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Abstract

The cord-blood mercury concentration is usually considered the best biomarker in regard to

developmental methylmercury neurotoxicity. However, the mercury concentration may be

affected by the binding of methylmercury to hemoglobin and perhaps also selenium. As cord-

blood mercury analyses appear to be less precise than suggested by laboratory quality data, we

studied the interrelationships of mercury concentrations with hemoglobin in paired maternal and

cord blood samples from a Faroese birth cohort (N = 514) and the Mothers and Children’s

Environmental Health study in Korea (n=797). Linear regression and structural equation model

(SEM) analyses were used to ascertain interrelationships between the exposure biomarkers and the

possible impact of hemoglobin as well as selenium. Both methods showed a significant

dependence of the cord-blood concentration on hemoglobin, also after adjustment for other

exposure biomarkers. In the SEM, the cord blood measurement was a less imprecise indicator of

the latent methylmercury exposure variable than other exposure biomarkers available, and the

maternal hair concentration had the largest imprecision. Adjustment of mercury concentrations

both in maternal and cord blood for hemoglobin improved their precision, while no significant

effect of the selenium concentration in maternal blood was found. Adjustment of blood-mercury

concentrations for hemoglobin is therefore recommended.
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1. Introduction

The cord-blood mercury (Hg) concentration has been suggested as the best risk indicator in

regard to methylmercury-associated developmental neurotoxicity (Grandjean et al., 2007).

However, as a biomarker of prenatal methylmercury exposure, the total Hg concentration in

cord blood is associated with imprecision that exceeds the level suggested by laboratory

quality assurance data (Grandjean et al., 2005; Grandjean et al., 2007). Some of this

imprecision may be due to variable binding of methylmercury (MeHg) to erythrocytes, in

which mercury binds to hemoglobin (Sakamoto et al., 2004). Previous studies have

documented that Hg concentrations are higher in cord blood than in the corresponding

maternal blood, likely due to the easy transfer of MeHg through the placenta (Kajiwara et

al., 1996; Morrissette et al., 2004; Sakamoto et al., 2012), the greater affinity of MeHg to

fetal hemoglobin (Hsu et al., 2007; Iyengar et al., 2001), and the higher hematocrit in

newborns compared to their mothers (Stern et al., 2003). For this reason, standardization of

the blood-Hg concentration to the one in erythrocytes has been recommended (Sakamoto et

al., 2004). Adjustment for the hemoglobin concentration would likely be even better,

although the impact on the imprecision has not been determined so far.

Another factor of possible relevance is that selenium (Se) is thought to bind to MeHg (Harris

et al., 2003), thus possibly affecting the toxicokinetics of the latter. Hence, Se status could

conceivably interfere with the transplacental transfer of MeHg and thus the partition

between mother and fetus. However, previous studies of Se-MeHg interactions have mainly

focused on impacts on MeHg toxicity under particular exposure regimens that may not

reflect human exposures. The earliest experimental studies showed that Se reduced the acute

toxicity of MeHg injected into rats, thus suggesting the notion that Se may form complexes

with MeHg in the blood, thereby decreasing the bioavailability of both elements (Ganther et

al., 1972). More recent research in rodents supports that antioxidant nutrients, including Se,

in the diet may alter the reproductive and developmental toxicity associated with MeHg

exposure (Beyrouty et al., 2006). As Se is known to co-exist with MeHg in fish and sea

mammals (Burger et al., 2007a; Burger et al., 2007b; Cabanero et al., 2005; Kaneko et al.,

2007), a potential toxicokinetic interaction may occur in regard to transplacental transfer of

MeHg from maternal seafood diets. Although human evidence on this possibility is not

available, we considered Se as a covariate.

