
UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Centro de Investigación en Tecnoloxías da Información

Tesis doctoral

MACHINE LEARNING ALGORITHMS FOR PATTERN
VISUALIZATION IN CLASSIFICATION TASKS AND FOR

AUTOMATIC INDOOR TEMPERATURE PREDICTION

Presentada por:
Sadi A. M. Alawadi

Dirigida por:
Manuel Fernández Delgado
David Mera Pérez

Xaneiro de 2018





Manuel Fernández Delgado, Profesor de Universidad del Área de Ciencias de la Computación e

Inteligencia Artificial de la Universidad de Santiago de Compostela

David Mera Pérez, Investigador Posdoctoral de la Universidad de Santiago de Compostela

HACEN CONSTAR:

Que la memoria titulada MACHINE LEARNING ALGORITHMS FOR PATTERN VISUALIZA-
TION IN CLASSIFICATION TASKS AND FOR AUTOMATIC INDOOR TEMPERATURE PRE-
DICTION ha sido realizada por D. Sadi A.M. Alawadi bajo nuestra dirección en el Centro Singular de

Investigación en Tecnoloxías da Información de la Universidad de Santiago de Compostela (CiTIUS), y

constituye la Tesis que presenta para optar al título de Doctor.

Xaneiro de 2018

Manuel Fernández Delgado
Codirector de la tesis

David Mera Pérez
Codirector de la tesis





I dedicate this work to my parents, my wife Rania who spent sleepless nights with me
and was always my support in the difficult times when there was no one to answer my

queries. Also, I dedicate it to my kids Omar and Natalie and mother-in-law and
father-in-law.





Storytelling is ultimately a creative act of pattern

recognition. Through characters, plot and setting, a

writer creates places where previously invisible

truths become visible. Or the storyteller posits a

series of dots that the reader can connect.

Douglas Coupland

Creativity and insight almost always involve an

experience of acute pattern recognition: the eureka

moment in which we perceive the interconnection

between disparate concepts or ideas to reveal

something new.

Jason Silva





Acknowledgments

During the last few years, I had a lot of challenges that made me more determined to achieve
my goals. The major goal amongst them is to present my Ph.D. dissertation. The completion
of this doctoral thesis was possible with the support of several people. Therefore, I would
like to express my special appreciation to all of them. My Ph.D. main advisor Dr. Manuel
Fernández Delgado and the co-advisor Dr. David Mera Pérez, I am extremely grateful to
your valuable guidance, scholarly inputs, and consistent encouragement that I have received
throughout the research work. You both have always made yourselves available to clarify
my doubts despite your busy schedule, and I consider it as an excellent opportunity to do my
doctoral programme under your guidance and to learn from you research expertise.

In fact, Manuel is the guy who you will immediately love and never forget him. More-
over, he’s the warm-hearted advisor and one of the cleverest people I have met. He’s always
enthusiastic, energetic, and motivated, and he can command an audience. Manuel, I would
like to thank you for guiding my dissertation and for allowing me to learn from you and grow
as a researcher. Your advice on both research as well as on my career has been priceless.

I would also like to show my gratitude for my co-advisor David for his support to accom-
plish my dissertation and for his scientific advice, patience, motivation, immense knowledge
and many insightful discussions and suggestions. He is one of my primary resources for get-
ting my scientific questions answered. Furthermore, his influence was not only seen in my
scientific work but also in my social life. Manuel and David, I would like to thank you again
for helping me in research and writing my dissertation. So, without your guidance to the right
direction, I wouldn’t able successfully complete this work.



x

In other hand, I’m thankful to our research center Centro Singular de Investigación en Tec-
noloxías da Información (CiTiUS) staff for their logistic and technical supports. And more
special thanks for Dr. José Manuel Cotos Yáñez who handed me all kind of help during this
period.

Special thanks to my family. My mother-in law and father-in-law, words and expressions
cannot convoy how grateful I am to you. Also, my parents for all of your sacrifices that you
have made on my behalf. Your prayers for me were what sustained me thus far. All my friends
who supported me in writing and incented me to strive towards my goal, thank you very much.

Xaneiro de 2018



i

Resumo en galego

Esta tese sitúase no ámbito da aprendizaxe automática (Machine Learning), concreta-
mente na clasificación de patróns e na regresión ou aproximación de funcións. Aínda que ex-
isten moitos métodos para a clasificación de patróns multi-dimensionais, en xeral compórtanse
como “caixas negras” nas que a explicación do seu funcionamento resulta difícil ou imposíbel.
Esta tese desenvolve métodos de reducción da dimensionalidade para proxectar problemas de
clasificación multi-dimensionais sobre un espazo de dúas dimensións (un plano). Os clasifi-
cadores poden así usarse para aprender os datos proxectados e crear mapas bi-dimensionais
dos problemas de clasificación que, por tratarse de gráficos, resulten intuitivos e fáciles de
entender. Logo de realizar unha revisión das técnicas existentes para a reducción da dimen-
sionalidade, propóñense varios métodos para proxectar os datos multi-dimensionais sobre o
plano, minimizando a superposición entre clases. Estos métodos permiten proxectar patróns
novos, non usados durante a aprendizaxe da proxección, combinando 8 tipos de proxeccións
lineares, cadráticas e polinómicas con 4 medidas da superposición entre clases. As técnicas
propostas compáranse con outros 34 métodos de reducción da dimensionalidade existentes na
literatura sobre unha ampla colección de 71 problemas de clasificación. Os resultados mostran
que a proxección Polynomial kernel discriminant analysis de grao 2 (PKDA2) acada resulta-
dos competitivos, creando mapas visuais e auto-explicativos dos problemas de clasificación
sobre os que un clasificador de referencia (a máquina de vectores de soporte, ou SVM) acerta
só lixeiramente menos que sobre os datos multi-dimensionais orixinais. Proporciónase tamén
unha interfaz web e unha aplicación local, desenvolvidas nas linguaxes de programación PHP
e Matlab respectivamente, que permiten aplicar todas estas proxeccións para visualizar os
mapas 2D de calquera problema de clasificación.

No ámbito da regresión aplicouse unha ampla colección de regresores para a predicción
automática de temperaturas en sistemas de climatización (HVAC). Estos sistemas teñen un
impacto directo tanto no consumo de enerxía como no confort dos edificios, polo que un
modelado preciso e fiábel dos mesmos é o punto de partida para o desenvolvemento de planos
de eficiencia enerxética. O emprego de regresores para predecir a evolución da temperatura
interior dos edificios en base ás condicións internas y externas (climáticas) permitirían avaliar
o impacto das modificacións nos sistemas HVAC dende o punto de vista do confort. Co
obxectivo de desenvolver un modelo eficiente para os sistemas HVAC, nesta tese avaliáronse
40 regresores empregando un conxunto de datos reais xerados por un edificio intelixente, o



ii

Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS) da Universidade
de Santiago de Compostela. Ademáis desenvolvéronse e comparáronse diferentes modelos
baseados en redes neuronais que permiten o re-entrenamento automático. Esta característica
aporta robustez aos modelos e permítelles: 1) afrontar circunstancias nunca vistas no entre-
namento orixinal debidas a situacións climáticas excepcionais; e 2) soportar alteracións nas
compoñentes dos sistemas producidas por erros ou cambios nos sistemas de sensorización.

Palabras chave: reducción de dimensionalidade, clasificación, regresión, predicción de tem-
peraturas.



iii

Resumen en castellano

La actual tesis se sitúa en el ámbito del aprendizaje automático (Machine Learning), conc-
retamente en la clasificación de patrones y en la regresión o aproximación de funciones.
Aunque existen muchos métodos de clasificación de patrones multi-dimensionales, en gen-
eral se comportan como “cajas negras” en las que la explicación de su funcionamiento resulta
difícil o imposible. Esta tesis desarrolla métodos de reducción en la dimensionalidad de los
datos para proyectar problemas de clasificación multi-dimensionales sobre un espacio de dos
dimensiones (un plano). Los clasificadores pueden así usarse para aprender los datos proyec-
tados y crear mapas bi-dimensionales de los problemas de clasificación que, por tratarse de
gráficos, resultan intuitivos y fáciles de entender. Después de realizar una revisión de las
técnicas existentes para la reducción de dimensionalidad, se proponen varios métodos para
proyectar los datos multi-dimensionales sobre el plano, minimizando la superposición entre
clases. Estos métodos permiten proyectar patrones nuevos, no usados durante el aprendizaje
de la proyección. Se combinan 8 tipos de proyecciones lineales, cuadráticas y polinómicas
con 4 medidas de superposición entre clases. Estas proyecciones se comparan con otros 34
métodos de reducción de dimensionalidad existentes en la literatura sobre una amplia colec-
ción de 71 problemas de clasificación. Los mejores resultados han sido obtenidos por la
proyección Polynomial kernel discriminant analysis de grado 2 (PKDA2), que crea mapas
visuales y auto-explicativos de los problemas de clasificación sobre los que un clasificador de
referencia (la máquina de vectores de soporte, o SVM) acierta sólo ligeramente menos que
sobre los datos multi-dimensionales originales. Se proporciona también una interfaz web y
unha aplicación local, desarrolladas en los lenguajes de programación PHP y Matlab respec-
tivamente, que permiten aplicar estas proyecciones para visualizar los mapas 2D de cualquier
problema de clasificación.

En el ámbito de la regresión se ha aplicado una amplia colección de regresores para la
predicción automática de temperaturas en sistemas de climatización (HVAC). Estos sistemas
tienen un impacto directo tanto en el consumo de energía como en el confort de los edificios,
por lo que un modelado preciso y fiable de los mismos es el punto de partida para el desarrollo
de planes de eficiencia energética. El empleo de regresores para predecir la evolución de la
temperatura interior de los edificios en base a las condiciones internas y externas (climáticas)
permitirían evaluar el impacto de las modificaciones en los sistemas HVAC desde el punto
de vista del confort. Con el objetivo de desarrollar un modelo eficiente para los sistemas



iv

HVAC, en esta tesis se han evaluado 40 regresores empleando un conjunto de datos reales
generados por un edificio inteligente, el Centro Singular de Investigación en Tecnologías de
la Información (CiTIUS), de la Universidad de Santiago de Compostela. Además se han
desarrollado y comparado diferentes modelos basados en redes neuronales que permiten el
re-entrenamiento automático. Esta característica aporta robustez a los modelos y les permite:
1) afrontar circunstancias nunca vistas en el entrenamiento debidas a situaciones climáticas
excepcionales; y 2) soportar alteraciones en los componentes de los sistemas producidas por
errores o cambios en los sistemas de sensorización.

Palabras clave: reducción de dimensionalidad, clasificación, regresión, predicción de tem-
peraturas.



v

Summary in English

The current thesis falls in the scope of Machine Learning, specifically it deals with pattern
classification and regression or function approximation. Despite there are many approaches
for high-dimensional pattern classification, most of them behave as “black boxes” whose op-
eration mode is difficult or even impossible to explain. This thesis develops methods of di-
mensionality reduction in order to project or map high-dimensional classification problems
into a two-dimensional space (i.e., a plane). Classifiers can thus be used to learn the mapped
data and to create two-dimensional maps of the classification problems whose graphic nature
makes intuitive and easy to understand. After reviewing the existing methods for dimension-
ality reduction, several approaches are proposed to map high-dimensional data into the 2D
space while minimizing the class overlap. These methods allow to map new patterns, not
used during the mapping creation. Eight types of linear, quadratic and polynomial mappings
are combined with four class overlap measures. These mappings are compared with other 34
dimensionality reduction methods existing in the literature over a wide collection of 71 clas-
sification problems. The best results are achieved by the mapping named Polynomial kernel
discriminant analysis with degree 2 (PKDA2), which creates visual and self-explaining maps
of the classification problems where a reference classifier (the support vector machine, or
SVM) achieves an accuracy only slightly lower than using the original high-dimensional pat-
terns. A web and a standalone graphical interface, developed in the programming languages
PHP and Matlab, respectively, are also provided in order to visualize the 2D maps for any
classification problem.

In the scope of regression, a wide collection of regressors has been applied for the auto-
matic temperature forecasting in household climate systems (HVAC). These systems have a
direct impact both in the energy consumption and in the building comfort, so their exact and
reliable modeling is very important for the development of energy efficiency plans. The use
of regression approaches to forecast the temperature evolution based on internal and external
(climatic) conditions would allow to evaluate the impact of changes in HVAC systems from
the point of view of comfort. In order to develop an efficient model for the HVAC systems,
the current thesis evaluates 40 regressors using a real data set generated in a smart building,
the Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS) of the Uni-
versidade de Santiago de Compostela. Moreover, different models based on neural networks
which allow the automatic re-training have also been developed and compared. This feature



vi

brings robustness to the models and allows them: 1) to learn circumstances never seen during
training caused by exceptional climatic situations; and 2) to support alterations in the system
components caused by errors or changes in the sensor devices.

Keywords: dimensionality reduction, classification, regression, temperature forecasting.



Resumen extendido

La presente tesis doctoral se centra en el desarrollo y aplicación de técnicas de aprendizaje au-
tomático (Machine Learning) para clasificación y regresión. En el primer aspecto, la tesis se
centra en la visualización en imágenes 2D de datos numéricos multi-dimensionales en proble-
mas de clasificación. Esta parte del trabajo se ha publicado en la revista internacional Neural
Computing and Applications, incluida en el JCR e indexada en en 2o cuartil de Computer
Science - Artificial Intelligence [2]. En el segundo aspecto, la tesis ha aplicado una variada
colección de algoritmos de regresión para la predicción de los valores de la temperatura en el
interior de edificios. Esta parte del trabajo se ha publicado en el International Conference on
Smart Cities (Smart-CT 2017), celebrado en 2017 en Málaga (España) [3].

La clasificación de patrones es uno de los apartados de más interés en el campo del apren-
dizaje automático. El término “patrones” se refiere a vectores numéricos multi-dimensionales
formados por valores numéricos correspondientes a distintas magnitudes que se suponen son
relevantes para su clasificación. Por otra parte, se asume la existencia de una colección de
clases perfectamente diferenciadas, de modo que cada patrón pertenece a una de estas clases.
El objetivo de un método de aprendizaje automático (clasificador) en un problema de clasi-
ficación consiste en predecir la clase a la que pertenece cada patrón, con una probabilidad
de acierto aceptable, a partir de los valores numéricos del patrón. Para realizar esta predic-
ción, el clasificador debe aprender a partir de una colección de ejemplos, esto es, patrones
adecuadamente etiquetados con las clases a las que pertenecen. Existen multitud de clasi-
ficadores, la mayoría de los cuales tienen una naturaleza de “caja negra”, es decir, que no
ofrecen una explicación inteligible sobre su modo de operación. Para resolver esta limitación,
las técnicas de minería de datos tratan de aportar técnicas de clasificación que además sean
explicativas. Esta tesis trata de aportar métodos para explicar, por una parte, la naturaleza
del problema de clasificación (principalmente en qué medida las clases están poco o muy



viii

entremezcladas) y, por otra, el conocimiento adquirido por cualquier clasificador, y no sólo
aquéllos que son auto-explicativos. Con este objetivo, la tesis propone el uso de técnicas de
reducción de dimensionalidad para proyectar los patrones n-dimensionales sobre un espacio
bi-dimensional (un plano) en el cual se puedan visualizar como en un mapa. Usando estos
patrones 2D proyectados, cualquier clasificador puede ser entrenado para después clasificar
los patrones correspondientes a todos los puntos del plano. De este modo, el clasificador
compone un mapa donde las regiones del plano asignadas por el clasificador a cada clase se
identifican con un color. Este mapa representaría al problema de clasificación, permitiendo
visualizar como en un mapa convencional el número y extensión de las regiones asociadas a
cada clase, junto con el grado de superposición entre ellas. También permitiría entender el
problema de clasificación aprendido por el clasificador a partir de los patrones proyectados
en el plano y, para cada patrón nuevo, su localización en el mapa indicaría a qué clase de-
bería asignarse. Por supuesto, para que esto funcione el método de proyección de patrones
n-dimensionales a 2D debería tener en cuenta la clase a la que pertenece el patrón, es decir,
debe ser supervisado. La proyección también debe tener en cuenta la superposición entre los
patrones de distintas clases de modo que el mapa resultante evite mostrar las distintas clases
completamente entremezcladas.

El capítulo 2 de la tesis realiza una revisión bibliográfica de las técnicas existentes en la lit-
eratura para la reducción de dimensionalidad. Estas técnicas se organizan en varios grupos en
base a sus características: lineales frente a no lineales, supervisadas frente a no supervisadas,
locales frente a globales. Estos grupos son los siguientes:

1. Métodos clásicos, que incluyen linear discriminant analysis (LDA) y generalized dis-
criminant analysis (GDA), principal component analysis (PCA) y Kernel PCA, prob-
abilistic PCA (ProbPCA), Gaussian process latent variable model (GPLVM) y Factor
Analysis (FA).

2. Métodos no lineales que conservan propiedades globales de los datos, tales como las
distancias entre patrones. Incluyen la proyección de Sammon, Multi-dimensional Data
Scaling (MDS), Stochastic Proximity Embedding (SPE), Stochastic Neighbor Embed-
ding (SNE), Symmetric SNE (SSNE), t-distribution SNE (t-SNE), Isomap, Landmark
Isomap, Diffusion map y Multi-layer autoencoder.

3. Técnicas no lineales locales, que conservan propiedades locales, es decir, relativas a
pequeños entornos de los patrones. Esta categoría incluye Locally Linear Embedding



ix

(LLE), Hessian LLE (HLLE), Neighborhood Preserving Embedding (NPE), Local Tan-
gent Space Alignment (LTSA), Linear LTSA (LLTSA), Laplacian eigenmap, Locality
Preserving Projection (LPP), Maximum Variance Unfolding (MVU), Fast MVU, Land-
mark MVU, Conformal Eigenmap (CCA), Locally linear coordination (LLC), Manifold
charting y Coordinated Factor Analysis (CFA).

4. Otros métodos supervisados, que incluye Neighborhood Component Analysis (NCA),
Maximally collapsing metric learning (MCML) y Large-margin nearest neighbor (LMNN).

La mayoría de estos métodos de reducción de la dimensionalidad son no supervisados y su
objetivo es conservar propiedades geométricas de los datos originales, tales como distancias
entre patrones (globales) o combinaciones lineales de los vecinos más cercanos (locales).
Sólo unos pocos son supervisados y tienen en consideración las clases a las que pertenecen
los patrones originales. Por otra parte, muchos de ellos no proporcionan una proyección
propiamente dicha, como función entre los patrones originales y proyectados, sino que sólo
dan las versiones proyectadas de los patrones originales. Esto es muy importante, porque en
tales casos estos métodos no son capaces de proyectar adecuadamente patrones nuevos no
usados durante el aprendizaje de la proyección (conocidos como patrones out-of-sample en la
literatura).

En el capítulo 3 de esta tesis se proponen nuevos métodos de reducción de dimension-
alidad diseñados para proyectar un problema de clasificación multi-dimensional sobre el es-
pacio bi-dimensional. Para obtener un mapa donde la distribución de los patrones de las
distintas clases sea interpretable, estos métodos intentan minimizar la superposición 2D entre
estos patrones. Dado que existen en la literatura varias medidas para la superposición entre
clases (el índice de separabilidad de Thornton, la separabilidad directa de clases y el índice
J), se ha propuesto una nueva medida de superposición (la distancia media entre clases) y
se han desarrollado varios métodos proyección que usan dichas medidas. Por otra parte,
se han probado distintas expresiones matemáticas para proyectar datos desde un espacio n-
dimensional (con n > 2) hasta un espacio de dimensión 2: funciones lineales, cuadráticas con
monomios cruzados y polinómicas sin monomios cruzados con grados desde 2 hasta 7. Los
desarrollos matemáticos incluidos en este capítulo permiten calcular las matrices que definen
la proyección sobre 2D a partir de los patrones multi-dimensionales originales. Este cálculo
resulta extremadamente eficiente desde el punto de vista computacional, pués se reduce a
calcular autovalores y autovectores de matrices construidas a partir de los datos originales,



x

con expresiones analíticas cerradas y evitando cálculos iterativos. La complejidad de es-
tos métodos es muy inferior a la de los métodos descritos en el capítulo 2, la mayoría de
los cuales requieren procesos iterativos con un coste computacional muy superior. Por otra
parte, los métodos propuestos permiten proyectar cualquier patrón no incluido en el cálculo
de la proyección (es decir, patrones out-of-sample). Es esta una de sus propiedades más im-
portantes, porque muchos de los métodos existentes no permiten proyectar patrones nuevos,
siendo necesario calcular nuevamente la proyección incluyendo los patrones nuevos, proceso
que resulta computacionalmente costoso.

Las combinaciones de distintas funciones y medidas de superposición han generado un to-
tal de 31 proyecciones, que se han comparado en el capítulo 4 entre sí y con los 34 métodos de
reducción de dimensionalidad descritos en el capítulo 2. Los primeros se han implementado
en Matlab, y los segundos se han ejecutado usando la implementación proporcionada por la
Dimensionality Reduction Toolbox, desarrollada en Matlab para su uso público. La compara-
ción se realiza usando un clasificador estándar para aprender los problemas de clasificación en
2D creados por los distintos métodos de proyección, evaluándose la calidad de cada proyec-
ción en base a la calidad de el clasificador entrenado con los datos proyectados por la misma.
También se evalúa el clasificador en el problema de clasificación multi-dimensional original.
Aunque existen bastantes excepciones, en general el clasificador funciona peor en los prob-
lemas proyectados, de modo que hay una cierta pérdida de calidad asociada a la proyección,
pérdida que se puede considerar el precio a pagar por obtener una explicación gráfica del fun-
cionamiento del clasificador y del problema de clasificación. La medida de calidad empleada
ha sido la denominada “Kappa de Cohen”, que evalúa el grado de coincidencia entre las clases
verdaderas y las predichas por el clasificador descartando las coincidencias casuales debidas
a desbalanceos entre clases. El clasificador empleado ha sido la Support Vector Machine
(SVM), considerada uno de los mejores clasificadores disponibles actualmente. La compara-
tiva se ha desarrollado usando 71 conjuntos de datos (benchmarks) disponibles en el reposito-
rio de aprendizaje automático de la University of California at Irving (UCI Machine Learning
repository), usados comunmente en la evaluación de algoritmos de clasificación. Para realizar
la comparativa entre las distintas proyecciones sobre los 71 problemas de clasificación, hemos
empleado el ranking de Friedman, que ordena para cada problema las proyecciones por val-
ores decrecientes de kappa y evalua luego el ranking de cada proyección como su posición
en promedio sobre todos los problemas, de modo que la mejor proyección es la de menor
ranking.



xi

Los resultados mostrados en el capítulo 4 revelan que la proyección sobre un mapa 2D
provoca una pérdida de calidad (medida en términos de kappa) sorprendentemente reducida,
de modo que en el 53.5% de los problemas alguna proyección obtiene valores de kappa su-
periores a los obtenidos en el problema multi-dimensional original. Sin embargo, la proyec-
ción que supera al original los datos no es siempre la misma, de modo que seleccionando la
proyección que resulta globalmente mejor sí que hay una cierta pérdida con respecto a los
datos originales. Esta mejor proyección es el Polynomial Kernel Discriminant Analysis de
grado 2 (PKDA2), que combina una proyección polinómica de grado 2 usando como medida
de superposición entre clases el índice J. El valor de kappa usando PKDA2 alcanza el 82%
del obtenido usando los datos originales en promedio sobre todos los problemas. Existen im-
portantes diferencias entre problemas: para el 64.8% de ellos, la diferencia en términos de
kappa entre usar los datos originales y los datos 2D proyectados usando PKDA es negativa
(es decir, PKDA2 mejora la calidad, lo cual ocurre en el 11.3% de los problemas) o positiva
pero menor del 10%, y sólo para el 22.5% de los problemas esta diferencia supera el 20%.
De hecho, en términos de accuracy (porcentaje de acierto) la diferencia supera el 20% sólo
para el 11% de los problemas. Por tanto, se puede decir que la obtención de un mapa 2D
que explique gráficamente el problema de clasificación en términos de regiones asociadas a
las distintas clases se consigue con una reducida pérdida en la calidad de la clasificación. No
olvidemos que esta pérdida de calidad evalúa el grado en que el mapa representa al problema
de clasificación original: diferencias elevadas sugieren que el mapa no está demasiado rela-
cionado con dicho problema. Otras proyecciones que también obtienen resultados aceptables
son LDA, PCA y ProbPCA, aunque 17 de las primeras 20 posiciones en el ranking de Fried-
man corresponden a proyecciones propuestas en esta tesis. De hecho, entre las proyecciones
supervisadas, sólo el LDA obtiene una buena posición (la 7a), situándose las restantes (NCA,
MCML y LMNN) muy lejos de las primeras posiciones (kappa medios de 9.60%, 8.82% y
8.14%, frente al 47.45% obtenido por PKDA2).

En términos de coste computacional, los tiempos de ejecución requeridos por las mejores
proyecciones han sido bastante reducidos en general, siendo PCA, MDS, LDA y PKDA2 las
más rápidas con tiempos promedio entre 0.001 y 0.01 s. Otra de las contribuciones de la
tesis ha sido el desarrollo de una interfaz web, utilizando el lenguaje PHP, para la proyección
de problemas de clasificación usando las técnicas propuestas y las descritas en el capítulo 2.
Esta interfaz está pensada para que de forma pública y anónima cualquier investigador pueda
proyectar su problema de clasificación en un mapa 2D para así entender la distribución de



xii

clases. También se ha desarrollado una interfaz standalone en Matlab que proporciona una
funcionalidad semejante, pero sin la necesidad de una infraestructura web (servidor, base de
datos, etc.).

El capítulo 5 presenta las contribuciones de la tesis en la aplicación de técnicas de regre-
sión aplicadas a la predicción de temperaturas en el interior de edificios inteligentes. Este
trabajo se enmarca en el ámbito de las iniciativas lideradas por la Unión Europea (UE) enfo-
cadas al desarrollo de nuevos planes de eficiencia energética que contribuyan a una reducción
del consumo de energía y de las emisiones de gases de efecto invernadero en los países miem-
bros. Las actividades asociadas a dichos objetivos se enmarcan dentro de la acción “Climate

Action” dirigida a la lucha contra el cambio climático en la que la UE se ha propuesto como
reto reducir las emisiones de gases y aumentar la eficiencia energética en un 20% para el
año 2020 respecto a los valores de 1990. La gestión eficiente de los edificios es consider-
ada clave para conseguir las metas marcadas, ya que se estima que éstos representan el 40%
del consumo energético y el 36% de las emisiones de CO2 dentro de la UE. La Universidad
de Santiago de Compostela (USC), en el marco de la “Climate Action”, ha participado en el
proyecto Opere, que ha permitido desplegar una red de sensores sobre 45 edificios universitar-
ios. Esta red obtiene, de forma síncrona, más de 10.000 señales que se pueden emplear para
el desarrollo de medidas orientadas a la eficiencia energética. La contribución de esta tesis
se centró en el análisis de los datos generados por la red de sensores desplegada en el Centro
Singular de Investigación en Tecnologías de la Información de la USC (CiTIUS), que genera
667 señales cada 10 segundos, y más concretamente en la gestión eficiente de su sistema de
climatización (HVAC, por sus siglas en inglés), dado que este tipo de sistemas tiene un gran
impacto tanto en el confort como en el consumo energético de cualquier edificio.

El empleo de algoritmos de aprendizaje automático para predecir la evolución de la tem-
peratura interior de los edificios en base a las condiciones internas y externas (climáticas)
permitiría evaluar el impacto de las modificaciones en los sistemas HVAC desde el punto de
vista del confort y así afrontar con garantías el desarrollo de nuevos planes energéticos. En
esta tesis, y con el objetivo de modelar de manera fiel y eficiente el sistema HVAC del CiTIUS,
se analizaron qué características medidas por la red de sensores podían tener relevancia en di-
cho sistema. De este estudio se seleccionaron 10 características que posteriormente fueron
empleadas en el desarrollo y evaluación de 40 regresores pertenecientes a 20 familias difer-
entes:

1. Linear regression.



xiii

2. Generalized linear regression, familia que incluye los regresores glm, penalized glm y
glmnet (LASSO y elastic-net regularized GLM).

3. Non-negative least squares (NNLS).

4. Partial least squares: regresores sparse partial least squares (SPLS) y SIMPLS.

5. Least absolute shrinkage and selection operator (LASSO).

6. Ridge regression with forward, backward and sparse input selection (FOBA).

7. Neural networks: multi-layer perceptron (MLP), ensemble de redes neuronales (avN-
Net), generalized regression neural networks, deep learning neural network y extreme
learning machine (ELM).

8. Support vector regression (SVR) con núcleos gausianos.

9. Regression trees: recursive partitioning y M5.

10. Bagging ensembles de árboles de regresión, multi-variate adaptive regression splines
(MARS) y CART.

11. Boosting ensemble de GLMs.

12. Gradient boosting machines, con regresores lineales, smoothing splines, regression
trees y generalized boosted models.

13. Random forests, quantile randon forests (QRF) y extremely randomized regression trees
(extraTrees).

14. Regresión basada en prototipos (cubist).

15. Modelos bayesianos: Bayesian GLM, Bayesian regularized neural network y Bayesian
additive regresion tree.

16. Independent component regression (ICR).

17. Generalized additive model (GAM).

18. Regresión mediante procesos gausianos, con kernel lineal y polinómico.

19. Regression LASSO quantil (RQLASSO).



xiv

20. Otros métodos: multi-variate adaptive regression splines (MARS) y projection pursuit
regression (PPR).

El objetivo de los regresores es predecir con 1, 2 y 3 horas de antelación la temperatura in-
terior de uno de los despachos del CiTIUS. Para ello se emplea un conjunto de datos formado
por casi 40.000 patrones correspondientes a los períodos invernales de los años 2015-2016 y
2016-2017. Las métricas empleadas para comparar los regresores son el Mean Square Error
(MSE) y el coeficiente de correlación de Pearson (R-coefficient). Los resultados obtenidos
destacan la eficiencia de los regresores pertenecientes a la familia Random Forest, siendo ex-
traTrees (extremely randomized regression trees) el que obtuvo las mejores métricas (p. ej.
MSE: 0.058 y R-coefficient 0.97 en la predicción a 3 horas).

En un segundo experimento se evalúan 3 regresores basados en redes neuronales que in-
cluyen métodos de aprendizaje incremental. Esta característica aporta robustez a los modelos
y les permite afrontar circunstancias nunca vistas en el entrenamiento original, tales como
situaciones climáticas excepcionales, y también soportar alteraciones en los componentes de
los sistemas producidas por errores o por cambios en los sistemas de sensorización. Para com-
probar la robustez de los modelos evaluados, éstos se entrenan exclusivamente con los datos
del primer período invernal (2015-2016) y se testean con los del otro período (2016-2017).
Por otra parte, se incorporan diferentes niveles de ruido aleatorio en los datos para simular
errores o variaciones en los sensores. A modo comparativo, también se entrenó y evaluó, bajo
las mismas circunstancias, un regresor extraTrees (sin aprendizaje incremental). Los exper-
imentos demostraron que los regresores adaptativos permiten modelar de forma más precisa
los sistemas HVAC y manejar variaciones y situaciones excepcionales (internas y externas)
de forma eficiente, ya que las redes neuronales on-line obtuvieron mejores resultados que con
extraTrees. El regresor "on-line learning adaptive multilayer perceptron" (OAMLP) obtuvo
las mejores métricas en la comparativa (p. ej. MSE 0.021 y R-coefficient 0.975 en la predic-
ción a 3 horas sin ruido), mostrando que la mejor configuración viene dada por un algoritmo
que se adapta con cada nuevo patrón, ya que permite adaptarse rápidamente a nuevos esce-
narios, y que además se reentrena de forma automática e incremental cada semana con todo
el conjunto de datos acumulado. Esto se debe a que su actualización permite suavizar las
alteraciones en el modelo debidas a escenarios puntuales, e incluso proporciona la posibilidad
de adaptar la arquitectura del modelo para mejorar su eficiencia a medida que aumentan los
datos de entrenamiento.



