φ

where Θ = ΘL(A,R). ut

The main motivation behind these variations was the intuition that if V = Ultimate-L then the models,

HODL(Γ,R) ∩ VΘ

where Θ = ΘL(Γ,R) and Γ C Γ∞, should resemble V if Γ is sufficiently closed. We shall see below however
that this is very likely impossible.

A more pragmatic motivation for considering these kinds of variations is simply that with more reflec-
tion and a stronger large cardinal hypothesis, the consequences, such as those indicated in Theorem 7.26
below, are easier to obtain.

On the other hand, one clearly wants a version which can hold in a weak extender model for super-
compactness.

For Σ2-sentences there is no difference in formulating V = Ultimate-L in terms of reflecting to
HODL(A,R) versus reflecting to

HODL(A,R) ∩ VΘ

where Θ = ΘL(A,R).

Lemma 7.15. Suppose that there is a proper class of Woodin cardinals. Then the following are equiva-
lent.

(1) For each Σ2-sentence φ, if φ holds in V then there exists a universally Baire set A ⊆ R such that

HODL(A,R) � φ.

(2) For each Σ2-sentence φ, if φ holds in V then there exists a universally Baire set A ⊆ R such that

HODL(A,R) ∩ VΘ � φ

where Θ = ΘL(A,R).

Proof. Let δA be the largest Suslin cardinal of L(A,R). By the general theory of AD+, there exists a set
T ⊂ δA such that in L(A,R) every set is OD with parameters from {T } ∪ R.

This implies by Vopenka’s Theorem adapted to L(A,R), that there exists a set X ⊂ ΘL(A,R) such that

HODL(A,R) = L[X].

Let T0 be the theory, ZFC\Replacement together with Σ1-Replacement and the sentence which asserts
that for all Z ⊂ Ord, Z# exists. Then for all α ∈ Ord, if

HODL(A,R) ∩ Vα � T0,

necessarily α ≤ ΘL(A,R). The lemma follows easily from this. ut
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Lemma 7.15 is false for Π2-sentences and this claim follows easily from the proof of Lemma 7.15
since that proof shows that if for every set Y ⊂ Ord, Y# exists, then there is a Π2-sentence which holds in
V and in HODL(A,R) ∩ VΘ where Θ = ΘL(A,R), but which cannot hold in HODL(A,R).

This suggests the kinds of variations in the formulation of V = Ultimate-L indicated above and the
following lemma motivates the second formulation, given above as Axiom 2, since it shows that Axiom
1 (even weakened to just Σ3-sentences) implies Axiom 2.

Lemma 7.16. Suppose there is a proper class of Woodin cardinals, Γ C Γ∞, and that for all A ∈ Γ,
(A,R)# ∈ L(Γ,R). Then there exists A ∈ Γ such that for all Σ3-sentences φ, if

HODL(Γ,R) ∩ VΘΓ
� φ

then
HODL(A,R) ∩ VΘA � φ

where ΘA = ΘL(A,R) and ΘΓ = ΘL(Γ,R).

Proof. Let δ be the largest Suslin cardinal of L(Γ,R) and fix δ < η0 < ΘΓ such that

HODL(Γ,R) ∩ Vη0 ≺ HODL(Γ,R) ∩ VΘΓ

Note that η0 exists since ΘΓ is strongly inaccessible in HODL(Γ,R). Let A ∈ Γ be such that

max(δ, η0) < ΘA

where ΘA = ΘL(A,R). By the Moschovakis Coding Lemma, [13], δ is the largest Suslin cardinal of
L(A,R) and so by the general theory of AD+ (and in particular by the proof that δ is a strong cardinal in
HODL(Γ,R) ∩ VΘΓ

), it follows that

HODL(A,R) ∩ VΘA = HODL(Γ,R) ∩ VΘA .

This implies that for all Σ3-sentences φ, if

HODL(Γ,R) ∩ VΘΓ
� φ

then
HODL(A,R) ∩ VΘA � φ

and so A witnesses the lemma. ut

The following lemma also holds for the variation of V = Ultimate-L given above as Axiom 2, and the
proof is the same.