Imprecision of the exposure parameter is a crucial concern, because the exposure parameter

in routine statistical calculations is usually treated as an independent variable without error

(Grandjean and Budtz-Jørgensen, 2007). However, all biomarkers are subject to

imprecision, and non-differential errors tend to bias the dose-response relationship toward

the null (Fuller, 1987). To take into account the imprecision, a useful approach is to employ

a structural equation model, where confounders and effect variables are included (Budtz-

Jørgensen et al., 2002; Grandjean et al., 2007). In a Faroese birth cohort, the average total

imprecision (expressed as the coefficient of variation) for the cord-blood Hg concentration
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was found to be about 25% (Grandjean et al., 2005; Grandjean et al., 2007), a magnitude

large enough to bias apparent dose-response relationships. The imprecision for hair Hg

measurements is much greater. As only a very small part of such imprecision can be

ascribed to laboratory variability, identification of other error sources is important.

Therefore, we assessed exposure biomarker imprecision and the impact of adjustment for

hemoglobin and Se. We utilized data from birth cohort studies in the Faroe Islands and in

Korea (Mothers and Children’s Environmental Health, MOCEH).

2. Materials and methods

2.1 Subjects

A cohort of 514 singleton births was assembled at the National Hospital in the Faroe Islands

during a 20-month period in 2007–2009. This North Atlantic population is of mainly

Scandinavian origin, relatively uniform, and is covered by a modern health care service. The

Faroese are of particular interest in environmental epidemiology, as pilot whale is among the

traditional food items eaten as part of their marine diet. Pods of this small whale species are

occasionally caught and the meat and blubber are shared locally. Because of the high MeHg

concentration in the meat (Julshamn et al., 1987), the Faroese have a high average exposure

to this contaminant and a wide range of exposure levels that depend on whale availability

(Budtz-Jørgensen et al., 2004; Grandjean et al., 1992). At parturition, we obtained whole

blood from the cord immediately after clamping. Maternal blood and hair was obtained

approximately two weeks after parturition, when the mother brought the infant in for a

scheduled health check-up. Cord blood and maternal blood were analyzed for total Hg and

hemoglobin, while the maternal blood was also analyzed for Se. Complete samples sets were

available from 514 subjects.

The MOCEH study was carried out in Korea to determine the effects of maternal

environmental exposure on fetal and postnatal growth and development. All pregnant

women living in the targeted study site (i.e., Seoul, Cheonan, and Ulsan), who were in their

first trimester of pregnancy at the time of screening, were eligible. The maternal blood

samples were obtained during late pregnancy (28–42 gestational weeks). The recruitment

period in the MOCEH study was from 2006 to 2008 for the hospitals and clinics. A total of

921 women were eligible, and 124 women were not included due to exclusions or missing

values in major variables. The study subjects were restricted to those for whom the maternal

and cord blood Hg levels were assessed. Overall, 797 participants were eligible for this

study.

2.2 Subjects and biomarker assessment

The Faroese blood samples were analyzed for total Hg by cold-vapor atomic absorption

spectrometry on a Direct Mercury Analyzer DMA-80 (Milestone, Italy). Maternal hair-Hg

was determined as previously described (Dalgard et al., 1994) by flow injection cold-vapor

technique (FIMS-400 and AS-90; PerkinElmer, Wellesley, MA, USA). Quality assurance

data showed imprecision levels below 5% in agreement with previous studies (Grandjean et

al., 2005; Grandjean et al., 2007). Selenium in blood was measured by Zeeman atomic

furnace absorption spectrometry using an AA800 Zeeman Atomic Absorption
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Spectrophotometer fitted with THGA endcapped L’vov type graphite tubes, an EDL

Selenium lamp current 280 mA, and autosampler AS90 (all from Perkin Elmer). In regard to

imprecision, the relative standard deviation was 3.5% for within-run repeatability and 5.2%

between runs. Hemoglobin was determined by spectrometry on a Cobas Mira analyzer.

Total hemoglobin was determined in 50 μL whole blood by Drabkin’s cyanomethemoglobin

method on a Cobas Mira S analyser (Roche, Basel, Switzerland) using a 9.3 mmol/L

hemoglobin standard from Cypress Diagnostics (Langdorp, Belgium) for calibration.

Mercury exposure biomarkers in Korea have been previously described (Kim et al., 2011).