Contents

1 Introduction 1

2 Methods of dimensionality reduction 5
2.1 Classical approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Linear discriminant analysis (LDA) . . . . . . . . . . . . . . . . . . 5
2.1.2 Generalized discriminant analysis (GDA) . . . . . . . . . . . . . . . 6
2.1.3 Principal component analysis (PCA) . . . . . . . . . . . . . . . . . . 8
2.1.4 Kernel PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Probabilistic PCA (ProbPCA) . . . . . . . . . . . . . . . . . . . . . 9
2.1.6 Gaussian process latent variable model (GPLVM) . . . . . . . . . . . 10
2.1.7 Factor analysis (FA) . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Global nonlinear methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Sammon mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Multidimensional data scaling (MDS) . . . . . . . . . . . . . . . . . 12
2.2.3 Stochastic proximity embedding (SPE) . . . . . . . . . . . . . . . . 13
2.2.4 Stochastic neighbor embedding (SNE) . . . . . . . . . . . . . . . . . 14
2.2.5 Symmetric SNE (SSNE) . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.6 T-distribution SNE (t-SNE) . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.7 Isomap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.8 Landmark Isomap . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.9 Diffusion map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.10 Multi-layer autoencoder . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Local nonlinear mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Locally linear embedding (LLE) . . . . . . . . . . . . . . . . . . . . 19



xvi Contents

2.3.2 Hessian LLE (HLLE) . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Neighborhood preserving embedding (NPE) . . . . . . . . . . . . . . 20
2.3.4 Local tangent space alignment (LTSA) . . . . . . . . . . . . . . . . 21
2.3.5 Linear LTSA (LLTSA) . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.6 Laplacian eigenmap . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.7 Locality preserving projection (LPP) . . . . . . . . . . . . . . . . . . 22
2.3.8 Maximum variance unfolding (MVU) . . . . . . . . . . . . . . . . . 23
2.3.9 Fast MVU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.10 Landmark MVU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.11 Conformal eigenmap (CCA) . . . . . . . . . . . . . . . . . . . . . . 25
2.3.12 Locally linear coordination (LLC) . . . . . . . . . . . . . . . . . . . 26
2.3.13 Manifold charting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.14 Coordinated factor analysis (CFA) . . . . . . . . . . . . . . . . . . . 28

2.4 Other supervised methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Neighborhood component analysis (NCA) . . . . . . . . . . . . . . . 29
2.4.2 Maximally collapsing metric learning (MCML) . . . . . . . . . . . . 30
2.4.3 Large-margin nearest neighbor (LMNN) . . . . . . . . . . . . . . . . 31

2.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Proposed 2D mappings 35
3.1 Thornton’s separability index . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Direct class Separability (DS) . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 J-index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Class Mean Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Experiments with 2D mappings 47
4.1 Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Graphical interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 PHP web interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 Matlab standalone interface . . . . . . . . . . . . . . . . . . . . . . 70

5 Automatic prediction of indoor building temperature 73
5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Contents xvii

5.2 Regression methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.1 Regressor comparison . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.2 Online learning approaches . . . . . . . . . . . . . . . . . . . . . . . 90

6 Conclusions 97

A Confusion matrices 101

Bibliography 115

List of Figures 127

List of Tables 131





CHAPTER 1

INTRODUCTION

The current thesis belongs to the scope of pattern classification, which can be defined as the
task of assigning on an input pattern x to a class in pre-specified set of C classes c1, . . . ,cC.
Usually, each pattern x is a vector of numeric values (x1, . . . ,xn), which can be seen as a vec-
tor in an n-dimensional space IRn, whose components are usually called inputs, attributes or
features. On the other hand, each class, from which we do not know anything more than the
patterns which belong to it, can be considered as a region R of IRn including all these patterns.
A classifier can be considered as a function which assigns each pattern x to the class associ-
ated to the region R in which x is placed. In fact, we can refer to the n-dimensional surfaces
which separate the regions R1, . . . ,RC associated to different classes. These surfaces can be
considered the “borders between classes”. This is a very intuitive idea of a classification pro-
cess, which might provide information about the relative position of the classes, the overlap
among them and the complexity of the class borders. In fact, this complexity might provide
a qualitative measure, and provide an explanation of, the difficulty of the classification prob-
lem. Unfortunately, the high dimensionality n of the input pattern avoids to develop such a
graphical visualization of the classification problem. Additionally, this dimensionality causes
undesirable effects on the data (e.g., the so-called “Curse of dimensionality”) which highly
reduce the performance of many classification methods. The scientists try to mitigate these
effects by transfering the data from the high-dimensional original space to a somehow mean-
ingful lower-dimensional space (i.e., by finding a function IRn→ IRd , with d < n) where the
data keep their “properties” (whatever this word means), using the so-called “dimensionality
reduction methods” [36]. Most of these methods (see chapter 2) suppose that data in the origi-



2 Chapter 1. Introduction

nal high-dimensional space lie on a low-dimensional embedded space (or manifold), trying to
discover this space and to somehow represent the data in that low-dimensional space. More-
over, these methods often try to discover this low-dimensional structures in an unsupervised
way.

However, the objective of the work developed in the current thesis is slighly different.
We are interested in data visualization for classification, so we start from a intrinsically su-
pervised problem, where each pattern belongs to a class. Besides, we try to overcome the
limitation imposed in visualization by the pattern high-dimensionality. Specifically, our ob-
jective is to formulate a mapping or projection method which transforms a set of patterns in
IRn to IR2 in order to allow the visualization of the class regions, and the borders among them,
in a two-dimensional map. Although 2D visualization is a particular case of dimensionality
reduction, most methods: 1) are not oriented for classification tasks, so they do not use the
class labels, do not operate in a supervised way, and optimize measures which are generally
not related to classification; and 2) they reach their full potenciality when d > 2, i.e., they
reduce the data dimensionality but the new dimension d is larger than 2. Therefore, although
we will apply the existing dimensionality reduction methods, we feel that there is a need of
methods that project the patterns into a 2D space in such a way that the set of 2D patterns
reflects, or keeps a relation to, or reproduces in some way, the original n-dimensional classifi-
cation problem. From this collection of the 2D projected patterns, it is possible to create a 2D
map of the high-dimensional classification problem, composed by the mapped training and
test patterns, the regions of IR2 assigned by a classifier to each class and the borders among
these regions. This map should be intelligible, in the sense that it must show regions clearly
defined for each class, avoiding class overlap as possible. It should also be possible to train
a classifier using the 2D-mapped patterns. Different classifiers would create different maps,
which might be used to compare classifiers on the same 2D mapped data. The best classifier
would be the one which creates the map that is easier to understand. A classifier trained on
the 2D mapped patterns should be able to classify a set of new 2D patterns, not seen during
the classifier training nor during the mapping creation (called out-of-sample or test patterns).
The classifier performance for these patterns should not be much lower than using the orig-
inal n-dimensional training and test patterns, although some lose in accuracy may happen in
exchange for data visualization. Otherwise, a high difference in the classifier performance
using high-dimensional and 2D patterns would suggest that the latters do not correspond to
the original ones from the classifier point of view (in other words, the map does not describe



3

the original n-dimensional classification problem with reliability). The mappings proposed in
the current thesis (see chapter 3) optimize measures of the class overlap, so they are designed
to cope with classification tasks, and allow to project out-of-sample n-dimensional patterns,
as opposed to some existing methods of dimensionality reduction, which do not provide such
an explicit mapping. These methods just create a 2D data set which expectedly represents the
original set, but they are not able to map out-of-sample patterns, unless the mapping is calcu-
lated again including the new patterns. Chapter 4 compares a relevant collection of existing
dimensionality reduction methods with the proposed mappings, describing the experimental
work, discussing the results and measuring the performance level which is expectable us-
ing the 2D mapped patterns compared to the performance on the original high-dimensional
classification problems.

Chapter 5 of the current thesis explores the application of regression methods for the au-
tomatic forecasting of temperatures in the context of the development of household climate
systems (HVAC). An accurate temperature prediction is very important for an accurate man-
agement of these systems in terms of energy efficiency and building comfort. Specifically,
a large collection of 40 regression approaches belonging to 20 different families is imple-
mented and compared using real data generated in a smart building, the Centro Singular de
Investigación en Tecnoloxías da Información (CiTIUS) of the Universidade de Santiago de
Compostela, during two winter seasons (years 2015-2016 and 2016-2017). These data con-
tain 10 inputs: underfloor heating status and temperature; air conditioning status, temperature
and humidity; outdoor humidity and temperature; solar radiation; indoor and previous indoor
temperature. The prediction was developed considering three forecasting horizons: within
1, 2 and 3 hours. The thesis also develops different neural network models based on the
classical multi-layer perceptron which incorporate dynamic training with new patterns. Sev-
eral versions are considered, which combine weekly re-training and on-line pattern updating.
These properties allows the neural networks to learn new patterns never seen during train-
ing (e.g., exceptional climatic situations), adapting themselves to system errors and sensor
changes. The main contributions of this thesis and the future research lines are compiled by
chapter 6.





CHAPTER 2

METHODS OF DIMENSIONALITY

REDUCTION

In this chapter we present some of the most popular methods for dimensionality reduction,
organized in the groups usually considered in the literature [114]. We distinguish between the
classical and modern approaches, and the latter are separated in global and local techniques
[24]. A final group includes other supervised methods, which are the most related to the
current work, oriented to supervised pattern classification. All over the text, we will denote
by xi ∈ IRn the original high-dimensional (input) pattern and by yi ∈ IRd the low-dimensional
(output) pattern, with d < n. We will also denote by φ(·) the cost function to optimize.

2.1 Classical approaches

This section groups those methods which have been traditionally used for dimensionality re-
duction. Some of them use the class labels of the original patterns, being therefore supervised,
but most of them do not use the class information.

2.1.1 Linear discriminant analysis (LDA)

The LDA [5, 38, 49] is a traditional linear technique used for dimensional reductions and
classification tasks (subspace learning), which attempts in IRd to preserve as much as possible
the class structure of the pattern in IRn. The LDA maximizes the Fisher criterion in IRd

in order to project the high dimensional data into the low dimensional space. In order to



6 Chapter 2. Methods of dimensionality reduction

transform xi ∈ IRn into y = WT x ∈ IRd , the LDA searches a matrix W that maximizes the
sum of distances between classes, measured by the between-class scatter matrix Sb:

Sb =
C

∑
k=1

nk(mk−m)(mk−m)T (2.1)

where C is the number of classes, nk is the number of patterns (population) of class ck, while
mk is the mean vector of class k and m is the overall mean vector of the original patterns xi.
Moreover, the LDA tries to minimize the distance within classes, measured by the within-class
Scatter matrix Sw:

Sw =
C

∑
k=1

∑
i∈ck

(xi−mk)(xi−mk)
T (2.2)

Thereby, LDA maximizes the Fisher criterion, defined as the following quotient:

φ(W) =
WT SbW
WT SwW

(2.3)

For classification problems with more than two classes, the LDA finds C− 1 separating
hyperplanes and the LDA becomes multi-linear discriminant analysis (MDA). Afterwards,
LDA optimizes the scatter matrix to get the required optimal transformation by solving the
following generalized eigenvalue problem.

Sbv = λSwv, λ 6= 0 (2.4)

where v represents the eigenvectors that form the W matrix columns, and λ are their corre-
sponding eigenvalues. The mapped pattern y is given by:

y = WT x (2.5)

where W includes the d eigenvectors associated to the largest eigenvalues (denoted hence-
forth as main eigenvectors). Classical LDA has an intrinsic limitation that requires at least
one of the scatter matrices to be non-singular in order to avoid the so-called “under-sampled
problem” [126].

2.1.2 Generalized discriminant analysis (GDA)

The GDA [6, 127, 76] is a derivation of LDA which uses the kernel trick to solve non-linearly
separable classification problems, which can not be correctly separated by LDA. This tech-
nique uses a non-linear kernel function to project the patterns in the input space into a fea-
ture (or Hilbert) space F, where the dot product is calculated, in order to learn non-linear



2.1. Classical approaches 7

classification functions. The GDA maximizes the scatter between classes and minimizes the
scatter within a class, similarly to the LDA, but in the high-dimensional space F, while the
LDA maximizes the Fisher criterion in the original IRn space. The GDA uses the kernel
PCA algorithm in the first stage to remove noise from the input patterns. Then, it computes
the N ×N-order kernel matrix K, where N is the number or patterns, whose elements are
ki j = K(xi,x j) = ~ϕ(xi)

T~ϕ(x j). These elements are centered in the feature space by using the
following formula:

ki j = ki j−
1
N

N

∑
l=1

kil−
1
N

N

∑
l=1

k jl +
1

N2

N

∑
l=1

N

∑
m=1

klm (2.6)

The GDA solves the eigenproblem:

Kv = λv (2.7)

creating the matrix P with the N eigenvectors vi by columns. It has been shown that maxi-
mization of the Fisher criterion in the F space is equivalent to find the vector a that maximizes
the Rayleight quotient:

φ(a) =
aT KWKa

aT KKa
(2.8)

where W is an N×N blockdiagonal matrix W = {Wc}Cc=1, and the nc×nc-order matrix Wc

is 1
nc

I. This solution a is given by the d normalized eigenvectors vi of the matrix PT WP
associated to the largest eigenvalues:

ai =
|vi|√
vT

i Kvi

, i = 1, . . . ,d (2.9)

and the i-th component yi of the mapped pattern y ∈ IRd is given by:

yi(x) = ai

N

∑
j=1

K(x j,x), i = 1, . . . ,d (2.10)

Note that this method does not provide an explicit mapping for new out-of-sample pat-
terns, so an interpolation method is required to map them into IRd . This also happens with
other methods of dimensionality reduction, as we shall see.



8 Chapter 2. Methods of dimensionality reduction

2.1.3 Principal component analysis (PCA)

The PCA [59, 55] is a very popular statistical algorithm for exploratory data analysis which is
also used for data pre-processing, image compression, data reduction and many other things.
It develops an orthogonal transformation that linearly projects the patterns from IRn to IRd

using the formula y = WT x, where the matrix W is composed by d principal components,
which are vectors defining the directions with the maximum variability in IRn. The subset of
the principal components associated to the d largest eigenvalues define the low dimensional
space IRd . After standarize the data (i.e., pre-process the patterns substracting the mean and
dividing by the standard deviation of each input, in such a way that the pre-processed patterns
have zero mean and standard deviation one for each input), PCA computes the n× n-order

covariance matrix C =
1
N

N

∑
i=1

xixT
i and solves the following eigenvalue problem:

Cv = λv (2.11)

The n eigenvectors vi are sorted by decreasing order of their eigenvalues, which measure
the data variance on the direction of each eigenvector. The eigenvalues near to zero identify
directions in IRn where the data variance is low, they are less informative and thus can be
dropped. The d eigenvectors whose eigenvalues are above certain threshold are selected as
columns for the W matrix which define the mapping. When d is not pre-defined, the principal
components are often selected in order to account more than 95% of the data variance.

2.1.4 Kernel PCA

This method [78, 98] is a nonlinear version of PCA that projects the patterns xi ∈ IRn to a
feature space F of a dimension which may be infinite ~ϕ : IRn → F, defined implicitely by a
kernel K(x,y) = ~ϕ(x)T~ϕ(y) using the kernel trick. The PCA is applied to the N×N-order
kernel matrix K, whose elements are ki j = K(xi,x j), and the following eigenvector problem
is solved:

Kv = λNv (2.12)

The KPCA extracts the principal components which lead to the projection of the pat-
terns orthogonally into IRd . Furthermore, the eigenvectors lie in the space expanded by
~ϕ(x1), . . . ,~ϕ(xN) and can be expressed as:



2.1. Classical approaches 9

v =
N

∑
i=1

ai~ϕ(xi) (2.13)

Sometimes the F space does not have a zero-mean and it is necessary to center the el-
ements of the K matrix by modifying its entries using eq. 2.6. Besides, the coefficients ai

associated to the nonzero eigenvalues are normalized by requiring the corresponding eigen-
vectors in the feature space to be also normalized using:

ai =
|vi|√

λi
, i = 1, . . . ,N (2.14)

In order to construct the low dimensional pattern y∈ IRd , the KPCA projects a test pattern
x using the d principal components (i.e., the d eigenvectors associated to the largest eigen-
values) extracted by the traditional PCA as in eq. 2.10. The KPCA does not develop any
iterative optimization to reduce the pattern dimension. It can also represent out-of-sample
patterns not included in the training set, and it has been succesfully applied to extraction of
pattern structures, classification [63], face recognition [62], regression [92], de-noising and
speech recognition [4].

2.1.5 Probabilistic PCA (ProbPCA)

The ProbPCA [112] is an iterative extension of PCA that uses a probabilistic Gaussian latent
variable1 model to solve the limitations inherent in the regular PCA, such as dealing with
missing data patterns and lack of an explicit generative model. This method is formulated in a
linear form as xi =Wyi+m+~εi , where the n×d-order matrix W develops the linear mapping
from IRd to IRn, while yi ∈ IRd is the latent (unobserved) input that describes the relation
between observed patterns in IRd (i.e., the pattern projected to the low-dimensional space), m
is the mean of the observed variables xi (the original high-dimensional patterns), and~εi is the
error or data noise. It is assumed that both yi and~εi follow two normal Gaussian distributions
yi∼N (0,I), where I is the d×d identity matrix, and~εi∼N (0,σ2I), with isotropic variance
σ . Generally, ProbPCA uses an iterative algorithm called Expectation Maximization (EM) to
estimate the unobserved variables yi in two steps [80]:

1. E-step (expectation): it performs the estimation 〈yi〉 of the unobserved variable yi (pro-
jected pattern in IRd) from the observed variable xi (original pattern in IRn) and the

1A latent variable or input is an unobservable variable that describes the relationship between observed patterns
in the high-dimensional space and represents those patterns in the low-dimensional space.



10 Chapter 2. Methods of dimensionality reduction

current value of parameters (W,σ2):

〈yi〉= (WT W+σ
2I)−1WT (xi−m) (2.15)

〈yiyT
i 〉= σ

2(WT W+σ
2I)−1 + 〈yi〉〈yi〉T (2.16)

2. M-step (maximization): it estimates W and σ2 that maximize the expectation of log-
likelihood L with respect to the unknown variable yi given the known variable xi:

L =−N
2
{n ln(2π)+ ln |C|+ trace(C−1S)} (2.17)

where C = WWT +σ2I is the observed covariance matrix and S =
1
N

N

∑
i=1

(xi−m)(xi−m)T

represents the sample covariance matrix. The matrix W which provides the maximum likeli-
hood is calculated as:

W = U(Λ−σ
2I)1/2R (2.18)

where U is a n×d-order matrix whose columns are the d main eigenvectors of S; the d×d-
order diagonal matrix Λ contains the d largest eigenvalues of S; and the d×d-order matrix R
is an arbitrary orthogonal rotation. Finally, ProbPCA extends its scope to deal with patterns
which are noisy or lack some inputs, and can be utilized as a general Gaussian density model
[128].

2.1.6 Gaussian process latent variable model (GPLVM)

This is an unsupervised technique [65] that uses statistical models based on Gaussian proce-
ses, and solves the non-linearity limitation of PCA. The GPLVM preserves the dissimilarity
between patterns in IRd as it is in IRn, so that if the patterns are far apart in IRn they will be
far apart in IRd . This technique has shown its ability to deal with the situations that have only
a small number of training patterns including sparse input set.

The GPLVM maps the data onto IRd by maximizing the Gaussian process likelihood with
respect to the latent variable y ∈ IRd (the projected pattern). A Gaussian kernel function
is used to map the original patterns x ∈ IRn to IRd . The scaled conjugate gradient (SCG)
method is used to solve the eigenvalue problem by optimizing iteratively each latent variable,
marginalising the likelihood parameters to represent the patterns in IRd . Besides, sparsifica-
tion is used to speed up the computation process by selecting a subset of patterns called “active



2.1. Classical approaches 11

set” using the informative vector machine (IVM) method, which selects patterns sequentially
according to the reduction in the subsequent process’s entropy that they provide. This method
maps the original patterns xi, but it does not provide an explicit mapping for out-of-sample
patterns.

2.1.7 Factor analysis (FA)

Factor Analysis has been widely used in psychology, economy and operations research, and
also for dimensional reduction in order to preserve the correlation between observed data
[111, 105]. The FA represents the patterns in IRd estimating an underlying (latent) variable
yi ∈ IRd , called Factor, and describing the observed factors xi ∈ IRn as a linear combination
of the underlying factors and a stochastic error term [60]:

xi = Lyi +~εi, i = 1, . . . ,N (2.19)

or in extended form:

xi j =
d

∑
k=1

l jkyik + εi j, i = 1, . . . ,N; j = 1, . . . ,d (2.20)

where li j is an element of the n× d-order factor loading matrix L and~εi is unobserved error
term with 〈~εi〉= 0. The FA searches for a matrix L which provides the maximum likelihood
on the observed covariance matrix [74]. The EM algorithm (see section 2.1.5) is used in order
to iteratively find the matrix L, starting from a random n×d-order matrix A and a covariance
matrix Σ = In, the n×n-order identity matrix, we have:

1. Expectation step: C = (AAT +Σ), M = AT C−1X and S = N(Id−AT C−1A)+MMT

2. Maximization step: A = AMT S−1, Σ = XXT −AMXT

N +εIn. The new log-likelihood

is calculated as L =
1
2

[
log(detC−1)+

trace(C−1S)
N

]
The process finishes when the log-likelihood L does not change or a number of iterations

is reached. Finally, the mapped pattern in IRd can be found as:

y = AT x (2.21)



12 Chapter 2. Methods of dimensionality reduction

2.2 Global nonlinear methods

These methods try to preserve global properties of the pattern set, usually the pairwise distance
between patterns, but allowing non-linear mappings between IRn and IRd .

2.2.1 Sammon mapping

The Sammon mapping is one of the most classical data reduction algorithm,which maps the
data from IRn to IRd while preserving the structure of inter-pattern distance [95], measured by
an error function (the Sammon or Kruskal stress) defined by:

φ =

∑
i< j

(δxi j−δyi j)
2

δxi j

∑
i< j

δxi j
(2.22)

Where δxi j = xi−x j ∈ IRn and analogous for δyi j ∈ IRd . The Sammon stress is minimized
using gradient descent. It is widely known in the literature that the Sammon mapping is not
able to deal with complex high-dimensional data structures, nor to handle big data sets with
lots of patterns. One of the reasons is that all the patterns share similar weights on the Sammon
stress in high-dimensional spaces, so this mapping mixes distant and nearby patterns [67],
leading to the well-known crowding problem. Besides, it just maps the patterns xi, but it does
not provide an explicit mapping for new patterns. This also happens to the following methods
(MDS, SPE, SNE, SSNE and t-SNE).

2.2.2 Multidimensional data scaling (MDS)

The MDS [113, 14] maps pairwise patterns from IRn onto IRd while retaining the inter-
distance between patterns as much as possible in both spaces, using a dissimilarity matrix
that describes the geometric structure of the pattern set. Thus, it only requires a matrix with
the pairwise distances between patterns, and not the whole patterns themselves, which is an
advantage for computing and storing requirements. This method is used for exploring the
patterns, dimensionality reduction and more applications. There are two variants depending
on the way to compute the dissimilarity matrix:

1. Metrical MDS, which uses distances, although classical MDS transforms distances into
inner product. The loss function of the distances is called stress (φ ), and it measures



2.2. Global nonlinear methods 13

the difference between the pairwise distances in IRn and IRd . The Sammon (eq. 2.22)
and raw stress functions are the most important. The latter is defined by:

φ(Y) = ∑
i< j

(|δxi j|− |δyi j|)2 (2.23)

where Y is the matrix with the mapped patterns yi ∈ IRd , while δxi j and δyi j are defined
in section 2.2.1 (Manhattan and maximum distances are also used by some MDS ver-
sions). The Sammon stress emphasizes more on keeping distances which are originally
small. Other versions of MDS use more general stress functions, given by:

φ(Y) =

√
1
s ∑

i< j
[ f (δxi j)−δyi j]2 (2.24)

where s is a scale factor. With Euclidean distances and f identity, we achieve the PCA
solutions without correlation scaling.

2. Non-metric MDS, which use the rank ordering of the distances instead of the distance
itself (although [15] states that MDS is metric when the above f (δxi j) function is linear,
and non-metric otherwise).

The stress function is minimized using a eigendecomposition of the pairwise dissimilar-
ity matrix, the conjugate gradient or a pseudo-Newton method. The literature reports some
defficiencies of MDS to represent small distances (local structure of the patterns). Besides,
using Euclidean distances it does not take into account the distribution of the neighboring
patterns. Thus, when the patterns fall in a curved manifold (e.g., a spiral line in IR2), two pat-
terns can be considered nearby MDS, whereas their distance alongside the manifold (spiral)
is comparative large.

2.2.3 Stochastic proximity embedding (SPE)

The SPE [1] is a self-organizing iterative technique that preserves the Euclidean distance
between patterns in the low dimension space with respect the input space, and it is therefore
based on the proximity relationship. It minimizes the raw stress function of MDS, re-written
as:



14 Chapter 2. Methods of dimensionality reduction

φ(Y) = ∑
i< j

(δyi j− ri j)
2, ri j =

|δxi j|
max
k<l
{|δxkl |}

(2.25)

The SPE uses an iterative process which starts with randomly selected N patterns yi ∈ IRd ,
with yi j ∈ [0,1], and it uses an efficient rule to update them: s pairs of patterns (yi,y j) are
selected, and the matrix Y with their Euclidean pairwise distances is calculated. Then, yi and
y j are updated in such a way that the difference between the distance ri j in IRn and δyi j in IRd

is decreased:

yi(t +1) = yi(t)+α(t)δyi j(t) (2.26)

y j(t +1) = y j(t)+α(t)δy ji(t) (2.27)

α(t) = λ
ri j−|δyi j(t)|
2|δyi j(t)|+ ε

(2.28)

where λ and ε are the learning rate and the regularization parameter to avoid divisions by zero,
respectively. The process is repeated until the stress φ(Y) decreases below some threshold, or
until a number of iterations is reached.

2.2.4 Stochastic neighbor embedding (SNE)

The SNE [53] is a non-linear data reduction technique maps patterns from IRn to IRd pre-
serving a neighborhood identity while retaining the pairwise Euclidean distance between the
original patterns xi ∈ IRn as much as possible. This is accomplished by computing a symmet-
ric probability (pi j) for the original patterns using the following equation.

p j|i =
e−|δxi j |2/2σ2

∑
k 6=i

e−|δxik|2/2σ2 (2.29)

In IRd the SNE calculates the induced probability qi j between each pattern yi and its
nearest neighbor y j.

q j|i =
e−|δyi j |2

∑
k 6=i

e−|δyik|2
(2.30)

The SNE minimizes a cost function different to MDS, given by the sum of Kullback-
Leibler divergences of pi j and qi j between all neighbors:



2.2. Global nonlinear methods 15

φ(Y) = ∑
i

∑
j

p j|i log
p j|i
q j|i

(2.31)

The φ(Y) is minimized in the original SNE by a gradient descent method, with Gaussian
jitter to avoid local minima. Specifically, the gradient has the form:

∂φ

∂yi
= 2

N

∑
j=1

(p j|i−q j|i + pi| j−qi| j)δyi j (2.32)

and the updating rule for yi, including a momentum term, is given by:

Y(t +1) = Y(t)+η
∂φ

∂Y
+α(t) [Y(t−1)−Y(t−2)] (2.33)

where η and α(t) are the learning rate and momentum parameter, respectively. The trust-
region algorithm has been also used as an alternative minimization method [83].

2.2.5 Symmetric SNE (SSNE)

The symmetric SNE is a variant of SNE that maps the data from IRn to IRd , with d� n, based
on the pairwise similarity matrix attempting to preserve the neighbor identity [23, 125]. The
SSNE computes qi j = q j|i as in SNE in IRd , but in IRn it defines pi j according to:

pi j =
p j|i + pi| j

2n
(2.34)

in order to avoid problems due to outliers. The stress function to be minimized and its gradient
are given by:

φ = ∑
i, j

pi j log
pi j

qi j
,

∂φ

∂yi
= 4∑

j
(pi j−qi j)δyi j (2.35)

The use of a symmetric cost function, whose gradient is simpler than SNE, and the addi-
tion of momentum terms speed up the optimization with respect to SNE. However, the pat-
terns mapped by SSNE in IRd are often compressed near to the center, leading to the crowding
problem.

2.2.6 T-distribution SNE (t-SNE)

The t-SNE is a variation of SSNE [115] which uses a student t-distribution with a single
degree of freedom, as a distribution in IRd with a tail more heavy than a Gaussian distribution



16 Chapter 2. Methods of dimensionality reduction

in order to avoid the crowding problem of SSNE. This, the joint probabilities qi j in IRd are
defined as:

qi j =
(1+ |δyi j|2)−1

∑
k 6=l

(1+ |δykl |2)−1 , i, j = 1, . . . ,N (2.36)

The gradient of the stress function φ(W), defined as SNE, is given by:

∂φ

∂yi
= 4∑

j

pi j−qi j

1+ |δyi j|2
δyi j, i = 1, . . . ,N (2.37)

The minimization of φ uses the same update equation 2.33 as SNE. The t-SNE produces
better data visualization than existing techniques and it preserves in IRd the local and global
data structure of the original patterns in IRn.

2.2.7 Isomap

This approach is a combination of MDS and PCA (subsections 2.2.2 and 2.1.3) which pre-
serves the intrinsic geometry of the data [109], and specifically the pairwise geodesic distance
between patterns, i.e., the distance alongside the curvilinear manifold which best describes
the pattern set. These geodesic distances are calculated by creating a neighborhood graph G

which connects each original pattern xi to its k nearest neighbors (in some versions, to the
neighbors within a fixed-radius). The geodesic distance between two patterns is estimated
as the length of the shortest path between them in G, evaluated using Dijkstra’s or Floyd’s
shortest-path algorithms. A geodesic distance matrix is composed with all the geodesic dis-
tances between patterns. The mapped patterns yi ∈ IRd are calculated by applying MDS on
this matrix. Therefore, Isomap minimizes the 2-norm of the difference between the geodesic
matrix and the pairwise distance matrix between the mapped patterns yi. It has been shown
that Isomap may be topologically unstable.

2.2.8 Landmark Isomap

This method [101] is an extension of Isomap thats addresses its computational bottlenecks: 1)
computation of the N×N-order shortest path matrix between patterns xi ∈ IRn; and 2) compu-
tation of the N×N-order eigenvalue matrix, with O(N3) complexity, in order to visualize the
mapped data in IRd . Thereby, landmark Isomap performs a random selection of a small subset
of n patterns xi, called landmarks, with d ≤ n� N. These landmarks are used to compute the



2.2. Global nonlinear methods 17

shortest path matrix, of order n×N instead of N×N for the full geodesic matrix. Then, from
the geodesic matrix it computes the matrix with the main eigenvectors in order to produce
the data representation in IRd [86]. These steps reduce the execution time, while preserving
locally and globally the Euclidean distances between patterns in IRn with respect to IRd .

2.2.9 Diffusion map

A diffusion map [20] creates a graph of the patterns using Markov random walks as the first
step. All the nodes in the graph are connected together, and the weight of the edges in the
graph between two patterns (xi,x j) is computed using the Gaussian (or diffusion) kernel [25]:

K(xi,x j) = e−|δxi j |2/α (2.38)

Jumping form pattern xi to a nearby pattern x j is a one-time step of the random walk.
Hence the diffusion distance is defined by:

Dt(xi,x j) =
N

∑
k=1

(pt
ik− pt

jk)
2

ε(xk)0 (2.39)

where pt
ik is the probability of jumping from xi to xk at time step t, computed in the diffusion

process through the whole pattern set at different time scales; and ε(xk)
0 is ε(xk) calculated

at t = 0. This prior step produces the diffusion matrix. Then, eigenvectors and eigenvalues of
the diffusion matrix are calculated to represent the patterns yi in IRd by selecting directions
in the diffusion space associated to the largest eigenvalues. The diffusion map attempts to
retain the diffusion distance, being robust to noise perturbation, and its computational cost is
relatively low. Note that no explicit mapping is available for new out-of-sample patterns.

2.2.10 Multi-layer autoencoder

An autoencoder [54] is a feed-forward neural network with an odd number of hidden layers
that is trained to give on its output the same pattern as the input. The autoencoder is trained
using the original patterns x ∈ IRn, so during training they minimize the mean squared error
between the desired and predicted output. The low-dimensional mapped pattern y ∈ IRd is
codified in the middle hidden layer for each input pattern. As shown by Figure 2.1, the xi pat-
tern is passed as input to the first part of the network, called encoder. The encoder reduces its
dimension, applying a transformation φ : IRn→ IRd . The middle hidden layer (code) captures



18 Chapter 2. Methods of dimensionality reduction

Figure 2.1: Schematic structure of a multi-layer autoencoder (extracted from [71]).

the important features that represent the pattern in IRd . Finally, the last part (called decoder)
restores on the output layer the input pattern from the code into the original dimension, devel-
oping a transformation ψ : IRd→ IRn. The autoencoder method is able to learn the meaningful
features from x, inducing the intrinsic low-dimensional structure of patterns [27]. Linear and
non-linear mappings are available, depending on the activation function (linear or sigmoid)
of the neurons in the network, being similar to PCA in the former case. The usual training of
neural networks, based on back-propagation, is very slow for autoencoders, given its usually
high number of connections. Therefore, it is usual to pre-train the network using a Restricted
Boltzmann Machine (RBM), a kind of neural network with binary neurons, without connec-
tions between hidden neurons, and then weights are tuned using back-propagation or a variant
of simulated annealing.



2.3. Local nonlinear mapping 19

2.3 Local nonlinear mapping

The methods presented in this section are non-linear mappings oriented to preserve properties
which are valid only in small neighborhoods around the patterns, to they are called local non-
linear mappings. The literature [9] has shown that some local methods can be considered as
variants of KPCA using different kernels.

2.3.1 Locally linear embedding (LLE)

The LLE [93] creates a representation graph of patterns, but preserving the local structure by
describing the original patterns xi as a linear combination of their k nearest neighbors xi j, with
j = 1, . . . ,k:

xi =
k

∑
j=1

wi jxi j, i = 1, . . . ,N (2.40)

where wi j is the weight of the j-th nearest neighbor of xi. This method calculates the N×
k-order weight matrix W from the original patterns xi. This description is invariant under
rescaling, translation and rotation, so that LLE maps the patterns to IRd in such a way that it
preserves the local geometry of the original patterns xi in the manifold, i.e., to keep the same
weights as in IRn, so much as possible. Specifically, LLE calculates the low-dimensional
mapped patterns yi ∈ IRd in order to minimize the following cost function:

φ(Y) =
N

∑
i=1

∣∣∣∣∣yi−
k

∑
j=1

wi jyi j

∣∣∣∣∣
2

= YT (I−W)T (I−W)Y (2.41)

To calculate yi ∈ IRd , the LLE computes the eigenvectors of matrix I−W associated to
the smallest d non-zero eigenvalues. The LLE has been reported in the literature [114, 93] as
a low-performing method with fails in the visualization of several popular data sets.

2.3.2 Hessian LLE (HLLE)

This method is a variant of LLE which uses Hessian instead of Laplacian operator [31]. Sup-
posing that the high-dimensional patterns x lie on a manifold embedded in IRn, the HLLE
maps them into a low-dimensional space IRd which is locally isometric to that manifold. This
space can be not convex, so HLLE is more general than Isomap. The HLLE performs an
eigen analysis of the Hessian matrix (H) which contains the means of the Hessian over all



20 Chapter 2. Methods of dimensionality reduction

the patterns [124] and describes the curviness of the manifold around the patterns. It starts by
searching the k nearest neighbors of each pattern xi, assuming local linearity for the manifold
over the neighborhood. Applying PCA on this set of neighbors and selecting the d principal
eigenvectors we achieve a basis for the local tangent space at pattern xi, which is centered by
substracting its average. In order to estimate the Hessian matrix Hi of the manifold at xi, a
matrix Zi with the d cross products of the d eigenvectors of the basis is created and orthonor-
malized. Then, Hi is estimated as the transpose of the last d(d +1)/2 columns of Zi. Using
all the local Hessian matrices Hi, with i = 1, . . . ,N, the global Hessian matrix H is created
with elements Hkl calculated as:

Hkl = ∑
i

∑
j

H i
jkH i

jl (2.42)

This matrix H measures the curviness of the manifold where the data lie in IRn. The d

smallest non-zero eigenvectors of H are selected as the N mapped patterns yi ∈ IRd which
define the d-dimensional space minimizing the manifold curvature. There is no explicit map-
ping for out-of-sample patterns.

