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Abstract 2 Multi-Port Dynamic Thermal Networks
In this paper it is shown that multi-port dynamic thermaln a boundedspatial regiorf2, the relation between the power
networks admit four canonical representations which gaimer  density F'(r, t) and the temperature risgr, t) with respect to
the four canonical representations of passive lumped R&nbient temperature, functions of the position veetand of
networks: Foster | and Il canonical forms, Cauer | and Caler the time instant, is ruled by the heat conduction equation
canonical forms. In particular the generalized Foster beécal 5

u

form is equivalent to the time-constant representation thed V- (—k(r)Vu(r, t) + c(r)=(r,t) = F(r,t), (1)
generalized Cauer | canonical form is a passive multi-coetau ot
RC transmission line. in which ¢(r) is the volumetric heat capacity aridr) is the

_ ) i thermal conductivity. Eq. (1) is completed by conditionstbe
Keywords: Multi-Port Thermal Networks, Time-Constanty, ndary of, 90, and by initial condition for the temperature

Representation, Structure Function. fiseu(r, t). The boundary conditions, assumed of Robin’s type,
1 Introduction are du
Thermal networks are widely used for modeling heat diffasio _k(r)g(rv t) = h(r)u(r,t), @)

in components and packages. At first thermal networks have

: : U in"which h(r) is the heat transfer coefficient andr) is the
been proposed for modeling static heat diffusion [1]. Mare ' outward unit vector normal to<. Hereh(r) is notassumed to

cently thermal networks have been proposed also for mcgiehBe identically zero ovedQ, that is pure Neumann’s boundary

dynamic he"%t diffusion [2’.3].' . conditions are excluded. The initial condition is assuneebe
The question of determining the canonical form®oé-port ero

dynamic thermal networks has been considered in [2, 4-6]. %t
has been shown thpaissiveone-port dynamic thermal networks u(r,0) = 0. ©)
admit four canonical forms which are the generalizatiorfsax-

ter I, Foster Il, Cauer | and Cauer Il canonical forms of passi This is by no means a limitation. In fact any heat diffusioalpr
one-port RC lumped networks. In particular the generalizddm with non-zero initial condition

Foster | canonical form is equivalent to the time-constapt r

resentation [4,5], while the Cauer | canonical form is eglént u(r,0) =U(r)

to the structure function representation [2, 5, 6] ) )

The question of determining canonical forms of multi-porfnd power density”(r, ) can be represented by an equivalent
dynamic thermal networks has not been tackled in literagate €at diffusion problem with zero initial condition and pawe
In this paper it is shown that all the results proved for passi density
one-port dynamic thermal networks can be extended to passiv
multi-port dynamic thermal networks. As a result the Foster
Cauer |, Foster Il and Cauer Il representations of passivlﬁ-mu The heat diffusion problem defined by Egs. (1), (2), (3), sat-
port RC Iumpe_d networks are extended one-port to mult|—poir§ﬁes the following main physical properties:
passive dynamic thermal networks.

In particular the generalized Foster | canonical form isiequ Theorem 1 (Passivity) A non-negative functioiV (¢) exists
alent to the time-constant representation. Besides thergen such that, for each timg < t,,
ized Cauer | canonical form is a passinaulti-conductorRC "
transmission line. _ _ Wits) < W(t) +/ dt [ P, tyu(r,t) dr.

Itis also shown how all multi-port dynamic thermal networks t Q
can be represented by passive multi-port dynamic therntal ne ) )
works. Thus the four canonical forms of passive multi-porf h€orem 2 (Reciprocity) Letu, (r, s), ua(r, s) be the Laplace
dynamic thermal networks can be applied to all multi-port dytransforms of the temperature rises due to the power dessiti

F(r,t) 4+ c(r) U(r)(t).

namic thermal networks. whose Laplace transforms afg (r, s), Fa(r, s) respectively. It
The rest of this paper is organized as follows. In Section &Sults in

multi-port dynamic thermal networks are introduced. In-Sec

tions 3, 4, preliminary results on passive multi-port dymam /QFl(r, s)uz(r, s) dr = /Q Fa(r, s)ui(r, s)dr.

thermal networks are presented. The four canonical forras ar
shown in Sections 5, 6 and 8, 9. An application example is pre- A multi-port dynamic thermal network can be defined from
sented in Sections 7 and 10. the heat diffusion problem, by introducing the powers are th
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temperature rises measured at its ports. The pou®fs), and
with i = 1,...,n, elements of column vectd(t), determine .