The analytical method for total Hg was similar (DMA-80, Milestone, Italy) with standard

quality control procedures. The coefficient of variation (CV) of the Hg concentration

between runs and within each run was 3.0% and 2.5%, respectively. Hemoglobin

concentrations in MOCEH samples were analyzed using sodium lauryl sulfate (SLS)-

hemoglobin (Sysmex XE 2100D, CA, USA).

2.3 Statistical analysis

Following descriptive analyses, logarithmic transformations were used for the mercury

biomarkers due to skewed distributions, and geometric means were calculated.

Interrelationships between the transformed exposure biomarkers were determined by

Pearson’s correlation coefficients.

The dependence of the cord blood Hg concentration on hemoglobin and Se was first

assessed in two regression models. In both models the cord blood Hg concentration was the

dependent variable while hemoglobin and Se were independent variables. As an additional

covariate, Model A included the maternal Hg blood concentration while Model B instead

used the maternal hair concentration for comparison purposes. The adjustment for another

MeHg exposure biomarker is critical as it will remove a possible association between

selenium and level of prenatal mercury exposure. The analysis will then reveal whether the

cord blood mercury concentration depends on selenium in children with the same exposure

level. Regression coefficients are expressed as change of the Hg concentration in cord blood

associated with a doubling of other exposure biomarkers. We report two-sided p-values.

As a supplement, a structural equation model was developed for the exposure biomarkers

(Budtz-Jørgensen et al., 2002). In these models, observed variables are assumed to depend

on common latent variables which may in turn depend on covariates. Thus, each of the

exposure markers (M-Hg) was assumed to be manifestations of the true (unobserved)

exposure (Hg) and a random error (εm):

When a least three independent exposure markers are available, the model can be estimated.

Here we chose to express the latent exposure on the scale of the cord blood concentration.

This was done by fixing the factor loading (λm) at 1 for the cord-blood concentrations. With

this restriction, a one-unit increase in log-Hg will on average lead to a one-unit increase in

log cord blood Hg. In these models, a scale for the latent variables is required, but this
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choice has no implications for the correlations between the markers and the latent variable

or the size of the error standard deviation (Bollen, 1989; Sanchez et al., 2005). The

imprecision of the exposure marker is then modelled in terms of the random error term, εm,

which is assumed to follow a normal distribution with mean of zero and a standard deviation

(σm). When a natural log transformation is used, standard deviation of the error term is a

mathematical approximation to the error coefficient of variation (CV) of the untransformed

concentrations (Budtz-Jørgensen et al., 2007).

Model 1 included only the three Hg concentrations (Fig. 2) while model 2 included the

available information about hemoglobin (Hb) and Se as covariates (Fig 3). Thus, the latent

mercury exposure (Hg) was allowed to depend linearly on all three variables. In addition,

the cord blood Hg concentration was allowed to depend directly on the Hb in the cord blood

and the Se level. Similar effects were included for the maternal blood concentration. These

direct effects were incorporated by modifying the model equations to include selenium and

Hb:

This equation is very similar to the regression models described above, but the SEM has the

advantage of using all available information to estimate a true (latent) exposure level and it

takes into consideration the imprecision of the variables. Parameters were estimated using

the maximum likelihood method and the fit of the more complex Model 2 was assessed by

the chi-square test comparing the expected the observed covariance matrix and by Root

Mean Square Error of Approximation (RMSEA) (Kline, 2012). A model is considered to

have a good fit if the chi-square test has a p-value above 5% and RMSEA below 5%.

3. Results

The geometric means of the Hg concentrations in cord blood averaged 50% higher than

those of post-parturition maternal blood samples in the Faroes and closer to 70% higher than

the Korean maternal blood collected during pregnancy. The interquartile range (IQR) and

total range for the Hg concentrations reflected substantial variation, whereas the range of Hb

and Se was much narrower (Table 1). Mercury in maternal blood correlated well with

concentrations in maternal hair and in cord blood, but much less closely with Se in maternal

blood (Fig 1).