2.3.3 Neighborhood preserving embedding (NPE)

The NPE is a linear mapping that attempts to preserve the local structure of the manifold
where patterns are supposed to lie, being related to LLE [50]. It starts by constructing an
adjacency graph that represents the relationship between input patterns xi ∈ IRn using the k-
nearest neighbor (directed graph) or ε-neighborhood (undirected graph) methods. Then, it
computes the N×N-order weight matrix W of the edges similarly to LLE, and it solves the
following eigenproblem:

(X− X̄)T (I−W)T (I−W)(X− X̄)v = λ (X− X̄)T (X− X̄)v (2.43)

where I is the N-order identity matrix, the n×N-order matrix X contains the original patterns
x ∈ IRn by columns, and all the columns of the X̄ matrix are equal, containing the means of
the n inputs. Denoting by A the n×d-order matrix with the d smallest non-zero eigenvalues
v ∈ IRn by columns, the d ×N-order matrix Y with the low-dimensional mapped patterns
yi ∈ IRd by columns is given by:

Y = AT (X− X̄) (2.44)



2.3. Local nonlinear mapping 21

2.3.4 Local tangent space alignment (LTSA)

The LTSA [132] describes the local properties of patterns in IRn using the local tangent space
Θi of each pattern xi, similarly to HLLE. Assuming that patterns lie on a manifold which is
locally linear, there are two linear mappings, one from xi and other from its low-dimensional
version yi ∈ IRd , both into Θi. The LTSA proceeds by aligning both mappings in order to con-
struct the LTS from IRd , searching simultaneously for yi and for the mappings (or matrices)
Li from yi to Θi. In the beginning, LTSA applies PCA on the set of k neighbors of xi, creating
a mapping from this set to Θi. Then, it minimizes:

φ(Y) =
N

∑
i=1
|Jkyi−LiΘi|2 (2.45)

where Jk is the centering matrix of size k, so LTSA minimizes the sum, over all the patterns, of
the squared norms of the differences between the local tangent space in IRn, given by LiΘi, and
the centered low-dimensional pattern yi. The mapped patterns in IRd are the d smallest non-

zero eigenvectors of the matrix
B+BT

2
, where B is an alignment matrix calculated through

an iterative complex procedure. No explicit mapping is available for out-of-sample patterns.

2.3.5 Linear LTSA (LLTSA)

This method [131] also aims to preserve in IFd the local geometric structure of the patterns in
the original space IRn, minimizing the cost function of LTSA. Similarly to LPP and NPE, the
LLTSA defines a neighborhood graph on the patterns xi ∈ IRn and estimates its local tangent
space Θi to represent the local geometry, estimating the same matrix B as LTSA, and solving
the following eigenproblem:

(X− X̄)T B(X− X̄)v = λ (X− X̄)T (X− X̄)v (2.46)

where X̄ is the average of the pattern matrix X. Denoting as V the matrix with the d smallest
non-zero eigenvalues of the previous eigenproblem, the matrix Y with the low-dimensional
mapped patterns yi ∈ IRd is given by Y = (X− X̄)V.

2.3.6 Laplacian eigenmap

This method [7] maps the patterns from IRn to IRd by preserving the local properties, in this
case the pairwise Euclidean distances between neighbors, of the manifold where the patterns



22 Chapter 2. Methods of dimensionality reduction

lie. The mapped patterns yi are calculated in such a way that they minimize the distance
between yi and its nearest neighbors. In the cost function, distances are weighted decreasingly
with the neighbor order. First, it creates a graph where each pattern xi is connected to its
k nearest neighbors. The edge weight between xi and x j is given by the Gaussian kernel
function:

wi j = e−|δxi j |2/2σ2
, i, j = 1, . . . ,N (2.47)

where δxi j = xi−x j. The cost function which is minimized to calculate yi ∈ IRd is given by:

φ(Y) = ∑
i, j

wi j|δyi j|2 (2.48)

where δyi j = yi−y j. The degree matrix M is calculated as a diagonal matrix whose elements
are the row sums of W, and the Laplacian matrix, similarly to analytical mechanics in Physics,
is defined as L = M−W. Therefore, the cost function φ can be written as φ = 2YT LY, which
is minimized by solving the eigenproblem:

Lv = λMv (2.49)

The N × d-order matrix V with the d eigenvectors associated to the smallest non-zero
eigenvalues (by columns) defines the low-dimensional patterns yi ∈ IRd , with i = 1, . . . ,N,
being each mapped pattern yi one row of V. The Laplacian eigenmaps have been successfully
applied in many field like clustering and face recognition.

2.3.7 Locality preserving projection (LPP)

This projection is a linear approximation to the nonlinear Laplacian eigenmap [51] that uses
the Laplacian to project the data from IRn to IRd , with d � n. Linear approaches are use-
ful when a fast method is required to map out-of-sample patterns or when patterns must be
reconstructed from IRd . A nearest neighbor graph is created connecting each pattern to its k

neighbors. The graph weights wi j, calculated using eq. 2.47, compose the N×N-order weight
matrix W. Analogously to Laplacian eigenmaps, the Laplacian is calculated as L = D−W,
where the N-order diagonal matrix D has elements Dii equal to the column sums of W. In
order to calculate yi ∈ IRd , the LPP solves the generalized eigenproblem:

XLXT v = λXDXT v (2.50)



2.3. Local nonlinear mapping 23

where the n×N-order matrix X stores the original patterns x ∈ IRn, after substracting their
means, by columns. It can be shown that the n×d-order matrix A which minimizes the Lapla-
cian eigenmap cost function (eq. 2.48) is composed by the eigenvectors vi ∈ IRn associated to
the d smallest non-zero eigenvalues, by columns. Finally, the d×N-order matrix Y with the
low-dimensional mapped patterns y ∈ IRd is given by Y = AT X.

2.3.8 Maximum variance unfolding (MVU)

This method [118, 119] attempts to preserve in IRd the local data properties of IRn by requiring
|yi− y j|2 = |xi− x j|2, with i = 1, . . . ,N and j > i, using LLE to provide a starting solution.
The idea of MVU is to represent the data in a lower dimension by pulling as much as possible
the pairwise apart and maximize their total sum of distances. Thereby, MVU starts from
a intermediate space IRp, with d < p < n, generated using LLE, and creates a connected
graph G whose arrows link each pattern xi ∈ IRp to its k-nearest neighborhoods (k is a free
tunable hyper-parameter), keeping the distances between xi and its neighbors in both spaces.
In order to map the patterns to IRd , the MVU reformulates the previously obtained results as
a quadratic program to represent the patterns in IRd , by solving the following optimization
problem:

Maximize ∑
i, j∈G
|δyi j|2 subject to:

1) |δyi j|2 = |δxi j|2 ∀i, j ∈ G

2) ∑
i

yi = 0

(2.51)

where the last constraint means that the mapped patterns are centered. During this optimiza-
tion the MVU may suffer from spurious local minima. The MVU does not provide an explicit
mapping for new patterns.

2.3.9 Fast MVU

The FastMVU is similar to Isomap in that it describes a neighborhood graph on the original
patterns and holds distances between pairs of patterns in the resulting graph. It works to
“unfold” the data while maximizing the pairwise distances between patterns without changing
the distances in the neighborhood graph (i.e., without distorting the local geometry of the data
manifold). The resulting problem can be best solved using semi-definite programming [121].



24 Chapter 2. Methods of dimensionality reduction

The FastMVU begins building a neighborhood graph G, by connecting each pattern xi to
its k closest neighbors. After that, FastMVU squares the Euclidean distances between all
patterns in order to increase the sum to its maximum, while keeping unchanged the distances
between patterns within G. Therefore, FastMVU transforms the optimization problem of
MVU (eq. 2.51) into a semi-definite programming problem by defining the Y matrix with the
low-dimensional patterns yi ∈ IRd , creating a semi-definite positive N×N-order kernel matrix
K with elements Ki j = yT

i y j, and maximizing trace(K) subject to [116]:

1) Kii−2Ki j +K j j = |δxi j|2 i, j ∈ G

2) ∑
i j

Ki j = 0

The Y matrix with the low-dimensional patterns is achieved by Y = K1/2, which always
exists because K is semi-definite positive.

2.3.10 Landmark MVU

Since MVU solves a semi-definite programming problem, its computational cost is very high
specially for N high, so Landmark MVU was proposed to accelerate this process [26, 58].
First, it applies MVU on a reduced subset of m patterns called landmarks, randomly selected,
extending hereafter the dimensionality reduction to the whole pattern set and allowing online
learning of new patterns. The landmark MVU supposes that the original patterns xi lie on a
d-dimensional manifold, which is spanned by the low-dimensional mapped patterns yi ∈ IRd

corresponding to the m landmarks. Let X1, Y1 be the sets of original and mapped landmark
patterns, respectively; X2 and Y2 be the sets of original and mapped non-landmark patterns,
respectively. We have that Y = h(X) = h(X1)QT , where h is the mapping from IRn to IRd and
Q is a N×m-order matrix. Considering that X = [X1,X2], that Y = h(X) = [h(X1),h(X2)] =

[Y1,Y2] and that QT = [Q1,Q2], we have:

[Y1,Y2] = [Y1Q1,Y1Q2] (2.52)

so that Q1 = I and:

Y2 = Y1Q2 (2.53)

Each pattern xi ∈ X2 can be approximately described as a linear combination of its k

nearest neighbor patterns x j with reconstruction weights wi j:



2.3. Local nonlinear mapping 25

xi ≈ ∑
j∈Ni

wi jx j, ∀xi ∈ X2 (2.54)

where Ni denotes the neighborhood of xi. In matrix form, it can be written as:

X2 ≈ X1W1 +X2W2 (2.55)

being W1 and W2 the weight matrices for landmarks and non-landmarks, respectively. In
order to keep the reconstruction weights in IRd , it must be:

Y2 ≈ Y1W1 +Y2W2⇒ Y2 = Y1W1(I−W2)
+ (2.56)

where (I−W2)
+ = (I−W2)

T [(I−W2)(I−W2)
T ]−1 is the generalized pseudo-inverse of

I−W2. Comparing eqs. 2.53 and 2.56, we see that:

Q2 = W1(I−W2)
+ (2.57)

Once Q = [I,Q2] is known and denoting K = QLQT , linear programming techniques are

used to find a matrix L such maximizes trace(K) subject to
N

∑
i, j=1

Ki j = 0, to K j j +Kll−2K jl =

|δx jl | for j, l ∈Ni and xi ∈ X1 (original landmark patterns), being L semi-definite positive.
Similarly to MVU, the matrix Y with low-dimensional mapped patterns yi ∈ IRd is given by
Y = K1/2.

2.3.11 Conformal eigenmap (CCA)

This method [99] starts by using LLE or Laplacian eigenmaps to map the patterns xi from
IRn to patterns zi ∈ IRt , with d < t < n, and then it creates a conformal mapping to IRd , i.e., a
mapping which is maximally angle-preserving, so that:

|δzhi|2

|δxhi|2
=
|δzi j|2

|δxi j|2
=
|δzh j|2

|δxh j|2
(2.58)

Thus, the CCA mapping reduces the pattern dimension while preserving the angles be-
tween neighboring patterns. The conformality of the triangles at pattern xh is given by:

Dh(sh) = ∑
i j

ηhiηi j(|δzi j|2− sh|δxi j|2)2 (2.59)

where ηi j = 1 only if xi and x j are neighbors, and sh corrects for scalings in the transformation
from IRn to IRd . The conformal eigenmap searches the linear mapping (associated to a matrix
L) from zi ∈ IRt to yi = Lzi ∈ IRd which maximizes:



26 Chapter 2. Methods of dimensionality reduction

∑
h

∑
i j

ηhi(|Lδzi j|2− sh|δxi j|2)2 (2.60)

subject to trace(LT L) = 1, in order to avoid the trivial solution L = 0. The CCA does not
provide an explicit mapping for out-of-sample patterns.

2.3.12 Locally linear coordination (LLC)

The LLC [108] captures a manifold curved structure in order to map the patterns from IRn

to IRd in two steps: 1) to compute a mixture of K local coordinate linear models (or di-
mensionality reducers) of the patterns using expectation maximization; and 2) to perform a
global coordinate alignment of these reducers using a linear mapping from them to the low-
dimensional patterns yi ∈ IRd that minimizes the cost of LLE. The k-th reducer maps to a
dimension dk and it has a responsibility rik for each pattern i = 1, . . . ,N, which represents the
reliability of reducer k to represent xi in IRdk , so that ∑

k
rik = 1. Let also be zik the pattern

mapped by the k-th reducer. The global alignment is done by applying a linear mapping given
by the matrix Lk and an offset lk for the k-th reducer, so that the mapped pattern yi is given
by:

yi = ∑
k

rnk(Lkzik + lk) = ∑
k

dk

∑
m=0

rikzm
jklmk = ∑

j
ui jl j, i = 1, . . . ,N (2.61)

where j = j(m,k), while lmk is the m-th column of matrix Lk. Besides, zm
ik is the m-th compo-

nent of zik and ui j = rikzm
ik. In matrix form, we have Y = UL. The whole process is illustrated

in Figure 2.2. The global alignment requires to select the matrix L in order to minimize the
LLE convex cost function:

ε(X,W) = ∑
i

∣∣∣∣∣xi− ∑
m∈Ni

wimxm

∣∣∣∣∣
2

= trace
[
XT (I−WT )(I−W)X

]
(2.62)

where X is the matrix with the original input patterns, wim the weight of the m-th neighbor of
xi, subject to ∑

m
wim = 1, stored in matrix W, and I is the N×N-order identity matrix. Since

the weights wim summarize the local pattern geometry, the objective will be to minimize the
same cost in IRd :

Maximize φ(X,W) = trace
[
YT (I−WT )(I−W)Y

]
subject to:

1) 1T Y = 0 (φ must be rotation and translation invariant)

2) YT Y = I (φ must scale as Y)

(2.63)



2.3. Local nonlinear mapping 27

Figure 2.2: Global alignment of patterns x in LLC using the responsibility-weighted reductors (Figure extracted
from [108]).

Replacing Y = UL (remember that U is known, because ui j = rikzm
ik), this problem leads

to the eigenvalue problem:

NUT (I−WT )(I−W)Uv = λUT Uv (2.64)

The d + 1 smallest nonzero eigenvalues compose the columns of matrix U, and the low-
dimensional patterns yi ∈ IRd are achieved as Y = UL. The main weakness of LLC is that
the fitting of mixture functions may find some local maxima in the log-likelihood function.
Besides, it does not provide an explicit mapping for out-of-sample patterns.

2.3.13 Manifold charting

This nonlinear method [10] maps to IRd the original patterns in IRn by aligning a mixture
of linear factor analyzers. First, the mixture of m analyzers is created using expectation-
maximization, achieving zi j ∈ IRd j for pattern i and analyzer j, and responsibilities ri j. Then,
it minimizes the following convex cost function, which measures the global difference be-
tween the mapped pattern yi and the sum of patterns yik mapped by the analyzers, weighted
by their responsibilities rik:

φ(Y) =
N

∑
i=1

m

∑
j=1

ri j|yi−yik|2 (2.65)



28 Chapter 2. Methods of dimensionality reduction

where yi =
m

∑
k=1

rikyik. Rewriting φ(Y) =
N

∑
i=1

m

∑
j=1

m

∑
k=1

ri jrik|yi j−yik|2 and considering Y = UL,

where ui j = ri j[zi j,1] similarly to LLC, the cost function φ(L) can be expressed in matrix
form as:

φ(L) = LT (D−UT U)L (2.66)

where L is the matrix which transforms the matrix Z with the patterns mapped by the analyz-
ers into Y. The matrix D is composed by the sum of covariances of the patterns zi j mapped by
the analyzers, weighted by the responsibilities ri j. The columns of the m×d-order matrix L
which maximizes φ(L) are the d eigenvectors associated to the smallest non-zero eigenvalues
of the following eigenvector problem:

(D−UT U)v = λUT Uv (2.67)

Finally, denoting by [Z,1] the (m− 1)× (m− 1)-order matrix Z with a column vector
with ones pasted on its right, the d×N-order matrix Y with the mapped patterns yi ∈ IRd by
columns is given by:

Y = LT [Z,1]T (2.68)

2.3.14 Coordinated factor analysis (CFA)

This method [117] maps the patterns to IRd by globally aligning a mixture of factor analyzers
(linear models), combining in the same process the creation and alignment of these separate
linear models, so they can be tuned to optimize the global alignment. The CFA uses EM
optimizing the normal log-likelihood function of the mixture of factor analizers, penalized
by a negative Kullback-Leibler divergence which weights the similarity between the mixture
and a Gaussian distribution, i.e., the agreement between the low- and high-dimension patterns
yi ∈ IRd and xi ∈ IRn, respectively. This penalized log-likelihood is given by:

L =
N

∑
i=1
{log p(xi)−D [qi(y)‖p(y|xi)]}) (2.69)

where log p(xi) is the log-likelihood of the mixture of the factor analyzers, D(·‖·) is the
Kullback-Leibler divergende and qi(y) = N (y : yi,Σi) is a Gaussian distribution of mean
yi and covariance Σi. The optimization of L is complex, although CFA provides closed ex-
pressions for all the steps, but an out-of-sample extension is not available. The literature has
reported performance limitations when many local maxima exist for L .



2.4. Other supervised methods 29

2.4 Other supervised methods

Most of the previous methods, excepting LDA and GDA, do not use the class labels and
therefore can be considered unsupervised from the point of view of classification. There are
also three additional methods that have been specifically designed for classification tasks, so
they use these labels and can be considered as supervised dimensionality reduction methods.

2.4.1 Neighborhood component analysis (NCA)

The NCA is a linear supervised method used for the visualization, classification patterns and
dimensionality reductions problems [48]. It aims to learn the Mahalanobis metric distance
associated to a d×n-order transformation matrix A which maximizes the average leave-one-
out (LOO) error of the k-nearest neighbor (KNN) classifier in the transformed space IRd . This
distance metric is calculated as:

d(xi,x j) = (Axi−Ax j)
T (Axi−Ax j) = δxT

i jA
T Aδxi j = δxT

i jQδxi j (2.70)

where Q=AT A. Since infinitesimal changes in A may lead to finite changes in the LOO error,
this value is a discontinuous function of A, so the NCA uses a stochastic neighbor assignment
with a differentiable cost function instead of this error. For pattern xi, the probability pi j of
pattern x j to be its neighbor is given by the softmax over Euclidean distance in the transformed
space:

pi j =
e−|Aδxi j |2

∑
k 6=i

e−|Aδxik|2
, pii = 0, i, j = 1, . . . ,N (2.71)

Based on the stochastic selection rule, the probability pi of the pattern xi to be correctly
classified can be computed as:

pi = ∑
j∈Ci

pi j (2.72)

where Ci = { j|ci = c j} represents the set of indices of the patterns x j that belong to the same
class as xi. The NCA is seeks to maximize the expected number of patterns correctly classified
under the scheme that produces the transformation matrix A, which is given by:

φ(A) =
N

∑
i=1

∑
j∈Ci

pi j = ∑
i

pi(A) (2.73)



30 Chapter 2. Methods of dimensionality reduction

The gradient rule shown below is a result differentiating φ with respect to A:

∂φ

∂A
= 2A

N

∑
i=1

(
pi

N

∑
k=1

pikδxikδxT
ik− ∑

j∈Ci

pi jδxi jδxT
i j

)
(2.74)

The NCA uses iterative gradient-base optimizer such as delta-bar-delta or conjugate gra-
dients in order to optimize the cost function φ . Because this function is not convex, some care
is needed during the training to avoid the local maxima. The low-dimensional pattern y ∈ IRd

is given by y = Ax.

2.4.2 Maximally collapsing metric learning (MCML)

The fundamentals of this method [46] are that a good metric distance for a given classification
task should place patterns of the same class near each other, and far from patterns of other
classes. The MCML generates such distance by optimizing a convex problem which tries
to collapse each class in a single pattern placed far away from the patterns of other classes.
This provides a compact low-dimensional representation of the original patterns. Given dA

i j =

δxT
i jAδxi j, we define a conditional distribution for i 6= j as:

pA( j|i) = e−dA
i j

∑
k 6=i

e−dA
i j

(2.75)

The MCML searches for a positive semi-definite matrix A that minimizes the Kullback-
Leibler divergence between pA( j|i) and p0( j|i), defined as p0( j|i) = 1 only if yi = y j and
p0( j|i) = 0 otherwise. This divergence, adequately rewritten, is given by:

φ(A) =− ∑
yi=y j

log p( j|i) = ∑
yi=y j

dA
i j +∑

i
log ∑

k 6=i
e−dA

ik (2.76)

The minimization of φ(A), which is a convex problem, starts by initializing A to some
random or heuristically selected positive semi-definite matrix, and iterates the following two-
step process:

1. Update A: A(t+1)=A(t)−ε∇φ [A(t)], where ∇φ [A(t)]=∑
i, j
[p0( j|i)− p( j|i)]δx jiδxT

ji.

2. Calculate the eigen-decomposition of A: A(t +1) =∑
k

λkukuT
k and then set A(t +1) =

∑
k

max(λk,0)ukuT
k



2.5. Remarks 31

The low-dimensional mapped pattern y ∈ IRd is calculated as y = Bx, with B = C1/2 and
matrix C contains the first d columns of A with the eigenvectors associated to the d largest
eigenvalues.

2.4.3 Large-margin nearest neighbor (LMNN)

The LMNN calculates a positive semi-definite matrix M for the Mahalanobis distance d(xi,x j)=

δxT
i jMδxi j and the k-nearest neighbor classifier [120]. The objective is to minimize a cost

function which weights two terms:

1. The pull term εpull penalizes large distances between xi and the set Ni of its nearest
neighbors x j, and is given by:

εpull(M) = ∑
i

∑
j∈Ni

|Mδxi j|2 (2.77)

2. The push term εpush penalizes small distances between patterns of different classes:

εpush(M) = ∑
i

∑
j∈Ni

∑
cl 6=ci

[
1+ |Mδxi j|2−|Mδxil |2

]
+

(2.78)

where ci is the class of pattern xi and [z]+ = max(z,0) is the usual hinge loss function. The
optimization problem is to find a positive semi-definite matrix M that:

Minimize (1−α)εpull(M)+αεpush(M) subject to:

1) δxT
il Mδxil−δxT

i jMδxi j ≥ 1−ξi jl

2) ξi jl ≥ 0

where 0 ≤ α ≤ 1 is the regularization parameter, with recommended value α = 0.5, and ξi jl

are the slack variables, similarly to the Support Vector Machine (SVM). Similarly to MCML,
the low-dimensional mapped pattern y∈ IRd is given by y = Ax, where the d×n-order matrix
A is composed by the d eigenvectors associated to the largest eigenvalues of M, by rows.

2.5 Remarks

After describing the dimensionality reduction methods, we can compile the features of the
different methods in the Table 2.1. From this table, some mappings included in the local non-
linear group are linear versions of other local non-linear methods (e.g., LLTSA is the linear



32 Chapter 2. Methods of dimensionality reduction

Method Features

Classical methods
LDA Supervised
GDA Supervised, kernel, not explicit
PCA Linear, unsupervised
KernelPCA Unsupervised, non-linear, kernel
ProbPCA Unsupervised, Expectation-Maximization (EM), Gaussian processes
GPLVM Unsupervised, Gaussian processes, not-explicit
FA Latent variables, EM

Global non-linear methods
Sammon, MDS, SPE, SNE,
SSNE, t-SNE

Preserve pairwise distance, not explicit

Isomap, Landmark Isomap Preserve pairwise geodesic distance, neighborhood graph
Diffusion map Preserves distance, diffusion kernel, neighborhood graph, not explicit
Multilayer autoencoder Neural network

Local non-linear methods
LLE Linear, Preserves neighbor weights, neighbor graph
Hessian LLE Preserves neighbor weights, not explicit
NPE Linear approach to LLE, preserves neighbor weights
LTSA Local tangent space, nearest neighbors, not explicit
LLTSA Linear approach to LTSA
Laplacian eigenmap Preserves pairwise distances, neighbor graph
LPP Linear approach to Laplacian eigenmap, neighbor graph
MVU Preserves pairwise distances, starts from LLE, not explicit
FastMVU Preserves distances, neighbor graph
Landmark MVU Starts from MVU
CCA Neighbor angle preserving, starts from LLE or Laplacian eigenmap, not explicit
LLC Linear, mixture of linear models, global alignment, not explicit
Manifold charting Mixture of linear factor analyzers
CFA Mixture of linear factor analyzers, not explicit

Other supervised methods
NCA, MCML, LMNN Linear, supervised, Mahalanobis metric

Table 2.1: Main features of the dimensionality reduction methods. Those methods which do not provide an explicit
mapping for out-of-sample patterns are labeled as “non-explicit”.

approach to LTSA, which is non-linear), but we included them here in order to group together
those methods which are related. We can see that most methods preserve distances, eigher in
a global or local style. Many methods use nearest neighbors (e.g. Hessian LLE and LTSA),
sometimes with a neighbor graph (e.g. Isomap, Landmark Isomap, Diffusion map, LLE, LPP
and FastMVU). Some methods use Gaussian processes (e.g. ProbPCA and GPLVM) or a
mixture of linear models or factor analyzers (e.g. LLC, Manifold charting, CFA), and some
others use Expertation-Maximization (e.g. ProbPCA, FA and CFA). Besides, most methods
are unsupervised, excepting LDA, GDA and “other supervised methods”. Finally, the table



2.5. Remarks 33

also identifies as “non-explicit” those methods which do not provide an explicit mapping for
out-of-sample patterns and therefore require an interpolation method in order to map (or to
reduce the dimensionality of) new test patterns, not used during the execution of the dimen-
sionality reduction method.





CHAPTER 3

PROPOSED 2D MAPPINGS

In the current chapter we present our proposals to project (or to map, or to reduce the di-
mensionality of the) patterns from IRn to IR2 in order to build a 2D map for classification
tasks, so that in the following we will consider d = 2. This work and its experimental valida-
tion, which is described in chapter 4, have been published in the journal paper [2]. Let us be
x = (x1, . . . ,xn)∈ IRn as the input pattern in the original space, and let y ∈ IR2 be the output in
the 2-dimensional space. We search for an unknown function Φ : IRn→ IR2 which maps x to y
so that y = Φ(x). We will consider that function Φ can be written as a polynomial function of
x, since the monomials of any degree of the components of x are a basis of the function space.
We tried several alternative mappings, given by functions of increasing complexity, given by
Φ(x) = Az(x), where the matrix A must be calculated to maximize some measure of class
overlap, and z(x) is a vector polynomial function of x (see below). The order of matrix A and
the function z(x) are different for each case. The mappings developed are the following:

1. Linear: z(x) = x, so that Φ(x) = Ax, being A a matrix of order 2× n. This is the
simplest mapping and the fastest one to compute.

2. Full quadratic: z(x) = (x1, . . . ,xn,x2
1, . . . ,x1xn,x2

2, . . . ,x2xn, . . . ,x2
n−1,xn−1xn, x2

n) ∈ Rp,

being p =
n(n+1)

2
, is a quadratic vector function with linear terms xi, i = 1, . . . ,n, and

also with 2nd degree crossed products xix j with i = 1, . . . ,n and j ≥ i. In this case, the
matrix A is of order 2× p, a size which is larger than the linear mapping, so it requires
more computations and time.



36 Chapter 3. Proposed 2D mappings

3. Polynomial: z(x) = (x1, . . . ,xn,
x2

1
2!
, . . . ,

x2
n

2!
, . . . ,

xD
1

D!
, . . . ,

xD
n

D!
) ∈ RnD is a polynomial of

degree D without crossed products (only with pure terms) of the form
xd

i
d!

, with i =

1. . . . ,n, d = 1, . . . ,D,divided by d! to avoid scale problems. We consider D = 2, . . . ,7
(six values). The matrix A is of order 2× p, with p = nD, so its size is also high and
it may require much time, depending on the order n of the original space and on the
degree D of the polynomial.

Note that the previous polynomials do not include an offset term because, as we will see,
the calculations imply differences which lead to cancel this offset. The mapping Φ is defined
by a matrix A of size 2× p, which is different in each version, which must be calculated from
the training patterns. The value p is the dimension of the space expanded from the original
space, being p = n for the linear, p = (n(n+ 1))/2 for the full quadratic and p = nD for
the polynomial function. Since our objective is to map a classification problem to IR2, we
are interested in calculating A so that it minimizes the overlap in IR2 between the patterns
of the different classes. We will considered three overlap measures defined in the literature,
described in the following subsections. Let us denote δzi j = zi− z j, for i, j = 1, . . . ,N, while
δ zk

i j = zk
i − zk

j for k = 1, . . . , p, and δzi j = [δ z1
i j, . . . ,δ zp

i j]
T , where the superscript T denotes

matrix transposition, and p is the number of columns of matrix A, i.e., the dimension of the
expanded space. Note also that:

A =

[
a11 . . . a1p

a21 . . . a2p

]
(3.1)

and that consequently |Aδzi j|2 = (Aδzi j)
T Aδzi j = (δz)T

i jAT Aδzi j.

3.1 Thornton’s separability index

The Thornton separability index [110] or geometric separability is defined as the proportion
of patterns and its nearest neighbor they belong to the same class. Its computation requires to
find the nearest neighbor of each training pattern in IR2, which requires to use the minimum
function. Unfortunately, this function is not differentiable, so that standard calculus can not
be used in order to maximize this index and to find the optimal mapping Φ. Therefore, we
will limit to calculate, for each pattern xi ∈ IRn, its nearest neighbor x j(i), and then we will
maximize the sum of squared distances in IR2 between yi and y j(i) when their class labels ci



3.1. Thornton’s separability index 37

and c j(i) differ. Let be M = {i = 1, . . . ,N : ci 6= c j(i)}, i.e., the set of training patterns whose
nearest neighbor has a class label different to the training pattern. Using that y = Φ(x) =
Az(x), this overlap measure, which we will denote as ψT , can be calculated as:

ψT = ∑
i∈M
|Φ(xi)−Φ(x j(i))|2 (3.2)

Replacing Φ(x) = Az(x) in eq. 3.2 and denoting δzi = zi− z j(i) we achieve:

ψT = ∑
i∈M
|Azi−Az j|2 = ∑

i∈M
|A(zi− z j)|2 = ∑

i∈M
|Aδzi|2 (3.3)

Substituting the value of |Aδzi|2 in eq. 3.3 we get:

ψT = ∑
i∈M

δzi
T AT Aδzi (3.4)

In order to calculate ψT , we can develop δzT
i AT as follows:

δzi
T AT =

[
δ z1

i , . . . ,δ zp
i

]
a11 a21

...
...

a1p a2p

=
[
δ z1

i a11 + · · ·+δ zp
i a1p,δ z1

i a21 + · · ·+δ zp
i a2p

]
=

=

[
p

∑
k=1

δ zk
i a1k,

p

∑
k=1

δ zk
i a2k

]
On the other hand:

Aδzi =

[
a11 . . . a1p

a21 . . . a2p

]
δ z1

i
...

δ zp
i

=

[
a11δ z1

i + . . . a1pδ zp
i

a21δ z1
i + . . . a2pδ zp

i

]
=


p

∑
k=1

a1kδ zk
i

p

∑
k=1

a2kδ zk
i


Therefore, we have:

δzi
T AT Aδzi =

[
p

∑
k=1

δ zk
i a1k

p

∑
k=1

δ zk
i a2k

]
p

∑
k=1

a1kδ zk
i

p

∑
k=1

a2kδ zk
i

=

=

( p

∑
k=1

δ zk
i a1k

)2

+

(
p

∑
k=1

δ zk
i a2k

)2
=

2

∑
l=1

(
p

∑
k=1

δ zk
i alk

)2



38 Chapter 3. Proposed 2D mappings

So that ψT (A) can be expanded as:

ψT (A) = ∑
i∈M

δzT
i AT Aδzi = ∑

i∈M

2

∑
l=1

(
p

∑
k=1

δ zk
i alk

)2

(3.5)

We want to calculate the matrix A which minimizes the overlap ψT . However, ψT depends
on the absolute value of the elements of matrix A, so that for A′ = αA, we see that ψT (A′) =
α2ψT (A). Therefore, in order to find a minimum of ψT (A) we need to introduce a constraint
on the values of the elements of matrix A: in our case, we will require that the sum of squared
elements, which is the squared norm, must be 1, so that:

2

∑
i=1

p

∑
k=1

a2
ik = |A|2 = 1 (3.6)

Now we can use the method of Lagrange multipliers1 to maximize ψT subject to |A|2 = 1.
Denoting by λ the Lagrange multiplier associated to the constraint, the Lagrange function
LT (A,λ ) is given by:

LT (A,λ ) = ∑
i∈M

2

∑
l=1

(
p

∑
k=1

δ zk
i alk

)2

−λ

(
2

∑
l=1

p

∑
k=1

a2
lk−1

)
(3.7)

Deriving with respect to ars, with r = 1,2, and s = 1, . . . , p, and equaling to zero we have:

∂L

∂ars
= 2 ∑

i∈M

(
p

∑
k=1

δ zk
i ark

)
δ zs

i −2λars = 0, r = 1,2;s = 1, . . . , p (3.8)

Note that the derivative with respect to ars of the sum over l is only non-zero for l = r.
Ordering the sumations on the first term and dividing the whole equation by 2 we achieve:

p

∑
k=1

(
∑
i∈M

δ zk
i δ zs

i

)
ark−λars = 0, r = 1,2;s = 1, . . . , p (3.9)

Let us define the p× p-order matrix BT as:

BT = ∑
i∈M

δziδzT
i (3.10)

so that its element buv, with u,v = 1, . . . , p, is given by:

1https://en.wikipedia.org/wiki/Lagrange_multiplier

https://en.wikipedia.org/wiki/Lagrange_multiplier


3.2. Direct class Separability (DS) 39

buv = ∑
i∈M

δ zu
i δ zv

i , u,v = 1, . . . , p (3.11)

Note that BT is symmetric. It is easy to show that:

(BT −λ Ip)
T AT = 0p (3.12)

is the matrix form of equations 3.9, where Ip is the identity matrix of order p and 0p is the
zero p×2-order matrix. The element u,v of this matrix equation, for u,v = 1, . . . , p, is:


∑
i∈M

δ z1
i δ z1

i . . . ∑
i∈M

δ zp
i δ z1

i

. . . . . . . . .

