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ABSTRACT

The colloidal aggregation problem coupled with the sedi-
mentation experienced preferentially by the large clusters
is stratified, the structural and dynamical quantities
describing the aggregates depending on the depth at
which they are measured. In this work we will use a
new computer algorithm for colloidal aggregation coupled
with sedimentation, that is capable of proportioning the
average of these quantities inside a layer at a fixed depth
and of arbitrary thickness in the aggregation prism. The
dynamics, using this algorithm, will be shown to be in
accordance with the experimental results. We have also
found that (i) in some cases of sedimentation strengths
and layer depths, the mean width (perpendicular to the
gravitational field direction) and the mean height of the
large settling clusters scale with the size as a power law,
with the same scaling power, in some range of cluster sizes.
This leads to self-similar clusters with an appreciably
higher fractal dimension (df ) than the df of aggregating
clusters driven purely by diffusion (DLCA). However,
(ii) there are some other cases for which the parallel and
perpendicular scaling powers differ. (iii) There are still
cases for which only the mean width or the mean height
scale as a power law. Finally, (iv) there are further cases
for which neither the mean width nor mean height scale
as a power law with the size. In the last (ii), (iii) and (iv)
cases the settling clusters are anisotropic and a fractal
dimension cannot be defined by them.

1. INTRODUCTION

Particle aggregation is of great interest not only due to
the variety of roles it plays in biological systems, medical
diagnostics, paints and coatings, and numerous foods, but
also as a model system for growth under non-equilibrium
conditions. In the past two decades, work has focused on
the formation of aggregates, including their geometry and
growth kinetics, in the absence of sedimentation. After
the proposal of a single-aggregate model by Witten and
Sander [1], and more adequate for our purpose of colloidal
aggregation, after the development of a diffusive model for
cluster aggregation, simultaneously made by Meakin [2]
and by Kolb et al [3], the number of works dealing with
the aggregation of particles has increased considerably.

However, many real aggregation phenomena rarely take
place under quiescent conditions but instead occur in the
presence of gravitational fields or macroscopic flows. In
addition, external fields, including electrical, magnetic,
and optical, have proven useful for assembling and moving
colloidal particles, techniques that should be useful when
dealing with particles of nanometers in size, since they are
barely affected by gravity. Among the many examples for
which the sedimentation effect is important we can cite
the clearing or clarifying of liquids, the settling of bacteria
clusters in quiet water, the aggregation and deposition of
asphaltenes in crude oil, and a number of precipitation
techniques employed by the chemical industry.

By adding salts or flocculants, which screen the electro-
static repulsion between the particles or which establish
bridges between them, it is induced the aggregation of the
particles into clusters, which themselves collide with other
clusters, stick together and become larger. Initially, the
aggregates are small and essentially move by diffusion. As
the aggregation proceeds, the settling velocity of the large
aggregates becomes significant, and a new mechanism
for the movement of these large clusters appears. As the
sedimentation velocity of the small aggregates is lower
than that for the larger ones, these large clusters catch
up with the smaller ones, actually sweeping them and
becoming in the process larger and larger. As a result,
the hitting rate between aggregates increases, which leads
to an acceleration of the aggregation kinetics. However,
as the colloidal matter in the bulk becomes more and
more scarce, the aggregation kinetics eventually slows
down. In the final state and for the non-gelling cases
(low concentrations), the system is composed of a tenuous
sediment on the bottom and a clear fluid above.

Experimentally, this new problem of aggregation coupled
with sedimentation has been studied more extensively by
Allain and collaborators [4, 5, 6], who found an increase in
the fractal dimension (df ) of the large, settling aggregates
(reaching values as high as 2.2) [5, 6]. They attributed this
increase in the df of the large clusters to a restructuring
mechanism, due to the hydrodynamic stresses felt by their
branches when they drift downwards. They also found
the large settling aggregates to be non-rotating. This
behavior was interpreted in Refs. [7, 8] in terms of a
non-homogeneity of these clusters, being denser in their
lower part, which is the one that is sweeping the smaller
clusters that attach to them. The large clusters therefore
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Figure 1: The states at different times of a Calcium Carbonate aggregating suspension of spherical particles, for the
following times: (a) 5 min 20 s, (b) 6 min 20 s, (c) 6 min 40 s, (d) 7 min, (e) 7 min 20 s, (f) 7 min 40 s, (g) 8 min (from
Ref. [4]).

act as badminton shuttlecocks that, when left rotating at
a certain altitude, at the end they fall at constant velocity
without rotation.