Lemma 7.17. Suppose there is a proper class of Woodin cardinals, Γ C Γ∞, and that for all A ∈ Γ,
(A,R)# ∈ L(Γ,R). Suppose that

HODL(Γ,R) ∩ VΘΓ
� “There is a proper class of Woodin cardinals”

Then
HODL(Γ,R) ∩ VΘΓ

� “V = Ultimate-L”

where ΘΓ = ΘL(Γ,R).

Proof. Fix a Σ2-sentence φ such that
HODL(Γ,R) ∩ VΘΓ

� φ.

By Lemma 7.16, there exists A ∈ Γ such that

HODL(A,R) ∩ VΘA � φ.

Thus by the ∆2
1-Basis Theorem, there exists in L(Γ,R) a ∆2

1-set Z which codes (X,R)# where X ⊆ R is
such that

HODL(X,R) ∩ VΘX � φ
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and ΘX = ΘL(X,R). Since Σ2
1 has the scale property in L(Γ,R),

(Vω+1 ∩ HODL(Γ,R),Z ∩ HODL(Γ,R)) ≺ (Vω+1,Z)

and again by the scale property for Σ2
1, Z ∩ HODL(Γ,R) is universally Baire in

HODL(Γ,R) ∩ VΘΓ
.

Therefore X ∩ HODL(Γ,R) witnesses the necessary instance of reflection. ut

Remark 7.18. Suppose there is a proper class of Woodin cardinals which are limits of Woodin cardinals.
Then by the results of Sargsyan, there exists Γ C Γ∞, such that for all A ∈ Γ, (A,R)# ∈ L(Γ,R) and such
that

δΓ = (ΘδΓ
)L(Γ,R)

where δΓ is the largest Suslin cardinal of L(Γ,R). ut

The reason for not simply declaring Axiom 2 as the axiom V = Ultimate-L is a recent result which
shows (assuming what seem to be extremely plausible assumptions) that if L(A,R) � AD+ then

HODL(A,R) ∩ VΘ � “There are no supercompact cardinals”

where Θ = ΘL(A,R). In fact one obtains that no cardinal κ < ΘL(A,R) of HODL(A,R) is λ-supercompact where
λ is the least L(A,R)-cardinal above κ.

The “plausible assumptions” concern the representation of the rank initial segments of HODL(A,R)

below the largest Suslin cardinal of L(A,R) as the direct limit of structures in an appropriate hierarchy
of strategic-extender structures.

The restriction to rank initial segments of HODL(A,R) below the largest Suslin cardinal of L(A,R)
suffices here since:

(1) If U ∈ HODL(A,R) is a countably complete uniform ultrafilter in HODL(A,R) on some ordinal γ, then
necessarily γ < ΘL(A,R).

(2) If Θ = ΘL(A,R) then(
Lδ(A,R),HODL(A,R) ∩ Lδ(R)

)
≺Σ1

(
LΘ(A,R),HODL(A,R) ∩ LΘ(R)

)
where δ is the largest Suslin cardinal of L(A,R). This is a corollary of the proof that δ is a strong
cardinal in HODL(A,R)|Θ.

Such a representation would yield the following conjecture which is all one needs. Define that a set
X ⊂ P(Y) generates a countably complete filter if ∩σ , ∅ for each countable set σ ⊂ X.

Definition 7.19 (HOD-Ultrafilter Conjecture). Suppose that A ⊂ R, L(A,R) � AD+, U ∈ HODL(A,R),
and

HODL(A,R) � “U is a countably complete ultrafilter”.

Then U generates a countably complete filter. ut

The HOD-Ultrafilter Conjecture implies that ω1 must be the least measurable cardinal in HODL(A,R).
This is already known, and that analysis yields the following theorem.

