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Abstract 2 Nonlinear Thermal Networks
) o ] The relation between the generated power density, ¢) and
A nonlinear projection-base approach for generating canpane temperatureise u(r, t) with respect to a fixed ambient tem-

models of nonlinear thermal networks is proposed. Thigerature, in a spatial regiof, is ruled by the heat diffusion
approach is an extension of Galerkin's method, based @puation

the theory of kernels. High accuracy for large temperature
variations and high compactness of the generated models can Ju
be obtained. o(r, u(r, t))ﬁ (r, 1)+

+ V- (=k(r,u(r,t))Vu(r,t)) = F(r,t) (1)
Keywords. Nonlinear Heat Diffusion Equation, Thermal . ) ] .
Networks, Compact Models in which ¢(r,u(r,t)) is the volumetric heat capacity,

k(r,u(r,t)) is the thermal conductivity anff(r, t) is the gen-
erated power density. Eqg. (1) is completed by the conditams
1 Introduction the boundary)(2 of Q and by the conditions at the initial time
Different methods have been proposed in literature for genegsstinmtggr;? géirir:][,)setr;\;l;re fisdr, ¢). Boundary conditions are
ating compact models of thermal networks when thermal con-
ductivity and volumetric heat capacity are independenton-t —e(r, u(r, t))au (r,1) = h(r, u(r, £))u(r, ), )

perature [1]. However as it has been shown in [2], for heat dif v

fusion in electronics component_ a_md packages, the temperath(r, u(r, t)) being the heat transfer coefficient an(t) the out-
dependency of thermal conductivity and volumetric heaBeap \yarg unit vector normal té2. The initial conditions for the
ity can be neglected only for small temperature variatidfs. temperature rise(r, t) are assumed to be zero.

large temperature \{ariationsinstead thetemperaturendimme As shown in [2], typical expressions of volumetric heat ca-
of thermal conductivity and volumetric heat capacity hab¢o pacity and thermal conductivity have the form

taken into account. In this case the question of generatng ¢
pact models of nonlinear thermal networks strongly ari3éss Beculrt) 3)

Is still an open guestion. The most common approach [3] L%/ith roper choices of parametersand3. For small values of
that of transforming the nonlinear heat diffusion equatido a brop P )

linear heat diffusion equation by means of a Kirchhoff'siga the generated power densitiér, ¢), the dependence on tem-

formation. In this manner the problem of generating a Compaﬁerature of volumetric heat capacity, thermal condudgtiaitd

model of a nonlinear thermal network is reduced to the prob—ealt exchange coefficient can be neglected and the heatidiffu

lem of generating a compact model of a linear thermal networ%rﬁgﬁ::et;ercomes linear. Otherwise the heat diffusion bl
However this approach is rigorous only for very particutemn As showﬁ in [7], linear heat diffusion problems satisfy the
perature dependences of thermal conductivity and volumetr ' P

heat capacity [4]. In the general case this approach is d}mpip.os't“.”ty’ reciprocity and pas§|V|ty p“’pe_“'es-_ Nordar heat
S ) L diffusion problems do not satisfy the reciprocity propetiut
cal and, as shown in this paper, usually introduces inac®sa

which cannot be controlled. In this case a different appnasc satisfy thepositivityandpassivityproperties.
needed. Property 1 (Positivity) For non-negative power densities

) ) o F(r,t), the temperature rises(r, t) are non-negative.
In this paper a nonlinear projection-base approach for gen-

erating compact models of nonlinear thermal networks is prdroperty 2 (Passivity) A non-negative functioriV (¢) exists
posed. This approach is an extension of Galerkin’s methosch that for each timg <t
based on the theory of kernels [5]. As shown in numerical re- t
sults, high accuracy for large temperature variations agti h W(te) < W(t1) +/ dt | F(r,t)u(r,t)dr. 4
compactness of the generated compact models can be obtained t1 Q

A nonlinear thermal network can be defined from the nonlin-

The rest OT this paper is organized as follows. In SeCliofy heat diffusion equations by introducing the powers &ed t
2 and 3 nonlinear thermal networks are introduced. Comp perature rises measured at its ports, as with a lineentie
models by Kirchhoff’s transformation are discussed in isect network. The port powers, (1), with i — 1 n. elements of
. % (1), =1,...,n,

4. Galerkm's method and the nonlinear prOJ_ectlon gpprdach column vectoP (¢), determineF (r, ) as
generating compact models are presented in sections 5,6. Nu
merical results are shown in section 7. F(r,t) =T (r)P(2). (5)
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in which f(r) is a column vector of shape functions(r), Temperature rise(0) remains finite only for
with ¢ = 1,...,n. The port temperature ris€g;(t), with
i=1,...,n, elements of vectdI'(¢), are defined by P< 2 %
[
T(t) = / g(r)T'(r,t)dr. (6)  Otherwise no solution exists. .