∑
i∈M

δ z1
i δ z1

i . . . ∑
i∈M

δ zp
i δ z1

i

−λ

 1 . . . 0
. . . . . . . . .

0 . . . 1



 a11 a21

. . . . . .

a1p a2p

=

 0 0
. . . . . .

0 0

 (3.13)

Developing the elements of this matrix equation for r = 1,2, s = 1, . . . , p, we achieve:

p

∑
k=1

(
∑
i∈M

δ zk
i δ zs

i

)
ark−λars = 0, r = 1,2;s = 1, . . . , p (3.14)

which is equal to eq. 3.9. Since both BT and Ip are symetric, they are equal to their transposes,
so that from eq. 3.12 we achieve:

(BT −λ Ip)AT = 0p (3.15)

This is an example of eigenvalue problem. It is well-known from the literature that, in
order to find the solution A to this minimization problem, the two rows of matrix A must be
the eigenvectors corresponding to the largest eigenvalues of matrix BT . Therefore, in order
to calculate A which provides the lowest ψT subject to |A2|= 1 we just have to calculate the
matrix BT and the rows of A must be its two main eigenvectors.

3.2 Direct class Separability (DS)

This measure [82], which will be denoted as ψDS is calculated as the difference between the
sum of distances between patterns of different classes (inter-class distances DB) and the sum



40 Chapter 3. Proposed 2D mappings

of the distances of patterns within the same class (intra-class distances DW ). Denoting by C

the number of classes, we have:

DB =
C

∑
c=1

∑
i∈c

∑
j/∈c
|Φ(xi)−Φ(x j)|2, DW =

C

∑
c=1

∑
i∈c

∑
j∈c
|Φ(xi)−Φ(x j)|2

ψDS =
C

∑
c=1

∑
i∈c

[
∑
j/∈c
|Φ(xi)− Φ(x j)|2−∑

j∈c
| Φ(xi)− Φ(x j)|2

]
(3.16)

We are going to substitute Φ(x) = Az(x) in 3.16 and we achieve:

ψDS =
C

∑
c=1

∑
i∈c

[
∑
j/∈c
|Az(xi)−Az(x j)|2−∑

j∈c
|Az(xi)−Az(x j)|2

]
(3.17)

By choosing A as common factor, and simplifying ψDS the we achieve :

ψDS =
C

∑
c=1

∑
i∈c

[
∑
j/∈c
|A(z(xi)− z(x j))|2−∑

j∈c
|A(z(xi)− z(x j)) |2

]
=

=
C

∑
c=1

∑
i∈c

[
∑
j/∈c
|Aδzi j|2−∑

j∈c
|Aδzi j|2

]
=

=
C

∑
c=1

∑
i∈c

[
∑
j/∈c

(
δzT

i jA
T Aδzi j

)
−∑

j∈c

(
δzT

i jA
T Aδzi j

)]
(3.18)

Remember that zi = z(xi) and analogous for z j, and that δzi j = zi−z j. Equation 3.18 has
inside the brackets two similar terms, one relative to patterns of class c (with negative sign),
and other relative to patterns which do not belong to class c (with positive sign). This equation
can be simplified by adding a flag β jc =−1 for patterns j of class c and β jc =+1 for patterns
j which do not belong to class c.

ψDS =
C

∑
c=1

N

∑
j=1

β jc ∑
i∈c

δzT
i j AT Aδzi j (3.19)

Replacing the value of δzT
i jAT Aδzi j in eq. 3.5, we achieve:

ψDS =
C

∑
c=1

N

∑
j=1

β jc ∑
i∈c

2

∑
l=1

(
p

∑
k=1

δ zk
i jalk

)2

(3.20)

Similarly to the previous section, in order to minimize ψDS we must introduce a constraint
on the norm of matrix A, otherwise the value of ψT will depend on scale factors of the matrix



3.2. Direct class Separability (DS) 41

elements. Therefore, we want to minimize ψDS subject to the constraint |A|2 = 1, using the
Lagrange multipliers method. The Lagrange function is given by:

LDS =
C

∑
c=1

N

∑
j=1

β jc ∑
i∈c

2

∑
l=1

(
p

∑
k=1

δ zk
i jalk

)2

−λ

(
2

∑
l=1

p

∑
k=1

a2
lk−1

)
(3.21)

Deriving LDS with respect to ars (note that the derivative of the sum over l is non-zero only
for l = r) and equaling to zero we achieve:

∂LDS

∂ars
=

C

∑
c=1

N

∑
j=1

β jc ∑
i∈c

2

(
p

∑
k=1

arkδ zk
i j

)
δ zs

i j−2λars =

= 2
C

∑
c=1

N

∑
j=1

β jc ∑
i∈c

δ zs
i j

p

∑
k=1

arkδ zk
i j−2λars = 0, r = 1,2;s = 1, . . . , p (3.22)

Dividing by 2 and ordering the sums in the first term we achieve:

p

∑
k=1

(
C

∑
c=1

N

∑
j=1

β jc ∑
i∈c

δ zs
i jδ zk

i j

)
ark−λars = 0, r = 1,2;s = 1, . . . , p (3.23)

Let us define bsk as:

bsk =
C

∑
c=1

N

∑
j=1

β jc ∑
i∈c

δ zs
i jδ zk

i j, s,k = 1, . . . , p (3.24)

Note that bsk = bks. It is easy to show that bsk is the (s,k)-th element of the p× p-order
symmetric matrix BDS defined as:

BDS =
C

∑
c=1

N

∑
j=1

β jc ∑
i∈c

δzi jδzT
i j (3.25)

Besides, eq. 3.23 can be written as:

p

∑
k=1

bskark−λars = 0, r = 1,2;s = 1, . . . , p (3.26)

Similarly to eq. 3.12 in the previous section, these equations can be written in matrix form
as:

(BDS−λ Ip)
T AT = 0 (3.27)



42 Chapter 3. Proposed 2D mappings

where Ip is the p× p-order identity matrix and 0 is the p× 2-order zero matrix. Given that
BDS and Ip are symmetric, we achieve:

(BDS−λ Ip)AT = 0 (3.28)

We achieve again an eigenvalue problem, which is easily solved by calculating the eigen-
values of matrix BDS. Specifically, to find A that minimizes ψDS subject to |A|2 = 1 we must
select the two main eigenvectors of BDS.

3.3 J-index

This measure [34] is defined as the ratio between the norms of the between-class scatter SB

and the within scatter SW matrices, defined by:

SB =
C

∑
c=1

αc [Φ(mc)−Φ(m)] [Φ(mc)−Φ( m)]T

SW =
C

∑
c=1

αc ∑
i∈c

[ Φ(xi)− Φ(mc)] [ Φ(xi)− Φ(mc)]
T (3.29)

Where αc = nc/(N−1). Here, nc is the number of patterns of class c; mc is the mean of

patterns of class c; and m =
1
N

N

∑
i=1

xi is the mean of the whole training set. This J-index is

optimized for z(x) = x by the well-known Linear Discriminant Analysis (LDA). Using that
Φ(x) = Az(x), and denoting δzc = z(mc)− z(m) and δzic = z(xi)− z(mc), we achieve:

SB =
C

∑
c=1

αcAδzcδzT
c AT = ATBAT , TB =

C

∑
c=1

αcδzcδzT
c

SW =
C

∑
c=1

αc ∑
i∈c

AδzicδzT
icAT = ATW AT , TW =

C

∑
c=1

αc ∑
i∈c

δzicδzT
ic (3.30)

Note that TB and TW are two matrices of order p× p. In order to maximize J, the matrix
A must be selected in such a way that:

A = argmax
A

| SB|
| SW |

= argmax
A

| A TB AT |
| A TW AT |

(3.31)

The standard literature about LDA (see e.g. [34]) explains that the solution of this opti-
mization problem is the same as the generalized eigenvalue problem (TB−λTW )AT = 0. The



3.4. Class Mean Distance 43

two rows of the matrix A which is the solution to this eigenvalue problem are the generalized
eigenvectors corresponding to the two largest eigenvalues (in absolute value) of the matrix
T−1

W TB, so the matrix TW must be non-singular in order to achieve a valid solution. Using
a linear Φ mapping, we achieve to the well-known LDA classifier. On the other hand, a full
quadratic or polynomial mapping (see the previous subsection) are special cases of Kernel
Discriminant Analysis (KDA). However, in these cases the covariance matrix TW is singular,
so the calculation of T−1

W to solve the generalized eigenvalue problem is ill-conditioned. This
drawback can be solved [77] using TW + I instead of TW . Therefore, the rows of the matrix
A which maximizes J are the two main eigenvectors of the matrix:

BDA = (TW +αI)−1TB (3.32)

with α = 0 (resp. α = 1) for linear (resp. quadratic and polynomial) kernel. The combina-
tion of J index as overlap measure and the different mappings will be denoted as LDA (DA
with linear mapping), QKDA (discriminant analysis with full quadratic kernel mapping) and
PKDA2,. . . , PKDA7 (DA with polynomial kernel mapping without crossed products, varying
the degree D from 2 to 7).

3.4 Class Mean Distance

This overlap measure, denoted as ψCD is proposed by us [2] and defined as the sum of the
squared distances between class means in IR2 (distances are squared in order to achieve sim-
pler matrix expressions). The maximization of this measure is intended to make classes max-
imally separated in IR2, because the sum of squared distances between the class means should
be high. The value of ψCD can be computed as:

ψCD =
C

∑
c=1

∑
i6=c
|Φ(mc)−Φ(mi)|2 (3.33)

where mc and mi are the class means (in IRn) of classes c and i respectively. In order to
calculate ψCD, we are going to replace Φ(mc) = Az(mc) in equation 3.33 as shown below.

ψCD =
C

∑
c=1

∑
i6=c
|Az(mc)−Az(mi)|2 =

C

∑
c=1

∑
i6=c
|A(z(mc)− z(mi))|2 =

C

∑
c=1

∑
i6=c
|Aδmci|2

where, similarly to δzi j in the section 3.2, we define δmci = mc−mi. Given that:



44 Chapter 3. Proposed 2D mappings

|Aδmci|2 = δmT
ciA

T Aδmci =
2

∑
l=1

(
p

∑
k=1

δmk
cialk

)2

(3.34)

we achieve that:

ψCD =
C

∑
c=1

∑
i6=c

2

∑
l=1

(
p

∑
k=1

δmk
cialk

)2

(3.35)

We are going to use the Lagrange function to maximize the ψCD subject, as in the previous
sections, to the constraint on the norm of A. The Lagrange function LCD(A,λ ) is given by :

LCD(A,λ ) =
C

∑
c=1

∑
i6=c

2

∑
l=1

(
p

∑
k=1

δmk
cialk

)2

−λ

(
2

∑
l=1

p

∑
k=1

a2
lk−1

)
(3.36)

Deriving equation 3.36 with respect to ars (note that sum over l gives only non-zero terms
for l = r), equaling to zero and simplifying, we have:

∂LCD

∂ars
=

C

∑
c=1

∑
i6=c

2

(
p

∑
k=1

δmk
ciark

)
δms

ci−2λars = 0

⇒
p

∑
k=1

(
C

∑
c=1

∑
i6=c

δmk
ciδms

ci

)
ark−λars = 0, r = 1,2;s = 1, . . . , p (3.37)

Defining bsk similarly to the section 3.2:

bsk =
C

∑
c=1

∑
i6=c

δmk
ciδms

ci, s,k = 1, . . . , p (3.38)

so that bsk = bks, the eqs. 3.37 can be written as:

p

∑
k=1

bskark−λars = 0, r = 1,2;s = 1, . . . , p (3.39)

Defining the p× p-order symmetric matrix BCD as:

BCD =
C

∑
c=1

∑
i6=c

δmciδmT
ci (3.40)

the eqs. 3.39 can be expressed in matrix form as:

(BCD−λ Ip)
T AT = 0 (3.41)



3.4. Class Mean Distance 45

Label Mapping Overlap Function

DSOLM Direct class Separability Optimization Linear Mapping DS
LinearTOLM Thornton Opt. Linear Map. Thornton

CDOLM Class Distance Opt. Linear Map. CD
QKDA DA with Quadratic Kernel map. J-index

Quadratic
DSOQM Direct class Separability Opt. Quadratic Map. DS
TOQM Thornton Opt. Quadratic Map. Thornton

CDOQM Class Distance Opt. Quadratic Map. CD
PKDA(D) DA with Polynomial Kernel map. J-index

PolynomialDSOPM(D) Direct class Separability Opt. Pol. Map. DS
TOPM(D) Class Distance Opt. Pol. Map. Thornton (D = 2, . . . ,7)

CDOPM(D) Class Distance Opt. Pol. Map. CD

Table 3.1: Mappings varying the overlap measure and the function type. The LDA, corresponding to J-index and
linear function, is not listed in the current table, because it is already provided by the Drtoolbox (table
3.1).

which is the same eigenvalue problem as in sections 3.1 and 3.2 but for matrix BCD, so the
matrix A which maximizes ψCD is the one whose rows are the main eigenvectors of matrix
BCD.

Using the previous four overlapping measures (Thornton index, direct class separability,
J-index and class mean distance), combined with the eight Φ functions that we proposed in
the beginning of this chapter (linear, quadratic and polynomial with degree D = 2, . . . ,7), and
removing LDA (corresponding to J index and linear function, which is already provided by
Drtoolbox) we achieve 4×8−1 = 31 mapping methods, which are summarized by Table 3.1.





CHAPTER 4

EXPERIMENTS WITH 2D MAPPINGS

In the current chapter we apply the 31 mappings included in Table 3.1 of chapter 3 in order
to transform the original patterns in IRn to IR2 for the 71 classification benchmark data sets
of Table 4.1. The mapping will be created using a set of training patterns. A mapping will
be better for classification tasks if the set of 2D patterns that it creates by applying it on a
separate set of test patterns, not included in the training set, is easier to classify than the 2D
sets created by other mappings. Therefore, it will be necessary to use a classifier to process
the set of 2D test patterns created by the mapping, and the best mapping will be the one which
provides the best classifier performance. In our case, the classifier used is a Support Vector
Machine (SVM) with Gaussian kernel implemented by the SVM library [18], due to its high
performance widely tested in the literature.

4.1 Experimental setting

Before starting the experiments, we pre-processed the data sets in Table 4.1 by making the
mean equal to zero and the standard deviation one and transforming all the discrete inputs to
numerical values. We also removed the repeated patterns in order to avoid the data redun-
dancy during the mapping process because its not functional to transform the same pattern
many times, and to avoid repeated values in the matrices B, which would become singular
difficulting the eigenvector calculation. We also create the partitions corresponding to 4 folds,
each one composed by training, validation and test set. The partitions are generated in such
a way that, for each class in the data set, 50%, 25% and 25% of the patterns are used for



48 Chapter 4. Experiments with 2D mappings

No. dataset #pat. #inp. #cl. No. dataset #pat. #inp. #cl.

1 acute-inflammation 99 6 2 37 lung-cancer 32 56 3
2 acute-nephritis 99 6 2 38 lymphography 142 18 2
3 annealing∗ 786 31 5 39 mammographic 642 5 2
4 balance-scale 625 4 3 40 molec-biol-promoter 106 57 2
5 balloons 16 4 2 41 monks-1∗ 124 6 2
6 blood 502 4 2 42 monks-2∗ 169 6 2
7 breast-cancer 266 9 2 43 monks-3∗ 122 6 2
8 breast-cancer-wisc 463 9 2 44 oocytes-merluccius-nucleus-4d 1022 41 2
9 breast-cancer-wisc-diag 569 30 2 45 oocytes-merluccius-states-2f 1022 25 3
10 breast-cancer-wisc-prog 198 33 2 46 oocytes-trisopterus-nucleus-2f 912 25 2
11 breast-tissue 105 9 6 47 oocytes-trisopterus-states-5b 912 32 3
12 congressional-voting 342 16 2 48 parkinsons 195 22 2
13 conn-bench-sonar-mines-rocks 208 60 2 49 pima 768 8 2
14 credit-approval 690 15 2 50 pittsburg-bridges-MATERIAL 102 7 3
15 cylinder-bands 511 35 2 51 pittsburg-bridges-rel 99 7 3
16 dermatology 366 34 6 52 pittsburg-bridges-span 89 7 3
17 echocardiogram 131 10 2 53 pittsburg-bridges-tord 98 7 2
18 ecoli 332 6 6 54 pittsburg-bridges-type 101 7 6
19 energy-y1 768 8 3 55 planning 176 12 2
20 energy-y2 768 8 3 56 post-operative 72 8 2
21 fertility 99 9 2 57 seeds 210 7 3
22 flags 190 28 6 58 spect∗ 62 22 2
23 glass 213 9 6 59 spectf∗ 80 44 2
24 haberman-survival 283 3 2 60 statlog-australian-credit 690 14 2
25 hayes-roth∗ 51 3 3 61 statlog-german-credit 1000 24 2
26 heart-cleveland 303 13 5 62 statlog-heart 270 13 2
27 heart-hungarian 293 13 2 63 statlog-vehicle 846 18 4
28 heart-switzerland 123 12 5 64 synthetic-control 600 60 6
29 heart-va 199 12 5 65 teaching 106 5 3
30 hepatitis 155 19 2 66 tic-tac-toe 958 9 2
31 horse-colic ∗ 300 25 2 67 trains 10 32 2
32 ilpd-indian-liver 570 10 2 68 vertebral-column-2classes 310 6 2
33 image-segmentation∗ 210 18 7 69 vertebral-column-3classes 310 6 3
34 ionosphere 350 33 2 70 wine 178 13 3
35 iris 147 4 3 71 zoo 55 16 6
36 lenses 20 4 2

Table 4.1: Collection of 71 data sets from the UCI data base and our real problems. It shows the number of patterns
(#pat.), inputs (#inp.),and classes (#cl.). * These data set has two separated data files one for training,
and the other one for testing

training, validation and test sets, respectively, rotating the partitions for each fold. The classes
with less than 5 patterns are not considered.

We compare the performance achieved by SVM using: 1) the 31 proposed mappings,
summarized in Table 3.1; 2) the 34 mappings provided by the Drtoolbox (Table 4.2), described
in section 2; and 3) the original n-dimensional data (henceforth named as svmNd). Overall,



4.1. Experimental setting 49

we used 66 methods and 71 data sets, which give a total of 66 × 71 = 4686 runs, occurring
errors in 126 cases (2.68% of the cases). For each fold, each one of the 65 mappings is created,
i.e., the corresponding A matrix is calculated by solving the associated eigenvalue problem,
described in chapter 3). The matrices BT , BDS,BDA and BCD are calculated using only the
training patterns, excluding the validation and test patterns. The mapping defined by matrix A
is used to transform the validation and test patterns from IRn to IR2. The proposed mappings
(Table 3.1) are already functions from IRn to IR2 and thus can map validation and test patterns
(also called out-of-sample patterns in the literature), while the Drtoolbox mappings (Table
4.2) use the out_of_sample(...), for mappings labeled with an asterisk in that table, or
out_of_sample_est(...) functions of this toolbox (the last one is used for projections
without an explicit mapping, and it develops an interpolation to give a mapped version of the
out-of-sample pattern).

Linear Discriminant Analysis (textbfLDA)∗ Locally Linear Embedding (LLE)∗

Generalized Discriminant Analysis (GDA) Hessian LLE
Principal Component Analysis (PCA)∗ Neighborhood Preserving Embedding (NPE)∗

Kernel PCA∗ Local Tangent Space Alignment (LTSA)
Probabilistic PCA∗ Linear Local Tangent Space Alignment (LLTSA)∗

Gaussian Process Latent Variable Model (GPLVM) Laplacian Eigenmap∗

Factor Analysis (FA)∗ Linearity Preserving Projection (LPP)∗

Sammon mapping Maximum Variance Unfolding (MVU)
Multidimensional scaling (MDS) Fast MVU∗

Stochastic Proximity Embedding (SPE) Landmark MVU∗

Stochastic Neighbor Embedding (SNE) Conformal Eigenmap (CCA)
Symmetric SNE Locally Linear Coordination (LLC)
t-Distributed SNE Manifold Charting∗

Isomap∗ Coordinated Factor Analysis (CFA)
Landmark Isomap∗ Large Margin Nearest Neighbor (LMNN)∗

Diffusion map Maximally Collapsing Metric Learning (MCML)∗

Autoencoder∗ Neighborhood Components Analysis (NCA)∗

Table 4.2: Mappings provided by the Drtoolbox. The supervised mappings (in bold) use the class labels, and are
expected to provide better classification results. The mappings with (resp. without) an asterisk use the
out_of_sample (resp. out_of_sample_est) function to map out-of-sample patterns.

A Gaussian kernel SVM is trained using the 2D mapped training patterns of each fold. The
two SVM metaparameters (regularization C and Gaussian spread γ) are tuned using values in
the ranges {2i}1

−55 and {2i}3
−15 respectively, values recommended by the LIBSVM develop-

ers. We select the values which provide the best average performance on the 2D validation
sets. Finally, the SVM with the selected metaparameter values is trained and tested on the



50 Chapter 4. Experiments with 2D mappings

No. κ(IRn) κ(IR2) κ(IRn)−κ(IR2) Mapping No. κ(IRn) κ(IR2) κ(IRn)−κ(IR2) Mapping

1 100.00 100.00 0.00 LDA 37 34.02 38.39 -4.37 PCA
2 100.00 100.00 0.00 LDA 38 64.49 66.99 -2.50 PCA
3 73.75 70.52 3.23 PKDA7 39 62.63 57.81 4.82 ProbPCA
4 96.67 84.73 11.94 DSOPM2 40 61.54 69.23 -7.69 DSOPM7
5 62.50 75.00 -12.50 LDA 41 46.67 61.67 -15.00 TOPM2
6 32.92 25.56 7.36 CDOLM 42 42.10 36.15 5.95 DSOPM2
7 30.62 34.36 -3.74 CDOPM7 43 78.33 80.00 -1.67 DSOPM3
8 91.72 92.15 -0.43 PKDA2 44 66.09 56.78 9.31 LDA
9 93.16 93.57 -0.41 PKDA2 45 81.98 79.97 2.01 PKDA3

10 33.49 31.85 1.64 LDA 46 66.05 52.80 13.25 LDA
11 65.91 59.27 6.64 NPE 47 86.48 82.61 3.87 LDA
12 83.89 89.58 -5.69 LDA 48 76.11 63.80 12.31 PKDA5
13 66.34 59.62 6.72 PKDA2 49 46.49 50.20 -3.71 LDA
14 71.57 71.87 -0.30 PKDA7 50 54.95 59.90 -4.95 DSOPM4
15 47.99 42.06 5.93 QKDA 51 33.08 41.27 -8.19 TOPM5
16 96.22 84.55 11.67 LDA 52 27.17 47.78 -20.61 DSOPM5
17 61.77 63.51 -1.74 PKDA2 53 14.07 49.17 -35.10 QKDA
18 80.57 72.86 7.71 DSOLM 54 44.70 41.84 2.86 QKDA
19 91.56 93.89 -2.33 QKDA 55 -0.96 13.15 -14.11 ProbPCA
20 91.56 93.89 -2.33 QKDA 56 -2.55 17.54 -20.09 MVU
21 -4.55 30.76 -35.31 PKDA3 57 90.44 95.59 -5.15 LDA
22 37.97 30.13 7.84 PKDA3 58 20.40 35.23 -14.83 CDOPM7
23 51.76 48.18 3.58 TOLM 59 52.50 55.00 -2.50 DSOPM4
24 8.57 19.54 -10.97 TOPM4 60 5.70 8.04 -2.34 GDA
25 61.95 48.73 13.22 DSOQM 61 40.82 41.11 -0.29 LDA
26 34.93 39.48 -4.55 PKDA3 62 68.74 69.41 -0.67 DSOPM2
27 62.00 63.13 -1.13 CDOPM3 63 76.65 65.07 11.58 LDA
28 9.87 18.23 -8.36 PKDA2 64 98.80 86.80 12.00 CDOPM2
29 10.93 12.55 -1.62 CDOPM3 65 37.16 27.11 10.05 KernelPCA
30 41.23 61.30 -20.07 ProbPCA 66 98.13 96.25 1.88 LDA
31 65.34 54.87 10.47 CDOPM5 67 0.00 100.00 -100.00 CDOLM
32 25.02 21.13 3.89 ProbPCA 68 60.75 57.62 3.13 CDOQM
33 87.50 75.60 11.90 PKDA2 69 77.65 70.79 6.86 LDA
34 87.21 87.90 -0.69 CDOQM 70 98.24 97.37 0.87 CDOPM3
35 95.83 93.75 2.08 LPP 71 91.96 91.99 -0.03 PKDA2
36 62.50 87.50 -25.00 PKDA2

Table 4.3: Value of κ achieved by SVM using the original patterns in IRn (column κ(IRn), corresponding to svmNd
in the test) and using the patterns mapped to IR2 (column κ(IR2), and difference ∆ = κ(IRn)−κ(IR2),
alongside with the name of the mapping which achieved the best κ in IR2.

four 2D training and test sets, respectively, and the average performance is reported for the 65
mappings and svmNd. The performance measure that we use is the Cohen kappa1, denoted
as κ and measured in %, which excludes the probability of classifier success by chance:

1https://en.wikipedia.org/wiki/Cohen_kappa

https://en.wikipedia.org/wiki/Cohen_kappa


4.2. Discussion 51

κ = 100
pa− pe

s− pe
; pa =

C

∑
i=1

nii; pe =
1
s

C

∑
i=1

(
C

∑
j=1

ni j

)(
C

∑
k=1

nki

)
; s =

C

∑
i=1

C

∑
j=1

ni j

where ni j is the number of patterns of class i assigned by the classifier to class j, for i, j =

1, . . . ,C. In order to select the best mapping over the collection of 71 data sets, we create a
ranking of the methods under comparison using the Friedman rank test [100]. This rank is
decreasing with the performance, so that lower rank means better results. Given that the clas-
sifier is the same for all the mappings, higher κ for a certain mapping means that the mapped
data are easier to classify, so the mapping can be considered more useful for classification
tasks.

4.2 Discussion

Table 4.3 reports the κ achieved by the SVM using the original patterns in IRn and using
the mapped patterns in IR2, with the name of the mapping which provided the best κ in IR2.
Surprisingly, for 38 (resp. 2) of 71 data sets the performance κ is better (resp. equal) in
IR2 than in IRn, exhibiting negative (res. zero) differences. In the remaining 31 data sets,
κ is better in IRn than in IR2, but these positive differences are not very high. In fact, for
data sets with positive differences, their highest value is 13.25 (data set no. 46, oocutes-
trisopterus-nucleus-2f), and the mean and median are 6.99 and 6.72, respectively. On the
other hand, in data sets with negative differences their highest value is -100, and their mean
and median are -10.55 and -4.46, respectively. Therefore, the conclusion is that mapping to
IR2, which allows a graphical view of the classification problem, does not reduce dramatically
performance compared to the original n-dimensional problem. The appendix A reports the
whole confusion matrices, alongside with the κ achieved by SVM using the best mapping
for each of the 71 data sets (for space reasons, the confusion matrices only report the data
set number, as in Table 4.1). Figure 4.1 (upper panel) shows the κ achieved by SVM in IRn

(denoted previously as svmNd) and the best κ achieved by SVM in 2D. We can see that,
excepting the outlier in position 4 of the plot, which corresponds to data set trains, where
SVM achieves κ=0% and κ=100% with patterns in IRn IR2 patterns, respectively, almost all
the red points are inside the ±10 band around the blue line, excepting 10 data sets where red
points are only sligthly below the ±10 band (in fact, the highest positive difference is 13.25,
as we reported above). This means that the best κ in 2D is never too far from the κ in nD. The
lower panel of Figure 4.1 shows the differences between both κ’s: their values are positives



52 Chapter 4. Experiments with 2D mappings

only after position 40 of 71, and the positive values never overcome 15%, while the negative
differences are below -10 for 12 data sets.

10 20 30 40 50 60 70
−20

0

20

40

60

80

100

Dataset

K
a
p
p
a
 (

%
)

 

 

Kappa ND

Best Kappa 2D

0 10 20 30 40 50 60 70

−100

−80

−60

−40

−20

0

20

Dataset

K
a
p
p
a
(N

D
) 

−
 k

a
p
p
a
(2

D
)

Figure 4.1: Upper panel: κ (in %) achieved by svmNd (in blue) and best κ achieved by SVM using the 2D mapped
patterns (in red), for each data set, sorted by increasing κ (in nD). Black dashed lines limit the region
where κ= κ(nD) ± 10. Lower panel: Difference κ(nD) - best κ(2D) for each data set, sorted
increasingly.

However, we must emphasize that we are comparing IRn to the best IR2 mapping, which
is not the same for all the data sets. Below we will select the globally best mapping, and we
will evaluate the difference between κ in IRn and IR2 for this best mapping. By the moment,
we have seen that for all the data sets there is at least one mapping which does not reduce the
performance too much compared to the original data, i.e., there is a mapping which projects



4.2. Discussion 53

to IR2 without destroying the classification problem, i.e., keeping in IR2 the “structure” of the
original classification problem in IRn.

−100 −80 −60 −40 −20 0
0

5

10

15

20

25

K
a

p
p

a
(N

d
) 

−
 B

e
s
t 

K
a

p
p

a
(2

D
)

Figure 4.2: Histogram of the difference κ(IRn)−κ(IR2) achieved by SVM for all the data sets.

Figure 4.2 shows the histogram of these differences: for 37 data sets the difference is
negative, which means that κ(IR2) overcomes κ(IRn), while for other 31 data sets the differ-
ence is positive, so the mapping to IR2 reduced the κ . For other 3 data sets the difference is
zero. The mean and median differences are -2.25 and -0.29, respectively. Considering only
those data sets where the difference is positive, which means that κ(IRn)> κ(IR2), the mean
and median values are 6.99 and 6.72, respectively, which means that even when the mapping
reduces the classifier performance, the reduction is not too high (the maximum difference is
13.25).

The upper panel of Figure 4.3 shows the average κ of the mappings in Table 3.1 (including
LDA, which is listed in Table 4.2) varying the overlap measure (DA, DS, T and CD) and the
function (linear, quadratic and polynomial with degree D = 2 . . .7). Given that a polynomial
with high degrees fits better complex mappings, it is expectable that κ were increasing with the
function degree, analogously to a Taylor series. However, the linear versions already achieve
good κ values, while the quadratic work much worse, and the polynomial mappings decrease
or keep almost constant increasing D in the four measures. The bad results of quadratic
compared to polynomial mappings means that the crossed terms xix j with j ≥ i are not useful
to create this kind of mappings, and that pure powers xd

i are much more efficient. Comparing
the overlap measures, DA achieves the best results, followed by CD, while DS usually has



54 Chapter 4. Experiments with 2D mappings

20

25

30

35

40

45

50

Linear

Quadratic

Pol. D
=2

Pol. D
=3

Pol. D
=4

Pol. D
=5

Pol. D
=6

Pol. D
=7

A
v
e

ra
g

e
 k

a
p

p
a

 (
in

 %
) 

a
c
h

ie
v
e

d
 b

y
 S

V
M

Behavior of mappings varying the overlap measure and function over all data sets

 

 

DA

DS

T

CD

40

41

42

43

44

45

46

47

48

PKDA6
PKDA2

PKDA7
PKDA5

QKDA

CDOLM
PKDA3

DSOLM
PKDA4

DSOPM2

CDOPM3

CDOPM4

CDOPM2

DSOPM3

CDOPM5

DSOPM4

CDOQM

CDOPM6

CDOPM7

DSOPM5

A
v
e

ra
g

e
 k

a
p

p
a

 (
in

 %
) 

a
c
h

ie
v
e

d
 b

y
 S

V
M

Behavior of the 20 best proposed mappings over all data sets

Figure 4.3: Upper panel: average κ (in %) achieved by SVM over all the data sets for the proposed mappings
(Table 3.1), varying the function and overlap measure. Lower panel: average κ achieved by the 20 best
of the proposed mappings, sorted decreasingly.

lower performances and the Thornton index (T) is clearly the worst one. When the polynomial
degree D is increased, DA is almost constant, while CD and DS clearly decrease, and T keeps
almost constant with a maximum for D=4. The lower panel of Figure 4.3 sorts the 20 best
proposed mappings by decreasing κ . The PKDA versions achieve the first positions, with the



4.2. Discussion 55

42

44

46

48

50

52

54

56

58

sv
mNd

PKDA6

PKDA2

PKDA7

PKDA5
LDA

QKDA

CDOLM

PKDA3

DSOLM

PKDA4

DSOPM2

CDOPM3

CDOPM4

CDOPM2

DSOPM3

CDOPM5

DSOPM4
PCA

CDOQM

A
v
e
ra

g
e
 k

a
p
p
a
 (

in
 %

) 
a
c
h
ie

v
e
d
 b

y
 S

V
M

Twenty best mappings sorted by decreasing average kappa over all data sets

4

5

6

7

8

9

10

11

12

13

14

svmNd
PKDA2

PKDA5
PKDA3

PKDA4
PKDA6

PKDA7
LDA

DSOLM
QKDA

CDOPM3

DSOPM2

CDOLM

CDOPM2

CDOPM4
PCA

ProbPCA

CDOPM5

CDOQM

DSOPM3

DSOPM4

F
rie

dm
an

 r
an

k

Friedman ranking of svmNd and the 20 best mappings

Figure 4.4: Upper panel: average κ of svmNd and the 20 best mappings (according to κ) over all the data sets.
Lower panel: Friedman ranks of the 20 best mappings.

best result for D=6. The linear mappings CDOLM and DSOLM achieve the best positions for
CD and DS overlap measures, respectively. The DS and CD polynomial mappings are in the
second half of the plot. The quadratic and Thornton mappings work very bad, being in the
last positions or outside the Figure 4.3.