F(r,t) as F(r,t) = gT(I‘)P(t) )
T

Fir,t) = £ (r)P(?) “) T() = / &(r)u(r, 1) dr (10)
in which f(r) is a column vector of shape functiofigr), with Q
i = 1,...,n. The temperature ris&j(t), withi = 1,...,n, The passive-port dynamic thermal network is then the connec-
elements of column vectd¥(¢), are defined by tion of a multi-port transformer [7] defined by Egs. (7), (8) t

a passivei-port dynamic thermal network, defined by Egs. (9),
T(t) = / g(r)u(r,t) dr. (5) (10), withn < n linearly independent shape functions.
Q

3 Solutions of Passive Multi-Ports Dynamic Thermal Net-
works

The solution of Egs. (1), (2), (3) can be expressed by theseri

expansion [5]

in whichg(r) is a column vector of shape functiopgr), with
i1=1,...,n.

The multi-port dynamic thermal network defined by Eqgs. (1)
(5) in general does not preserve the main physical projseufie

the heat diffusion problem: reciprocity and passivity. Hwar 0
these physical properties are preserved if T(r,t) = Zj a;(t)z;(r) (11)
1
f(r) = g(r). ©) in which z; (r) are the eigenfunctions of the eigenvalue problem
In fact in this case it results in associated to the thermal problem
Theorem 3 (Passivity) A non-negative functiodV (t) exists V- (=k(r)Vz;(r)) = Aje(r)z;(r) reQ, (12)

such that for each timg, < ¢, with boundary conditions

ta
0z
W (t2) < W (t) + /t 1 PY(1)T(t) dt. —k(r)a—zyj(r) = h(r)z(r) reor (13)
Theorem 4 (Reciprocity) Let Ty(s), Ta(s) be the Laplace The eigenvalues; are real, positive and constitute a divergent,
transforms of the temperature rise vectors due to the power v Monotonically increasing sequence. The eigenfunctigis)
tors whose Laplace transforms afg (s), P2(s) respectively. It are real functions of position satisfying the orthonorryaigla-
results in tions

P (5)Ta(s) = P3(s)T1(s).
/ c(r)zj(r)zg(r) dr = 0, (14)
As shown in [5] limitedly to the case of one-port dynamic @
thermal networks, only if passivity and reciprocity holchoa-  in which ;5 is Kronecher’s delta. Coefficients (¢) in Eq. (11)
ical forms of dynamic thermal networks can be given. Thuare solutions of equations
hereafter it will be assumed that Eq. (6) holds or equivéyent
that the multi-port dynamic thermal network passive It can iaj(t) + \jaj(t) = / z;(r)G(r,t) dr, (15)
be observed that this is not a limitation. In fact a multi{py- dt Q
namic thermal network whose powers are defined' ey and
whose temperature rises are definedslfy) has port responses
equal to a subset of the port responses of the passive nuutti-p
dynamic thermal network whose shape functions for both pow- it /

- . i(t) = g i t)d

ers and temperature rises are all tistinct elements off (r) a;(t) = - Q 23(r)G(r, 1) dr,
andg(r). As a result, a generig-port dynamic thermal net- .

work can always be substituted by a passNeport dynamic in which % is the convolution operator in the time domain.
thermal network withn, < N < 2n The solution of the passive multi-port dynamic thermal net-

Hereatfter it is also assumed that the shape functiofigin= work can then be expressed as follows. From Egs. (4), (16) it

with zero initial conditions. The solutions to these ifitralue
problems are

(16)

g(r) arelinearly independentAgain this is not a limitation. In results in

factif f(r) = g(r) are linearly dependent, it results in a;(t) = e M« FJTP(LL). (17)
g(r) = Rg(r), in which

in Wh_ich g(r) is a vector ofin < n linearly inglependent shape T, = / 2;(r)g(r) dr. (18)

functions andR is ann x 7 rectangular matrix. Thus it results

in

From Egs. (5), (11), it results in
T(t) = RT(t) @) oo
P(t) = R7P(t) ®) T@) = XI:J. Tja;(t). (19)



Thus substituting Eq. (17) into Eq. (19), it follows 2. Poles ofY(s) are simple, real, negative and form a diver-
ent, monotonically decreasing seque s — 2, ...
T(t) = Z(t)  P(t) g y g sequenqge, —(io
) ) 3. The residues at the poles ¥{s)/s are real, symmetric,
in which positive semi-definite.