Theorem 7.20. Suppose that A ⊂ R and L(A,R) � AD+. Then ωV
1 is the least measurable cardinal

in HODL(A,R) and every ultrafilter U ∈ HODL(A,R) on ωV
1 which is countably complete in HODL(A,R)

generates a countably complete filter. ut
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The proof of Theorem 7.20 highlights a subtle aspect of the HOD-Ultrafilter Conjecture, even if one
restricts to just ultrafilters on ωV

1 . There are countable sets

σ ⊂ P(ω1) ∩ HODL(A,R)

which cannot be covered by countable sets τ ∈ HOD. This is because the cardinal successor of ωV
1 in

HODL(A,R) has countable cofinality.
The following theorem from [23] provides some evidence for the HOD-Ultrafilter Conjecture. The

strength of this evidence is arguable since B can be chosen so that ΘL(A,R) is the only Woodin cardinal of
HODL(A,R)

B .

Theorem 7.21. Suppose that A ⊂ R and L(A,R) � AD+. Then there exists B ⊂ R such that B ∈ L(A,R)
and such that for all U ∈ HODL(A,R)

B for which

HODL(A,R)
B � “U is a countably complete ultrafilter”,

the filter generated by U is countably complete. ut

Assuming V � AD, if N is an inner model of ZFC then Θ is always a limit of strongly inaccessible
cardinals of N which have cofinality ω in V . This shows that if

V � AD+ + “V = L(P(R))”

and if the HOD-Ultrafilter Conjecture holds in V then there can be no supercompact cardinals in
HOD ∩ VΘ. The basic argument is given in the proof of Theorem 7.24.

A much tighter connection between the HOD-Ultrafilter Conjecture and the degree to which super-
compactness can occur in the model,

HODL(A,R) ∩ VΘ

where Θ = ΘL(A,R), follows from the following theorem from [23].

Theorem 7.22. Suppose that L(A,R) � AD+, κ < ΘL(A,R) is a cardinal of HODL(A,R), and

λ = (|κ|+)L(A,R).

Then there is a countable set σ ⊂ λ such that σ 1 τ for any set τ ∈ HODL(A,R) such that
ordertype(τ) < κ. ut

Remark 7.23. The proof of Theorem 7.22 actually shows that if N ⊂ L(A,R) is an inner model of ZFC
(containing the ordinals) and if ω < λ < ΘL(A,R) is a cardinal of L(A,R), then λ is a limit of strongly inac-
cessible cardinals of N which have countable cofinality in L(A,R) (and hence have countable cofinality
in V). ut

Theorem 7.22 combined with the HOD-Ultrafilter Conjecture yields the following theorem. For this
theorem, the distinction between HODL(A,R) and HODL(A,R) ∩ VΘ, where Θ = ΘL(A,R), is not relevant.

An immediate corollary of Theorem 7.24 is that assuming the HOD-Ultrafilter Conjecture holds for
L(A,R) then

HODL(A,R) ∩ VΘ � “There are no supercompact cardinals”

where Θ = ΘL(A,R).

Theorem 7.24. Suppose A ⊂ R, L(A,R) � AD+, and that the HOD-Ultrafilter Conjecture holds for
L(A,R). Suppose κ is a cardinal of HODL(A,R) and λ = (|κ|+)L(A,R). Then

HODL(A,R) � “κ is not λ-supercompact.”
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Proof. Assume not and let U ∈ HODL(A,R) be such that

HODL(A,R) ∩ VΘ � “U is a κ-complete fine ultrafilter on Pκ(λ)”.

Since the HOD-Ultrafilter Conjecture holds for L(A,R), U generates a countably complete filter. There-
fore for all countable σ ⊂ λ there must exist

τ ∈ HODL(A,R)

such that σ ⊂ τ and such that ordertype(τ) < κ. This contradicts Theorem 7.22. ut

Thus the models,
HODL(Γ,R) ∩ VΘΓ

where ΘΓ = ΘL(Γ,R) and Γ C Γ∞, very likely cannot resemble V in context of large cardinals no matter
how Γ is chosen. Any resemblance is limited to the level of Σ2-sentences.

