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Abstract
In this paper it is shown that multi-port dynamic thermal
networks admit four canonical representations which generalize
the four canonical representations of passive lumped RC
networks: Foster I and II canonical forms, Cauer I and Cauer II
canonical forms. In particular the generalized Foster I canonical
form is equivalent to the time-constant representation andthe
generalized Cauer I canonical form is a passive multi-conductor
RC transmission line.

Keywords: Multi-Port Thermal Networks, Time-Constant
Representation, Structure Function.

1 Introduction
Thermal networks are widely used for modeling heat diffusion
in components and packages. At first thermal networks have
been proposed for modeling static heat diffusion [1]. More re-
cently thermal networks have been proposed also for modeling
dynamic heat diffusion [2,3].

The question of determining the canonical forms ofone-port
dynamic thermal networks has been considered in [2, 4–6]. It
has been shown thatpassiveone-port dynamic thermal networks
admit four canonical forms which are the generalizations ofFos-
ter I, Foster II, Cauer I and Cauer II canonical forms of passive
one-port RC lumped networks. In particular the generalized
Foster I canonical form is equivalent to the time-constant rep-
resentation [4,5], while the Cauer I canonical form is equivalent
to the structure function representation [2,5,6]

The question of determining canonical forms of multi-port
dynamic thermal networks has not been tackled in literatureyet.
In this paper it is shown that all the results proved for passive
one-port dynamic thermal networks can be extended to passive
multi-port dynamic thermal networks. As a result the FosterI,
Cauer I, Foster II and Cauer II representations of passive multi-
port RC lumped networks are extended one-port to multi-port
passive dynamic thermal networks.

In particular the generalized Foster I canonical form is equiv-
alent to the time-constant representation. Besides the general-
ized Cauer I canonical form is a passivemulti-conductorRC
transmission line.

It is also shown how all multi-port dynamic thermal networks
can be represented by passive multi-port dynamic thermal net-
works. Thus the four canonical forms of passive multi-port
dynamic thermal networks can be applied to all multi-port dy-
namic thermal networks.

The rest of this paper is organized as follows. In Section 2
multi-port dynamic thermal networks are introduced. In Sec-
tions 3, 4, preliminary results on passive multi-port dynamic
thermal networks are presented. The four canonical forms are
shown in Sections 5, 6 and 8, 9. An application example is pre-
sented in Sections 7 and 10.

2 Multi-Port Dynamic Thermal Networks
In a boundedspatial regionΩ, the relation between the power
densityF (r, t) and the temperature riseu(r, t) with respect to
ambient temperature, functions of the position vectorr and of
the time instantt, is ruled by the heat conduction equation

∇ · (−k(r)∇u(r, t)) + c(r)
∂u

∂t
(r, t) = F (r, t), (1)

in which c(r) is the volumetric heat capacity andk(r) is the
thermal conductivity. Eq. (1) is completed by conditions onthe
boundary ofΩ, ∂Ω, and by initial condition for the temperature
riseu(r, t). The boundary conditions, assumed of Robin’s type,
are

−k(r)
∂u

∂ν
(r, t) = h(r)u(r, t), (2)

in which h(r) is the heat transfer coefficient andν(r) is the
outward unit vector normal to∂Ω. Hereh(r) is not assumed to
be identically zero over∂Ω, that is pure Neumann’s boundary
conditions are excluded. The initial condition is assumed to be
zero

u(r, 0) = 0. (3)

This is by no means a limitation. In fact any heat diffusion prob-
lem with non-zero initial condition

u(r, 0) = U(r)

and power densityF (r, t) can be represented by an equivalent
heat diffusion problem with zero initial condition and power
density

F (r, t) + c(r)U(r) δ(t).

The heat diffusion problem defined by Eqs. (1), (2), (3), sat-
isfies the following main physical properties:

Theorem 1 (Passivity) A non-negative functionW (t) exists
such that, for each timet1 ≤ t2,

W (t2) ≤ W (t1) +

∫ t2

t1

dt

∫

Ω

F (r, t)u(r, t) dr.