56 Chapter 4. Experiments with 2D mappings

10

15

20

25

30

35

40

Pro
bPCA

CDOPM6

CDOPM7

DSOPM5

DSOPM6

DSOPM7

DSOQM
LPP

NPE

TOPM4

TOPM5

TOPM6

TOPM7

TOPM3

TOPM2

TOLM

Kern
elP

CA

TOQM

LLTSA
tS

NE

A
v
e

ra
g

e
 k

a
p

p
a

 (
in

 %
) 

a
c
h

ie
v
e

d
 b

y
 S

V
M

Mappings in positions 21−40 sorted by decreasing average kappa over all data sets

0

1

2

3

4

5

6

7

8

9

10

11

SNE

Sammon

FactorA
nalysis

NCA

Diffu
sionMaps

GDA
MDS

MCML

Isomap
LTSA

SPE

GPLVM

HessianLLE

LandmarkIsomap

Laplacian

Autoencoder

LMNN

LandmarkMVU

SymSNE
CCA

MVU
LLE

LLC

FastM
VU

Manifo
ldChart

CFA

A
v
e
ra

g
e
 k

a
p
p
a
 (

in
 %

) 
a
c
h
ie

v
e
d
 b

y
 S

V
M

Mappings 41−66 by decreasing average kappa over all data sets

Figure 4.5: Average κ (in %) achieved by SVM over all the data sets for the mappings 21-40 (upper panel) and
41-66 (lower panel).



4.2. Discussion 57

Figure 4.4 shows the average κ (upper panel) and the Friedman ranking (lower panel)
achieved by svmNd and the 20 best mappings. The svmNd achieves the best average κ

(57.91%), while PKDA6 (κ=47.55%), PKDA2 (47.49%), PKDA7 (47.46%) and PKDA5
(47.43%) are better than LDA (47.38%), which is the best Drtoobox mapping. The other
linear mapping in the top-20 is CDOLM, and the only quadratic mappings are QKDA, right
after LDA, and CDOQM (last position). Considering ranks (lower panel), the proposed map-
pings achieve 17 out of 20 best (lowest) ranks. The PKDA2 achieves the best rank, despite
PKDA6 achieves highest average κ (in fact, PKDA5, PKDA3 and PKDA4 also have better
ranks than PKDA6), so PKDA2 can be considered the best mapping for classification. Any-
way, PKDA with all the degrees have better ranks than LDA (8th position), which is followed
by QKDA and by several CD and DS mappings. Besides LDA, the only Drtoolbox mappings
included in the 20 best ranks are PCA and ProbPCA, with much lower κ values (42.58% and
42.25% respectively).

No. svmNd PKDA2 LDA No. svmNd PKDA2 LDA No. svmNd PKDA2 LDA

1 100 100 100 25 62.0 39.5 31.2 49 46.5 39.7 50.2
2 100 100 100 26 34.9 37.8 30.5 50 55.0 55.4 48.2
3 73.8 65.5 57.9 27 62.0 59.7 53.7 51 33.1 36.7 38.8
4 96.7 80.3 83.9 28 9.9 18.2 11.1 52 27.2 43.0 16.8
5 62.5 -2.5 75.0 29 10.9 7.3 5.8 53 14.1 16.7 17.5
6 32.9 11.8 18.6 30 41.2 56.9 36.9 54 44.7 35.5 36.9
7 30.6 22.4 17.6 31 65.3 51.9 54.5 55 -1.0 -13.9 0.0
8 91.7 92.2 90.4 32 25.0 1.3 7.4 56 -2.5 1.2 -2.5
9 93.2 93.6 90.5 33 87.5 75.6 66.1 57 90.4 89.7 95.6
10 33.5 20.3 31.9 34 87.2 85.9 68.7 58 20.4 11.4 -4.9
11 65.9 53.9 49.6 35 95.8 87.5 89.6 59 52.5 35.0 -7.5
12 83.9 84.2 89.6 36 62.5 87.5 54.2 60 5.7 1.3 -0.0
13 66.3 59.6 38.9 37 34.0 -6.6 2.3 61 40.8 33.9 41.1
14 71.6 70.0 71.5 38 64.5 63.0 59.0 62 68.7 68.6 68.8
15 48.0 27.1 38.8 39 62.6 52.4 53.4 63 76.7 36.2 65.1
16 96.2 76.5 84.5 40 61.5 67.3 9.6 64 98.8 84.2 77.0
17 61.8 63.5 61.1 41 46.7 40.0 28.3 65 37.2 19.2 19.3
18 80.6 65.8 57.2 42 42.1 -6.0 -5.5 66 98.1 28.2 96.2
19 91.6 89.5 84.5 43 78.3 56.7 63.3 67 0.0 25.0 -25.0
20 91.6 89.5 84.5 44 66.1 19.7 56.8 68 60.8 30.1 51.7
21 -4.5 -3.7 -3.9 45 82.0 79.8 79.5 69 77.7 50.5 70.8
22 38.0 30.0 18.2 46 66.0 34.8 52.8 70 98.2 95.6 97.4
23 51.8 42.4 40.5 47 86.5 60.3 82.6 71 92.0 92.0 83.9
24 8.6 4.6 4.3 48 76.1 49.8 55.8

Avg. 57.91 47.49 47.43 #best 49 16 11

Table 4.4: Values of κ (in %) of svmNd, PKDA2 and LDA for each data set. The last row reports the average κ

over all the data sets and the number of data sets where each method achieves the best κ (the sum is 76
instead of 71 due to ties for some data sets).



58 Chapter 4. Experiments with 2D mappings

The Figure 4.5 shows the κ of the mappings from positions 21 to 40 (upper panel) and
41-66 (lower panel). Most of the mappings in the upper panel are proposed by us (DS and
all the T mappings), although they achieve κ values much lower than mappings in positions
1-20. The quadratic mappings (DSOQM, TOQM and QKDA) are in this range of κ’s. Among
the Drtoolbox mappings, only LPP (37.37%), NPE (34.41%), KernelPCA (24.81%), LLTSA
(16.19%) and t-SNE (10.74%) are included in the upper panel, with very low κ values. The
lower panel, with κ below 11%, includes the remaining Drtoolbox mappings. Among the
supervised methods of the Drtoolbox, only LDA is in the top-20, while NCA (9.60%), GDA
(9.37%), MCML (8.82%) and LMNN (8.14%) achieve results below several unsupervised
mappings (SNE, Sammon and Factor Analysis, among others), being in the lower panel of
Figure 4.5.

No. svmNd PKDA2 LDA No. svmNd PKDA2 LDA

4 98.08 88.78 90.5 39 81.56 76.25 76.9
5 83.33 41.67 91.7 42 73.81 51.19 48.8
6 77.82 70.36 73.4 46 83.59 69.16 77.3
10 75.00 75.52 75.5 58 65.00 58.33 51.7
15 75.39 67.32 71.3 59 76.25 67.50 46.2
16 96.98 81.32 87.6 63 82.50 52.02 73.8
22 52.72 46.74 36.4 64 99.00 86.83 80.8
23 65.38 59.13 57.7 65 58.00 46.00 46.0
25 79.55 65.91 61.4 66 99.16 69.46 98.3
31 84.46 78.72 80.1 68 82.14 69.16 77.9
32 72.89 71.30 70.2 69 86.04 70.13 81.8
37 60.71 32.14 35.7

Table 4.5: Accuracy (in %) of PKDA2, svmNd and LDA in those data sets where the svmNd outperforms PKDA in
terms of κ . The data set number is listed in Table 4.1.

Additional experiments developed by us showed that when the Drtoolbox mappings are
calculated using the whole data set (including training, validation and test patterns) the 2D
mapped patterns are much easier to classify for SVM, achieving higher κ values. However,
when the mapping is learnt using only training patterns, the classification results using vali-
dation (for parameter tuning) and test patterns are much worse. This means that Drtoolbox
mappings as LPP, NPE, t-SNE or MDS, which are very useful to visualizate data, exhibit
over-training in such a way that they build 2D data sets that do not extrapolate to out-of-
sample patterns. We confirmed this conclusion comparing the average κ of the Drtoolbox
techniques which use the out_of_sample (labeled with an asterisk in Table 4.2) and the
out_of_sample_est functions. The formers provide an explicit mapping from IRn to IR2,
while the latters create a 2D pattern set representing the high-dimensional training patterns,



4.2. Discussion 59

and afterwards use estimation techniques to map out-of-sample (i.e., validation and test) pat-
terns. The average κ values are 17.7% and 8.2% for the methods with explicit mapping and
for the others, respectively. This confirms our expectation that the classification is worse for
those mappings which only create a 2D data set, which may eventually be hardly interpolable
to out-of-sample patterns.

10 20 30 40 50 60 70
−20

0

20

40

60

80

100

Data set

K
a
p
p
a
 (

in
 %

)

Kappa of PKDA2 and svmNd for each data set

 

 

svmNd

PKDA2

−20 −10 0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

Difference kappa(svmNd) − kappa(PKDA2)

N
u

m
b

e
r 

o
f 

d
a

ta
 s

e
ts

Histogram of the differences in kappa between svmNd and PKDA2

Figure 4.6: Upper panel: comparison of the κ (in %) achieved by SVM using PKDA2 and svmNd, ordered by
increasing κ of svmNd. Lower panel: histogram of differences between svmNd and PKDA2.



60 Chapter 4. Experiments with 2D mappings

10 20 30 40 50 60 70

−20

0

20

40

60

80

100

Data set

K
a
p
p
a
 (

in
 %

)

Kappa of PKDA2 and LDA for each data set

 

 

PKDA2

LDA

−40 −20 0 20 40 60
0

5

10

15

20

Difference kappa(LDA) − kappa(PKDA2)

N
u

m
b

e
r 

o
f 

d
a

ta
 s

e
ts

Histogram of the differences in kappa between LDA and PKDA2

Figure 4.7: Upper panel: comparison of the κ achieved by PKDA2 and LDA, ordered by increasing κ of PKDA2.
Lower panel: histogram of differences between LDA and PKDA2.

In order to compare svmNd and PKDA2, Table 4.4 reports the κ achieved with svmNd,
PKDA2 and LDA for each data set, the average κ and the number of sets where each method
achieves the best κ (column #best). There are big differences among data sets: in 8 data sets
the PKDA2 outperforms svmNd. This is surprising, since the classifier using mapped patterns
should work equally or worse than using the original patterns. In other 38 data sets the svmNd



4.2. Discussion 61

outperforms PKDA2 by less than 10%. Therefore, for an important group of data sets (64.8%
of the total) PKDA2 works better, or it does not work much worse, than svmNd. And only for
the remaining 25 data sets (35.2% of the total) the svmNd outperforms PKDA2 by more than
10%. The differences between both in terms of κ are big for the 23 data sets listed in Table
4.5, which reports the accuracies of PKDA2, svmNd and LDA for those data sets. However,
for most of them the difference in terms of accuracy is much smaller than in terms of κ . Only
for 8 of 23 data sets (5, 16, 25, 37, 42, 63, 66 and 68) the difference in accuracy is also high.

Figure 4.8: Training, validation and test patterns (small squares) in IR2 mapped by PKDA2 (left panel) and LDA
(right panel) and class regions learnt by SVM using both mappings for data set 70 (wine), with 178
patterns, 13 inputs and 3 classes (colors blue, red and yellow, graded by the classification probability
given by SVM).

Figure 4.6 (upper panel) compares the κ of PKDA2 and svmNd for each data set. Two
grey lines show a margin of ±10% around the κ achieved by svmNd. While four red points
(PKDA2) are clearly over the 10%-margin (which means that PKDA2 outperforms svmNd),
and other 40 points are within this margin (where svmNd and PKDA2 work similarly), the
remaining 27 red points are clearly below the margin (which means that svmNd clearly out-
performs PKDA2). The lower panel shows the histogram of the differences between svmNd
and PKDA2: although there are 6 sets with differences above 30%, most of the differences
are under 30%, and many of them are under 10%, while some sets have negative difference
(which means that PKDA2 works better than svmNd).



62 Chapter 4. Experiments with 2D mappings

Comparing PKDA2 and LDA, the former outperforms the latter in 36 data sets, being
worse than LDA in 33 data sets, and both lie in 2 data sets. Considering the 23 data sets
where svmNd clearly outperforms PKDA2 (Table 4.5), the LDA works in general similarly to
PKDA2, except for 5 sets (5, 46, 63, 66 and 69). The upper panel of Figure 4.7 compares the
κ of PKDA2 and LDA for each data set. There are 10 red points above the margin (data sets
where LDA outperforms PKDA2), 50 points inside the margin (where both work similarly)
and 11 points below the margin (where PKDA2 outperforms LDA). The histogram of dif-
ferences between LDA and PKDA2 (lower panel of this Figure) shows that most differences
are under 20%, there are only 4 exceptions with differences above 20%, and many sets with
negative difference (meaning that PKDA2 outperforms LDA). A T-test shows that svmNd is
significantly better than PKDA2 (p-value=3.02E-6) and LDA (p=2.49E-9), but PKDA2 is not
better than LDA (p=0.96).

Figure 4.9: Class map learnt by SVM using the 2D patterns mapped by PKDA2 (left panel) and PKDA4 (right
panel) for data set 33 (image-segmentation), with 210 patterns, 18 inputs and 7 classes (colors blue, red,
yellow, green, white, magenta and cyan).

Since the proposed methods allow to visualize classification problems in 2D, one of the
most important objectives of this thesis is to show the class maps created by SVM for a given
mapping and data set, including the training, validation and test patterns, the regions assigned
by SVM to each class and the borders among them. Figure 4.8 shows this information using
PKDA2 (left panel) and LDA (right panel), which are the globally best-performing map-



4.2. Discussion 63

pings, for data set 70 (wine). For this data set, SVM achieves κ=98.24% using the original
n-dimensional patterns (svmNd), κ=95.61% using the 2D patterns mapped by PKDA2 and
κ=97.36% using LDA. The fact that the κ values do not decrease too much from IRn to IR2

suggest that the 2D map of this data set is highly representative of the original classification
problem in IRn, i.e., the 2D map is a valid projection of the original high-dimensional data.
The region associated to each class is painted with the color associated to that class, but this
color is degraded in order to show the probability of assigning a pattern to that class. This
is calculated using the utility of the LIBSVM library to provide a probability of assigning a
pattern to a given class. Specifically, the color in the classification map of Figure 4.8 is darker
(resp. brighter) with lower (resp. higher) probabilities.

Figure 4.10: Class map created by SVM using the 2D patterns mapped by PKDA2 for data sets balloons (2 classes)
and energy-y1 (3 classes).

We can also check that most squares (which correspond to the training, validation and
test patterns) are placed in regions of their same color, which means that they are correctly
classified. This happens for this data set, where the κ with 2D patterns is high both us-
ing PKDA2 and LDA. As an example of the opposite behavior, Figure 4.9 shows the map
of data set 33 (image-segmentation) where the performance using the 2D patterns mapped
by PKDA2 (κ=75.60%) and by LDA (66.07%) are worse than using the original patterns
(svmNd, 87.5%). Consequently, there are more squares of a color placed in a region of a



64 Chapter 4. Experiments with 2D mappings

different color (e.g., white patterns inside the blue region). Note in this case that the class
“white”, due to the probability color degradation, seems to be gray except in the small region
where the probability is considered high. It is also interesting the relative positions of the
regions associated to the different classes, and the number of patterns of one class which are
mapped to regions associated to other classes (this can also measured by the non-diagonal
terms in the confusion matrix). Figures 4.10, 4.11 and 4.12 show the maps created by PKDA2
for other data sets varying the number of classes (due to limitations on the number of colors,
we excluded data sets with more than 8 classes).

Figure 4.11: Class map created by SVM using the 2D patterns mapped by PKDA2 for data sets flags (6 classes) and
oocytes_merluccius_states_2f (3).

Regarding to the computational efficiency, Figure 4.13 shows (upper panel) the times, in a
logarithmic scale, spent by the proposed mappings for each measure (DA, DS, T and CD) and
function (linear, quadratic and polynomial varying D = 2, . . . ,7). All the mappings were run
using Matlab 7.12 (R2011a) on a Linux Debian 3.2 computer (64 bits). Comparing measures,
CD, DA and T are two orders of magnitude faster than DS. Comparing functions, the four
measures behave similarly, with similar but translated plots. The linear function is the fastest
and the quadratic is the slowest (by 2-3 orders). This shows the high computational cost of
the cross products, which as we saw also reduces largely the performance. The polynomial
functions slowly increase with D, as it might be expected, but the 2nd-degree polynomial is



4.3. Graphical interfaces 65

Figure 4.12: Class map created by SVM for data sets seeds (3 classes) and synthetic-control (6).

almost so fast as the linear function. The lower panel of Figure 4.13 sorts the times of the
20 fastest mappings. The PCA is the fastest one, but CDOLM, whose κ=47.0% is similar to
LDA and much better than PCA (42.6%), is the second fastest, followed by MDS and LDA
(the four mappings have times about 0.001 s.). The PKDA2, despite being quadratic, is almost
so fast as LDA, which is linear. This means that the polynomial with pure powers, alongside
with its good result, is relatively efficient. It is also relevant that, similarly to the κ ranking
(Figure 4.4, lower panel), the majority (16) of the 20 fastest mappings are methods proposed
by us (Table 3.1), so they are efficients and work well simultaneously.

4.3 Graphical interfaces

We developed two application programs which allow to map multi-dimensional classification
data sets into 2D using the proposed methods and the ones provided by the Drtoolbox (Tables
3.1 and 4.2, respectively). The first program is a web application developed in the PHP pro-
gramming language, so it can be accessed from anywhere, while the second is a standalone
desktop application developed using the Matlab graphical user interface designer.

The objective of both applications is to provide a user-friendly interface and straightfor-
ward application that allows to create a 2D classification map for any data set, specially as



66 Chapter 4. Experiments with 2D mappings

10
−3

10
−2

10
−1

10
0

10
1

10
2

T
im

e
s
 (

s
e
c
.)

Average times varying the overlap measure and function over all data sets

 

 

Linear

Quadratic

Pol. D
=2

Pol. D
=3

Pol. D
=4

Pol. D
=5

Pol. D
=6

Pol. D
=7

DA

DS

T

CD

10
−3

10
−2

PCA
MDS

CDOLM

CDOPM2
LDA

PKDA2

CDOPM3

CDOPM4

PKDA3
TOLM

PKDA4

TOPM2

CDOPM5

PKDA5

TOPM3

CDOPM6

TOPM4

LandmarkIsomap

PKDA6

TOPM5

T
im

e
s
 (

s
e
c
.)

Average times of the 20 fastest mappings over all data sets

Figure 4.13: Upper panel: average times (in sec.) spent by the proposed mappings varying the overlap measure and
function. Lower panel: times spent by the 20 fastest mappings.

a tool for data inspection and understanding for classification tasks. The user can inmedi-
ately transform patterns from IRn to IR2, evaluating and comparing the classification results
achieved by SVM in both spaces. The data set is imported in the standard comma-separated-
values (CSV) format. All the data items must be numeric with each feature in a column, being



4.3. Graphical interfaces 67

the last column the class label (also numeric, with values starting from 1). Before the mapping
to 2D, the data are standarized in order to have zero mean and standard deviation one for each
feature. The 71 classification benchmark data sets included in Table 4.1 are provided as trial
data in order to allow users to run and test both PHP and Matlab interfaces.

Figure 4.14: Uploading a new data set (lenses1) with 4 inputs,20 patterns and 2 classes using PHP web interface.
These required information must be filled in the left panel using the “add new data set” menu.

Figure 4.15: Screenshot of the PHP interface after projecting the UCI data set ionosphere using PKDA2.



68 Chapter 4. Experiments with 2D mappings

Figure 4.16: Screenshot of the PHP interface after mapping data set acute-nephritis using PKDA2.

4.3.1 PHP web interface

The PHP webapp was developed using PHP5, JavaScript, CSS3, HTML5 as developing
languages for the graphical user interface, Matlab 2012 for the numerical computation and
MySQL as database management system. The interface is shown in Figure 4.15 (the screen-
shot has been taken with the browser in full-screen visualization). After login into the system,
the user must specify the name of the data set and the numbers of inputs, patterns and classes
(see left part of Figure 4.14, panel “Add new data set”). These data items will be saved in the
corresponding database table for the current user, which can retrieve it from the “Own data
for user” panel (lower part of the left panel in Figure 4.14). The users have the option to make
their own data public and share them with other users, or make it private for his own use only.
The PHP interface captures the user inputs and uploads the data set file to the server, which is
mapped to 2D by the Matlab program. This program also runs the SVM classifier both on the
multi-dimensional and on the 2D mapped patterns.

After the execution of the Matlab projection program, the PHP interface displays the re-
sults (Figure 4.15 shows these results for the UCI data set ionosphere mapped using PKDA2).
These results contain the classification map (top left) created by the SVM using the 2D pro-
jected patterns, including the regions of the 2D space assigned by SVM to each class; the
2D mapped patterns mapped by the selected projection (top right); the confusion matrix (bot-



4.3. Graphical interfaces 69

Figure 4.17: Screenshot with the compilation of results for a given user in the PHP interface.

Figure 4.18: Zooming-in the classification map of balloon data set using PKDA2 algorithm.

tom left) achieved by SVM on these 2D data; the evaluation metric (bottom middle), which
includes the κ achieved by SVM in the original n-dimensional and in the mapped 2D data,



70 Chapter 4. Experiments with 2D mappings

Figure 4.19: Screenshot of the desktop Matlab interface uploading a new data set using the left panel. The file
explorer only requires the data set file and the remaining details are extracted from it.

alongside with both execution times; and the nD confusion matrix (bottom right) of SVM on
the original n-dimensional patterns. In this example, where the number n of inputs is 33, the
κ only decreases from 87.21% to 85.87% in IRn and IR2, respective, and the elapsed time
spent by the SVM in 2D is reduced about 1000 times with respect to IRn. Figure 4.16 shows
another example of classification map, achieved using PKDA2 to map into 2D the UCI data
set acute-nephritis. In this case the κ slightly increases from 97.89% in IRn, with n= 6 for this
data set, to 100% in 2D. The PHP platform allows the user to save and printout the results, and
to compile the user results (classification maps and κ for nD and 2D patterns) from previous
executions (Figure 4.17), and to zoom in the classification map canvas (Figure 4.18).

4.3.2 Matlab standalone interface

The equivalent of Figure 4.14 in the Matlab interface is shown by Figure 4.19, which in order
to upload a data set only requires the name of the CSV file, because the remaining details are
extracted from the data set by the Matlab program. The aspect of this interface after mapping
a data set (Figure 4.20) is very similar to the PHP interface, but without the user management
funcionalities. The Matlab interface includes the 2D classification map created by the SVM,
the 2D mapped patterns, and the confusion matrices achieved by SVM using the nD and
2D patterns, alongside with their respective κ values. In the Figure 4.20, the classification
map is achieved by PKDA2 for the UCI data set breast-tissue, with n = 9 inputs and C=6
classes. There is a reduction of 15.9% in the κ value from 64.43% to 48.46% in IRn and
2D, respectively, but the 2D map is quite explicative, because the classes are fairly separated,



4.3. Graphical interfaces 71

Figure 4.20: Screenshot of the Matlab interface after mapping a new data set (breast-tissue) using PKDA2.

Figure 4.21: Screenshot of the Matlab interface after mapping the UCI data set flags using PKDA2.

although there is some overlap between classes 2, 3 and 4 (red, yellow and light green). It
is also interesting the evolution (from left to right) from class 6 (magenta) to 5 (dark green)
and then to 1 (blue), downwards to the right, and 2, 4 and 3 (yellow, light green and red)



72 Chapter 4. Experiments with 2D mappings

upwards to the right. Figure 4.21 shows another example achieved mapping the UCI data set
flags (n=28 inputs and C=6 classes) with the PKDA2 mapping. In this case, there is a slight
reduction in the κ from 31.2% to 24% using nD and 2D patterns respectively.



CHAPTER 5

AUTOMATIC PREDICTION OF INDOOR

BUILDING TEMPERATURE

The demand for energy has drastically increased in the last few decades and large amounts
of fossil fuel have to be burned to generate the required energy. The burning of coal, fuel
oil, and natural gas is the largest source of carbon emissions, which causes the greenhouse
effect, contributes to global warming and has subsequently affected the environment nega-
tively. Moreover, the last few years has seen an overall increase in household consumption,
especially in space heating systems [33], which has increased gas emission levels from the
burning fossil fuels.

Because the cities of the world have the highest level of energy consumption, and thus
produce huge amounts of greenhouse gas emissions, they constitute one of the most important
factors contributing to climate change and its efects. As climate change affects all the world
regions, it requires serious international actions to mitigate its footprint. The EU is currently
leading several initiatives focused on reducing its effects. Specifically, the “Climate Action”
aims to decrease the greenhouse gas emissions by improving the energy efficiency to reduce
the consumption. The objectives are to reduce the greenhouse gas emissions by at least 20%
and 40%, and the amount of energy used by 20% and 27%, by 2020 and 2030, respectively,
below the 1990 levels [22].

As a consequence, the European Climate Action initiatives have been set up with the aim
of tackling the negative effects of climate change and reducing energy consumption. Urban
infrastructures have been identified as the key to execute the road-map of the EU, because



74 Chapter 5. Automatic prediction of indoor building temperature

they have the highest energy demand, being responsible for a high percentage of global gas
emissions. The development of efficient building energy management systems is a key factor
in achieving the objectives because buildings represent 40% of energy consumption and 36%
of total CO2 emissions within the Union [133]. In order to achieve the objectives of the
road-map, accurate models of the current energy systems and efficient energy management
plans for buildings must be developed. Specially, modeling the HVAC (Heating, Ventilation,
and Air Conditioning) systems is essential, since they have a relevant impact on both energy
consumption and building comfort (around 70% of this consumption in a typical household is
devoted to space heating).

The University of Santiago de Compostela (USC), in the framework of the “Climate Ac-
tion” initiative, has been involved in the European Opere project [70] with the objective of
improving the university energy management systems. This project enabled to deploy a sen-
sor network in 45 university buildings that generates more than 10,000 signals. In particular,
our research interest is focused on the Centro Singular de Investigación en Tecnoloxías da In-
formación da Universidade de Santiago de Compostela (CiTIUS), which is a research building
with a medium-size sensor network that produces 667 signals every 10 seconds. This raw data
set constitutes a rich source of information that can be used to improve energy efficiency, to
detect system failures and to optimize resources.

In this chapter we present two experiments, whose common goal is to forecast the indoor
temperature in a CiTIUS office for three horizons: one, two and three consecutive hours. The
data set used in both experiments are provided by CiTIUS sensors and the closest Meteogali-
cia weather station1 (Santiago-EOAS). The first experiment compares 40 regressors belonging
to 20 families over these three horizons to choose the most accurate regressor, which will be
used in next experiment. The second experiment develops three neural networks for modelling
the HVAC system of the CiTIUS. These networks are dynamic and perform online learning,
and were trained in two different weather conditions, a rainy and a dry winter corresponding
to years 2015-2016 and 2016-2017, respectively. They have been evaluated in terms of pre-
diction accuracy as well as tolerance to both climate variability and sensor noise, in order to
implement an energy plan for the whole building for the next three consecutive hours [3].

The remainder of this chapter is organized in the following manner. The next section re-
views some previous work in this field. Section 5.2 demonstrates the regression algorithms
used to develop the experiments. Sections 5.3 and 5.4 report the data set used in the ex-

1http://meteogalicia.es

http://meteogalicia.es


5.1. Related work 75

periments and the experimental setup. Finally the results and discussion are shown in sec-
tion 5.4.2.

5.1 Related work

The management of HVAC systems is necessary for optimizing building heating systems and
to improve the energy efficiency. Previous studies have shown that machine learning algo-
rithms can be used to model energy system in general and HVAC systems in particular [33].
Simon et al. incorporated a neural network into an intelligent model that modulates the build-
ing cooling load. This allows to forecast and to analyze the energy demand of the building
[64]. Furthermore, it allows to find critical factors that have a vital influence on the energy
consumption. The study reveals that the use of building occupancy plays a significant factor to
forecast the cooling load of the HVAC system. Nguyen et al. investigated the impact of user’s
activities and behaviors on potential energy saving in smart buildings [84]. This work cate-
gorizes the user’s most valuable activities and their influences in energy demands into three
primary subsystems: HVAC, light, and plug load systems. Moreover, Varick et al. studied the
influence of building occupancy in energy saving using real-time data. He succeeded in de-
veloping an occupancy model that could be integrated into a building HVAC system through
Markov Chains. The study showed that 42% of consumed energy can be saved annually [37].
Zhao also discussed the impact of external factors on the building energy performance by
summarizing various energy prediction approaches that were implemented through machine
learning (ML) algorithms, and reviewing the engineering and statistical methods that were
used to predict the building energy consumption [133]. A new prediction model based on
Support Vector Regression (SVR) was developed to forecast hourly cooling load inside office
buildings [69]. The model parameters were tuned to obtain the optimal settings to get the
best temperature prediction. The comparison between the developed model and the classical
multi-layer perceptron neural network (MLP) demonstrated that the SVR got the highest pre-
diction accuracy and lower mean squared error (MSE). The study of Dong investigated the
feasibility of applying SVR for regression in the forecasting building energy consumption,
and the influence of different SVR parameters on the prediction accuracy [30]. The study
reveals that the SVR get highest results compared with other related research methods using
neural networks and genetic programming.



76 Chapter 5. Automatic prediction of indoor building temperature

The influence of the external weather variables on the indoor temperature prediction has
been examined through autoregressive model (ARX) and Autoregressive Moving Average
model (ARMAX), where the selection of the appropriate structure of both models has been
determined to achieve the best forecasting accuracy. The dynamic structure of these models
can become an adaptable controller, which allows to increase the occupant’s comfort level in
the building and to reduce the energy consumption of HVAC systems [90]. The results showed
that the ARX model obtained the best prediction accuracy. Abdullatif et al. proposed a new
cooling load prediction model for buildings using the generalized regression neural network
(GRNN). Occupancy and orientational characteristics were considerated in order to optimize
HVAC thermal energy storage in buildings [8]. In the research conducted by Catalina, the
researcher developed polynomial regression models using neural networks to predict heating
demand for residential buildings monthly, considering the residential constructional structure
[16]. The developed models were validated with 270 different scenarios to find the best ap-
proach. Several other recent studies proposed approaches using different ML algorithms for
predicting building energy consumption [35, 96, 133, 81]. In these studies, external factors
such as building structure, orientation, isolation, environmental variables and multiple param-
eters were considered. The numerical results revealed that these factors have a significant
effect on the indoor temperature prediction and the energy consumption in a building.

The GA-ANFIS was another model used to forecast the indoor building temperature [68].
This approach uses genetic GA to optimize the fuzzy if-then rule base by finding the best
configuration of the subtractive clusters. The adaptive network based fuzzy inference system
(ANFIS) adjusts the premise and subsequent parameters to match the training data. The re-
sults demonstrated that GA-ANFIS achieved higher performance levels compared to neural
networks in terms of prediction accuracy. Neural networks were used to forecast long-term
energy demand during the day for Swedish buildings based on short-term data measurements
[85], and to predict short-term indoor temperatures aiming at reducing the HVAC energy con-
sumption [129]. In this work, the initial model parameters were estimated by using a random
model or unbiased prior knowledge. The integration of the on-line learning process made
this module adaptable to new patterns. The experiments shown that these two algorithms
achieved better forecasting performance compared to neural networks. Recently, Rodríguez-
Mier et al. used FRULER-GFS (fuzzy rule learning through evolution for regression-genetic
fuzzy system) to develop a rule-based model for predicting the indoor building temperature.
The knowledge bases learned by FRULER comprise Takagi-Sugeno-Kang fuzzy rules that



5.2. Regression methods 77

correctly forecast the temperature dynamics measured by a number of different predictors
collected from both indoor and outdoor the building. The experiment results illustrated that
FRULER-GFS achieved the best accuracy rate compared with ElasticNet and random forest
regressors [91].

Doukas et al. developed an integrated decision support system based on a set of rules
designed to improve the building energy management system [32]. The system allows central
control over energy consumption in the building, which makes it extremely flexible. Further-
more, expert knowledge was used in the system to create a reliable energy profile. The HVAC
control optimization (On/Off) provided the system with the ability to detect and eliminate any
wrong decision. The study demonstrates that the expert knowledge has a significant impact
on improving the energy management of the building.

5.2 Regression methods

We selected 40 regressors belonging to 20 different families ( Table 5.1) to develop this com-
parative study. The majority of these regressors were chosen from the Classification And Re-
gression Training (caret)2 package of the R statistical computing language3. Rather than use
the interface provided by the caret package, we executed the regressors directly using the cor-
responding R packages detailed below in order to control and tune the model execution. We
also used other three popular methods implemented on other platforms: support vector regres-
sion (SVR) using the LibSVM library implemented in C++ 4; GRNN and extreme learning
machine (ELM) with Gaussian kernels, both implemented in the Matlab scientific language5.
The hyper-parameters for each regressor were tuned in order to find the best values to train the
regressor, trying the values proposed by the caret documentation. Their corresponding tun-
able hyper-parameters, number of values used for tuning and required packages are reported
in Table 5.3. The specific values used for tuning each hyper-parameter are listed by utilities
of the caret R package, and they should be adequated for each regressor and hyper-parameter.
A brief description of these 40 regressors is shown in the following list, grouped by families
of regressors.

2http://topepo.github.io/caret/train-models-by-tag.html.
3http://r-project.org.
4https://www.csie.ntu.edu.tw/∼cjlin/libsvm.
5http://mathworks.com.

http://topepo.github.io/caret/train-models-by-tag.html
http://r-project.org
https://www.csie.ntu.edu.tw/~cjlin/libsvm
http://mathworks.com


78 Chapter 5. Automatic prediction of indoor building temperature

No. Family Regressors No. Family Regressors

1 Linear regression lm 11 Boosting ensembles randomGLM

2
Generalized linear glm

12
Gradient boosting BstLm

regression penalized machines bstSm
glmnet bstTree

gbm

3 Least squares nnls 13 Random forests
rf
qrf
extraTrees

4 Partial least squares
spls

14 Prototype models cubist
simpls

5 Least absolute shrinkage lasso 15 Bayesian models
bayesglm
brnn
bartMachine

6 Ridge regression foba 16 Independent Component
Analysis

icr

7 Neural networks

MLP

17

avNNet
grnn Generalized additive
elm models gam
dnn
elm-kernel

8 Support vector regression svmRadial 18 Gaussian processes
gaussprLinear
gaussprPoly

9 Regression trees
rpart

19 Quantile regression rqlasso
M5

10 Bagging ensembles
bag

20 Other methods
earth

bagEarth ppr
treebag

Table 5.1: Regressors considered in this work, grouped by families.