By Theorem 7.12, allowing Wadge initial segments Γ ⊂ Γ∞ for which

L(Γ,R) � ADR

(equivalently, which do not satisfy Γ C Γ∞) cannot help which was the original point for focusing on
Γ C Γ∞. Here again, plausible assumptions give a much stronger result, specifically that there can be no
strong cardinal in HODL(Γ,R)|ΘΓ.

The next theorem is from [23] and highlights a very useful consequence of the axiom V = Ultimate-L.
This a typical consequence of the axiom V = Ultimate-L which is easier to obtain if one assumes a
version with stronger large cardinal assumptions and with more reflection as in [22].

Theorem 7.25 (V = Ultimate-L). For each cardinal κ, if V[G] is a set-generic extension of V then there
exists an elementary embedding

π : (H(κ+))V → N

such that (π,N) ∈ V and such that N ∈ HODV[G]. ut

The following theorem from [23] summarizes some of the key consequences of the axiom
V = Ultimate-L where the Generic-Multiverse is the generic-multiverse generated by V , [21].

These are proved in [22], assuming Theorem 7.32 and Theorem 7.25, but only for the somewhat
stronger formulation of V = Ultimate-L which is given there.

In light of the necessity of the revision of the formulation of V = Ultimate-L, those theorems of [22]
are not really relevant now.

Theorem 7.26 (V = Ultimate-L). (1) CH holds.

(2) V = HOD.

(3) V is the minimum universe of the Generic-Multiverse. ut

The conclusions (2)–(3) of Theorem 7.26 actually follow from Theorem 7.25 by fairly general argu-
ments and we briefly sketch how. These arguments are from [22].

We first prove the following corollary of Theorem 7.25 which is a very strong version Theo-
rem 7.26(2). We then use Theorem 7.27 to prove Theorem 7.26(3), which we isolate as Theorem 7.28
below.

Theorem 7.27 (V = Ultimate-L). Suppose V[G] is a set generic extension of V . Then

V ⊆ (HOD)V[G].
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Proof. Fix a partial order P ∈ V such that G is V-generic for P and let δ = |P|V . We prove that for all
regular cardinals κ > δ, (P(κ))V ⊂ (HOD)V[G] and this will show that V ⊆ (HOD)V[G].

Fix a regular cardinal κ > δ and let 〈S α : α < κ〉 ∈ V be a partition of the set

S =
{
α < κ | (cof(α))V = ω

}
into stationary sets such that there is a closed unbounded set C0 ⊂ κ such that C0 ∈ V and such that for
each η ∈ C0 ∩ S ,

η ∈ ∪
{
S ξ | ξ < η

}
.

Note that if C ⊆ κ is a closed cofinal set with C ∈ V[G] then there must exist a closed cofinal set D ⊆ C
such that D ∈ V . Therefore each S α is a stationary set in V[G].

By Theorem 7.25 there exists an elementary embedding
π :

(
H(κ+)

)V
→ N

such that N ∈ (HOD)V[G] and such that (π,N) ∈ V . Let
〈Tβ : β < π(κ)〉 = π(〈S α : α < κ〉).

Working in V[G], define

Z =
{
β < π(κ) | Tβ ∩C , ∅ for all closed cofinal sets C ⊂ sup(π[κ])

}
.

Thus Z ∈ (HOD)V[G] since 〈Tβ : β < π(κ)〉 ∈ (HOD)V[G]. Note that for all ξ ∈ S , π(ξ) = sup(π[ξ]).
Therefore since each set S α is a stationary subset of κ in V[G],

π[κ] ⊆ Z
and so since for each η ∈ C0 ∩ S ,

η ∈ ∪
{
S ξ | ξ < η

}
,

necessarily,
Z = π[κ].

For each X ∈ N, let X∗ = {α < κ | π(α) ∈ X}. Since N ∈ (HOD)V[G] and since π[κ] ∈ (HOD)V[G],
{X∗ | X ∈ N} ⊂ (HOD)V[G].