7 Moreover, while in the linear case the analytic form of the
in whichg(r) is a column vector of shape functiopgr), with  solution of heat diffusion equation is known, in the nonéine
i = 1,...,n. The resulting nonlinear thermal network in gencase the analytic form of the solution is in general unknan.

eral does not preserve the positivity and passivity pragedf  significant exception is the particular case in which
the nonlinear heat diffusion property. However if
c(r, u(r,t)) = c(r) f(u(r,t)),

f(r) >0,
g(r) 2 0, k(v u(r, t) = k(x) f(u(r,t),
itivi i i u(r,t)
the positivity property is preserved in the form h(r, u(r. 1)) = h(r) 1 / F(r)dr.
Property 3 (Positivity) For non-negative power®(t), the u(r,t) Jo

temperature rise'(¢) are non-negative. f(7) being a positive function. By Kirchhoff’s transformation

Besides if w(rd)
f(r) = g(r). @) v(r,t) = /0 f(r)dr (9)
the passivity property is preserved in the form the nonlinear heat diffusion equation irr, ¢) is transformed

Property 4 (Passivity) A non-negative functiori¥ () exists into the linear heat diffusion equationirir, t)
such that, for each timg < ¢,

ta c(r)@(r,t) + V- (=k(r)Vu(r,t)) = F(r,t) (10)
W (t2) < W(t:) + / T (1)P(t) dr. (8) ot
t with boundary conditions
As shown in [7], preserving the Passivity Property 4 is calici
when using thermal networks in coupled analysis, such as in —k(r)@(r,t) = h(r)v(r,t)
electro-thermal simulations. v

The heat diffusion equation is a much more complex problegnd zero initial conditions. The solution to the nonlineaah

in the nonlinear case than in the linear case. In fact in giiter diffusion equation is then obtained by inverting Eq. (9) as a
cannot be even assured that the nonlinear thermal netwsré hgunction ofv(r, t)
solution, as shown in the following example.
u(r,t) = K(v(r,t)).
Example 1
Let ©2 be a cylinder of lengtiL along directionz, aread, and The nonlinear thermal network has thus equations

thermal conductivity Flet) = £7(0)P(0)
r,t) = r t),

ke au(x)
nw=4ngwmw»

)

with o < 0. PowerP is uniformly dissipated within the slab.

On the lower face of the boundaf}{? the temperature is set to 3 Nonlinear Discretized Thermal Networks

the ambient j[emperature. On the _rest (.)f the b?unMIythe The heat diffusion equation, in discretized form, is
thermal flux is set to zero. By using Kirchhoff’s transforma-

tion of Eq. (9), the stationary temperature rise distribnti(x) du
within © can be computed in closed form to be (u(t))— (1) + K(u(t))u(t) = F(?) (11)
u(z) = L log (1 + & L <1 _ (£)2> p> 7 in which the M ><_1 vef:toru(t) is formed_ by the degrees of
«Q 2 Ak L freedom for the discretized temperature rise. Tliex M ma-

tricesK(u(t)) andC(x(t)) are the stiffness and mass matrices
respectively, at least in finite elements. Thex 1 vectorF(t)
o2 (% ﬁ P) ’ is the discretized power density.

and the nonlinear thermal network is ruled by

« We note that it can be written
in which M
—3 Clu(®)) = ) _. vi(el u(t)) C; (12)
arctan 1475 1
1(8) =1 2, o
B K(u(t) = > ri(e]u(t)) K;, (13)
1+ 1



in which C;, K; are M x M symmetric positive semi-definite
matrices,;(-), x;(-) are positive functions and; is thei-th
column of thel 5, identity matrix, withi = 1..., M.

4 Compact Models of Nonlinear Thermal Networks by
Kirchhoff’s Transformation
Compact thermal networks are lumped models of thermal net-

Only with careful choices of the discretization scheme theorks with much lesser freedom degrees than discretized the

discretized heat diffusion equation preserves the Pdagitirop-
erty in the form

Property 5 (Positivity) For non-negative discretized power
densitiesF(t), the discretized temperature risest) are non-
negative.