Multiple regression models showed a positive effect of Hb on the cord blood concentration

(Table 2). This effect was statistically significant after adjustment for maternal blood

concentration (Model A) and the maternal hair concentration (Model B). The possible effect

of Se was more uncertain. Thus, no effect of Se was apparent in Model A, but a significant

positive effect was seen in model 2 when adjustment included only mercury in maternal

hair. However, blood-Se was closely associated with maternal blood-Hg, and the regression

coefficient for maternal blood-Hg was greater than that for maternal hair-Hg as predictors of

cord blood Hg.
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We then performed SEM analyses to further explore the interrelationships between the

exposure biomarkers and a latent exposure variable based on the analyses available from the

Faroes (Tables 3 and 4). The extended SEM (Fig. 3) showed a good fit to the data (p = 0.32

for difference between observed and predicted covariances, RMSEA = 0.016). In agreement

with the multiple regression analyses, this model showed a strong positive effect (p<0.001)

of Hb on the cord blood-Hg concentration for fixed level of the latent exposure (Table 3). A

similar effect was also seen for the maternal blood-Hg concentration. Selenium did not seem

to affect the observed Hg concentrations, although it was strongly related to the latent

mercury concentration (p<0.001) as an indication that higher MeHg exposures were

associated with increased Se intakes.

In the simple structural equation model without information about Se and Hb (Fig. 2), the

cord blood measurement was the most precise exposure marker, and the maternal blood

measure was only slightly inferior, as reflected by the error CVs (Table 4, Model 1). As

expected, the maternal hair concentration had the largest error component (Table 4). The

extended SEM (Fig 3) showed the same ordering of the markers, but after adjustment for

Hb, the error CV for the cord blood concentration decreased from about 11% (Table 4,

Model 1) to about 3% (Table 4, Model 2), which is similar to the analytical imprecision.

4. Discussion

An imprecise exposure assessment may complicate confounder adjustment and lead to an

underestimation of dose-effect relationships (Budtz-Jørgensen et al., 2003; Carroll, 1998).

Therefore, this problem may be exaggerated by potential confounders that are correlated

with the exposure. In regression analyses, inclusion of such variables – when measured with

better precision – may further add to the average bias toward the null hypothesis (Budtz-

Jørgensen et al., 2003), even in cases where the potential confounder has no independent

effect on the outcome. Thus, assessment of total exposure biomarker imprecision is an

important issue to environmental epidemiology studies. However, the imprecision of

exposure data in epidemiological studies is usually unknown (Grandjean et al., 2007) and is

often ignored.

The present study examined the precision of the cord-blood Hg concentration while

considering the impact of adjustment for blood covariates. Using standard regression

techniques we have demonstrated a strong positive dependence of the cord blood-Hg

concentration on the Hb level, also after adjustment for other mercury exposure biomarkers.

Because three exposure parameters were available, a structural equation analysis could also

be conducted. This analysis confirmed the regression results and showed in addition that the

Hg concentration in cord blood is less imprecise than the concentrations in maternal hair and

maternal blood, and that adjustment for Hb further improves the precision of this exposure

biomarker. A higher Hb concentration (or hematocrit) is known to result in greater MeHg

binding in whole blood and thus a higher Hg concentration in the blood sample.

Accordingly, some researchers prefer to measure the Hg concentration in erythrocytes

(Sakamoto et al., 2004), although this procedure may be more cumbersome than the analysis

of whole blood for both mercury and hemoglobin.
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Hemoglobin concentrations in maternal blood are also of importance. In the present study, a

lower hematocrit during pregnancy than two weeks after parturition is the likely explanation

of the differences in blood Hg concentrations between the two study populations. Due to this

difference, cord blood has a Hg concentration about 50% greater than the one in maternal

blood two weeks after parturition and 70% higher than first-trimester maternal blood.