On the simulational side and in our first works [7, 8, 9]
that consider both sedimentation and deposition (through
a rarefaction of colloidal matter in the bulk), due to
computational limitations, the structural (df ) and dy-
namical quantities (basically the weight-average cluster
size Sw(t)) were obtained from averages over the clusters
inside the aggregating prism, independent of their vertical
position. This assumption was necessary in order to have
good statistics for the evaluation of the averages of highly
fluctuating quantities. However, the colloidal aggregation
problem coupled with sedimentation is not homogeneous
on the vertical direction. In Fig. 1 we are reproducing
figure 1 of Chapter III of Ref. [4] (the horizontal straight
lines were added by the present author). In their system
with a colloidal volume fraction of φ = 0.001, the Calcium
Carbonate spherical colloidal particles were of a diameter
of 0.07 µm; therefore, they cannot be optically seen
unaggregated, and even the smallest points shown in the
confinement prism are actually clusters of many particles.
The prism was illuminated from behind in such a way
that what we actually see are the shadows of the clusters.
We can clearly see in this figure that, for a sufficiently
long time, the large clusters lie preferentially deeper than
the smaller ones, which leads to a stratification of the
system, as mentioned. Moreover, in each of the seven
sublayers shown, we can also see that the average cluster
size increases with time and peaks at a certain time,
diminishing afterwards. The deeper the layer is, the longer
the time it takes to peak and the higher the value at which
it peaks.

More recently, in Ref. [10], the authors considered a
two-dimensional lattice model for aggregation coupled with

sedimentation; that is, they considered the z coordinate
on the direction of the field and only one horizontal
coordinate. They found that, for some cases of high
sedimentation strengths and within some range of sizes,
the mean width of the large settling clusters scaled as a
power law with the cluster size while the mean height
did not, leading to anisotropic clusters for which a fractal
dimension could not be defined. To proceed further in this
problem, what we actually need is an algorithm capable of
proportioning the average aggregation quantities at a fixed

depth in the prism, and consider a good number of cases
of sedimentation strengths and layer depths. In Ref. [11]
such an algorithm was presented in the form of a letter
in which, by the nature of its size, it was not possible to
show all the different cases of sedimentation strengths and
depths, that lead to different behaviors in this problem.
In this paper we consider a number of interesting cases of
sedimentation strengths and depths, with such algorithm,
presenting in more detail two of the cases.

To simulate such a system of diffusing, sedimenting
and aggregating particles and clusters, one needs to
know by which amount a cluster of N particles undergoes
sedimentation as compared to the distance diffused,
during a certain Monte Carlo time. Let us consider the
sedimentation velocity vs experienced by a cluster of N
spherical particles of radius a and mass mo:

vs =
mo(1 − ρ/ρo)gN

f
=

mo(1 − ρ/ρo)g

kBT
DN , (1)

where ρo is the particles density, ρ is that of the suspension
fluid, f is the cluster’s friction coefficient, D (= kB T

6πηRg
)

is its diffusion coefficient, Rg is its radius of gyration, η
is the solvent viscosity and T is the temperature. Let
to be the time for which the cluster diffuses a particle
diameter (d = 2a), that is, to = 2a2/3D. During the same



Figure 2: A log-log plot of the time evolution of the weight-average cluster size, Sw, for the Peclet numbers: (a) Pe = 1,
(b) Pe = 0.1, (c) Pe = 0.01 and (d) Pe = 0.001. In all four figures the labels of each of the curves: a, b, c and d,
correspond to the following depths: 500, 5000, 50000 and 500000, respectively.

time, the cluster drifts a distance ds = vsto = 1

3
Pe Nd,

where Pe ≡ mo(1 − ρ/ρo)ga/kBT is the Peclet number
of the individual colloidal particles in the fluid. The
Peclet number gives the sedimentation strength felt by
the particles, being a number much smaller than one for
most colloidal systems with a size generally smaller than
1µm. It is in fact not difficult to show that if the colloidal
particles are 1 µm in diameter, 1 − ρ/ρo is less than but
of the order of unity, and T is room temperature, Pe is
of the order of unity. However, if the diameter is 0.1 µm
such quantity is of the order of 10−4, while if the diameter
is 10 µm, Pe goes as high as 104. Therefore, 1 µm marks
the transition between diffusive and drifting behavior for
individual particles, with density different from that of the
medium.

The details of the algorithm are too long to be repro-
duced here. The interested reader is referred to Ref. [11] for
those details. The volume fraction was fixed at the value
φ = 0.001. We considered 4 depths: Z = 500, 5000, 50000
and 500000, measured in terms of the diameter. For each
of those depths, 5 Peclet numbers were considered: Pe =
0.0001, 0.001, 0.01, 0.1 and 1.0 . In turn, for each Peclet
number, a series of 10 simulations of 274625 particles were
made in order to have enough statistics to evaluate the

structural and dynamical quantities.