However all stable discretization schemes have symmatse p
tive definite stiffness and mass matrices, which assureBdke
sivity Property in the form

Property 6 (Passivity) A non-negative functiori¥/ () exists
such that, for each timg < t,

W(t2) < W(t1) + /tz u? (H)F(t) dr.

t1

(14)

The thermal network, in discretized form, has equations
F(t) = FP(¥)
T(t) = GTu(t),

(15)
(16)

F and G being M x n matrices. If Positivity Property 5 is
satisfied and if

then also the discretized thermal network satisfies Pdgitiv
Property 3. If Passivity Property 6 is satisfied and if

F=G (17)

then the discretized thermal network satisfies the Pag$tvip-
erty 4

In the particular case in which the nonlinear heat diffusio
equation can be transformed into a linear heat diffusiorbpro
lem by Kirchhoff’s transformation, instead of discretigithe
nonlinear heat diffusion equation (1), the transformeddindif-
fusion equation (10) could be discretized in the form

dv

c=
dt

) + Kvu(t) = F(t), (18)

mal networks. In the linear case, various effective appneac
have been reported in literature for generating compactaisod
of thermal networks. However in the nonlinear case only a few
attempts have been reported in literature [2, 3, 6].

In case the nonlinear heat diffusion problem can be trans-
formed into a linear heat diffusion problem by Kirchhofffams-
formation, the nonlinear thermal network can be discretias
in Egs. (18), (20), (21). In this way the problem of genemgtin
a compact model of the nonlinear thermal network is reduced
to the problem of generating a compact model of the lineatr hea
diffusion Egs. (18), (20). The resulting compact thermat ne
work however cannot be assured to satisfy the Passivity-Prop
erty 4.

In the most general case, in which Kirchhoff’s transforma-
tion is not applicable, the most common approach is that of ap
proximating the nonlinear heat diffusion problem by a diiet
nonlinear heat diffusion problem to which Kirchhoff’s tsfor-
mation is applicable. However this approach usually infaz
errors which cannot be eliminated, as shown in the following
example.

Example 2
Let Q be a cylinder of length. along directionz and areaA.
For0 < z < L/2 thermal conductivity is

keau(z)’
with o < 0, while for L/2 < x < L thermal conductivity is
k. PowerP is uniformly dissipated within the cylinder. On the
lower face of the bounda§f2 the temperature is set to the am-
bient temperature. On the rest of the bounda@ythe thermal
flux is set to zero. The stationary temperature rise distidiou
g (z) within  can be determined in closed form to be

1 3aLp 1ol 1 X 2 L

alog(e“" * oAk <z—(z)>P>v vsy

ule) = 1lal 2 L
[0 x

——(1- > =,

<1 ( ))P’ =3

2 Ak

which is shown in Fig. 1. The nonlinear thermal network igthe

in which theM x 1 vectoru(t) is formed by the freedom degreesruled by

of v(r, t). The discretized temperature rise veatgt) is then

M
u(t) = > K(elv()) e (19)
Moreover
F(t) =FP(¢) (20)
M
T(t) =) K(e[v(t) (G e;) (21)

1 al
T > I (E P) ,
in which

-3
arctan , [ —————
7 B+ 8esh

-3
B + 8eif

We note that Eqgs. (18), (20), (21) define a thermal networks shown in Fig. 2.

which, as it can be verified, can be assured to satisfy the PosBoth this temperature rise distribution and this nonlinear
itivity Property 3 but cannot be assured to satisfy the Rdgsi thermal network are now approximated by the nonlinear heat
Property 4. diffusion problem of Example 2 to which Kirchhoff’s equatio
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Figure 1: Exact and approximated stationary temperatsee ri

distribution for L = 1 mm, A = 0.1 mn?, k = 150W/m K,
a=-4mK™', P="7W.
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5 Compact Models of Nonlinear Thermal Networks by
Galerkin'sMethod

As shown in [7], compact models dihear thermal networks

can be effectively generated by Galerkin's method. In thiht

nique, firstly the discretized temperature rise distribatin Eq.