While the total Hg concentrations includes both MeHg and inorganic Hg species in routine

analyses, the Hg concentration in cord blood reflects mainly the methylated form, for which

the placenta does not constitute a barrier (Kelman et al., 1982). Thus, speciation of Hg in

cord blood is not needed. In contrast, Hg in maternal blood may not be a precise measure of

fetal MeHg exposure due to the presence of inorganic mercury. Still, our results suggest that

the imprecision of maternal blood Hg remains far better than the one for hair Hg. It is also

noteworthy that the loading factor for maternal blood Hg was higher in the Faroes study than

in the Korean study. This result is probably due to the maternal blood in the Faroes being

sampled much closer to parturition where the cord blood was obtained.

Available evidence suggests that the cord blood Hg concentration is the best risk indicator

for MeHg neurotoxicity (Grandjean et al., 2002; National Research Council, 2000). Given

the larger imprecision of the maternal hair Hg parameter and its known variation with hair

type and hair color (Grandjean et al., 2002), this highly feasible and widely used exposure

biomarker is less appropriate for prenatal MeHg exposure assessment. The present study

shows that adjustment of blood-based biomarkers by the Hb concentration will further

improve the precision of the Hg concentration in both maternal and cord blood. This

adjustment may also provide better precision than in previous studies that rely on cord blood

concentrations (Grandjean et al., 2002; Grandjean and Budtz-Jørgensen, 2007).

Among the limitations of this study, we did not analyze serum-Hg concentrations of

maternal blood to obtain an indication of the amount of inorganic Hg species. Still, our

results show that the imprecision based on whole-blood analysis only was only slightly

greater than for cord blood. Also, we did not analyze Se in the MOCEH study. However, no

effect of Se could be determined in the Faroes data, so this omission is probably

inconsequential. The molar ratio between Hg and Se is relevant for possible interactions

between the elements (Newland et al., 2006). The Faroese data show an average Se molar

excess of about a 50-fold above Hg concentrations. This excess suggests that all Faroese

children are Se sufficient and that MeHg toxicity is independent of any relative degree of Se

sufficiency. Se in maternal blood showed a positive correlation with the maternal Hg

concentration, which is consistent with other studies (Barany et al., 2003; Bates et al., 2006;

Svensson et al., 1992), possibly because both substances originated, at least in part, from the

same marine food sources (Karita et al., 2002; Svensson et al., 1995; Svensson et al., 1992).

However, a positive correlation between Hg and Se in maternal blood does not necessarily

imply that Se can moderate the toxicity of MeHg in humans. While Hg in cord blood was

weakly associated with Se in maternal blood, the SEM revealed no statistically significant

association between maternal Se and the cord blood Hg. These findings imply that any

protective effects of Se against MeHg toxicity are not manifested via impaired transport

through the placenta. The present study therefore shows that any toxicokinetic interference
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by Se would have no important effect on the partition of MeHg between maternal and fetal

circulations.

Recently, a Japanese study also found no significant positive correlation between Hg and Se

concentrations in cord blood (Sakamoto et al., 2010). However, experimental studies

examining Hg and Se exposure in relation to neurodevelopment have produced inconclusive

evidence, especially at levels comparable to human exposures (Reed et al., 2006). A Faroese

birth study failed to identify any protective effect of Se against MeHg neurotoxicity (Choi et

al., 2008). Selenium therefore seems to be of marginal, if any, interest in regard to MeHg

toxicity in populations that are Se sufficient.

The two cohort studies demonstrated that Hg concentrations in cord blood strongly depend

on the Hg concentrations in maternal blood, but the regression coefficients (and their

confidence intervals) for maternal blood differed between the Faroese birth cohort study and

the MOCEH study. This difference may be due to the different times of maternal blood

sampling in the two studies. In the Faroes cohort, the maternal blood was obtained two

weeks after parturition, i.e., at a time when the blood volume had approached non-pregnant

levels. In the Korean cohort, maternal blood was sampled during late pregnancy when the

blood volume was expanded, thus leading to lower concentrations of both Hb and Hg. While

hemoglobin concentrations were taken into account, physiological differences in MeHg

distribution in the body may have played a role as well. Also, the greater interval between

paired sample collections in the Korea study may have increased the variability of relative

Hg concentrations in the blood samples. In addition, the results may be affected by distinct

racial/ethnic/cultural differences, as biases of the chemical analyses would seem unlikely.