1. Linear regression: this family includes the linear model lm [17]. It is widely used to
do regression, variance analysis and covariance analysis. Collinear inputs show unde-
termined regression factors so they are discarded for this model and other regressors.
We assume the response variable to be normally distributed and the link function to be
the identity function.

2. Generalized linear regression: includes the following regressors:

2.1 glm is the generalized linear model, which combine a number of statistical models
that include linear, logistic and Poisson regression [29]. The GLM is used for
analyzing linear and non-linear effects of continuous and/categorical predictors
on a discrete or continuous response variable. It allows the model to be related to
the response variable via a link function and the distribution to be a function of its
predictor.



5.2. Regression methods 79

2.2 penalized is the penalized linear regression, where a penalty added to control
properties of the regression coefficients in order to optimize the likelihood instead
of just maximizing it. The penalty L1 (the least absolute shrinkage and selection
operator - lasso), penalizes the sum of absolute values of the coefficients, thus
shrinking the irrelevant coefficient values to get close to zero. The L2 penalty (the
“ridge” penalty), penalizes the sum of squared coefficients, reducing the impact of
input collinearity. The regression is regularized by weighting both penalties [47].

2.3 glmnet is the lasso and elastic-net regularized generalized linear models [102].
The glmnet model fits a generalized linear model via penalized maximum likeli-
hood. It is an extremely fast and efficient algorithm. It fits linear regression, logis-
tic and multinomial, Poisson, Cox, grouped multinomial and multiple-response
Gaussian regression models. The only tunable hyper-parameter is the elastic-net
penalty mixing parameter α , which brings LASSO and ridge regression for α=1
and α=0, respectively.

3. Least squares: the nnls is the non-negative least squares regression, which finds arg
minx |Ax−b| subject to x≥ 0 using the method proposed by [66].

4. Partial least squares, composed by:

4.1 spls is the sparse partial least squares regression, a dimension reduction method
which allows both sparse variable selection and dimension reduction simultane-
ously. It introduces sparse linear combinations of the inputs in order to avoid lack
of consistency with high dimensional patterns [19].

4.2 simpls is the Statistically Inspired Modification of PLS [94]. This method directly
calculates the PLS factors as linear combinations of the inputs thus truly maximiz-
ing the covariance criterion under orthogonality and normalization constraints.

5. Least absolute shrinkage and selection operator (LASSO). It diminishes the sum of
squared errors with a limit on the sum of the absolute coefficients. It uses the enet
function in the elasticnet R package.

6. Ridge (or Tikhonov) regression is is the most commonly used method of approximating
answers for problems that do not have a unique solution. We used the foba regressor,
which develops regression with forward, backward and sparse input selection [130].



80 Chapter 5. Automatic prediction of indoor building temperature

This method does a backward step when the ridge penalized risk increase is less than
ν (by default= 0.5) times the ridge penalized risk reduction in the matching backward
step.

7. Neural networks. This family includes the following regressors:

7.1 MLP is the classical multi-layer perceptron, a feed-forward neural network used
for pattern classification and regression, composed by three layers of nodes (input,
hidden and output) and trained using the back-propagation learning algorithm. We
used the MLP implementation provided by the Matlab neural network toolbox.

7.2 avNNet is an averaged neural network committee (caret package). It fits an
ensemble of 5 feed-forward neural networks, whose weights are randomly initial-
ized with different seeds for each network in the ensemble. For regression, the
outputs are averaged over the 5 networks. The hyper-parameters are the network
size and the weight decay.

7.3 grnn is the generalized regression neural network implemented by the Matlab
neural network toolbox [106]. It is a one-pass learning algorithm with an ex-
tremely parallel structure, which uses Gaussian functions for the output estima-
tion.

7.4 elm is the extreme learning machine (ELM), a classical feed-forward neural net-
work with a single hidden layer [56]. Its unique characteristics include very fast
training, good generalization, and the ability to perform universal classification
and function approximation. The tunable hyper-parameters are the number of
hidden neurons and the activation function.

7.5 elm-kernel is the extreme learning machine (ELM)6 neural network with Gaus-
sian kernel implemented in Matlab [56].

7.6 dnn is the deep belief neural network implemented by the DeepNet R package,
with three hidden layers whose number of neurons are tuned [52].

8. Support vector regression, named svmRadial in the current study [103]. It uses a
Gaussian kernel, tuning the kernel spread σ and regularization parameter C.

9. Regression trees, including:

6http://extreme-learning-machines.org

http://extreme-learning-machines.org


5.2. Regression methods 81

9.1 rpart is the recursive partitioning and regression tree [13], which iteratively cre-
ates a regression tree by splitting the inputs an unspecified number of times until
an ending condition is reached.

9.2 M5 is the multivariate linear tree-based model (RWeka package) created using
the M5 algorithm [89].

10. Bagging ensembles, composed by:

10.1 bag is the bagging ensemble of conditional inference regression trees [11], aver-
aging their outputs in order to produce the result for a test pattern.

10.2 bagEarth is the bagged multivariate adaptive regression splines (MARS) a bag-
ging ensemble of MARS base regressors which computes an earth model for
each bootstrap sample of the training set (25 samples by default). The only hyper-
parameter is the maximum number of values in the pruned regression model.

10.3 treebag is a bagging ensemble of regression trees (CART), eacn one trained on a
different bootstrap sample (25 samples by default).

11. Boosting ensembles, includes randomGLM, a boosting ensemble of generalized lin-
ear models [104], trained each one on a bootstrap sample (100 samples), and randomly
selecting inputs and interaction terms among them depending on the maximum interac-
tion order.

12. Gradient boosting machines, includes:

12.1 BstLm is the gradient boosting machine with linear regressors as base learners
regressors, tuning number of boosting iterations [41, 73, 21].

12.2 bstSm is the gradient boosting machine with smoothing splines as base regressors
with the same tunable parameter [97].

12.3 bstTree is the gradient boosting with regression base trees. It creates a sequence
of simple trees which are built so that they predict the residuals of the previous
trees [73, 21].

12.4 gbm is the generalized boosting model, which iteratively adds basis functions in a
greedy fashion so that each additional basis function further reduces the selected
loss function [41]. The tunable hyper-parameters are the maximum depth of input



82 Chapter 5. Automatic prediction of indoor building temperature

interactions and the number of trees for prediction (5 values each one). We use a
Gaussian distribution and shrinkage equal to 0.1.

13. Random forests, composed by:

13.1 rf is the random forest ensemble of random regression trees, whose output is
the average of the regression trees outputs [12]. Its only hyper-parameter is the
number of inputs randomly selected at each tree (mtry).

13.2 qrf is the quantile regression forest, a tree-based ensemble which generalizes ran-
dom forest in order to estimate conditional quantile functions [75]. The only
tunable hyper-parameter is mtry.

13.3 extraTrees is the ensemble of extremely randomized regression trees [45] . Its
tunable hyper-parameters are mtry and the minimum sample size to split a node
(numRandomCuts).

14. Prototype models: this family includes cubist, a M5 rule-based model with corrections
based on nearest neighbors in the training set [88]. Its hyper-parameters are the numbers
of training committees and neighbors for prediction.

15. Bayesian models include:

15.1 bayesglm is the Bayesian GLM, which uses the expectation maximization method
to update the β values in GLM at each iteration, representing the prior informa-
tion with an augmented regression [44]. The coefficients are calculated using a
student-t prior distribution.

15.2 brnn is the Bayesian regularized neural network, which determines the weights of
two terms (squared error and squared sum of network weights) based on inference
techniques [39, 72]. The weights are not normalized, and the number of hidden
neurons is a hyper-parameter.

15.3 bartMachine is the Bayesian additive regression tree [61]. The tunable hyper-
parameters are the prior boundary (K) and the base value (α) in tree prior to
decide if a node is terminal or not.

16. Independent component regression (icr), which fits a linear regression model using
independent component analysis instead of the original inputs [57]. The only hyper-
parameter is the number of independent components (n.comp).



5.3. Data acquisition 83

17. Generalized additive model with splines (gam), which tunes the hyper-parameter is
select, a boolean flag which decides whether an extra wiggliness penalty term to
each function [123].

18. Gaussian processes regression [122]. This family includes:

18.1 gaussprLinear, with linear kernel.

18.2 gaussprPoly, with polynomial kernel, tuning the polynomial degree and scale.

19. Quantile regression. This family includes the rqlasso regressor, which develops quan-
tile regression with LASSO penalty [79]. This method fits a quantile regression model
with the LASSO penalty, tuning the regularization hyper-parameter λ .

20. Other regression methods are:

20.1 earth is the multivariate adaptive regression spline [40], whose only hyper-parameter
is the maximum number of terms in the model (nprune).

20.2 ppr is the projection pursuit regression [42], which tunes the number of terms
(nterms) to be included in the final model.

5.3 Data acquisition

The data used to develop the experiments are provided by both sensor measurements linked to
the HVAC system of the CiTIUS and by the closest Meteogalicia weather station. The patterns
were obtained every 10 minutes sequentially during two time periods: from 1st October 2015
to 31st March 2016 (26,321 patterns) and from 1st November 2016 to 31st January 2017
(13,083 patterns). Both periods correspond to the CiTIUS HVAC winter working mode, which
has the highest energy demand to warm the building. It must be noted that the second period
corresponds to an unusually dry winter season in Galicia. Thus, the weather conditions in
both time periods are very different.

The patterns are composed of 10 variables, 7 of them provided by the CiTIUS and the
remaining are from Meteogalicia weather station. These variables are listed in Table 5.3. The
data set is available on-line7, so that the experiments can be repeated, if required.

7 https://gitlab.citius.usc.es/cograde/HVAC-model.

https://gitlab.citius.usc.es/cograde/HVAC-model


84 Chapter 5. Automatic prediction of indoor building temperature

Features Abbr. Type Description

Underfloor Heating Status * UHS Binary Status of the underfloor heating system in the office
Underfloor Heating Temperature * UHT Continuous Temperature of the water linked to the underfloor

heating system
Air Conditioning Status * ACS Binary Status of the air conditioning system in the office
Air Conditioning Temperature* ACT Continuous Temperature of the main air conditioning system.
Air Conditioning Humidity * ACH Continuous Percentage of the humidity linked to the main air

conditioning system
Humidity + OutH Continuous Degree of the outdoor relative humidity
Temperature + OutT Continuous Outdoor temperature
Solar radiation + SR Continuous Level of solar radiation
Indoor temperature * t Continuous Indoor temperature at time t
Previous indoor temperature * t−1 Continuous Indoor temperature at time t−1

Table 5.2: Pattern features, where (*) and (+) represent features from the CiTIUS HVAC and from Meteogalicia,
respectively.

5.4 Experiments

We developed two different experiments with different objectives. In the first experiment
(section 5.4.1), the 40 regressors described in section 5.2 were compared to select the most
accurate one. In the second experiment (section 5.4.2), we developed new ML models based
on neural networks that perform on-line learning and can be adapted at runtime in order to
deal with both sensor noise and weather variability. Training and test were developed in both
experiments using the data set described in section 5.3, that corresponds to two different time
periods (9 months) and contains 39,404 patterns. The experiments were repeated 10 times
for each regressor using different seeds for the random number generator, in order to generate
new training and validation partitions each time. In the first experiment we randomly selected
2,000 patterns for training, 760 patterns for validation and the remaining patterns (36,644) for
test. The data used to train and validate the models in the second experiment correspond to the
first time period. The partitions were generated randomly in such a way that 85% and 15% of
the patterns were used for training and validating the models, respectively, while the testing
partitions correspond to the second time period (2016-2017). The data in both experiments
were normalized to have 0 mean and 1 standard deviation. Moreover, the hyper-parameters
of the regressors were tuned using the values listed in Table 5.3. The selected final values for
the hyper-parameter are those which maximize the average performance (see below) over the
validation sets.



5.4. Experiments 85

Regressor Hyperp. (values) Packages Regressor Hyperp. (values) Packages

lm – MASS randomGLM maxInterationOrder(3) randomGLM
glm – gbm, plyr bag – caret
penalized λ1(5), λ2(4) penalized BstLm mstop(10) bst, plyr
glmnet α(7), λ (3) glmnet bstSm mstop(10) bst, plyr
nnls – nnls bstTree mstop(4), maxdepth(5) bst, plyr
spls K(3),η , κ(7) spls gbm n.trees(5) gbm, plyr

interaction.depth(5)
simpls ncomp(10) pls rf mtry(10) randomForest
lasso – elasticnet qrf mtry(2) quantregForest
foba k(2),λ (10) foba extraTrees mtry(10) extraTrees

numRandomCuts(2)
MLP n.hidden(20) nnet cubist committees(3) Cubist

neighbors(3)
avNNet size(7) nnet bayesglm – arm

decay(3)
grnn spread(14) Matlab brnn neurons(15) brnn
elm nhid(20) elmNN bartMachine K(3),α(3) bartMachine

actfun(4)
dnn layer1(10) deepnet icr ncomp(10) fastICA

layer2(10)
layer3(10)

elm-kernel σ (25),C(25) Matlab gam select(2) gam
svmRadial σ (5),C(4) kernlab gaussprLinear – kernlab
rpart complexity(10) rpart gaussprPoly degree(5),scale(3) kernlab
M5 pruned(2) RWeka rqlasso λ (10) rqPen

smoothed(2)
rules(2)

bagEarth nprune(10) caret earth nprune(15) earth
treebag – ipred, plyr ppr nterms(10) stats

e1071

Table 5.3: List of the regressors, with their tunable hyper-parameters, values tried and packages.

The performance of the tested regressors was evaluated using the Pearson correlation, also
known as R-coefficient, and the Mean Squared Error (MSE). The former is defined as:

ρ(Ŷ ,Y ) =
1

N−1

N

∑
i=1

(
Ŷi−µŶ

σŶ

)(
Yi−µY

σY

)
where µŶ and σŶ are the mean and standard deviation of the regressor outputs Ŷ , respectively,
while µY represents the mean of the real output, σY is the standard deviation of the real output
Y and N is the number of test patterns. The MSE is defined as:

MSE =
1
N

N

∑
i=1

(Ŷi−Yi)
2

The average of both MSE and R-coefficient over the 10 repetitions have been calculated
as a final performance measurement for all the compared approaches in both experiments.



86 Chapter 5. Automatic prediction of indoor building temperature

5.4.1 Regressor comparison

An accurate and reliable planning of HVAC system leads to and efficient consumption of
energy and higher comfort levels inside buildings. Machine learning algorithms that predict
the development of the interior temperature of buildings based on internal and external climate
conditions can be used to evaluate the effect of modifications in the HVAC systems to improve
the building comfort. In order to develop an efficient model for HVAC systems, we compared
the 40 regressors of the previous collection for temperature forecasting in a CiTIUS office
using the three previous horizons (one, two and three hours). We used the set of real indoor
and outdoor temperature measurements described in section 5.3.

We computed the Friedman rank [43] of the MSE and R-coefficient for the whole list of
regressors in order to compare all the regressors accross the data set. This rank examines the
current position of each regressor in average over all the horizons. The regressors must be
sorted by decreasing performance (e.g., by increasing MSE or by decreasing R-coefficient)
for each data set, and the Friedman rank of each regressor is its average position over the
horizons. Figure 5.1 shows the Friedman rank for MSE and R-coefficient, by increasing rank
(i.e., by decreasing performance). Two regressors of the random forest family (extraTrees
and rf) achieve the best results for both performance measurements. In fact, there are small
differences between both figures, just in the position of some regressors, such as cubist and
averaged neural network committee (avNNet), and also between the generalized boosting
model (gbm) and the Bayesian regularized neural network (brnn). For more details, Table
5.4 lists the ranks both for MSE and R-coefficient for each regressor, where the column “Avg.
R-coefficient.” reports the average R-Coefficient for each regressor over all the three horizons.

We also developed a post-hoc Friedman-Nemenyi [28] statistical test comparing the R-
coefficient of the best regressor (extraTrees) with the remaining ones. This test is implemented
in R by the PMCMR package [87]. The hypothesis tests are used to test the validity of a claim
that is made about a population, which is called the null hypothesis. The alternative hypothesis
is the one you would believe if the null hypothesis is concluded to be untrue. All the statistical
hypothesis tests ultimately use the so-called p-value, which measures the degree of evidence
of the null hypothesis. The p-value is a number between 0 and 1 which must be interpreted
in the following way: a small p-value (typically p <0.05) indicates strong evidence against
the null hypothesis, which must be rejected within a 5% tolerance, because 0.05 is the 5%
tolerance threshold commonly considered. Conversely, a large p-value (> 0.05) indicates
weak evidence against the null hypothesis, which must be accepted. Finally, p-values very



5.4. Experiments 87

2

4

6

8

10

12

14

16

18

20

F
ri
e

d
m

a
n

 r
a

n
k
 o

f 
R

-C
o

e
ff

ic
ie

n
t

extra
Trees rf

cubist

avNNet

bstTree

elm-kernel
gbm

brnn svr qrf ppr
bag

grnn

penalized
simpls mlp

earth
rqlasso

bagEarth nnls

2

4

6

8

10

12

14

16

18

20

F
ri
e

d
m

a
n

 r
a

n
k
 o

f 
M

S
E

extra
Trees rf

avNNet
cubist

bstTree

elm-kernel
brnn

gbm svr qrf ppr
bag

grnn

penalized
simpls mlp

earth
rqlasso

bagEarth nnls

Figure 5.1: Friedman rank of R-coefficient (upper panel) and MSE (lower panel) for the 20 best regressors.

close to the threshold (0.05) are considered to be marginal (the decision might be any). The
p-value of a test should always be reported in order to give a measurement of the conclusion
reliability. In our case, we are comparing the best regressor (extraTrees) to the remaining
ones, and the null hypothesis is that extraTrees and the other regressor behave similarly (i.e.,
their R-coefficients are not significantly different). Therefore, a p-value above (resp. below)
0.05 means that the null hypothesis must be accepted (resp. rejected), i.e., that extraTrees is
not (resp. is) significantly better. The p-values listed in Table 5.4 show that extraTrees is only



88 Chapter 5. Automatic prediction of indoor building temperature

MSE rank R-coefficient rank
Order Regressor Rank Regressor Rank R-coefficient Avg. p-value

1 extraTrees 1 extraTrees 1 0.97052 –
2 rf 2 rf 2 0.96916 1.0000
3 avNNet 4 cubist 3.7 0.96801 1.0000
4 cubist 4 avNNet 4 0.96727 1.0000
5 bstTree 5.3 bstTree 5.3 0.96738 1.0000
6 elm-kernel 5.7 elm-kernel 5.7 0.96673 1.0000
7 brnn 7.7 gbm 7.7 0.96595 1.0000
8 gbm 7.7 brnn 8.3 0.96506 1.0000
9 svr 10.3 svr 10 0.96505 1.0000

10 qrf 10.7 qrf 10.7 0.96503 1.0000
11 ppr 11.7 ppr 12 0.96154 1.0000
12 bag 13.3 bag 13.3 0.96023 1.0000
13 grnn 14 grnn 13.7 0.9614 1.0000
14 penalized 14.3 penalized 14.3 0.95398 1.0000
15 simpls 17.7 simpls 17.7 0.9503 0.99972
16 mlp 18.3 mlp 18.3 0.95268 0.99934
17 earth 18.7 earth 18.7 0.93754 0.99903
18 rqlasso 18.7 rqlasso 18.7 0.95003 0.99903
19 bagEarth 19.3 bagEarth 19.3 0.92212 0.99797
20 nnls 20.7 nnls 20.3 0.94505 0.99457
21 BstLm 20.7 BstLm 21.3 0.94431 0.98728
22 lasso 21.7 lasso 21.3 0.94468 0.98728
23 bayesglm 25.3 bayesglm 25 0.93695 0.88219
24 elm 26 glm 26 0.93687 0.74914
25 glm 26.3 gam 27 0.93687 0.74914
26 spls 27.3 spls 27.3 0.89188 0.65318
27 gaussprLinear 27.3 gaussprLinear 27.3 0.93688 0.65318
28 gam 27.3 elm 27.3 0.93927 0.65318
29 M5 27.7 M5 27.7 0.91652 0.62295
30 lm 28.3 lm 28 0.93687 0.60281
31 treebag 29 treebag 29 0.93359 0.57645
32 rpart 29.3 rpart 29.3 0.92993 0.54622
33 icr 29.3 icr 29.3 0.93426 0.54622
34 randomGLM 29.7 randomGLM 29.7 0.84641 0.51607
35 foba 30 foba 30 0.93617 0.48616
36 dnn 35.7 dnn 35.7 0.70223 0.11552
37 bstSm 37 gaussprPoly 37.0 0.00101 0.07419
38 glmnet 38 bstSm 38.0 0.00000 0.05202
39 bartMachine 39 bartMachine 39.0 -0.00095 0.03580
40 gaussprPoly 40.0 glmnet 40.0 -0.00116 0.02420

Table 5.4: Friedman rank of the MSE (left) and R-Coefficient (right). The p-value (last column) of the Posthoc
Friedman Nemenyi test compares the best regressor to the remaining ones.

significantly better than the 2 last regressors (bartMachine and glmnet), for which p <0.05,
so the differences between extraTrees and the first 37 regressors is not statistically significant.



5.4. Experiments 89

0.05

0.06

0.07

0.08

0.09

0.1

0.11
A

v
e
ra

g
e
 M

S
E

extra
Trees rf

cubist

bstTree
avNNet

elm-kernel
gbm

brnn qrf svr
ppr

grnn bag

penalized MLP
simpls

rqlasso
BstLmnnls

lasso

0.945

0.95

0.955

0.96

0.965

0.97

A
v
e

ra
g

e
 R

-c
o

e
ff

ic
ie

n
t

extra
Trees rf

cubist

bstTree
avNNet

elm k
ernel

gbm
brnn svr qrf ppr

grnn bag

penalized MLP
simpls

rqlasso
nnls

BstLm
lasso

Figure 5.2: Average values of MSE and R-Coefficient over the data sets of the 20 best regressors to forecast three
consecutive hours.

The average MSE and R-coefficient of the best 20 regressors over the three prediction
horizons is shown in Figure 5.2, sorted decreasingly. ExtraTrees achieves the best average
MSE (0.058) and R-coefficient (0.97), followed by rf and cubist. Both plots are similar to
Figure 5.1, with bstTree swapped with avNNet to become 4th and 5th respectively. Also,
the positions of bag and grnn are swapped to become 12th and 13th respectively. In the last
4 positions, rqlasso and nnls also improved their positions. Moreover, earth and bagearth



90 Chapter 5. Automatic prediction of indoor building temperature

regressors disappear from the top 20, while lasso and BstLm replace them in the last two
positions.

One hour Two hours Three hours
MSE 0.04041 0.06011 0.07370

R-Coefficient 0.97958 0.96951 0.96245

Table 5.5: The best R-Coefficient and MSE are achieved by extraTrees for the forecasting horizon.

The conclusion of this experiment is that extraTrees achieves the best results in terms of
Friedman rank, and also in terms of average values, for MSE and R-coefficient (Table 5.5).
The difference between the R-coefficient achieved by extraTrees in the three prediction hori-
zons is quite small (around 0.01), and the same happens for MSE, so its performance does not
reduce very fast increasing the horizon. However, the statistical Friedman-Nemenyi post-hoc
test shows that its difference with respect to the remaining regressors is not statistically sig-
nificant. Other regressors with good performance are random forest, average neural network
committee (avNNet), cubist, gradient boosting of regression trees (bstTree) and kernel ELM
(elm-kernel). There is a high agreement between average values and Friedman ranks in the
results. This comparison might be useful for any smart building in order to build a prediction
model for improving the building management, efficiency and to assist in reducing energy
consumption.

5.4.2 Online learning approaches

We also applied neural networks that allow automatic re-training to the temperature predic-
tion. Automatic re-training provides robustness to the models and allows them to handle cir-
cunstances not encountered in the original training, such as exceptional climatic situations, or
even withstand certain alterations on the system components resulting from errors or changes
in the sensor devices. Concretely, these models were tuned to forecast three hours of the in-
door temperature in a CiTIUS office. After that, we compared these models with extraTrees,
which was the best regressor obtained from the experiments described on the previous sub-
section, using the same experimental methodology. We used different ways to train them in
order to compare their accuracies in a real testing environment that is affected by different
weather conditions and noise levels:



5.4. Experiments 91

1. Adaptive multi-layer perceptron (AMLP). This approach was initially trained with his-
torical data, but afterwards the AMLP was iteratively trained and adapted as it was
processing new data. Concretely, this approach was trained every week with an incre-
mental data set that includes both weekly and old data. Thus, the AMLP adapts to new
scenarios, even changing the network architecture, in each training iteration.

2. Online learning multi-layer perceptron (OMLP). Trained initially with historical data,
it is updated with each new pattern for a faster learning. It must be noted that there
is a delay between the temperature prediction for a pattern and the use of that pattern
to update the network. The reason is that, in order to use that pattern to update the
network, the true indoor temperature associated to that pattern must be known, so it is
necessary to wait for this value.

3. Online learning adaptive multi-layer perceptron (OAMLP). This is a combination of
OMLP and AMLP: the network is updated with each new pattern, similarly to OMLP,
and also with an incremental data set once a week, similarly to AMLP.

Experimental setup

We evaluated the three previous approaches using Matlab implementations and the data set
described in section 5.3. Specifically, we used the first period (from 1st October 2015 to 31st

March 2016) to both train and validate the models, and the second period (from 1st November
2016 to 31st January 2017) to test them. This methodology allowed us to evaluate the models
with different weather conditions. Moreover, we also artificially generated other alternative
test sets adding noise to the original one in order to evaluate different noise scenarios. Train
and validation partitions were randomly generated in such a way that 85% of the patterns were
used for training and the remainder for validation. Taking in mind a fair comparison, all the
models were tuned with the same parameters during the training phase, listed in Table 5.6)
and in the link in the above footnote 7.

All the developed models (AMLP, OMLP and OAMLP) are based on a classical MLP
composed by three layers: input layer, hidden layer and output layer. The number of neurons
linked to the hidden layer was fixed for each approach through empirical tests based on the “ad

hoc” rule that this number should not be higher than the double of neurons of the input layer
[107]. Each architecture was validated using the validation set. Finally, for each approach, the
architecture with the best performance was selected for the final model. Given that these are



92 Chapter 5. Automatic prediction of indoor building temperature

Parameter Value

Network implementation function fitnet

Input layer neurons 10
Output layer neurons 1
Hidden layer neurons Empirical evaluation from 1 to 20 (2 × input_neurons)
Learning rate 0.01
Epochs 1000
Training function Gradient descent backpropagation (traingd)
Activation function (hidden layer) Sigmoid function
Activation function (output layer) Linear function
Divide function Divideind (index available in the link.)
Divide mode Sample

Table 5.6: Training parameters used to develop the evaluated neural networks models

adaptive models, they had specific training processes. The AMLP approach was iteratively
and incrementally trained every week using both weekly data (1,008 patterns) and historical
data. Weekly patterns were distributed in each iteration between the train and validation sets
(80% and 20%, respectively). These new enriched data sets were used to train and adapt the
neural networks models. The OMLP approach was updated at runtime using the input patterns
once the true indoor temperature was available. The architecture of this network remained
unchanged during this process. Finally, the OAMLP approach was a hybrid model between
the AMLP and the OMLP since it was updated at runtime and also trained and adapted once
a week.

The noise sensitivity of the developed neural networks models was examined adding dif-
ferent noise levels (5%, 10%, 15%, 20% and 25%) to the test set (see the link in the above
footnote 7), in order to simulate noise and temporary failures related to the sensors. Specif-
ically, this noise was added using the Matlab Gaussian noise function (awgn). We repeated
the experiments 10 times for each model using the same data set but using different random
seeds (from 1 to 10) for generating different partitions and network initializations. After that,
we averaged the results for each model.

Results and discussion

As a case-study, we have focused on the 3-hours indoor temperature forecast of a CiTIUS
office. Figure 5.3 shows the MSE for each forecasting horizon (1, 2 and 3 hours) and approach
(extraTrees, AMLP, OMLP and OAMLP) , which increases as the horizon grows. The lowest



5.4. Experiments 93

Figure 5.3: Value of MSE of the evaluated approaches without noise according to the forecasting horizon.

MSE is achieved by OAMLP in all the horizons, which is the approach with larger adaptation
abilities. The OMLP achieves MSE only slightly higher, while extraTrees and AMLP achieve
much higher MSE values. Therefore, it seems that the pattern updating is the feature which
raises the performance for OAMLP and OMLP, while the weekly updating (AMLP) does not
decrease MSE with respect to extraTrees, which is not updated at all, in fact extraTrees work
slightly better than AMLP for the three forecast horizons.

Figure 5.4 plots the results of the four tested approaches in terms of R-Coefficient and
MSE (left and right columns, respectively), for the noise levels considered. Results show that
the approaches achieved a reasonable perfomance (high R-coefficient and low MSE) in all
the evaluated scenarios, which decreases slowly with the noise level (decreasing R-coefficient
and increasing MSE), thus exhibiting a high stability against noise. The best performance is
achieved by OAMLP, followed very nearly by OMLP, while extraTrees, and specially AMLP,
work much worse. Increasing the forecast horizon, the difference between OAMLP and
OMLP reduces, in fact they behave equally for 3 hours. The difference between extraTrees
and AMLP also reduces increasing the horizon. Increasing the noise level reduces slighly the
performance, but this influence is reduced when the horizon increases, in fact the plots are
almost constant with noise for 3 hours.

The performance improvement of OAMLP and OMLP with respect to extraTrees and
AMLP is considerable, because the formers are continuously adapted using the patterns,
which seems more useful in terms of performance than the weekly training of AMLP. Thus,



94 Chapter 5. Automatic prediction of indoor building temperature

Figure 5.4: R-Coefficient (left column) and MSE (right column) of the evaluated approaches according to the
forecasting horizon.



5.4. Experiments 95

Noise % Iteration
1 2 3 4 5 6 7 8 9 10 11 12

0 6 6 6 6 6 6 6 6 6 16 6 6
5 6 7 6 6 16 6 6 6 6 6 6 6

10 6 6 6 6 6 16 6 16 6 6 6 6
15 7 7 6 6 6 6 6 16 6 16 6 6
20 6 6 6 6 6 6 6 6 6 6 6 6
25 6 6 6 6 6 6 6 6 16 16 6 6

Table 5.7: Changes in the number of hidden neurons of OAMLP during the training.

the updating procedure of OAMLP and OMLP is able to deal with new scenarios, changing
external conditions and noise. The slightly difference between OAMLP and OMLP must be
caused by the absence of weekly re-training in OMLP, which sometimes fails under the influ-
ence of outliers and anomalies. It must be highlighted that both models OAMLP and AMLP
can automatically change their architecture in each training iteration. Table 5.4.2 shows the
different architectures used during the OAMLP training process. Despite 6 hidden neurons
is the most used architecture, some iterations required a different number of neurons. We
consider this a relevant characteristic since it allows models to be automatically improved as
more data are obtained.





CHAPTER 6

CONCLUSIONS

In the current thesis, we worked in the 2D visualization of multi-dimensional data for classi-
fication tasks, alongside with the application of a diverse collection of regression methods for
the automatic prediction of indoor temperatures in smart buildings. With respect to the first
objective, we propose 31 several mappings from IRn to IR2 which allow the training of classi-
fiers using the 2D mapped patterns. The proposed methods also map out-of-sample patterns,
not seen during the mapping calculation, which can be classified without a high degradation
in the performance. The mappings combine functions with different degrees (linear, quadratic
including crossed products and polynomial with pure powers until degree 7) and minimize
several measures of class overlap in IR2: the J-index, which leads to Linear and Kernel Dis-
criminant Analysis (DA), Direct class Separability (DS), Thornton (T) separability index and
Class mean Distance (CD). These mappings only require the calculation of the leading eigen-
vectors of a matrix, defined by the overlap measure, whose order depends on the function
degree, so they are very efficient. For each mapping, a Gaussian kernel LIBSVM classifier
is trained on the 2D patterns mapped using the 31 proposed approaches (Table 3.1), and the
Cohen κ is evaluated. These κ values are compared to the ones achieved using the original
patterns and the 2D patterns mapped by the 34 techniques provided by the Matlab Toolbox for
Dimensionality Reduction (Table 4.2). The mapping with the best κ is suppossedly more use-
ful for classification, since its mapped patterns are easier to classify. The experimental work
shows that LIBSVM achieves the best results using the 2D data mapped by the 2nd-degree
Polynomial Kernel Discriminant Analysis (PKDA2), with average κ=47.49%, which repre-
sents 82% of the κ achieved using the original n-dimensional data (57.9%). In fact, for 43 of



98 Chapter 6. Conclusions

71 data sets (60.6% of the sets) the difference between svmNd and PKDA2 is below 10%. The
LDA (κ=47.43%), provided by the Drtoolbox, and the CDOLM (linear CD mapping, 47.0%)
also work well, but the remaining CD (46.1%), DS (43.8%) and T (33.0%) mappings are
sub-optimal. Excepting LDA, the remaining Drtoolbox methods (both supervised or not) are
also not competitive (PCA is the best with κ=42.58%). The CDOLM and PKDA2 are among
the fastest mappings, similar to PCA and LDA respectively (although PKDA2 has degree 2
and LDA is linear), and much faster than most of the remaining Drtoobox mappings. These
results show that PKDA2 visualizes 2D classification maps which: 1) retaining an important
part (82%) of the performance with the original n-dimensional patterns; and 2) using the 2D
mapped patterns, there is a probability around 0.6 of achieving κ between 90% and 100% of
the performance using the original patterns. The future work includes to develop mappings
with alternative overlap measures, in order to reduce the accuracy gap between the classifica-
tion in IRn and IR2; and to design a mapping update procedure which includes new training
patterns, thus avoiding a complete re-calculation of the mapping.