(11) is approximated by

u(t) =~ Ua(e), (22)

in whichU is a propetM x 7i» matrix andi(t) is ari x 1 vector
of freedom degrees. Secondly Egs. (11), (15), (16) are ghegje
onto the space spanned by the columnBloft results in

O+ Ka(t) = F(1) (23)
and

F(t) =FP(t) (24)
T(t) = GTa(t), (25)

in which
¢ =u"cu, (26)
K = UTKU, (27)
F=U’F. (28)
G =U"aG. (29)

If the discretized nonlinear thermal network satisfies tlas-P
sivity Property 4 also the compact model satisfies the Passiv
ity Property 4. In general the Positivity Property 3 of the-di
cretized nonlinear thermal network is not preserved by tirac
pact model. Effective methods have been proposed in litezxat
for choosing thdJ matrix in such a way that accurate compact
models of small state-space dimensirare obtained, such as
Multi-Point Moment Matching [7].

Galerkin’s method can be applied not only to linear but also
to nonlinear heat diffusion problems, proceeding as in][8i1®
this way accurate compact models can be obtained also in the
nonlinear case. However the following two questions arise:

1. An effective method is needed for choosing®thenatrix in
such a way that accurate compact models with small state-
space dimensior are obtained.

2. ltresultsin
C(a()) = UTCc(Ua(t))Uu

A~

K(i(t)) = UTK(Ud(t))U.

Figure 2: Exact and approximated characteristic line of-non

linear thermal network fol. = 1mm, A = 0.1 mm?, k =
150W/mK, o = —4 mK™*,

is applicable. Thex parameter of Example 2 is substituted b

Thus the cost of evaluating t@(i(t)) and K (i(t)) ma-
trices in the compact model iotin general reduced with
respect to the cost of evaluating the matri€&s1(¢)) and
K(u(t)) in the discretized thermal network.

Some proposals have been given in literature for answering

ythese two questions [9, 10]:

a/2 in order to maximize accuracy. The resulting approxima- 1. Columns ofU are introduced in correspondence to values

tions are shown in Figs. 1, 2. [

A novel approach for generating compact models of non-

linear thermal networks is thus needed.

of u(t) at different time instant$ and for different pow-
ersP(t). As a result, the number of columris of the U
matrix and equivalently the state-space dimension of the
compact model tends to be large.



2. TheC(u(t)) andK(u(t)) matrices in the discretized heat In order to generate the compact model of the nonlinear dis-
diffusion equations are substituted by approximations iaretized thermal network, a nonlinear projection of Eqsl)(1
such a way that the cost of evaluatifgii(¢)) andK (i(t))  (15), (16) isproposed It results in
is reduced with respect to the cost of evaluat@iu(t)) ) d ) )
andK (u(t)). Inthis way however the compact model can-  C(i(t)) —q(a(t)) + K((t)) g(a(t)) = F(a(t))P(t),

. - dt
not be assured to satisfy the Passivity Property 4. T(t) = GTq(a(t)),

6 Nonlinear Projection-Based Approach in which

As shown in Section 3, a nonlinear heat diffusion equation .

which can be transformed into a linear heat diffusion proble C(a(t) = Q" (a(t))C(a(ta(t))),

by Kirchhoff’s transformation can be discretized as in H3s8), K(u(t) = QT (a(t))K(q(a(t))),

(20), (21). Thus by applying Galerkin’s method to linear Eqs L Tra

(18), (20), it follows Fa(t)) = Q (a))F.

ol(l) ~ Yo (), The M x m matrix Q(ii(¢)) is chosen as

p AT A

in whichY has a small number of columns. Then from Eq. (19) Q(a(t)) = Z K( i u(t)) v (32)

it results in i (afa(t)) '

u(t) ~ f: K(YTe))Ta(t)) e. (30) We note thatQ(t(t)) is well defiqed sinceK(:v)./:v has the
i same order of1 for x — 0. As it can be straightforwardly

' proven, with this choice of)(ii(¢)) a compact model is ob-

Thus in generah(t) cannot be approximated by Eq. (22), agained which preserves Passivity Property 4.
in Galerkin’s method, with a small number of freedom degrees Moreover it results in

Instead it can be approximated by a nonlinear expressidnavit .