Also, Caucasian hair grows faster than Oriental hair, and the hair growth rate generally

decreases with age (Lam, 2005). Such ethnically-related differences are likely independent

of seafood consumption (Caldwell et al., 2009) but may affect the incorporation of Hg in

hair.

A previous calculation of the total imprecision (Budtz-Jørgensen et al., 2003) suggested that

the cord-blood Hg concentration had a total imprecision CV of about 25%, while maternal

hair had one almost twice as high. In this calculation, the frequency of whale meat

consumption was used as the third parameter needed to calculate the latent exposure

variable. Because the three variables are independent and reflect different aspects of dietary

MeHg exposure during pregnancy, the CV of 25% is probably a good reflection of the total

variability. The present study included the maternal blood Hg, which constitutes the source

of the MeHg that leads to a Hg concentration in the cord blood. The same applies to the

hemoglobin in both blood samples, both of which likely depend on the maternal iron status.

Thus, these measurements may not be fully independent, and the error variance of the latent

variable may be underestimated for this reason. However, the error SD decreased from 0.11

to 0.03 after adjustment for hemoglobin in both maternal blood and cord blood in Faroese

study. Selenium alone had only a negligible effect. Thus, although the variables may not be

fully independent, the improvement in error CV achieved by hemoglobin adjustment would

strongly support this way of expressing the blood Hg concentrations. Further, the

imprecision of the hair-Hg remained much higher than for the blood-Hg concentrations.
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Due to imprecisions of exposure parameters, calculated associations will tend to be biased

toward the null, and inclusion of covariates may add to the bias (Budtz-Jørgensen et al.,

2003). Most studies on MeHg biomarker associations have applied standard regression

equations (Akagi, 1998; Bjornberg et al., 2003; Haxton et al., 1979; Phelps et al., 1980;

Sherlock et al., 1982; Turner et al., 1980). An important limitation is that this approach

includes measurement error only in the dependent variable (Fuller, 1987). A structural

equation model allows for measurement error in both variables, and may therefore be a more

appropriate choice for estimation of the relation between the two biomarkers.

The findings of this study support the use of cord blood as the best available exposure

biomarker for MeHg, and its precision can be improved by adjustment for hemoglobin. Hg

in maternal blood is also appropriate as a risk indicator after adjustment for hemoglobin,

although the sampling time must be carefully considered. However, hair Hg concentrations

are less precise and may result in bias toward the null. Although Hg and Se concentrations in

maternal blood showed significant correlations, only a weak association was found between

Se in maternal blood and Hg in cord blood, thus suggesting that any protective effects of Se

against MeHg toxicity do not depend on toxicokinetic interference.
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AAS Atomic absorption spectrometry

AGFI Adjusted Goodness of Fit Index

AIC Akaike information criterion

CB-Hb hemoglobin in cord blood

CB-Hg Hg in cord blood

CFI Comparative fit index

CV Coefficient of variation

GFI Goodness of fit index

GM Geometric means

Hg Mercury

IQR Interquartile range
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MB-Hb Hemoglobin in maternal blood

MB-Hg Hg in maternal blood

MB-Se Selenium in maternal blood

MeHg Methylmercury

MH-Hg Hg in maternal hair

MOCEH Mothers and Children’s Environmental Health

Se Selenium

SEM Structural equation model

SLS Sodium lauryl sulfate

TLI Tucker-Lewis index
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Highlights

• The cord-blood mercury concentration reflects risk of developmental

neurotoxicity

• This concentration may be imprecise due to binding to hemoglobin

• Structural equations were used to compare mercury in maternal and cord blood

samples

• Adjustment of mercury concentrations for hemoglobin improved their precision
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Figure 1.
Correlations between logarithmic transformations of biomarkers in the Faroese birth cohort.
aMB-Hg, Hg in maternal blood; MH-Hg, Hg in maternal hair; Hg, latent variable; CB-Hg,