Finally (P(κ))V
⊂ dom(π) and so

(P(κ))V = {X∗ | X ∈ N}

which implies that (P(κ))V ⊂ (HOD)V[G]. ut

Theorem 7.28 (V = Ultimate-L). V is the minimum universe of the Generic-Multiverse.

Proof. Suppose that V[G] = V0[G0], G ⊂ P is V-generic for some partial order P ∈ V , and G0 ⊂ P0 is
V0-generic for some partial order P0 ∈ V0. We must prove that V ⊆ V0.

Fix a cardinal δ ∈ V such that |P|V < δ and such that |P0|
V0 < δ. The key points are that in V ,

RO(P × Coll(ω, δ)) � RO(Coll(ω, δ)),
and that in V0,

RO(P0 × Coll(ω, δ)) � RO(Coll(ω, δ)).
Suppose g ⊂ Coll(ω, δ) is V[G]-generic. Therefore by the homogeneity of Coll(ω, δ),

(HOD)V[g] = (HOD)V[G][g] = (HOD)V0[G0][g] = (HOD)V0[g] ⊆ V0.

By Theorem 7.27, V ⊆ (HOD)V[g] and so V ⊆ (HOD)V0[g] ⊂ V0. ut

Remark 7.29. Usuba [19] has proved a remarkable theorem. If sufficient large cardinals exist in V then
the Generic-Multiverse has a unique minimum element.

Thus arguably any candidate for the axiom V = Ultimate-L must imply that V is the minimum
universe of the Generic-Multiverse. ut
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The problem of whether V = Ultimate-L implies the Ω Conjecture is more subtle and this is because
of the restriction to Σ2-sentences in the formulation of the axiom. The stronger versions given as Axiom
1 and Axiom 2 each imply the Ω Conjecture.

What one seems to need in order to prove the Ω Conjecture from V = Ultimate-L is the following
conjecture which also follows from the previously discussed “plausible assumptions”.

Definition 7.30 (Θ0 Conjecture). Suppose L(A,R) � AD+. Then (Θ0)L(A,R) is the least Woodin cardinal
of HODL(A,R). ut

The following theorem from [23] provides strong evidence for the Θ0 Conjecture. Note that Θ0 is
same allowing x has a parameter for any x ∈ R; more precisely, if π : R → α is a surjection which is
ODx for some x ∈ R, then α < Θ0.

Theorem 7.31. Suppose that A ⊂ R and that L(A,R) � AD+. Then for a Turing cone of x, (Θ0)L(A,R) is
the least Woodin cardinal of HODL(A,R)

x . ut

Theorem 7.32 (V = Ultimate-L). Assume the Θ0 Conjecture and let λ be the least Woodin cardinal.
Then there is a partial order P ∈ Vλ+1 such that if G ⊂ P is V-generic then in V[G] every ∆2

1 subset of R
is universally Baire.

Proof. We just sketch the proof which requires basic elements of the theory of AD+.
It suffices to prove that if κ > λ and |Vκ| = κ then there is a partial order P ∈ Vλ+1 such that if G ⊂ P is

V-generic then in V[G] every ∆2
1 subset of R is (<κ)-universally Baire.

This is expressible by a Π2-sentence, ψ. Assume toward a contradiction that (¬ψ) holds. Then since
V = Ultimate-L holds, there exists a universally Baire set A ⊂ R such that the following hold where
ΘA = ΘL(A,R).

(1.1) HODL(A,R) ∩ VΘA � (¬ψ).

(1.2) The Θ0 Conjecture holds for L(A,R).

Since Σ2
1 has the scale property in L(A,R), every set Z ⊂ R which is Σ2

1-definable in L(A,R), is the
projection of a tree T such that T ∈ HODL(A,R).