/
|

Z(t) = i . ]_-\jl-\?efAjt (20) 4. On the positive real axi¥’ (o) is symmetric, positive defi-
j .
1

nite.

is the power impulse thermal response mattkthe passive As a consequence of Theorems 5 and 6, a multi-port passive

multi-port dynamic thermal network. Taking the Laplacewsa distributed thermal network can be approximated at- 0 by
form of Eq. (20) it also follows the parallel connection of a passive resistive multi-pod a

passive capacitive multi-port and @at— co by a passive capac-
T(s) = Z(s)P(s) itive multi-port, as stated in the following

in which Theorem 7 Ats — 0, theZ(s) impedance matrix converges to
o p.pT the impedance of the parallel connection of a passive iesist
Z(s) = Z ZJ7g (21) multi-port of resistance matriR, and of a passive capacitive

is+A multi-port of capacitance matri&,, being

is thethermal impedance matriof the multi-port dynamic ther- Ry = Z(0), (22)
mal network. Co = Y'(0). (23)

4 Preliminary Results on Passve Multi-Port Dynamic  Theorem8 For s — oo with o > 0, the Y(s) admittance
Thermal Networks _converges to the admittance of a passive capacitive maiti-p

Passive multi-port dynamic thermal networks are a gensxali of capacitance matrix

tion of passive multi-port lumped RC networks. In fact their

. ; . . o Y
impedance matrices satisfy properties common to passili& mu C. - lim (s) ) (24)
port lumped RC networks. so0  § 500

Theorem 5 The R, matrix, theC, matrix and the inverse df ., matrix

1 d 7 ith s — o icand are hereafter referred to respectivelytatal resistance matrix
- Impedance r;at_:_lh (5) W]it § =0 Fiwlissymmetricand 5| capacitance matriandtotal elastance matrixf the pas-
positive real7]. That is, foro > 0, sive multi-port dynamic thermal network.
Z(f) 'S a_nalyuq 5 Generalized Foster | Canonical Form
Z(5) = Z(s), As a conseguence of Theorem 5

ReZ(s) is positive definit
(s)isp . Theorem 9
in which the bar indicates the complex conjugate operator. o o
_ rj _ €j
2. Poles ofZ(s) are simple, real, negative and form a diver- Z(s) = Zj 1+s/)\ Zj 5+ A (25)

gent, monotonically decreasing sequence, — s, . . .. L L

3. The residues at the polesdfs) are real, symmetric, pos- in WhiChrj = e;/\; are real, symmetric, positive semi-definite
itive semi-definite. matrices.

Eq. (25) defines an infinite network composed of ideal trans-
formers, passive resistors and passive capacitors whinkrgke
izes the Foster | canonical form of a passive multi-port lechp

Since the shape functions defining the passive multi-port dRC network [7]. The resistance matrix of the series conoesti
namic thermal network are linearly independent, an admita of the passive resistive multi-ports havingresistance matrices
matrix Y (s), inverse ofZ(s), exists. Such admittance matrixis the total resistance matriR,. Thus the generalized Foster |
satisfies the following properties common to that of passivganonical form defines partial resistance matriceRgf Simi-
multi-port lumped RC networks. larly the elastance matrix of the series connections of #esipe
capacitive multi-ports having; elastance matrices is the total
elastance matrix, inverse @,. Thus the generalized Foster |
1. Matrix Y (s) is symmetricand positive real7]. Thatis for canonical form defines partial elastance matrices of therses

o>0 of C,. The Foster | canonical form can be defined by ¢he
mulative resistance matrix

4. Onthe positive real axis Z' (o) is symmetric, positive def-
inite.

Theorem 6

Y (s) is analytic,

Y(8) =Y(s), RN =D rHA-N),
ReY (s) is positive definite L



H(-) being Heaviside’s step function, equivalent to the time- Thus from Eq. (27) and Egs. (22), (23), (24) it results in

constant representation [4] or by tbamulative elastance ma-
trix

EN) = i.ejH()‘ = Aj)-
1

J

6 Generalized Foster |1 Canonical Form
As a consequence of Theorem 6, the admittance m3),

can be represented as follows

Theorem 10

5 1
L | 3 E]
ROZ_ )
kA % %
3.0
CQZLAC )
0o 2
5
20
C, = LAc -
0 3

The generalized Foster | and Il canonical forms of this ther-
mal network can be determined analytically in closed form.