With respect to the second objective, we compared a large collection composed by 40
regression methods of 20 different regressor families (Table 5.1) for indoor temperature fore-
casting, using the data set provided by both CiTIUS indoor sensors and the closest Meteogali-
cia weather station, over three forecasting horizons (temperature within 1, 2 and 3 hours). This
comparison showed the good performances of extraTrees both for R-coefficient and MSE,
and both in terms of average values and Friedman ranks. Other regressors with good perfor-
mances are random forest, ensemble of multi-layer perceptron (MLP) neural networks, cubist,
gradient boosted machines with regression trees and extreme learning machine with Gaussian
kernels. Alongside with this comparison, three different machine learning approaches based
on neural networks were developed to model the CiTIUS HVAC system and to forecast the
indoor temperature of a CiTIUS office for the three horizons and for two weather scenarios (a
rainy and a dry winter). These approaches are OMLP, AMLP and OAMLP, dynamic versions
of MLP which allow adaptation using new patterns. Their performances were studied and
compared taking into account different weather conditions and sensor noise levels. Accord-
ing to the results, an adaptive training approach is essential to model an HVAC system and
to forecast the indoor temperature of the linked facility. The regressors trained off-line like
extraTrees cannot deal with new environmental conditions and different noise levels. Nev-
ertheless, adaptive approaches such as AMLP, OMLP and OAMLP can be automatically up-
dated to different scenarios. However, we must take in mind that the use of on-line approaches



99

like OMLP can fall under the influence of outliers. Our results show that a hybrid approach
between an on-line learning procedure and an incremental weekly training process achieve
the best performance and is more stable in presence of noise. On the one hand, it can be fast
updated to new scenarios, even when they are temporary. On the other hand, the deviations
caused by short-lived events, outliers and model anomalies can be fixed when the network
is trained once a week. Moreover, this approach also allows to change its architecture dur-
ing the iterative training process, thus improving the model as more information is obtained.
The future work includes the deployment of this model in all the CiTIUS facilities, in order
to get a full system where different HVAC configurations can be tested and their effects can
be evaluated. After that, we will develop an algorithm to automatically optimize the HVAC
configuration.





APPENDIX A

CONFUSION MATRICES

This appendix compiles the confusion matrices achieved by SVM using the 2D mapped pat-
terns using the best mapping for each data set.

No. Confusion matrix RN Confusion matrix R2

1 K=100 1 2
1 13 0
2 0 11
Se 100.0% 100.0%
Pp 100.0% 100.0%

Method name = [PKDA2,LDA]
K=100 1 2
1 13 0
2 0 11
Se 100.0% 100.0%
Pp 100.0% 100.0%

2 K=100 1 2
1 13 0
2 0 11
Se 100.0% 100.0%
Pp 100.0% 100.0%

Method name = [PKDA2,LDA]
K=100 1 2
1 13 0
2 0 11
Se 100.0% 100.0%
Pp 100.0% 100.0%

3 K=73.8 1 2 3 4 5
1 0.75 0.00 0.25 0.00 0.00
2 0.00 13.50 7.50 0.00 0.00
3 0.50 8.50 137.75 1.00 1.25
4 0.00 0.00 0.75 14.25 0.00
5 0.00 0.00 0.50 0.00 7.50
Se 75.0% 64.3% 92.4% 95.0 93.8
Pp 60.0% 61.4% 93.9% 93.4 85.7

Method name = [PKDA7]
K=70.52 1 2 3 4 5
1 0.25 0.00 0.50 0.00 0.25
2 0.00 6.00 15.00 0.00 0.00
3 0.50 0.25 147.75 0.75 0.25
4 0.00 0.00 0.75 14.25 0.00
5 0.00 0.00 1.00 0.00 7.00
Se 25.0% 28.6% 98.8% 95.0 87.5
Pp 33.3% 96.0% 89.5% 95.0 93.3

Continued on next page



102 Appendix A. Confusion matrices

Table A.1 – Continued from previous page

4 K=96.7 1 2 3
1 11.75 0.25 0.00
2 1.50 70.50 0.00
3 1.25 0.00 70.75
Se 97.9% 97.9% 98.3%
Pp 81.0% 99.6% 100.0%

Method name = [DSOPM2]
K=84.73 1 2 3
1 8.25 2.25 1.50
2 4.00 67.00 1.00
3 3.00 2.00 67.00
Se 68.8% 93.1% 93.1%
Pp 54.1% 94.0% 96.4%

5 K=62.5 1 2
1 1.75 0.25
2 0.25 0.75
Se 87.5% 75.0%
Pp 87.5% 75.0%

Method name = [LDA]
K=75 1 2
1 2.00 0.00
2 0.25 0.75
Se 100.0% 75.0%
Pp 88.9% 100.0%

6 K=32.9 1 2
1 85.00 7.00
2 20.50 11.50
Se 92.4% 35.9%
Pp 80.6% 62.2%

Method name = [CDOLM]
K=25.56 1 2
1 85.00 7.00
2 22.50 9.50
Se 92.4% 29.7%
Pp 79.1% 57.6%

7 K=30.6 1 2
1 39.25 7.75
2 9.75 8.25
Se 83.5% 45.8%
Pp 80.1% 51.6%

Method name = [CDOPM7]
K=34.36 1 2
1 41.50 5.50
2 10.25 7.75
Se 88.3% 43.1%
Pp 80.2% 58.5%

8 K=91.7 1 2
1 52.00 4.00
2 0.75 58.25
Se 92.9% 98.7%
Pp 98.6% 93.6%

Method name = [PKDA2]
K=92.15 1 2
1 52.25 3.75
2 0.75 58.25
Se 93.3% 98.7%
Pp 98.6% 94.0%

9 K=93.2 1 2
1 87.75 1.25
2 3.25 49.75
Se 98.6% 93.9%
Pp 96.4% 97.5%

Method name = [PKDA2]
K=93.57 1 2
1 87.50 1.50
2 2.75 50.25
Se 98.3% 94.8%
Pp 97.0% 97.1%

10 K=33.5 1 2
1 30.00 7.00
2 5.00 6.00
Se 81.1% 54.5%
Pp 85.7% 46.2%

Method name = [LDA]
K=31.85 1 2
1 30.75 6.25
2 5.50 5.50
Se 83.1% 50.0%
Pp 84.8% 46.8%

Continued on next page



103

Table A.1 – Continued from previous page

11 K=65.9 1 2 3 4 5 6
1 3.75 0.75 0.50 0.00 0.00 0.00
2 0.00 2.00 0.75 0.25 0.00 0.00
3 1.00 1.25 1.25 0.50 0.00 0.00
4 0.00 0.50 0.25 2.25 0.00 0.00
5 0.00 0.00 0.00 0.00 2.75 0.25
6 0.00 0.00 0.00 0.00 0.50 4.50
Se 75.0% 66.7% 31.2% 75.0% 91.7% 90.0%
Pp 78.9% 44.4% 45.5% 75.0% 84.6% 94.7%

Method name = [NPE]
K=59.27 1 2 3 4 5 6
1 4.50 0.25 0.00 0.25 0.00 0.00
2 0.00 1.75 0.50 0.75 0.00 0.00
3 0.75 1.25 1.50 0.50 0.00 0.00
4 0.00 0.50 0.50 2.00 0.00 0.00
5 0.25 0.00 0.25 0.00 2.00 0.50
6 0.25 0.00 0.00 0.00 1.25 3.50
Se 90.0% 58.3% 37.5% 66.7% 66.7% 70.0%
Pp 78.3% 46.7% 54.5% 57.1% 61.5% 87.5%

12 K=83.9 1 2
1 52.00 4.00
2 2.25 26.75
Se 92.9% 92.2%
Pp 95.9% 87.0%

Method name = [LDA]
K=89.58 1 2
1 53.75 2.25
2 1.75 27.25
Se 96.0% 94.0%
Pp 96.8% 92.4%

13 K=66.3 1 2
1 24.00 3.00
2 5.50 18.50
Se 88.9% 77.1%
Pp 81.4% 86.0%

Method name = [PKDA2]
K=59.62 1 2
1 22.00 5.00
2 5.25 18.75
Se 81.5% 78.1%
Pp 80.7% 78.9%

14 K=71.6 1 2
1 67.75 8.25
2 16.00 79.00
Se 89.1% 83.2%
Pp 80.9% 90.5%

Method name = [PKDA7]
K=71.87 1 2
1 64.25 11.75
2 12.00 83.00
Se 84.5% 87.4%
Pp 84.3% 87.6%

15 K=48.0 1 2
1 33.25 15.75
2 15.50 62.50
Se 67.9% 80.1%
Pp 68.2% 79.9%

Method name = [QKDA]
K=42.06 1 2
1 28.75 20.25
2 13.75 64.25
Se 58.7% 82.4%
Pp 67.6% 76.0%

16 K=96.2 1 2 3 4 5 6
1 28.00 0.00 0.00 0.00 0.00 0.00
2 0.00 13.50 0.00 1.50 0.00 0.00
3 0.00 0.00 17.75 0.25 0.00 0.00
4 0.00 1.00 0.00 11.00 0.00 0.00
5 0.00 0.00 0.00 0.00 13.00 0.00
6 0.00 0.00 0.00 0.00 0.00 5.00
Se 100.0% 90.0% 98.6% 91.7% 100.0% 100.0%
Pp 100.0% 93.1% 100.0% 86.3% 100.0% 100.0%

Method name = [LDA]
K=84.55 1 2 3 4 5 6
1 26.75 0.50 0.00 0.00 0.75 0.00
2 0.00 11.00 0.00 2.50 1.50 0.00
3 0.00 0.00 18.00 0.00 0.00 0.00
4 0.00 2.75 0.00 9.25 0.00 0.00
5 0.25 0.50 0.00 1.50 10.75 0.00
6 0.00 0.00 0.00 0.00 1.00 4.00
Se 95.5% 73.3% 100.0% 77.1% 82.7% 80.0%
Pp 99.1% 74.6% 100.0% 69.8% 76.8% 100.0%

Continued on next page



104 Appendix A. Confusion matrices

Table A.1 – Continued from previous page

17 K=61.8 1 2
1 21.25 0.75
2 4.00 6.00
Se 96.6% 60.0%
Pp 84.2% 88.9%

Method name = [PKDA2]
K=63.51 1 2
1 21.50 0.50
2 .00 6.00
Se 97.7% 60.0%
Pp 84.3% 92.3%

18 K=80.6 1 2 3 4 5 6
1 34.00 0.00 0.75 0.25 0.00 0.00
2 1.00 14.50 0.00 3.25 0.00 0.25
3 1.25 0.25 11.25 0.00 0.25 0.00
4 0.00 2.50 0.00 5.25 0.00 0.25
5 0.00 0.00 1.00 0.00 3.75 0.25
6 0.00 0.00 0.00 0.00 0.00 1.00
Se 97.1% 76.3% 86.5% 65.6% 75.0% 100.0%
Pp 93.8% 84.1% 86.5% 60.0% 93.8% 57.1%

Method name = [DSOLM]
K=72.86 1 2 3 4 5 6
1 34.00 0.25 0.75 0.00 0.00 0.00
2 1.75 16.75 0.25 0.25 0.00 0.00
3 1.25 0.25 11.00 0.00 0.50 0.00
4 0.00 6.50 0.25 1.25 0.00 0.00
5 0.00 0.00 3.25 0.00 1.75 0.00
6 0.00 0.00 0.00 0.00 0.00 1.00
Se 97.1% 88.2% 84.6% 15.6% 35.0% 100.0%
Pp 91.9% 70.5% 71.0% 83.3% 77.8% 100.0%

19 K=91.6 1 2 3
1 87.75 2.25 0.00
2 3.00 27.75 3.25
2 0.00 1.50 65.50
Se 97.5% 81.6% 97.8%
Pp 96.7% 88.1% 95.3%

Method name = [QKDA]
K=93.89 1 2 3
1 88.75 1.25 0.00
2 0.50 29.25 4.25
2 0.00 1.25 65.75
Se 98.6% 86.0% 98.1%
Pp 99.4% 92.1% 93.9%

20 K=91.6 1 2 3
1 87.75 2.25 0.00
2 3.00 27.75 3.25
2 0.00 1.50 65.50
Se 97.5% 81.6% 97.8%
Pp 96.7% 88.1% 95.3%

Method name = [QKDA]
K=93.89 1 2 3
1 88.75 1.25 0.00
2 0.50 29.25 4.25
2 0.00 1.25 65.75
Se 98.6% 86.0% 98.1%
Pp 99.4% 92.1% 93.9%

21 K=-4.5 1 2
1 21.00 1.00
2 2.00 0.00
Se 95.5% 0.0%
Pp 91.3% 0.0%

Method name = [PKDA3]
K=30.76 1 2
1 20.75 1.25
2 1.25 0.75
Se 94.3% 37.5%
Pp 94.3% 37.5%

22 K=38.0 1 2 3 4 5 6
1 5.50 2.50 0.50 0.00 1.00 0.50
2 2.00 10.25 1.00 0.00 1.25 0.50
3 0.50 2.25 5.00 0.00 1.25 0.00
4 0.00 1.00 0.25 0.00 0.00 0.75
5 0.50 1.25 1.00 0.00 2.75 0.50
6 1.00 1.50 0.50 0.00 0.25 0.75
Se 55.0% 68.3% 55.6% 0.0% 45.8% 18.8%
Pp 57.9% 54.7% 60.6% 0.0% 42.3% 25.0%

Method name = [PKDA3]
K=30.13 1 2 3 4 5 6
1 4.50 3.50 0.75 0.00 1.25 0.00
2 3.50 9.50 0.50 0.00 1.50 0.00
3 1.00 1.25 5.25 0.00 1.25 0.25
4 0.00 0.75 1.00 0.00 0.00 0.25
5 1.00 1.25 1.50 0.00 1.75 0.50
6 0.75 1.00 1.00 0.00 0.75 0.50
Se 45.0% 63.3% 58.3% 0.0% 29.2% 12.5%
Pp 41.9% 55.1% 52.5% 0.0% 26.9% 33.3%

Continued on next page



105

Table A.1 – Continued from previous page

23 K=51.8 1 2 3 4 5 6
1 12.50 3.25 1.25 0.00 0.00 0.00
2 4.75 12.50 0.25 1.00 0.25 0.25
3 1.25 1.75 1.00 0.00 0.00 0.00
4 0.25 1.00 0.00 1.25 0.00 0.50
5 0.00 0.75 0.00 0.25 1.00 0.00
6 0.00 0.50 0.00 0.50 0.25 5.75
Se 73.5% 65.8% 25.0% 41.7% 50.0% 82.1%
Pp 66.7% 63.3% 40.0% 41.7% 66.7% 88.5%

Method name = [TOLM]
K=48.18 1 2 3 4 5 6
1 13.50 3.50 0.00 0.00 0.00 0.00
2 4.25 13.00 0.00 0.25 0.00 1.50
3 2.25 1.00 0.00 0.25 0.00 0.50
4 0.50 1.50 0.00 0.75 0.00 0.25
5 1.00 1.00 0.00 0.00 0.00 0.00
6 0.25 0.50 0.00 0.00 0.25 6.00
Se 79.4% 68.4% 0.0% 25.0% 0.0% 85.7%
Pp 62.1% 63.4% 0.0% 60.0% 0.0% 72.7%

24 K=8.6 1 2
1 44.75 6.25
2 15.25 3.75
Se 87.7% 74.6%
Pp 19.7% 37.5%

Method name = [TOPM4]
K=19.54 1 2
1 43.00 8.00
2 12.75 6.25
Se 84.3% 32.9%
Pp 77.1% 43.9%

25 K=62.0 1 2 3
1 0.75 1.00 0.25
2 0.50 1.50 0.00
3 0.50 0.00 6.50
Se 37.5% 75.0% 92.9%
Pp 42.9% 60.0% 96.3%

Method name = [DSOQM]
K=48.73 1 2 3
1 0.50 0.50 1.00
2 1.25 0.75 0.00
3 0.00 0.00 7.00
Se 25.0% 37.5% 100.0%
Pp 28.6% 60.0% 87.5%

26 K=34.9 1 2 3 4 5
1 36.75 3.00 1.00 0.00 0.25
2 5.50 4.00 1.75 1.75 0.00
3 2.25 2.00 1.50 3.25 0.00
4 1.00 2.50 1.50 2.75 0.25
5 0.50 0.50 0.50 1.50 0.00
Se 89.6% 30.8% 16.7% 34.4% 0.0%
Pp 79.9% 33.3% 24.0% 29.7% 0.0%

Method name = [PKDA3]
K=39.48 1 2 3 4 5
1 37.50 1.75 1.00 0.75 0.00
2 6.00 3.25 1.00 2.75 0.00
3 1.75 2.00 1.75 3.50 0.00
4 1.25 0.50 1.50 4.50 0.25
5 0.25 0.25 0.25 2.25 0.00
Se 91.5% 25.0% 19.4% 56.2% 0.0%
Pp 80.2% 41.9% 31.8% 32.7% 0.0%

27 K=62.0 1 2
1 41.25 4.75
2 7.50 18.50
Se 89.7% 84.6%
Pp 71.2% 79.6%

Method name = [CDOPM3]
K=63.13 1 2
1 40.75 5.25
2 6.75 19.25
Se 88.6% 74.0%
Pp 85.8% 78.6%

Continued on next page



106 Appendix A. Confusion matrices

Table A.1 – Continued from previous page

28 K=9.9 1 2 3 4 5
1 0.25 1.25 0.25 0.25 0.00
2 1.00 6.25 3.50 1.25 0.00
3 0.25 4.00 3.00 0.75 0.00
4 0.00 3.00 2.00 2.00 0.00
5 0.00 0.25 0.00 0.75 0.00
Se 12.5% 52.1% 37.5% 28.6% 0.0%
Pp 16.7% 42.4% 34.3% 40.0% 0.0%

Method name = [PKDA2]
K=18.23 1 2 3 4 5
1 0.00 1.75 0.00 0.25 0.00
2 0.50 9.75 0.50 1.25 0.00
3 0.25 5.50 0.75 1.50 0.00
4 0.00 3.25 0.25 3.50 0.00
5 0.00 0.25 0.00 0.75 0.00
Se 0.0% 81.2% 9.4% 50.0% 0.0%
Pp 0.0% 47.6% 50.0% 48.3% 0.0%

29 K=10.9 1 2 3 4 5
1 6.00 3.25 0.75 1.50 0.50
2 4.00 4.75 2.75 1.75 0.75
3 1.50 3.50 2.00 2.50 0.50
4 2.50 3.25 1.50 2.50 0.25
5 0.25 0.75 0.25 0.50 0.25
Se 50.0% 33.9% 20.0% 25.0% 12.5%
Pp 42.1% 30.6% 27.6% 28.6% 11.1%

Method name = [CDOPM3]
K=12.55 1 2 3 4 5
1 5.75 5.50 0.50 0.25 0.00
2 4.00 8.50 1.00 0.50 0.00
3 1.75 4.75 2.00 1.50 0.00
4 2.00 6.00 1.50 0.25 0.25
5 0.00 0.25 0.75 0.50 0.50
Se 47.9% 60.7% 20.0% 2.5% 25.0%
Pp 42.6% 34.0% 34.8% 8.3% 66.7%

30 K=41.2 1 2
1 4.75 3.25
2 4.50 25.50
Se 59.4% 85.0%
Pp 51.4% 88.7%

Method name = [ProbPCA]
K=61.3 1 2
1 5.25 2.75
2 2.00 28.00
Se 65.6% 93.3%
Pp 72.4% 91.1%

31 K=65.3 1 2
1 43.00 4.00
2 7.50 19.50
Se 91.5% 72.2%
Pp 85.1% 83.0%

Method name = [CDOPM5]
K=54.87 1 2
1 42.50 4.50
2 10.25 16.75
Se 90.4% 62.0%
Pp 80.6% 78.8%

32 K=25.0 1 2
1 89.75 11.25
2 27.25 13.75
Se 88.9% 33.5%
Pp 76.7% 55.0%

Method name = [ProbPCA]
K=21.13 1 2
1 77.00 24.00
2 22.50 18.50
Se 76.2% 45.1%
Pp 77.4% 43.5%

Continued on next page



107

Table A.1 – Continued from previous page

33 K=87.5 1 2 3 4 5 6 7
1 6.75 0.00 0.00 0.00 0.25 0.00 0.00
2 0.00 7.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 6.00 0.25 0.75 0.00 0.00
4 0.25 0.00 0.50 5.25 0.50 0.50 0.00
5 0.00 0.00 1.00 0.75 5.25 0.00 0.00
6 0.00 0.00 0.25 0.25 0.00 6.50 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 7.00
Se 96.4% 100.0% 85.7% 75.0% 75.0% 92.9% 100.0%
Pp 96.4% 100.0% 77.4% 80.8% 77.8% 92.9% 100.0%

Method name = [PKDA2]
K= 75.6 1 2 3 4 5 6 7
1 5.25 0.00 0.00 0.00 1.75 0.00 0.00
2 0.00 7.00 0.00 0.00 0.00 0.00 0.00
3 1.75 0.00 5.00 0.00 0.25 0.00 0.00
4 0.75 0.00 0.00 5.50 0.50 0.25 0.00
5 2.75 0.00 1.00 0.25 3.00 0.00 0.00
6 0.25 0.00 0.00 0.75 0.00 6.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 7.00
Se 75.0% 100.0% 71.4% 78.6% 42.9% 85.7% 100.0%
Pp 48.8% 100.0% 83.3% 84.6% 54.5% 96.0% 100.0%

34 K=87.2 1 2
1 27.00 4.00
2 1.00 55.00
Se 87.1% 98.2%
Pp 96.4% 93.2%

Method name = [CDOQM]
K=87.9 1 2
1 27.50 3.50
2 1.25 54.75
Se 88.7% 97.8%
Pp 95.7% 94.0%

35 K=95.8 1 2 3
1 12.00 0.00 0.00
2 0.00 11.25 0.75
3 0.00 0.25 11.75
Se 100.0% 93.8% 97.9%
Pp 100.0% 97.8% 94.0%

Method name = [LPP]
K=93.75 1 2 3
1 12.00 0.00 0.00
2 0.00 11.50 0.50
3 0.00 1.00 11.00
Se 100.0% 95.8% 91.7%
Pp 100.0% 92.0% 95.7%

36 K=62.5 1 2
1 0.75 0.25
2 0.25 2.75
Se 75.0% 91.7%
Pp 75.0% 91.7%

Method name = [PKDA2]
K=87.5 1 2
1 1.00 0.00
2 0.25 2.75
Se 100.0% 91.7%
Pp 80.0% 100.0%

37 K=34 1 2 3
1 0.25 1.75 0.00
2 0.00 3.00 0.00
3 0.00 1.00 1.00
Se 12.5% 100.0% 50.0%
Pp 100.0% 52.2% 100.0%

Method name = [PCA]
K=38.39 1 2 3
1 1.00 0.75 0.25
2 1.00 2.00 0.00
3 0.00 0.75 1.25
Se 50.0% 66.7% 62.5%
Pp 50.0% 57.1% 83.3%

38 K=64.5 1 2
1 17.50 2.50
2 3.50 11.50
Se 87.5% 76.7%
Pp 83.3% 82.1%

Method name = [PCA]
K=66.99 1 2
1 18.75 1.25
2 4.25 10.75
Se 93.8% 71.7%
Pp 81.5% 89.6%

Continued on next page



108 Appendix A. Confusion matrices

Table A.1 – Continued from previous page

39 K=62.6 1 2
1 74.75 12.25
2 17.25 55.75
Se 85.9% 76.4%
Pp 81.2% 82.0%

Method name = [ProbPCA]
K=57.81 1 2
1 70.25 16.75
2 16.75 56.25
Se 80.7% 77.1%
Pp 80.7% 77.1%

40 K=61.5 1 2
1 9.75 3.25
2 1.75 11.25
Se 75.0% 86.5%
Pp 84.8% 77.6%

Method name = [DSOPM7]
K=69.23 1 2
1 10.75 2.25
2 1.75 11.25
Se 82.7% 86.5%
Pp 86.0% 83.3%

41 K=46.7 1 2
1 11.25 3.75
2 4.25 10.75
Se 75.0% 71.7%
Pp 72.6% 74.1%

Method name = [TOPM2]
K=61.67 1 2
1 12.75 2.25
2 3.50 11.50
Se 85.0% 76.7%
Pp 78.5% 83.6%

42 K=42.1 1 2
1 21.75 4.25
2 6.75 9.25
Se 83.7% 57.8%
Pp 76.3% 68.5%

Method name = [DSOPM2]
K=36.15 1 2
1 17.50 8.50
2 4.75 11.25
Se 67.3% 70.3%
Pp 78.7% 57.0%

43 K=78.3 1 2
1 14.50 0.50
2 2.75 12.25
Se 96.7% 81.7%
Pp 84.1% 96.1%

Method name = [DSOPM3]
K=80 1 2
1 14.00 1.00
2 2.00 13.00
Se 93.3% 86.7%
Pp 87.5% 92.9%

44 K=66.1 1 2
1 63.25 20.75
2 17.00 154.00
Se 75.3% 90.1%
Pp 78.8% 88.1%

Method name = [LDA]
K=56.78 1 2
1 57.00 27.00
2 20.75 150.25
Se 67.9% 87.9%
Pp 73.3% 84.8%

45 K=82 1 2 3
1 57.25 0.00 6.75
2 0.00 13.00 2.00
3 10.75 1.75 162.50
Se 89.5% 86.7% 92.9%
Pp 84.2% 88.1% 94.9%

Method name = [PKDA3]
K=79.97 1 2 3
1 54.75 0.25 9.00
2 0.00 11.75 3.25
3 7.75 2.75 164.50
Se 85.5% 78.3% 94.0%
Pp 87.6% 79.7% 93.1%

Continued on next page



109

Table A.1 – Continued from previous page

46 K=66 1 2
1 74.25 21.75
2 15.50 115.50
Se 77.3% 88.2%
Pp 82.7% 84.2%

Method name = [LDA]
K=52.8 1 2
1 64.75 31.25
2 20.25 110.75
Se 67.4% 84.5%
Pp 76.2% 78.0%

47 K=86.5 1 2 3
1 126.25 0.00 4.75
2 0.00 2.50 0.50
3 8.50 1.50 83.00
Se 96.4% 83.3% 89.2%
Pp 93.7% 62.5% 94.1%

Method name = [LDA]
K=82.61 1 2 3
1 125.50 0.25 5.25
2 0.00 2.00 1.00
2 12.25 0.75 80.00
Se 95.8% 66.7% 86.0%
Pp 91.1% 66.7% 92.8%

48 K=76.1 1 2
1 9.50 2.50
2 1.50 34.50
Se 79.2% 95.8%
Pp 86.4% 93.2%

Method name = [PKDA5]
K=63.8 1 2
1 7.75 4.25
2 1.75 34.25
Se 64.6% 95.1%
Pp 81.6% 89.0%

49 K=46.5 1 2
1 111.25 13.75
2 30.25 36.75
Se 89.0% 54.9%
Pp 78.6% 72.8%

Method name = [LDA]
K=50.2 1 2
1 112.50 12.50
2 28.50 38.50
Se 90.0% 57.5%
Pp 79.8% 75.5%

50 K=55 1 2 3
1 2.00 0.25 0.75
2 0.75 0.00 1.25
3 0.00 0.25 18.75
Se 66.7% 0.0% 98.7%
Pp 72.7% 0.0% 90.4%

Method name = [DSOPM4]
K=59.9 1 2 3
1 2.00 0.50 0.50
2 0.50 0.25 1.25
3 0.00 0.25 18.75
Se 66.7% 12.5% 98.7%
Pp 80.0% 25.0% 91.5%

51 K=33.1 1 2 3
1 3.50 0.25 2.25
2 0.00 1.50 1.50
3 2.75 2.00 9.25
Se 58.3% 50.0% 66.1%
Pp 56.0% 40.0% 71.2%

Method name = [TOPM5]
K=41.27 1 2 3
1 3.50 0.25 2.25
2 0.50 0.50 2.00
3 1.00 0.50 12.50
Se 58.3% 16.7% 89.3%
Pp 70.0% 40.0% 74.6%

Continued on next page



110 Appendix A. Confusion matrices

Table A.1 – Continued from previous page

52 K=27.2 1 2 3
1 0.25 1.25 0.50
2 0.75 10.50 0.75
3 0.00 4.25 2.75
Se 12.5% 87.5% 39.3%
Pp 25.0% 65.6% 68.8%

Method name = [DSOPM5]
K=47.78 1 2 3
1 1.00 0.50 0.50
2 0.75 10.50 0.75
3 0.50 2.75 3.75
Se 50.0% 87.5% 53.6%
Pp 44.4% 76.4% 75.0%

53 K=14.1 1 2
1 19.25 1.75
2 2.25 0.75
Se 91.7% 25.0%
Pp 89.5% 30.0%

Method name = [QKDA]
K=49.17 1 2
1 20.25 0.75
2 1.50 1.50
Se 96.4% 50.0%
Pp 93.1% 66.7%

54 K=44.7 1 2 3 4 5 6
1 2.00 0.75 0.25 0.00 0.00 0.00
2 0.50 0.25 0.50 0.50 0.25 0.00
3 0.75 0.25 9.00 0.25 0.75 0.00
4 0.00 0.00 0.75 1.50 0.50 0.25
5 0.00 0.00 0.75 0.50 0.75 0.00
6 0.25 0.00 0.00 0.75 0.50 0.50
Se 66.7% 12.5% 81.8% 50.0% 37.5% 25.0%
Pp 57.1% 20.0% 80.0% 42.9% 27.3% 66.7%

Method name = [QKDA]
K=41.48 1 2 3 4 5 6
1 2.00 0.50 0.50 0.00 0.00 0.00
2 0.50 0.00 0.75 0.25 0.00 0.50
3 0.75 0.00 9.50 0.00 0.50 0.25
4 0.00 0.00 1.00 1.25 0.50 0.25
5 0.00 0.00 1.00 0.25 0.50 0.25
6 0.25 0.00 0.75 0.00 0.25 0.75
Se 66.7% 0.0% 86.4% 41.7% 25.0% 37.5%
Pp 57.1% 0.0% 70.4% 71.4% 28.6% 37.5%

55 K= -1 1 2
1 29.50 1.50
2 11.50 0.50
Se 95.2% 4.2%
Pp 72.0% 25.0%

Method name = [ProbPCA]
K=13.15 1 2
1 24.50 6.50
2 8.00 4.00
Se 79.0% 33.3%
Pp 75.4% 38.1%

56 K= -2.5 1 2
1 12.75 0.25
2 5.00 0.00
Se 98.1% 0.0%
Pp 71.8% 0.0%

Method name = [MVU]
K=17.54 1 2
1 10.25 2.75
2 3.00 2.00
Se 78.8% 40.0%
Pp 77.4% 42.1%

57 K=90.4 1 2 3
1 15.25 0.50 1.25
2 1.25 15.75 0.00
3 0.25 0.00 16.75
Se 89.7% 92.6% 98.5%
Pp 91.0% 96.9% 93.1%

Method name = [LDA]
K=95.59 1 2 3
1 16.25 0.25 0.50
2 0.00 17.00 0.00
3 0.75 0.00 16.25
Se 95.6% 100.0% 95.6%
Pp 95.6% 98.6% 97.0%

Continued on next page



111

Table A.1 – Continued from previous page

58 K=20.4 1 2
1 7.75 1.25
2 4.00 2.00
Se 86.1% 33.3%
Pp 66.0% 61.5%

Method name = [CDOPM7]
K=35.23 1 2
1 7.50 1.50
2 3.00 3.00
Se 83.3% 50.0%
Pp 71.4% 66.7%

59 K=52.5 1 2
1 8.25 1.75
2 3.00 7.00
Se 82.5% 70.0%
Pp 73.3% 80.0%

Method name = [DSOPM4]
K=55 1 2
1 8.50 1.50
2 3.00 7.00
Se 85.0% 70.0%
Pp 73.9% 82.4%

60 K=5.7 1 2
1 8.25 46.75
2 12.00 105.00
Se 15.0% 89.7%
Pp 40.7% 69.2%

Method name = [GDA]
K=8.04 1 2
1 21.25 33.75
2 35.75 81.25
Se 38.6% 69.4%
Pp 37.3% 70.7%

61 K=40.8 1 2
1 154.00 21.00
2 37.25 37.75
Se 88.0% 50.3%
Pp 80.5% 64.3%

Method name = [LDA]
K=41.11 1 2
1 155.50 19.50
2 38.00 37.00
Se 88.9% 49.3%
Pp 80.4% 65.5%

62 K=68.7 1 2
1 33.50 3.50
2 6.75 23.25
Se 90.5% 77.5%
Pp 83.2% 86.9%

Method name = [DSOPM2]
K=69.41 1 2
1 33.75 3.25
2 6.75 23.25
Se 91.2% 77.5%
Pp 83.3% 87.7%

63 K=76.7 1 2 3 4
1 52.00 0.75 0.00 1.25
2 0.25 36.75 15.25 0.75
3 0.50 14.25 38.75 0.50
4 1.25 1.50 0.50 45.75
Se 96.3% 69.3% 71.8% 93.4%
Pp 96.3% 69.0% 71.1% 94.8%

Method name = [LDA]
K=65.07 1 2 3 4
1 51.75 1.50 0.00 0.75
2 2.25 33.25 15.50 2.00
3 2.25 24.25 25.00 2.50
4 0.75 0.75 2.50 45.00
Se 95.8% 62.7% 46.3% 91.8%
Pp 90.8% 55.6% 58.1% 89.6%

Continued on next page



112 Appendix A. Confusion matrices

Table A.1 – Continued from previous page

64 K=98.8 1 2 3 4 5 6
1 25.00 0.00 0.00 0.00 0.00 0.00
2 0.00 25.00 0.00 0.00 0.00 0.00
3 0.00 0.00 24.50 0.00 0.50 0.00
4 0.00 0.00 0.00 24.75 0.00 0.25
5 0.00 0.00 0.25 0.00 24.75 0.00
6 0.00 0.00 0.00 0.50 0.00 24.50
Se 100.0% 100.0% 98.0% 99.0% 99.0% 98.0%
Pp 100.0% 100.0% 99.0% 98.0% 98.0% 99.0%

Method name = [CDOPM2]
K=86.8 1 2 3 4 5 6
1 25.00 0.00 0.00 0.00 0.00 0.00
1 0.00 25.00 0.00 0.00 0.00 0.00
1 0.00 0.00 22.00 0.00 3.00 0.00
1 0.00 0.00 0.00 22.75 0.00 2.25
1 0.00 0.00 5.25 0.00 19.75 0.00
1 0.00 0.00 0.00 6.00 0.00 19.00
Se 100.0% 100.0% 88.0% 91.0% 79.0% 76.0%
Pp 100.0% 100.0% 80.7% 79.1% 86.8% 89.4%

65 K=37.2 1 2 3
1 6.00 1.00 1.00
2 3.50 3.25 1.25
3 1.50 2.25 5.25
Se 75.0% 40.6% 58.3%
Pp 54.5% 50.0% 70.0%

Method name = [KernelPCA]
K=27.11 1 2 3
1 4.75 0.75 2.50
2 2.50 1.50 4.00
3 1.25 1.00 6.75
Se 59.4% 18.8% 75.0%
Pp 55.9% 46.2% 50.9%

66 K=98.1 1 2
1 81.50 1.50
2 0.50 155.50
Se 98.2% 99.7%
Pp 99.4% 99.0%

Method name = [LDA]
K=96.25 1 2
1 79.00 4.00
2 0.00 156.00
Se 95.2% 100.0%
Pp 100.0% 97.5%

67 K=0.0 1 2
1 0.75 0.25
2 0.75 0.25
Se 75.0% 25.0%
Pp 50.0% 50.0%

Method name = [CDOLM]
K=100 1 2
1 1.00 0.00
2 0.00 1.00
Se 100.0% 100.0%
Pp 100.0% 100.0%

68 K=60.8 1 2
1 43.75 8.25
2 5.50 19.50
Se 84.1% 78.0%
Pp 88.8% 70.3%

Method name = [CDOQM]
K=57.62 1 2
1 42.75 9.25
2 5.75 19.25
Se 82.2% 77.0%
Pp 88.1% 67.5%

69 K=77.7 1 2 3
1 10.50 4.00 0.50
2 3.50 20.50 1.00
3 0.50 1.25 35.25
Se 70.0% 82.0% 95.3%
Pp 72.4% 79.6% 95.9%

Method name = [LDA]
K=70.79 1 2 3
1 9.50 4.50 1.00
2 2.50 20.25 2.25
3 1.25 2.50 33.25
Se 63.3% 81.0% 89.9%
Pp 71.7% 74.3% 91.1%

Continued on next page



113

Table A.1 – Continued from previous page

70 K=98.2 1 2 3
1 13.75 0.25 0.00
1 0.00 16.75 0.25
1 0.00 0.00 12.00
Se 98.2% 98.5% 100.0%
Pp 100.0% 98.5% 98.0%

Method name = [CDOPM3]
K=97.37 1 2 3
1 14.00 0.00 0.00
2 0.00 16.25 0.75
3 0.00 0.00 12.00
Se 100.0% 95.6% 100.0%
Pp 100.0% 100.0% 94.1%

71 K=92 1 2 3 4 5 6
1 4.00 0.00 0.00 0.00 0.00 0.00
2 0.00 3.00 0.00 0.00 0.00 0.00
3 0.00 0.25 0.75 0.00 0.00 0.00
4 0.00 0.00 0.00 1.00 0.00 0.00
5 0.00 0.00 0.00 0.00 1.00 0.00
6 0.00 0.00 0.00 0.00 0.50 1.50
Se 100.0% 100.0% 75.0% 100.0% 100.0% 75.0%
Pp 100.0% 92.3% 100.0% 100.0% 66.7% 100.0%

Method name = [PKDA2]
K=91.99 1 2 3 4 5 6
1 4.00 0.00 0.00 0.00 0.00 0.00
2 0.00 3.00 0.00 0.00 0.00 0.00
3 0.00 0.00 1.00 0.00 0.00 0.00
4 0.00 0.00 0.00 1.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.75 0.25
6 0.00 0.00 0.00 0.00 0.50 1.50
Se 100.0% 100.0% 100.0% 100.0% 75.0% 75.0%
Pp 100.0% 100.0% 100.0% 100.0% 60.0% 85.7%

Table A.1: The confusion matrix in RN ,and in R2 for whole datasets, that mentioned the
best mapping methods, where K is the kappa, Se is the sensitivity measure,
and Pp the precision





Bibliography

[1] D.K. Agrafiotis. Stochastic proximity embedding. Journal of Computational

Chemistry, 24(10):1215–1221, 2003.