Theorem 2 (Reciprocity) Letu1(r, s), u2(r, s) be the Laplace
transforms of the temperature rises due to the power densities
whose Laplace transforms areF1(r, s), F2(r, s) respectively. It
results in

∫

Ω

F1(r, s)u2(r, s) dr =

∫

Ω

F2(r, s)u1(r, s) dr.

A multi-port dynamic thermal network can be defined from
the heat diffusion problem, by introducing the powers and the
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temperature rises measured at its ports. The powersPi(t),
with i = 1, . . . , n, elements of column vectorP(t), determine
F (r, t) as

F (r, t) = fT (r)P(t) (4)

in which f(r) is a column vector of shape functionsfi(r), with
i = 1, . . . , n. The temperature riseTi(t), with i = 1, . . . , n,
elements of column vectorT(t), are defined by

T(t) =

∫

Ω

g(r)u(r, t) dr. (5)

in whichg(r) is a column vector of shape functionsgi(r), with
i = 1, . . . , n.

The multi-port dynamic thermal network defined by Eqs. (1)-
(5) in general does not preserve the main physical properties of
the heat diffusion problem: reciprocity and passivity. However
these physical properties are preserved if

f(r) = g(r). (6)

In fact in this case it results in

Theorem 3 (Passivity) A non-negative functionW (t) exists
such that for each timet1 ≤ t2

W (t2) ≤ W (t1) +

∫ t2

t1

PT (t)T(t) dt.

Theorem 4 (Reciprocity) Let T1(s), T2(s) be the Laplace
transforms of the temperature rise vectors due to the power vec-
tors whose Laplace transforms areP1(s), P2(s) respectively. It
results in

P
T
1 (s)T2(s) = P

T
2 (s)T1(s).

As shown in [5] limitedly to the case of one-port dynamic
thermal networks, only if passivity and reciprocity hold canon-
ical forms of dynamic thermal networks can be given. Thus
hereafter it will be assumed that Eq. (6) holds or equivalently
that the multi-port dynamic thermal network ispassive. It can
be observed that this is not a limitation. In fact a multi-port dy-
namic thermal network whose powers are defined byf(r) and
whose temperature rises are defined byg(r) has port responses
equal to a subset of the port responses of the passive multi-port
dynamic thermal network whose shape functions for both pow-
ers and temperature rises are all thedistinct elements off(r)
andg(r). As a result, a genericn-port dynamic thermal net-
work can always be substituted by a passiveN -port dynamic
thermal network withn ≤ N ≤ 2n.

Hereafter it is also assumed that the shape functions inf(r) =
g(r) arelinearly independent. Again this is not a limitation. In
fact if f(r) = g(r) are linearly dependent, it results in

g(r) = Rĝ(r),

in which ĝ(r) is a vector ofn̂ < n linearly independent shape
functions andR is ann × n̂ rectangular matrix. Thus it results
in

T(t) = RT̂(t) (7)

P̂(t) = RTP(t) (8)

and

F (r, t) = ĝT (r)P̂(t) (9)

T̂(t) =

∫

Ω

ĝ(r)u(r, t) dr (10)

The passiven-port dynamic thermal network is then the connec-
tion of a multi-port transformer [7] defined by Eqs. (7), (8) to
a passivên-port dynamic thermal network, defined by Eqs. (9),
(10), with n̂ < n linearly independent shape functions.

3 Solutions of Passive Multi-Ports Dynamic Thermal Net-
works

The solution of Eqs. (1), (2), (3) can be expressed by the series
expansion [5]

T (r, t) =

∞
∑

j
1

aj(t)zj(r) (11)

in whichzj(r) are the eigenfunctions of the eigenvalue problem
associated to the thermal problem

∇ · (−k(r)∇zj(r)) = λjc(r)zj(r) r ∈ Ω, (12)

with boundary conditions

−k(r)
∂zj

∂ν
(r) = h(r)zj(r) r ∈ ∂τ. (13)

The eigenvaluesλj are real, positive and constitute a divergent,
monotonically increasing sequence. The eigenfunctionszj(r)
are real functions of position satisfying the orthonormality rela-
tions