2. DYNAMICAL RESULTS

In Fig. 2 are shown the weight-average cluster sizes as a
function of time, Sw(t), for the Peclet numbers (a) 1.0, (b)
0.1, (c) 0.01 and (d) 0.001. As we can see in the figures,
Sw increrases with time, peaks at a certain time and
diminishes afterwards, a behavior that is in accordance to
what we saw qualitatively in Fig. 1. We also note in all
four figures that the deeper the layer we are considering,
the longer the time it takes to peak and the higher the
value at which it peaks, again in correspondance with
Fig. 1.

3. STRUCTURE

The addition of a gravitational field on the vertical z
direction in the colloidal aggregation problem, felt pre-
ferentially by the big clusters, introduces some degree
of anisotropy in the structure of these clusters, as we
will see below. It is therefore necessary to define and
study some anisotropy measures of the clusters before
trying to do a radius of gyration (Rg) vs size (N), log-log



Figure 3: All four figures correspond to the layer at Z = 500000 and Pe = 0.001. (a) A plot of the anisotropy measure
(see the text) Ayz vs the size. (b) A plot of Rgx vs the size. (c) A plot of Rgz vs the size. (d) A plot of Rg vs the size.
In Figs. (b), (c) and (d) the plotted radii are averages over all clusters inside segments of constant magnitude in the
logarithmic size scale N .

analysis, in order to see if it is possible to extract a fractal
dimension from such plots. Let us define the anisotropy
measures Axz ≡ < Rgx/Rg > / < Rgz/Rg > and
Ayz ≡ < Rgy/Rg > / < Rgz/Rg >, where Rgx, Rgy

and Rgz are the diagonal components of the radius of
gyration tensor, such that R2

g = R2

gx + R2

gy + R2

gz , and
where the average values are calculated over all clusters
inside segments of constant magnitude in the logarithmic
size scale. Note that for isotropic clusters, the measures
Axz and Ayz should be equal to one, up to the statistical
uncertainties. After studying the Axz and Ayz quantities,
we will make plots of not only < Rg > vs N , but also of
< Rgx > vs N , < Rgy > vs N and < Rgz > vs N , to find
any regions for which we have a power law scaling of those
quantities. Here again the averages of the different radii
are made over the same segments of constant magnitude
in the logarithmic size scale. We have found a whole
variety of behaviors for the structure of the clusters in this
problem, depending on the sedimentation strength (Pe),
the layer depth (Z) and the region of sizes considered.
Generally speaking, the four radii (Rgx, Rgy , Rgz and Rg)
scale as a power law with N , with the same scaling power,
for the small, non-settling clusters, except for a number

of cases with a high sedimentation strength: Pe = 1.0
for all depths and Pe = 0.1 for Z = 500000. In those
cases of cluster isotropy it is therefore possible to define
a cluster fractal dimension, This behavior shall be called
the quasi-DLCA regime, where the “quasi” means that,
as there is still some sweeping of even smaller clusters,
the fractal dimension is a little bit higher than the usual
DLCA df . For the large, settling clusters, we have found
cases for which (i) the four radii again scale as a power law
with N , with the same scaling power, making it possible
to define a settling-clusters fractal dimension, a behavior
that shall be called the sweeping scaling regime. There
are however cases for which (ii) the scaling powers for
the horizontal and vertical directions differ, obtaining
therefore self-affine settling clusters. There are still some
cases for which (iii) only the mean width or the mean
height scale as a power law with N , and even further cases
for which (iv) no scaling as a power law of the four radii is
obtained.

3.1 The sweeping scaling regime

This regime is obtained at deep layers and intermediate



Figure 4: All four figures correspond to the layer at Z = 50000 and Pe = 0.1. (a) A plot of the anisotropy measure Axz

vs the size. (b) A plot of Rgy vs the size. (c) A plot of Rgz vs the size. (d) A plot of Rg vs the size.