Let δA be the largest Suslin cardinal of L(A,R). Thus δA is (<ΘA)-strong in HODL(A,R) and therefore
(Θ0)L(A,R) < δA since (Θ0)L(A,R) is the least Woodin cardinal in HODL(A,R).

Let G ⊂ Coll(ω1,R) be L(A,R)-generic. A key point is that by Vopenka’s Theorem and the definition
of (Θ0)L(A,R), HODL(A,R)[G] is a generic extension of HODL(A,R) for a partial order of size at most (Θ0)L(A,R)

in HODL(A,R).
For each λ < δA there is a unique normal fine countably complete ultrafilter, Uλ, in L(A,R) on Pω1(λ).

Thus every set of reals which is ∆2
1-definable in L(A,R) is (<δA)-universally Baire in HODL(A,R)[G],

appealing to the closure of
HODL(A,R) ∩ P(Ord)

under the ultrapowers maps πλ as computed in L(A,R) using the ultrafilters Uλ. We view πλ as acting on
all sets of ordinals where the ultrapowers are computed using all functions in L(A,R).

We have that δA is (<ΘA)-strong in HODL(A,R) and this implies that δA is (<ΘA)-strong in HODL(A,R)[G].
Thus every set Z ⊂ R which is ∆2

1-definable in L(A,R), is universally Baire in
HODL(A,R)[G] ∩ VΘA .

But this includes all the sets Z ⊂ R which are ∆2
1-definable in

HODL(A,R) ∩ VΘA

and this proves that
HODL(A,R) ∩ VΘA � ψ,

which is a contradiction. ut
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The proof of Theorem 7.32 adapts to prove the following more striking version of that theorem (as-
suming there is a strong cardinal). This requires the following variation of the Θ0 Conjecture which is
really a strong version of Theorem 7.13.

Definition 7.33 (Θα Conjecture). Suppose that A ⊂ R,

L(A,R) � AD+,

and γ < ΘL(A,R). Then the following are equivalent.

(1) γ is a limit of Woodin cardinals in HODL(A,R) and no cardinal κ is (<γ)-strong in HODL(A,R).

(2) γ = (Θα)L(A,R) for some limit ordinal α > 0. ut

Remark 7.34. (1) The Θ0 Conjecture characterizes Θ0 in HOD, whereas the Θα Conjecture character-
izes in HOD, all the Θα where α > 0 and α is a limit ordinal.

(2) By [23], assuming AD+ and that V = L(P(R)), if α > 0 is a limit ordinal then Θα cannot be a limit
of HOD-cardinals which are (<Θα)-strong in HOD. Thus Θα is a Woodin cardinal in HOD if and
only if α = 0 or α is not a limit ordinal. This implies Theorem 7.12. ut

We note the following theorem, [23].

Theorem 7.35 (Ω Conjecture). Suppose there is a proper class of Woodin cardinals. Then there is a
partial order P such that if G ⊂ P is V-generic then in V[G],

V(RV[G]) � AD+. ut

The conclusion of Theorem 7.36 (augmented with the Θ0 Conjecture) is simply a much stronger
version of the conclusion of Theorem 7.35, showing that one can require P to be homogeneous and in
addition both that λ0 is Θ = Θ0 in V(RV[G]) and that Vλ0 is exactly HOD|Θ0 as computed in the L(P(R))
of V(RV[G]), where λ0 is the least Woodin cardinal of V .

Theorem 7.36 (V = Ultimate-L). Assume the Θα Conjecture and suppose that there is a strong cardinal.
Let λ be the least strong cardinal. Then there is a homogeneous partial order P ∈ Vλ+1 such that if G ⊂ P
is V-generic then in V[G] the following hold where

ΓG = (Γ∞)V[G]

and where RG = RV[G].

(1) V(ΓG,RG) � ADR + “Θ is regular” and ΓG = P(RG) ∩ V(ΓG,RG).

(2) λ = ΘL(ΓG ,RG) and Vλ = HODL(ΓG ,RG) ∩ V[G]λ. ut

The conclusion of Theorem 7.36 is actually equivalent to V = Ultimate-L assuming that there is a
strong cardinal and that the Θα Conjecture holds.