SCj

Ty 2

Y(s):sCoo—i—Ral—i—Z
1

in whichc; are symmetric positive semi-definite.

Eq. (26) defines an infinite network composed of ideal trans-

formers passive resistors and passive capacitors whichrgen ) ;=

izes the Foster Il canonical form of a passive multi-port e

RC network. The resistance matrix of the passive resistive
multi-port isRy. The capacitance matrix of the passive capac-
itive multi-port is C.,. The capacitance matrix of the parallel
connections of the capacitive multi-ports havi@g, andc; ca-
pacitance matrices is the total capacitance majx Thus the
generalized Foster Il canonical form defines partial capaces
of the total capacitance matr®,. The Foster Il canonical form
can be defined by theumulative capacitance matrix

C(\) = Cu + ij ¢ HO— py).

and byRy.

L2

c

Determining the Mittag-Leffler's partial fractions expa&ms of
K(p), the Foster | canonical form follows

(4k + 1) j=3k+1,

k
w24k +2)% j=3k+2,

L2c
—— 4k +3)* j=3k+3
L2c ’
L 64 11
= = i =3k+1
kA mi(4k +1)4 | 1 1] J b
e L 64 |11 _
&)L 6 =3k +2
TN T VFAT@ 2 | 11 SRS
L 256 [ 1 -1
= =2 i =3k+3
KA mi(dk + 37 | —1 1] IO

k being any natural number. THR(\) cumulative resistance

matrix defining the Foster | canonical form is shown in Fig. 1.

7 Application Example: Part |

A cylinder © of length L, areaA, thermal conductivityk and
heat capacity is considered. The power3 (t), P»(t) are uni-
formly generated within the lower and upper halves of théne
der respectively. On the lower and upper face of the bour
0 the temperature is set equal to the ambient temperatur
the rest of the bounda(? the thermal flux is set to zero. A
cording to Eg. (6), the mean temperature rises in the lowd
upper halves of the cylinder are tfig(¢) and75(t) temperatur
rise of a passive 2-port dynamic thermal network.

The thermal impedance matrix is

L L3¢

kA kA
I
0.1 o
008 | " 4
kA k
e

0.06

50

100 150 200 250
L?c
k

300

350 400 450 500

in which
w1 FF) () 1 () - (%
DY =01 p 0y f () () o (2
4 2 4 2
and

Figure 1: R(\) cumulative resistance matrix defining Foster |
canonical form.

The admittance matri¥ (s) is

Y(s) = % H (%%) (28)



s by equations

0.7 T T

1 1
I 7 Vi ' e R Z—Z(x, s) = —r(x)l(z, 5) (29)
O'Srr_—'* ) e(w)%(x, s) = —sV(z,s) (30)
" in whichV(z, s), I(z, s) are the Laplace transforms of the volt-
03l . age and current x 1 vectors atc andr(x), e(z) are symmetric,
positive semi-definit@ x n matrices representing the resistance
02 : : ' ' : 1 matrix density and the elastance matrix density of the line a
ol | By introducing the impedance matré(z, s) at each: along
' RIS S the line, Egs. (29), (30) can be reduced to the single Ritgpt
. . LAe . LA L matrix equation
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Le, oz
k %(x, s) +r(z) = sZ(x,s)e’ (2)Z(z, s), (31)
Figure 2:C()\) cumulative capacitance matrix defining Foster lin which + is the pseudo-inverse operator. Thus, if the output
canonical form. port of the line is short-circuited, the impedance maRix, s)

and, in particular, the input impedance matrix

in which Z(s)=12(0,s) (32)
1@ n 1\/5 1\/5 _ 1@ can be determined by solving Eq. (31) with boundary conlitio
iy = f (17) f(lT) f(lT) f(lf) 2(7,5) = 0. (33)
08 IO 108 Tl | e e oot o e

short-circuited, a passive multi-conductor RC transroissine
Determining the Mittag-Leffler's partial fractions exp@msof  an pe determined, by solving Egs. (31), (32), (33)far) and
H(p), the Foster Il canonical form follows e(z). In this way, as a consequence of Theorem 5, the following
result can be proved