MB-Se, Selenium in maternal blood; MB-Hb, Hemoglobin in maternal blood; Hg in cord

blood; CB-Hb, hemoglobin in cord blood –
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Fig. 2.
Structural equation model of latent methylmercury exposure (Hg), as indicated by mercury

concentrations in maternal blood (MB-Hg), maternal hair (MH-Hg), and cord blood (CB-

Hg), all of which are log transformed.
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Fig. 3.
Extended structural equation model that allows the hemoglobin concentrations in maternal

and cord blood to affect the mercury concentrations in the same media while also allowing

the maternal selenium concentration to affect the blood-mercury concentrations.
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Table 1

Distribution summaries of mercury, selenium and hemoglobin.a

Biomarkers N Geometric meana Interquartile range Total range

Faroese birth cohort study

 Maternal blood Hg (μg/L) 499 15.30 10.4 – 21.15 1.25 – 188.1

 Cord blood Hg (μg/L) 490 22.95 15.1 – 33.40 3.85 – 222.4

 Maternal hair Hg (μg/g) 504 0.71 0.44 – 1.10 0.05 – 6.27

 Selenium (μg/L) 496 1,132 1,025 – 1,235 718 – 1,715

 Maternal hemoglobin (mmol/L) 498 9.73 9.14 – 10.40 5.84 – 14.57

 Infant hemoglobin (mmol/L) 488 10.12 9.51 – 10.83 5.74 – 14.95

MOCEH study

 Maternal blood Hg (μg/L) 797 15.45 2.24 – 4.12 0.40 – 92.30

 Cord blood Hg (μg/L) 796 25.90 3.95 – 7.00 0.23 – 24.10

 Maternal hemoglobin (mmol/L) 558 11.92 11.30 – 12.80 6.10 – 17.70

a
To convert into nmol/L, multiply results in μg/L by 5 (mercury) and 12 (selenium).

Environ Res. Author manuscript; available in PMC 2015 July 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kim et al. Page 18

Table 2

Linear regression coefficients for increase (in percent) in the cord blood mercury concentration associated

with a doubling of different exposure biomarkers in the Faroese birth cohort.a

Cord blood mercury (μg/L)

Percent increase 95% CI

Model A

Maternal blood mercury (μg/L) 82.7 76.6 to 89.0

Maternal blood selenium (μg/L) 1.26 −14.1 to 19,4

Cord blood hemoglobin (mmol/L) 53.3 27.6 to 84.1

Model B

Maternal hair mercury (μg/L) 63.2 58.4 to 68.3

Maternal blood selenium (μg/L) 25.4 5.5 to 49.1

Cord blood hemoglobin (mmol/L) 79.0 47.0 to 118.0
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Table 3

Structural equation coefficients for increase (in percent) in mercury marker concentration in the Faroese birth

cohort associated with a doubling in selenium and hemoglobin concentrations after adjustment for latent true

mercury concentration.

Predictor Percent increase 95% CI

Effect on cord blood-Hg

Cord blood-hemoglobin 74.71 49.44 to 104.3

Maternal blood-selenium −5.66 −23.4 to 16.14

Effect on maternal blood-Hg

Maternal blood-hemoglobin 26.49 3.87 to 54.03

Maternal blood-selenium 15.75 −8.12 to 45.82
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Table 4

Estimated factor loading (λ) and error CV calculated for biomarkers of prenatal mercury exposure in a Faroese

birth cohort by a structural equation model.

Biomarker Factor loading Error CV

Model 1

 Cord blood-Hg 1 0.105

 Maternal blood-Hg 0.858 0.323

 Maternal hair-Hg 0.981 0.420

Model 2*

 Cord blood-Hg 1 0.032

 Maternal blood-Hg 0.833 0.324

 Maternal hair-Hg 0.973 0.416

*
Also adjusted for hemoglobin and selenium.
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