To obtain the Ω Conjecture from V = Ultimate-L and the Θ0 Conjecture, we use the following lemma
which is a special case of Lemma 217 on page 315 in [20].

Lemma 7.37. Suppose that there is a proper class of Woodin cardinals and that for every set Z ⊂ R, if
Z is ∆2

1-definable then Z is universally Baire. Then

HOD � “The Ω Conjecture” ut

Theorem 7.38 (V = Ultimate-L). Assume the Θ0 Conjecture. Then the Ω Conjecture holds.
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Proof. By Theorem 7.32, there is a partial order P such that if G ⊂ P is V-generic then in V[G] every ∆2
1

subset of R is universally Baire. By Lemma 7.37,
(HOD)V[G] � “The Ω Conjecture”

and by Theorem 7.27,
V ⊆ (HOD)V[G].

Therefore (HOD)V[G] must be a generic extension of V . Finally the Ω Conjecture is absolute between
set-generic extensions and so the Ω Conjecture holds in V . ut

Finally, a very natural open question is the following where weak comparison is as defined in Defini-
tion 6.36. This question makes sense by Theorem 7.26(2).

Question 7.39. Does V = Ultimate-L imply weak comparison? ut

We now very briefly consider the Ultimate-L Conjecture and we begin by noting the following lemma.
This lemma explains why in the formulation of the Ultimate-L Conjecture it is reasonable to require N
be a weak extender model for the supercompactness of δ, versus just requiring that N be a weak extender
model for the supercompactness of some cardinal.

Lemma 7.40. Suppose that N is a weak extender model for the supercompactness of κ, N is weakly
Σ2-definable, and that δ > κ is an extendible cardinal. Then N is a weak extender model for the super-
compactness of δ.

Proof. Let λ > δ be such that Vλ ≺Σ4 V and let
j : Vλ+1 → V j(λ)+1

be an elementary embedding such that CRT( j) = δ and j(δ) > λ. Thus:

(1.1) N ∩ Vλ = (N)Vλ .

(1.2) Vλ � “N is a weak extender model for κ is supercompact”.

(1.3) V j(λ) � “N is a weak extender model for κ is supercompact”.

(1.4) (N)V j(λ) ∩ Vλ = N ∩ Vλ where (N)V j(λ) is N as computed in V j(λ). This well-defined by the elemen-
tarity of j.

Therefore by (the proof of) the Universality Theorem, Theorem 3.26, for each δ < γ < λ,
j|(Vγ ∩ N) ∈ (N)V j(λ)

and so for each δ < γ < λ, there exists a δ-complete normal fine ultrafilter U on Pδ(γ) such that

(2.1) N ∩ Pδ(γ) ∈ U,

(2.2) U ∩ N ∈ N.

This implies that N is a weak extender model for δ is supercompact. ut

We end with the following conjecture which is the minor variation of the version of the
Ultimate-L Conjecture given in [24] obtained by dropping one clause9. Proving either conjecture would
show in a decisive fashion the transcendence of the strategic-extender hierarchy.

The same applies to the weaker conjecture where one drops the requirement that N ⊆ HOD or the
requirement that N be weakly Σ2-definable. Here, for example, one could simply conjecture that if κ is
strongly inaccessible and δ is an extendible cardinal in Vκ then there exists N ∈ Vκ+1 such that

N � “V = Ultimate-L”
and such that relative to Vκ, N is a weak extender model for the supercompactness of δ.

9which asserts that there is an extender sequence Ẽ of length δ in V whose restriction to N both belongs to N and witnesses in N that δ is a Woodin
cardinal.
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Conjecture 7.41. Suppose that δ is an extendible cardinal. Then there exists a weak extender model N
for the supercompactness of δ such that:

(1) N is weakly Σ2-definable and N ⊂ HOD,

(2) N � “V = Ultimate-L”. ut
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