Peclet numbers; the deeper the layer considered, the
lower the Pe that can be used to attain the regime. In
our studies we have found this regime for Z = 500000
with Pe = 0.01, 0.001 and 0.0001, and for Z = 50000
with Pe = 0.001. In Fig. 3 we are showing the case for
Z = 500000 and Pe = 0.001. The anisotropy measure
Ayz is first shown in Fig. 3a. As we can see, Ayz stays
very close to one for all sizes up to about 10000, which
is therefore the upper bound in this case for trying to
obtain a fractal dimension from the log-log plots of the
four radii vs N . After this upper bound, the clusters
become definitely oblate. It should be mentioned that
for the anisotropy measure Axz we obtain a quite similar
plot, with the same upper bound. In Fig. 3b is shown
the log-log plot of the average radius Rgx vs N . After an
initial curvature, correspondig to the corrections to scaling
zone for small sizes, we obtain not one but two straight
lines, before the upper bound is reached. This means
that there are two zones for which we have scaling as a
power law of the Rgx with N , one defined by the arrows
labeled “a” and the other by the arrows labeled “b”. The
first one corresponds to the quasi-DLCA regime, with an
inverse of the scaling power equal to dfax = 1.842± 0.008,
while the second one has an inverse of the scaling power of
dfbx = 2.086±0.111. After the upper bound, the Rgx does

not scale with N as a power law. For the average radius
Rgy vs N a very similar plot is obtained, but this time
with dfay = 1.851 ± 0.010 and dfby = 2.003 ± 0.055. The
log-log plot of the average Rgz vs N is shown in Fig. 3c,
where we can extract the following inverses of the scaling
powers: dfaz = 1.847 ± 0.006 and dfbz = 2.044 ± 0.106.
Up to the statistical uncertainties, the scaling powers for
the “a” zone coincide as well as those for the “b” zone.
This means that it is therefore possible to obtain a fractal
dimension for each zone. This is done in Fig. 3d, where
we are plotting now the average Rg vs N . The inverses
of the scaling powers provide us now with the following
fractal dimensions: dfa = 1.852±0.005, which corresponds
to the quasi-DLCA regime, and dfb = 2.060 ± 0.049,
corresponding to what we have called the “sweeping
scaling regime” [8, 11].

3.2 Cases for scaling of the mean height or the

mean width only

We have found cases for which the mean height scales
as a power law with N while the mean width does not
and viceversa. The cases of scaling of the mean height
were for Pe = 0.1 with Z = 50000 and 5000, while those
of scaling of the mean width were for Pe = 0.01 with



Z = 50000, and for Pe = 0.1 with Z = 500. In Fig. 4 we
are showing the case Pe = 0.1 with Z = 50000. In Fig. 4a
we can see that the anisotropy measure Axz decreases
very soon from one, reaching values around 0.8, which
indicates somewhat elongated clusters. Afterwards it
starts increasing very rapidly, crossing one and reaching
values close to 3.0, which indicates this time very oblate
clusters. A very similar plot was found for Ayz. In these
cases of high Pe′s, the quasi-DLCA regime disappears,
hidden in the curvature of the zone of the corrections to
scaling. However, for the settling clusters we can see that
there is no scaling as a power law of the average Rgy vs

size, as shown in Fig. 4b. The graph is all curved, with no
possibility to define a straight line. A quite similar plot is
obtained for the average Rgx vs size. Notwithstanding this,
in Fig. 4c we can clearly see a zone of the settling clusters
with a well defined straight line, which indicates scaling as
a power law of the average Rgz vs N . The inverse of the
scaling power was found as dfbz = 1.927 ± 0.018, above
the DLCA fractal dimension. For the average of the whole
Rg vs N we see again a curved graph, with no possibility
to define a fractal dimension, as shown in Fig. 4d.

4. CONCLUSIONS

As it was seen, it is possible to devise an algorithm to
study the colloidal aggregation problem coupled with
sedimentation, that can provide us with the average

aggregation quantities at a fixed depth in the aggregating
prism. The higher value of the df for the sweeping scaling
regime comes, in our case, from the sweeping of the small
clusters by the large settling ones, which in turn occlude
the holes and cavities of these large aggregates, increasing
in this way their compacticity. Note that we cannot invoke
a restructuring mechanism since it is not built-in in our
model. Notice however that we have found a lower fractal
dimension (∼ 2.05) for the settling clusters than the one
found by the experimentalists (∼ 2.2) [6]. It is conceivable
that also a restructuring of the large clusters would make
them still more compact, helping to push its df up to
about 2.2 . However, some other mechanisms could be pre-

sent, like a sticking probabilitry lower than one (which
would increase the df ), the breakage of the clusters above
a certain size (which may also increase their df ), or the
inclusion of the hydrodynamic interactions (whose effect
on the df is unclear). As we have also seen, the present
problem is richer than the colloidal aggregation problem
driven purely by diffusion due to the whole variety of
anisotropic cases obtained.
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[9] A. E. González, Phys. Rev. Lett. 86, 1243 (2001).
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