∫

Ω

c(r)zj(r)zk(r) dr = δjk (14)

in whichδjk is Kronecher’s delta. Coefficientsaj(t) in Eq. (11)
are solutions of equations

d

dt
aj(t) + λjaj(t) =

∫

Ω

zj(r)G(r, t) dr, (15)

with zero initial conditions. The solutions to these initial value
problems are

aj(t) = e−λjt ∗

∫

Ω

zj(r)G(r, t) dr, (16)

in which∗ is the convolution operator in the time domain.
The solution of the passive multi-port dynamic thermal net-

work can then be expressed as follows. From Eqs. (4), (16) it
results in

aj(t) = e−λjt ∗ ΓT
j P(t). (17)

in which

Γj =

∫

Ω

zj(r)g(r) dr. (18)

From Eqs. (5), (11), it results in

T(t) =
∞
∑

j
1

Γjaj(t). (19)



Thus substituting Eq. (17) into Eq. (19), it follows

T(t) = Z(t) ∗ P (t)

in which

Z(t) =
∞
∑

j
1

ΓjΓ
T
j e−λjt (20)

is the power impulse thermal response matrixof the passive
multi-port dynamic thermal network. Taking the Laplace trans-
form of Eq. (20) it also follows

T(s) = Z(s)P(s)

in which

Z(s) =

∞
∑

j
1

ΓjΓ
T
j

s + λj

(21)

is thethermal impedance matrixof the multi-port dynamic ther-
mal network.

4 Preliminary Results on Passive Multi-Port Dynamic
Thermal Networks

Passive multi-port dynamic thermal networks are a generaliza-
tion of passive multi-port lumped RC networks. In fact their
impedance matrices satisfy properties common to passive multi-
port lumped RC networks.

Theorem 5

1. Impedance matrixZ(s) with s = σ + iω is symmetricand
positive real[7]. That is, forσ > 0,

Z(s) is analytic,

Z(s̄) = Z̄(s),

ReZ(s) is positive definite,

in which the bar indicates the complex conjugate operator.

2. Poles ofZ(s) are simple, real, negative and form a diver-
gent, monotonically decreasing sequence−λ1,−λ2, . . . .

3. The residues at the poles ofZ(s) are real, symmetric, pos-
itive semi-definite.

4. On the positive real axis−Z
′(σ) is symmetric, positive def-

inite.

Since the shape functions defining the passive multi-port dy-
namic thermal network are linearly independent, an admittance
matrix Y(s), inverse ofZ(s), exists. Such admittance matrix
satisfies the following properties common to that of passive
multi-port lumped RC networks.

Theorem 6

1. MatrixY(s) is symmetricandpositive real[7]. That is for
σ > 0

Y(s) is analytic,

Y(s̄) = Ȳ(s),

ReY(s) is positive definite.

2. Poles ofY(s) are simple, real, negative and form a diver-
gent, monotonically decreasing sequence−µ1,−µ2, . . . .

3. The residues at the poles ofY(s)/s are real, symmetric,
positive semi-definite.

4. On the positive real axisY′(σ) is symmetric, positive defi-
nite.

As a consequence of Theorems 5 and 6, a multi-port passive
distributed thermal network can be approximated ats → 0 by
the parallel connection of a passive resistive multi-port and a
passive capacitive multi-port and ats → ∞ by a passive capac-
itive multi-port, as stated in the following

Theorem 7 At s → 0, theZ(s) impedance matrix converges to
the impedance of the parallel connection of a passive resistive
multi-port of resistance matrixR0 and of a passive capacitive
multi-port of capacitance matrixC0, being

R0 = Z(0), (22)

C0 = Y
′(0). (23)

Theorem 8 For s → ∞ with σ > 0, the Y(s) admittance
converges to the admittance of a passive capacitive multi-port
of capacitance matrix

C∞ = lim
s→∞

Y(s)

s
= lim

s→∞
Y

′(s). (24)

TheR0 matrix, theC0 matrix and the inverse ofC∞ matrix
are hereafter referred to respectively astotal resistance matrix,
total capacitance matrixandtotal elastance matrixof the pas-
sive multi-port dynamic thermal network.