2
T2c (262k41)" J =3k +1, Theorem 11 The Z(s) impedance matrix of a passive multi-
N port dynamic thermal network is the short-circuit input
=1 — (26o42)® j=3k+2,, |_mpedance matrix of a passive multi-conductor RC transpniss
Lc line ruled by Egs. (29), (30).
k- (4541)% j=3k+3 Thus passive multi-port dynamic thermal networks can be rep
L2c ’ resented by passive multi-conductor RC transmission livitts
1 11 , short-circuited output ports. This is the generalizatibCauer
LAc 2 111 J=3k+1, I canonical form of passive multi-port lumped RC networks to
2kt passive multi-port dynamic thermal networks.
1 1 1 _ As shown in [5], with passive one-port dynamic thermal net-
¢cj = § LAc &2 11 J=3k+2,, works, the RC transmission line is not uniquely determined.
k2 Similarly with passive multi-port dynamic thermal netwsrk
1 1 -1 , the multi-conductor RC transmission line is not uniquely de
LAc = J=3k+3, termined.
Sopr | 11

Such passive RC multi-conductor transmission line defines
partial resistance matrices of tli, total resistance matrix and
can be decomposed into the shunt connection of a passive-capa
itive multi-port of capacitance matri€ ., and a second passive
tang; = &;. multi-conductor RC transmission line.

k being any natural number arfg being thej-th positiveroot
of the equation

The C()\) cumulative capacitance matrix defining the Foster 19 Generalized Cauer 11 Canonical Form

canonical form is shown in Fig. 2. As a consequence of Theorem 6, it can be proved that a con-
_ _ tinued fraction expansion can be performed for the impeeanc
8 Generalized Cauer | Canonical Form matrix Z(s) of a passive multi-port dynamic thermal network,

Let us consider a passivaulti-conductoRC transmission line exactly as when determining the Cauer Il canonical form of a
of lengthz in thex dimension described at a complex frequencpassive multi-port lumped RC network [7].



Theorem 12 Given the impedance matriZ(s) of a passiv
multi-port dynamic thermal network, it results in 0.35

)T
Z(s) = rf+(%+(r;+(%+...)+> ) (34) e

0.25

in whichry, ro,... ande;, es,... are symmetric, positiv
semi-definite.

0.2 .
This expansion defines an infinite network compose:
passive resistive multi-ports of resistance matricgsrs, . .. 0.15 1
and of passive capacitive multi-ports of elastance mat

e1, e, ... which generalizes the Cauer Il canonical forrr oil T~
a passive multi-port dynamic thermal network. The firstge
tance matrixr; is the total resistance matrRR, the first elas
tance matrixe; is the inverse of the total capacitance ma
Cy. The elastance matrix of the series connections of the
sive capacitive multi-ports of elastance matriegs e,, ... is
the inverse of matrixC.,. Thus the Cauer Il canonical form

a passive multi-port dynamic thermal networks defines glarti
elastance matrices of the inverse of maftlx..

0.05

Figure 3: Resistance matrix of the Cauer | canonical form.
10 Application Example: Part 11

From Eqs. (31), (32), (33), ageneralized Cauer | canonicat f )
of the passive multi-port dynamic thermal network of seefip 11 Conclusions

is In this paper four canonical forms have been introduced for
multi-port dynamic thermal networks, which generalizefiner
Lj0oo0 L 0<z<1 canonical forms of passive multi-port lumped RC networks. |
kA1 0 0 B particular it has been shown that the generalized Fosterdrca
r(z)= 5 3 ical form is equivalent to the time-constant representaéind
L | 16 1 1 > 1 that the generalized Cauer | canonical form is a passiveimult
kA % % xt’ T conductor RC transmission line.
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