small number of freedom degrees. A d .. o d LT A L
Thus for a general nonlinear heat diffusion problem piis- Ca(t)) ga(() = Xl:z al (ui u(t))

posedto approximatei(¢) by a nonlinear function, of the form

suggested by Eq. (30), oK (aTa®t) )
. : C t
Zj (ﬁTA(t)) Vz (q(u( )))VJ
p 1 J
q(a(t)) = ) K (87a(t) vi|, (31) N L
21; K(a()q(a() = ) K (afa() o
1
in whicha; andv; arerh x 1 andM x 1 vectors respectively, P (6Ta
with i = 1,...,p. The theory of kernels [5] assures that the ( ; 0 )) T i
~Fn v; K(q(u(t)))v;
expression given in Eq. (31) can be used to approximate gener J (uj (’5))
nonlinear functions. To this aifi{ (-) is assumed to begositive K ( zTﬁ(t))

1
P N
. ua; .
semi-definite kerndb]. Besides, as in Eq. (30), it is assumed F(a(t)) = Zl @) (v F)
that K (z) has the same order ok for = — 0. Hereafter 1 !
this property will turn out to be crucial. For instance it ihle  Besides

assumed N PPN
o GTq(a(t)) = G(a(t))a(t)
e —1
K(z) = ———, in which
« being positive. Function(i(t)) in Eq. (30) is determined by G(a(t) = zp: K (afa(t)) a:(vI G)
means of the following three steps: i (ala(t)) E

1. Arepresentativa(t) is evaluated at representative time in- Thus, as with Galerkin’s method, the cost of evaluating the

stants. In this way th@/ x 1 vectorsu; withi = 1...,p  C(a(t)) and K(i(t)) matrices in the compact model it

are determined. in general reduced with respect to the cost of evaluating the
matricesC(u(t)) andK(u(t)) in the discretized thermal net-
work. In order to remove this drawback, approximations &f th
yr(eFu(t) andsky, (e] u(t) functionsin Egs. (12), (13) are intro-
duced, withh, = 1..., M, by means of a nonlinear regression
method, such as Support Vector Machine [5]. Thus

2. A nonlinear dimensionality reduction method, suchLas
cally Linear Embeddindg11], is used to determine the
m x 1 vectorsii; corresponding to tha/ x 1 vectorsu,,
with i = 1...,p. In this step then x 1 zero vector is
imposed to correspond to the x 1 zero vector.

p
3. A nonlinear regression method, such Sspport Vector yr(efu(t)) ~ Z H(ala(t)) mur, (33)
Machine[5], is used to determine th&/ x 1 vectorsv; "
of Eq. (31) in such a way that thg(¢)) function approx- P
imatively map then x 1 vectorsi; into the M x 1 vectors kn(eju(t)) ~ Zk H (] (t)) nak, (34)
1

u;.



in which H(-) is a positive semi-definite kernel, such as
H(z) = e,

« being positive. In this way

vIC(a(a(t)v; ~ Y- H(@la) - vI e,
1
VIK(a(@)v; ~ 3 H@la() v Kev,

in which, fork =1,...,p,

M
Ck Zh Crmnk,
1

M
Ky = Zh Chrnnk
1
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and the cost of evaluating the compact model is reduced to
O(p?) flops. If the functions introduced in Egs. (33), (34) are
assured to be positive the Passivity Property 4 is presdryed

the compact model.

7 Numerical Results

A simple application example has been considered. (L&
a cube whose edge has lengdr2m. On the lower face of2
the temperature is set equal to ambient tempera&00&. On

the rest of the boundar§(2 the heat flux is set equal to zero.

The volumetric heat capacity is assumed to1b&Im—3K 1.
The thermal conductivity is assumed to be given by Eq.
with 3 = 10°Wm~—'K~! anda = —1072K~!. PowerP(t)

is uniformly dissipated in a cube of length- 10~2m beneath

(3]

[4]
(3)s]

the upper face of). A passive nonlinear thermal network has [6]
been defined by defining(¢) according to Eq. (7). The heat
diffusion equation problem has been discretized by means of

21952 unknowns. A numbep = 12 of discretized temper-
ature rises, belovs00K, have been selected from the therma

171

responses to different power steps. By means of the nomlinea
projection approach, a nonlinear compact model of staéeep
dimensionn = 4 has been determined. A relative error smaller

than1% in the power step thermal responses of the thermal netg] J. R. Phillips, “Projection-based approaches for madel

work has been observed, for temperature rises béliK, as

shown in Fig. 3.

8 Conclusion

In this paper a nonlinear projection-based approach foegen [9]
ating compact models of nonlinear thermal networks has been

proposed. In the numerical results, high accuracy for léege

perature variations and high compactness of the generaidd m

els have been obtained.
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