[2] S. Alawadi, M. Fernández-Delgado, D. Mera, and S. Barro. Polynomial kernel
discriminant analysis for 2d visualization of classification problems. Neural

Computing & Applications, page In press, 2018.

[3] S. Alawadi, D. Mera, M. Fernández-Delgado, and J.A. Taboada. Comparative study
of artificial neural network models for forecasting the indoor temperature in smart
buildings. In International Conference on Smart Cities, pages 29–38. Springer, 2017.

[4] L. Amaro, Z. Heiga, Y. Nankaku, C. Miyajima, K. Tokuda, and T. Kitamura. On the
use of kernel PCA for feature extraction in speech recognition. IEICE Transactions on

Information and Systems, 87(12):2802–2811, 2004.

[5] S. Balakrishnama and A. Ganapathiraju. Linear discriminant analysis-a brief tutorial.
Institute for Signal and Information Processing, 18, 1998.

[6] G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach.
Neural Computation, 12(10):2385–2404, 2000.

[7] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Computation, 15(6):1373–1396, 2003.

[8] Abdullatif E Ben-Nakhi and Mohamed A Mahmoud. Cooling load prediction for
buildings using general regression neural networks. Energy Conversion and

Management, 45(13):2127–2141, 2004.



116 Bibliography

[9] Y. Bengio, N. Delalleau, N. Le Roux, J.F. Paiement, P. Vincent, and M. Ouimet.
Learning eigenfunctions links spectral embedding and kernel pca. Neural

Computation, 16(10):2197–2219, 2004.

[10] M. Brand. Charting a manifold. In Advances in Neural Information Processing

Systems, pages 961–968, 2002.

[11] L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

[12] L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

[13] L. Breiman, J. Friedman, R.A. Olshen, and C.J. Stone. Classification and regression

trees. Wadsworth and Brooks, 1984.

[14] A. Buja, D.F. Swayne, M.L. Littman, N. Dean, H. Hofmann, and L. Chen. Data
visualization with multidimensional scaling. Journal of Computational and Graphical

Statistics, 17(2):444–472, 2008.

[15] M.A. Carreira-Perpignan. A review of dimension reduction techniques. Technical
report, Dept. of Computer Science, Univ. Sheffield, 1997.

[16] Tiberiu Catalina, Joseph Virgone, and Eric Blanco. Development and validation of
regression models to predict monthly heating demand for residential buildings.
Energy and buildings, 40(10):1825–1832, 2008.

[17] J.M. Chambers. Linear models, chapter 4. J. M. Chambers and T. J. Hastie,
Wadsworth & Brooks/Cole, 1992.

[18] C.C. Chang and C.J. Lin. LIBSVM: a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[19] H. Chun and S. Keles. Sparse partial least squares for simultaneous dimension
reduction and variable selection. Journal of the Royal Statistical Society, 72:3–25,
2010.

[20] R.R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic

Analysis, 21(1):5–30, 2006.

http://www.csie.ntu.edu.tw/~cjlin/libsvm


Bibliography 117

[21] ATLAS Collaboration et al. The evolution of boosting algorithms-from machine
learning to statistical modelling. Methods Inf Med, 53(6):419–427, 2014.

[22] Europese Commissie. A roadmap for moving to a competitive low carbon economy in
2050. Europese Commissie, Brussel, 2011.

[23] J. Cook, I. Sutskever, A. Mnih, and G.E. Hinton. Visualizing similarity data with a
mixture of maps. In International Conference on Artificial Intelligence and Statistics,
volume 7, pages 67–74, 2007.

[24] J.P. Cunningham and Z. Ghahramani. Linear dimensionality reduction: survey,
insights, and generalizations. Journal of Machine Learning Reseach, 16:2859–2900,
2015.

[25] J. de la Porte, B.M. Herbst, W. Hereman, and S.J. van der Walt. An introduction to
diffusion maps. In Symposium of the Pattern Recognition Association of South Africa,
pages 15–25, 2008.

[26] V. de Silva and J. Tenenbaum. Sparse multidimensional scaling using landmark
points. Technical report, Stanford University, 2004.

[27] D. DeMers and G.W. Cottrell. n–linear dimensionality reduction. Advances in Neural

Information Processing Systems, 5:580–587, 1993.

[28] J. Demšar. Statistical comparisons of classifiers over multiple data sets. J. Mach.

Learn. Res., 7:1–30, 2006.

[29] A.J. Dobson. An introduction to generalized linear models. Chapman and Hall, 1990.

[30] Bing Dong, Cheng Cao, and Siew Eang Lee. Applying support vector machines to
predict building energy consumption in tropical region. Energy and Buildings,
37(5):545–553, 2005.

[31] D.L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding
techniques for high-dimensional data. Proceedings of the National Academy of

Sciences, 100(10):5591–5596, 2003.

[32] Haris Doukas, Konstantinos D Patlitzianas, Konstantinos Iatropoulos, and John
Psarras. Intelligent building energy management system using rule sets. Building and

environment, 42(10):3562–3569, 2007.



118 Bibliography

[33] Anastasios I Dounis and Christos Caraiscos. Advanced control systems engineering
for energy and comfort management in a building environment—a review. Renewable

and Sustainable Energy Reviews, 13(6):1246–1261, 2009.

[34] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern classification, 2nd Ed.
Wiley-Interscience, 2001.

[35] Betul Bektas Ekici and U Teoman Aksoy. Prediction of building energy consumption
by using artificial neural networks. Advances in Engineering Software,
40(5):356–362, 2009.

[36] D. Engel, L. Hüttenberger, and B. Hamann. A survey of dimension reduction methods
for high-dimensional data analysis and visualization. In OASIcs-OpenAccess Series in

Informatics, volume 27. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2012.

[37] Varick L Erickson, Miguel Á Carreira-Perpiñán, and Alberto E Cerpa. Observe:
Occupancy-based system for efficient reduction of hvac energy. In Information

Processing in Sensor Networks (IPSN), 2011 10th International Conference on, pages
258–269. IEEE, 2011.

[38] R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals of

Eugenics, 7(2):179–188, 1936.

[39] F.D. Foresee and M. T. Hagan. Gauss-Newton approximation to Bayesian
regularization. In International Joint Conference on Neural Networks, pages
1930–1935, 1997.

[40] J.H. Friedman. Multivariate adaptive regression splines. Annals of Statistics,
19(1):1–141, 1991.

[41] J.H. Friedman. Greedy function approximation: a gradient boosting machine. Annals

of Statistics, 29:1189–1232, 2001.

[42] J.H. Friedman and W. Stuetzle. Projection pursuit regression. Journal of the American

Statistical Association, 76:817–823, 1981.

[43] S. García, A. Fernández, A.D. Benítez, and F. Herrera. Statistical comparisons by
means of non-parametric tests: A case study on genetic based machine learning. In



Bibliography 119

Proceedings of the II Congreso Español de Informática (CEDI 2007). V Taller

Nacional de Minería de Datos y Aprendizaje (TAMIDA), pages 95–104, 2007.

[44] A. Gelman, A. Jakulin, M.G. Pittau, and Y.S. Su. A weakly informative default prior
distribution for logistic and other regression models. The Annals of Applied Statistics,
2(4):1360–1383, 2009.

[45] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine

Learning, 63(1):3–42, 2006.

[46] A. Globerson and S.T. Roweis. Metric learning by collapsing classes. In Advances in

Neural Information Processing Systems, pages 451–458, 2005.

[47] J.J. Goeman. L-1 penalized estimation in the cox proportional hazards model.
Biometrical Journal, 52:70–84, 2010.

[48] J. Goldberger, S. Roweis, G.E. Hinton, and R. Salakhutdinov. Neighborhood
component analysis. In Advances in Neural Information Processing Systems, 2004.

[49] Q. Gu, Z. Li, and J. Han. Linear discriminant dimensionality reduction. In Machine

Learning and Knowledge Discovery in Databases, pages 549–564. Springer, 2011.

[50] X. He, D. Cai, S. Yan, and H.J. Zhang. Neighborhood preserving embedding. In IEEE

International Conference on Computer Vision, volume 2, pages 1208–1213. IEEE,
2005.

[51] X. He and P. Niyogi. Locality preserving projections. In Advances in Neural

Information Processing Systems, volume 16, page 153. MIT, 2003.

[52] G.E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18(7):1527–1554, 2006.

[53] G.E. Hinton and S.T. Roweis. Stochastic neighbor embedding. In Advances in Neural

Information Processing Systems, pages 833–840, 2002.

[54] G.E. Hinton and R.R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, 2006.

[55] H. Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24(6):417, 1933.



120 Bibliography

[56] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang. Extreme learning machine for
regression and multiclass classification. IEEE Trans. Systs., Man, and Cybern.-Part B:

Cybern., 42(2):513–529, 2012.

[57] A. Hyvarinen and E. Oja. Independent component analysis: algorithms and
applications. Neural networks, 13:411–430, 2000.

[58] W. Jianzhong. Geometric structure of high-dimensional data and dimensionality

reduction, chapter Maximum Variance Unfolding, pages 181–202. Springer Berlin
Heidelberg, 2011.

[59] I. Jolliffe. Principal component analysis. Wiley Online Library, 2002.

[60] H.F. Kaiser. The application of electronic computers to factor analysis. Educational

and Psychological Measurement, 1960.

[61] A. Kapelner and J. Bleich. bartMachine: machine learning with Bayesian additive
regression trees. Journal of Statistical Software, 70(4):1–40, 2016.

[62] K.I. Kim, K. Jung, and H.J. Kim. Face recognition using kernel principal component
analysis. IEEE Signal Processing Letters, 9(2):40–42, 2002.

[63] K.I. Kim, S.H. Park, and H.J. Kim. Kernel principal component analysis for texture
classification. IEEE Signal Processing Letters, 8(2):39–41, 2001.

[64] Simon SK Kwok, Richard KK Yuen, and Eric WM Lee. An intelligent approach to
assessing the effect of building occupancy on building cooling load prediction.
Building and Environment, 46(8):1681–1690, 2011.

[65] N.D. Lawrence. Gaussian process latent variable models for visualisation of high
dimensional data. Advances in Neural Information Processing Systems,
16(3):329–336, 2004.

[66] C.L. Lawson and R.J. Hanson. Solving least squares problems, volume 15 of Classics

in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
1995.

[67] S. Lespinats, M. Verleysen, A. Giron, and B. Fertil. DD-HDS: A method for
visualization and exploration of high-dimensional data. IEEE Transactions on Neural

Networks, 18(5):1265–1279, 2007.



Bibliography 121

[68] Kangji Li, Hongye Su, and Jian Chu. Forecasting building energy consumption using
neural networks and hybrid neuro-fuzzy system: A comparative study. Energy and

Buildings, 43(10):2893–2899, 2011.

[69] Qiong Li, Qinglin Meng, Jiejin Cai, Hiroshi Yoshino, and Akashi Mochida. Applying
support vector machine to predict hourly cooling load in the building. Applied Energy,
86(10):2249–2256, 2009.

[70] http://www.life-opere.org/en, (Retrieved January 2017).

[71] L. Maaten, E. Postma, and H. Herik. Dimensionality reduction: A comparative
review. Technical report, Tilburg University, 2009.

[72] D.J.C. MacKay. Bayesian interpolation. Neural Computation, 4:415–447, 1992.

[73] Kelly O Maloney, Matthias Schmid, and Donald E Weller. Applying additive
modelling and gradient boosting to assess the effects of watershed and reach
characteristics on riverine assemblages. Methods in Ecology and Evolution,
3(1):116–128, 2012.

[74] A.E. Maxwell. Recent trends in factor analysis. Journal of the Royal Statistical

Society. Series A (General), pages 49–59, 1961.

[75] N Meinshausen. Quantregforest: quantile regression forests. R package version 0.2-2,
2007.

[76] S. Mika, G. Ratsch, J. Weston, B. Schölkopf, and K. R. Mullers. Fisher discriminant
analysis with kernels. In IEEE Signal Processing Society Workshop, volume 9, pages
41–48, 1999.

[77] S. Mika, G. Ratsch, J. Weston, B. Schölkopf, and K. R. Mullers. Fisher discriminant
analysis with kernels. In Proc. IEEE Workshop in Neural Netw. for Signal Proc.,
pages 41–48, 1999.

[78] S. Mika, B. Schölkopf, A.J. Smola, K.R. Müller, M. Scholz, and G. Rätsch. Kernel
pca and de-noising in feature spaces. In Advances in Neural Information Processing

Systems, volume 4, page 7. Citeseer, 1998.



122 Bibliography

[79] I. Mizera and R. Koenker. Convex optimization in r. Journal of Statistical Software,
60(5):1–23, 2014.

[80] T.K. Moon. The expectation-maximization algorithm. IEEE Signal Processing

Magazine, 13(6):47–60, 1996.

[81] Petru-Daniel Moroşan, Romain Bourdais, Didier Dumur, and Jean Buisson. Building
temperature regulation using a distributed model predictive control. Energy and

Buildings, 42(9):1445–1452, 2010.

[82] L.S. Mthembu and J. Greene. A comparison of three class separability measures. In
Symposium of the Pattern Recognition Association of South Africa, pages 63–67,
2004.

[83] K. Nam, H. Je, and S. Choi. Fast stochastic neightbor empedding: a trust region
algorithm. In Proc. IEEE International Joint Conference on Neural Networks, pages
123–128, 2004.

[84] Tuan Anh Nguyen and Marco Aiello. Energy intelligent buildings based on user
activity: A survey. Energy and buildings, 56:244–257, 2013.

[85] Thomas Olofsson and Staffan Andersson. Long-term energy demand predictions
based on short-term measured data. Energy and Buildings, 33(2):85–91, 2001.

[86] J. Platt. Fastmap, metricmap, and landmark mds are all nystrom algorithms. In
International Conference on Artificial Intelligence and Statistics, 2005.

[87] T. Pohlert. The pairwise multiple comparison of mean ranks package (PMCMR),
2014. R package.

[88] R. Quinlan. Combining instance-based and model-based learning. In Proc. Intl. Conf.

on Machine Learning, pages 236–243, 1993.

[89] R.J. Quinlan. Learning with continuous classes. In 5th Australian Joint Conference on

Artificial Intelligence, pages 343–348, 1992.

[90] GJ Ríos-Moreno, M Trejo-Perea, R Castaneda-Miranda, VM Hernández-Guzmán,
and G Herrera-Ruiz. Modelling temperature in intelligent buildings by means of
autoregressive models. Automation in Construction, 16(5):713–722, 2007.



Bibliography 123

[91] Pablo Rodrıguez-Mier, Marc Fresquet, Manuel Mucientes, and Alberto Bugarın.
Prediction of indoor temperatures for energy optimization in buildings. In Conference

of the Spanish Association for Artificial Intelligence, pages 675–684, 2016.

[92] R. Rosipal, M. Girolami, L.J. Trejo, and A. Cichocki. Kernel pca for feature
extraction and de-noising in nonlinear regression. Neural Computing & Applications,
10(3):231–243, 2001.

[93] S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, 2000.

[94] S. De Jong. SIMPLS: an alternative approach to partial least squares regression.
Chemometrics and intelligent laboratory systems, 18:251–263, 1993.

[95] J.W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions on

Computers, 18(5):401–409, 1969.

[96] Olivia Guerra Santin, Laure Itard, and Henk Visscher. The effect of occupancy and
building characteristics on energy use for space and water heating in dutch residential
stock. Energy and buildings, 41(11):1223–1232, 2009.

[97] Matthias Schmid and Torsten Hothorn. Boosting additive models using
component-wise p-splines. Computational Statistics & Data Analysis, 53(2):298–311,
2008.

[98] B. Schölkopf, A. Smola K.R., and Müller. Kernel principal component analysis. In
International Conference on Artificial Neural Networks, pages 583–588. Springer,
1997.

[99] F. Sha and L.K. Saul. Analysis and extension of spectral methods for nonlinear
dimensionality reduction. In International Conference on Machine Learning, pages
784–791, 2005.

[100] D.J. Sheskin. Handbook of parametric and nonparametric statistical procedures.
CRC Press, 2006.

[101] V.D. Silva and J.B. Tenenbaum. Global versus local methods in nonlinear
dimensionality reduction. In Advances in Neural Information Processing Systems,
pages 705–712, 2002.



124 Bibliography

[102] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for Cox’s
proportional hazards model via coordinate descent. Journal of statistical software,
39(5):1–13, 2011.

[103] A.J. Smola and Bernhard B. Schölkopf. A tutorial on support vector regression.
Statistics and Computing, 14(3):199–222, 2004.

[104] L. Song, P. Langfelder, and S. Horvath. Random generalized linear model: a highly
accurate and interpretable ensemble predictor. BMC Bioinformatics, 14(1):1–22,
2013.

[105] C. Spearman. General intelligence objectively determined and measured. Americal

Journal of Psichology, 15:206–221, 1904.

[106] D.F. Specht. A general regression neural network. IEEE Trans. on Neural Networks,
2:568–576, 1991.

[107] Kevin Swingler. Applying neural networks: a practical guide. Morgan Kaufmann,
1996.

[108] Yee W Teh and Sam T Roweis. Automatic alignment of local representations. In
Advances in Neural Information Processing Systems, pages 841–848, 2002.

[109] J.B. Tenenbaum, V. De Silva, and J.C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[110] C. Thornton. Separability is a learner’s best friend. In Neural Computation and

Psychology Workshop, pages 40–46. Springer, 1998.

[111] L.L. Thurstone. Multiple factor analysis. Univ. Chicago Press, Chicago (USA), 1947.

[112] M.E. Tipping and C.M. Bishop. Probabilistic principal component analysis. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 61(3):611–622,
1999.

[113] W.S. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika,
17(4):401–419, 1952.

[114] L. van der Maaten. An introduction to dimensionality reduction using Matlab. Report,
1201(07-07):62, 2007.



Bibliography 125

[115] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine

Learning Research, 9(2579-2605):85, 2008.

[116] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM review,
38(1):49–95, 1996.

[117] J. Verbeek. Learning nonlinear image manifolds by global alignment of local linear
models. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(8):1236–1250, 2006.

[118] K.Q. Weinberger and L.K. Saul. An introduction to nonlinear dimensionality
reduction by maximum variance unfolding. In National Conference on Artificial

Intelligence, volume 6, pages 1683–1686, 2006.

[119] K.Q. Weinberger and L.K. Saul. Unsupervised learning of image manifolds by
semidefinite programming. International Journal of Computer Vision, 70(1):77–90,
2006.

[120] K.Q. Weinberger and L.K. Saul. Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Learning Reseach, 10:207–244, 2009.

[121] K.Q. Weinberger, F. Sha, Q. Zhu, and L.K. Saul. Graph laplacian regularization for
large-scale semidefinite programming. In Advances in Neural Information Processing

Systems, pages 1489–1496, 2007.

[122] C. K. I. Williams and D. Barber. Bayesian classification with Gaussian processes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342–1351,
1998.

[123] S.N. Wood. Fast stable restricted maximum likelihood and marginal likelihood
estimation of semiparametric generalized linear models. Journal of the Royal

Statistical Society, 1(73):3–36, 2011.

[124] X. Xing, S. Du, and K. Wang. Robust hessian locally linear embedding techniques for
high-dimensional data. Algorithms, 9(2):36, 2016.

[125] Z. Yang, I. King, Z. Xu, and E. Oja. Heavy-tailed symmetric stochastic neighbor
embedding. In Advances in neural information processing systems, pages 2169–2177,
2009.



126 Bibliography

[126] J. Ye, R. Janardan, and Q. Li. Two-dimensional linear discriminant analysis. In
Advances in Neural Information Processing Systems, pages 1569–1576, 2004.

[127] Jieping Ye. Characterization of a family of algorithms for generalized discriminant
analysis on undersampled problems. Journal of Machine Learning Research,
6(Apr):483–502, 2005.

[128] L. Yu, R.R. Snapp, T. Ruiz, and M. Radermacher. Probabilistic principal component
analysis with expectation maximization (ppca-em) facilitates volume classification
and estimates the missing data. Journal of Structural Biology, 171(1):18–30, 2010.

[129] F Zamora-Martínez, P Romeu, P Botella-Rocamora, and J Pardo. On-line learning of
indoor temperature forecasting models towards energy efficiency. Energy and

Buildings, 83:162–172, 2014.

[130] T. Zhang. Adaptive forward-backward greedy algorithm for learning sparse
representations. IEEE Trans. Inf. Theor., 57(7):4689–4708, 2011.

[131] T. Zhang, J. Yang, D. Zhao, and X. Ge. Linear local tangent space alignment and
application to face recognition. Neurocomputing, 70(7):1547–1553, 2007.

[132] Z. Zhang and H. Zha. Principal manifolds and nonlinear dimensionality reduction via
local tangent space alignment. SIAM Journal on Scientific Computation,
26(1):313–338, 2004.

[133] Hai-xiang Zhao and Frédéric Magoulès. A review on the prediction of building energy
consumption. Renewable and Sustainable Energy Reviews, 16(6):3586–3592, 2012.



List of Figures

Fig. 2.1 Schematic structure of a multi-layer autoencoder (extracted from [71]). . . . 18
Fig. 2.2 Global alignment of patterns x in LLC using the responsibility-weighted

reductors (Figure extracted from [108]). . . . . . . . . . . . . . . . . . . . 27

Fig. 4.1 Upper panel: κ (in %) achieved by svmNd (in blue) and best κ achieved
by SVM using the 2D mapped patterns (in red), for each data set, sorted by
increasing κ (in nD). Black dashed lines limit the region where κ= κ(nD)
± 10. Lower panel: Difference κ(nD) - best κ(2D) for each data set, sorted
increasingly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Fig. 4.2 Histogram of the difference κ(IRn)− κ(IR2) achieved by SVM for all the
data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Fig. 4.3 Upper panel: average κ (in %) achieved by SVM over all the data sets for the
proposed mappings (Table 3.1), varying the function and overlap measure.
Lower panel: average κ achieved by the 20 best of the proposed mappings,
sorted decreasingly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Fig. 4.4 Upper panel: average κ of svmNd and the 20 best mappings (according to κ)
over all the data sets. Lower panel: Friedman ranks of the 20 best mappings. 55

Fig. 4.5 Average κ (in %) achieved by SVM over all the data sets for the mappings
21-40 (upper panel) and 41-66 (lower panel). . . . . . . . . . . . . . . . . . 56

Fig. 4.6 Upper panel: comparison of the κ (in %) achieved by SVM using PKDA2
and svmNd, ordered by increasing κ of svmNd. Lower panel: histogram of
differences between svmNd and PKDA2. . . . . . . . . . . . . . . . . . . . 59



128 List of Figures

Fig. 4.7 Upper panel: comparison of the κ achieved by PKDA2 and LDA, ordered
by increasing κ of PKDA2. Lower panel: histogram of differences between
LDA and PKDA2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Fig. 4.8 Training, validation and test patterns (small squares) in IR2 mapped by
PKDA2 (left panel) and LDA (right panel) and class regions learnt by SVM
using both mappings for data set 70 (wine), with 178 patterns, 13 inputs and
3 classes (colors blue, red and yellow, graded by the classification probability
given by SVM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Fig. 4.9 Class map learnt by SVM using the 2D patterns mapped by PKDA2 (left
panel) and PKDA4 (right panel) for data set 33 (image-segmentation), with
210 patterns, 18 inputs and 7 classes (colors blue, red, yellow, green, white,
magenta and cyan). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Fig. 4.10 Class map created by SVM using the 2D patterns mapped by PKDA2 for
data sets balloons (2 classes) and energy-y1 (3 classes). . . . . . . . . . . . 63

Fig. 4.11 Class map created by SVM using the 2D patterns mapped by PKDA2 for
data sets flags (6 classes) and oocytes_merluccius_states_2f (3). . . . . . . 64

Fig. 4.12 Class map created by SVM for data sets seeds (3 classes) and synthetic-
control (6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Fig. 4.13 Upper panel: average times (in sec.) spent by the proposed mappings varying
the overlap measure and function. Lower panel: times spent by the 20 fastest
mappings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Fig. 4.14 Uploading a new data set (lenses1) with 4 inputs,20 patterns and 2 classes
using PHP web interface. These required information must be filled in the
left panel using the “add new data set” menu. . . . . . . . . . . . . . . . . . 67

Fig. 4.15 Screenshot of the PHP interface after projecting the UCI data set ionosphere
using PKDA2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Fig. 4.16 Screenshot of the PHP interface after mapping data set acute-nephritis using
PKDA2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Fig. 4.17 Screenshot with the compilation of results for a given user in the PHP interface. 69
Fig. 4.18 Zooming-in the classification map of balloon data set using PKDA2 algorithm. 69
Fig. 4.19 Screenshot of the desktop Matlab interface uploading a new data set using the

left panel. The file explorer only requires the data set file and the remaining
details are extracted from it. . . . . . . . . . . . . . . . . . . . . . . . . . . 70



List of Figures 129

Fig. 4.20 Screenshot of the Matlab interface after mapping a new data set (breast-
tissue) using PKDA2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Fig. 4.21 Screenshot of the Matlab interface after mapping the UCI data set flags using
PKDA2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Fig. 5.1 Friedman rank of R-coefficient (upper panel) and MSE (lower panel) for the
20 best regressors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Fig. 5.2 Average values of MSE and R-Coefficient over the data sets of the 20 best
regressors to forecast three consecutive hours. . . . . . . . . . . . . . . . . 89

Fig. 5.3 Value of MSE of the evaluated approaches without noise according to the
forecasting horizon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Fig. 5.4 R-Coefficient (left column) and MSE (right column) of the evaluated
approaches according to the forecasting horizon. . . . . . . . . . . . . . . . 94





List of Tables

Tabla 2.1 Main features of the dimensionality reduction methods. Those methods
which do not provide an explicit mapping for out-of-sample patterns are
labeled as “non-explicit”. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Tabla 3.1 Mappings varying the overlap measure and the function type. The LDA,
corresponding to J-index and linear function, is not listed in the current
table, because it is already provided by the Drtoolbox (table 3.1). . . . . . 45

Tabla 4.1 Collection of 71 data sets from the UCI data base and our real problems.
It shows the number of patterns (#pat.), inputs (#inp.),and classes (#cl.). *
These data set has two separated data files one for training, and the other
one for testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Tabla 4.2 Mappings provided by the Drtoolbox. The supervised mappings (in bold)
use the class labels, and are expected to provide better classification results.
The mappings with (resp. without) an asterisk use the out_of_sample (resp.
out_of_sample_est) function to map out-of-sample patterns. . . . . . . . . 49

Tabla 4.3 Value of κ achieved by SVM using the original patterns in IRn (column
κ(IRn), corresponding to svmNd in the test) and using the patterns mapped
to IR2 (column κ(IR2), and difference ∆ = κ(IRn)−κ(IR2), alongside with
the name of the mapping which achieved the best κ in IR2. . . . . . . . . 50

Tabla 4.4 Values of κ (in %) of svmNd, PKDA2 and LDA for each data set. The last
row reports the average κ over all the data sets and the number of data sets
where each method achieves the best κ (the sum is 76 instead of 71 due to
ties for some data sets). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



132 List of Tables

Tabla 4.5 Accuracy (in %) of PKDA2, svmNd and LDA in those data sets where the
svmNd outperforms PKDA in terms of κ . The data set number is listed in
Table 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Tabla 5.1 Regressors considered in this work, grouped by families. . . . . . . . . . . 78
Tabla 5.2 Pattern features, where (*) and (+) represent features from the CiTIUS

HVAC and from Meteogalicia, respectively. . . . . . . . . . . . . . . . . . 84
Tabla 5.3 List of the regressors, with their tunable hyper-parameters, values tried and

packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Tabla 5.4 Friedman rank of the MSE (left) and R-Coefficient (right). The p-value

(last column) of the Posthoc Friedman Nemenyi test compares the best
regressor to the remaining ones. . . . . . . . . . . . . . . . . . . . . . . . 88

Tabla 5.5 The best R-Coefficient and MSE are achieved by extraTrees for the
forecasting horizon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Tabla 5.6 Training parameters used to develop the evaluated neural networks models 92
Tabla 5.7 Changes in the number of hidden neurons of OAMLP during the training. . 95

Tabla A.1 The confusion matrix in RN ,and in R2 for whole datasets, that mentioned
the best mapping methods, where K is the kappa, Se is the sensitivity
measure, and Pp the precision . . . . . . . . . . . . . . . . . . . . . . . . 113


	MACHINE LEARNING ALGORITHMS FOR PATTERN VISUALIZATION IN CLASSIFICATION TASKS AND FOR AUTOMATIC INDOOR TEMPERATURE PREDICTION
	Índice general
	Introduction 
	Methods of dimensionality reduction 
	Classical approaches
	Linear discriminant analysis (LDA)
	Generalized discriminant analysis (GDA)
	Principal component analysis (PCA)
	Kernel PCA
	Probabilistic PCA (ProbPCA)
	Gaussian process latent variable model (GPLVM)
	Factor analysis (FA)

	Global nonlinear methods
	Sammon mapping
	Multidimensional data scaling (MDS)
	Stochastic proximity embedding (SPE)
	Stochastic neighbor embedding (SNE)
	Symmetric SNE (SSNE)
	T-distribution SNE (t-SNE)
	Isomap
	Landmark Isomap
	Diffusion map
	Multi-layer autoencoder

	Local nonlinear mapping
	Locally linear embedding (LLE)
	Hessian LLE (HLLE)
	Neighborhood preserving embedding (NPE)
	Local tangent space alignment (LTSA)
	Linear LTSA (LLTSA)
	Laplacian eigenmap
	Locality preserving projection (LPP)
	Maximum variance unfolding (MVU)
	Fast MVU
	Landmark MVU
	Conformal eigenmap (CCA)
	Locally linear coordination (LLC)
	Manifold charting
	Coordinated factor analysis (CFA)

	Other supervised methods
	Neighborhood component analysis (NCA)
	Maximally collapsing metric learning (MCML)
	Large-margin nearest neighbor (LMNN)

	Remarks

	Proposed 2D mappings 
	Thornton’s separability index
	Direct class Separability (DS)
	J-index
	Class Mean Distance

	Experiments with 2D mappings 
	Experimental setting
	Discussion
	Graphical interfaces
	PHP web interface
	Matlab standalone interface


	Automatic prediction of indoor building temperature 
	Related work
	Regression methods
	Data acquisition
	Experiments
	Regressor comparison
	Online learning approaches


	Conclusions
	Confusion matrices
	Bibliography
	List of Figures
	List of Tables