5 Generalized Foster I Canonical Form
As a consequence of Theorem 5

Theorem 9

Z(s) =
∞
∑

j
1

rj

1 + s/λj

=
∞
∑

j
1

ej

s + λj

(25)

in whichrj = ej/λj are real, symmetric, positive semi-definite
matrices.

Eq. (25) defines an infinite network composed of ideal trans-
formers, passive resistors and passive capacitors which general-
izes the Foster I canonical form of a passive multi-port lumped
RC network [7]. The resistance matrix of the series connections
of the passive resistive multi-ports havingrj resistance matrices
is the total resistance matrixR0. Thus the generalized Foster I
canonical form defines partial resistance matrices ofR0. Simi-
larly the elastance matrix of the series connections of the passive
capacitive multi-ports havingej elastance matrices is the total
elastance matrix, inverse ofC∞. Thus the generalized Foster I
canonical form defines partial elastance matrices of the inverse
of C∞. The Foster I canonical form can be defined by thecu-
mulative resistance matrix

R(λ) =

∞
∑

j
1

rjH(λ − λj),



H(·) being Heaviside’s step function, equivalent to the time-
constant representation [4] or by thecumulative elastance ma-
trix

E(λ) =

∞
∑

j
1

ejH(λ − λj).

6 Generalized Foster II Canonical Form
As a consequence of Theorem 6, the admittance matrixY(s),
can be represented as follows

Theorem 10

Y(s) = sC∞ + R−1
0 +

∞
∑

j
1

scj

1 + s/µj

(26)

in whichcj are symmetric positive semi-definite.

Eq. (26) defines an infinite network composed of ideal trans-
formers passive resistors and passive capacitors which general-
izes the Foster II canonical form of a passive multi-port lumped
RC network. The resistance matrix of the passive resistive
multi-port isR0. The capacitance matrix of the passive capac-
itive multi-port is C∞. The capacitance matrix of the parallel
connections of the capacitive multi-ports havingC∞ andcj ca-
pacitance matrices is the total capacitance matrixC0. Thus the
generalized Foster II canonical form defines partial capacitances
of the total capacitance matrixC0. The Foster II canonical form
can be defined by thecumulative capacitance matrix

C(λ) = C∞ +
∞
∑

j
1

cjH(λ − µj).

and byR0.

7 Application Example: Part I
A cylinder Ω of lengthL, areaA, thermal conductivityk and
heat capacityc is considered. The powersP1(t), P2(t) are uni-
formly generated within the lower and upper halves of the cylin-
der respectively. On the lower and upper face of the boundary
∂Ω the temperature is set equal to the ambient temperature. On
the rest of the boundary∂Ω the thermal flux is set to zero. Ac-
cording to Eq. (6), the mean temperature rises in the lower and
upper halves of the cylinder are theT1(t) andT2(t) temperature
rise of a passive 2-port dynamic thermal network.

The thermal impedance matrix is

Z(s) =
L

kA
K

(

L2c

k
s

)

(27)

in which

K(p) =
1

p





f
(√

p

4

)

+ f
(√

p

2

)

f
(√

p

4

)

− f
(√

p

2

)

f
(√

p

4

)

− f
(√

p

2

)

f
(√

p

4

)

+ f
(√

p

2

)





and

f(q) = 1 −
tanh q

q
.

Thus from Eq. (27) and Eqs. (22), (23), (24) it results in

R0 =
L

kA

[

5

48

1

16

1

16

5

48

]

,

C0 = LAc

[

3

5
0

0 3

5

]

,

C∞ = LAc

[

1

2
0

0 1

2

]

.

The generalized Foster I and II canonical forms of this ther-
mal network can be determined analytically in closed form.
Determining the Mittag-Leffler’s partial fractions expansion of
K(p), the Foster I canonical form follows

λj =







































k

L2c
π2(4k + 1)2 j = 3k + 1,

k

L2c
π2(4k + 2)2 j = 3k + 2,

k

L2c
π2(4k + 3)2 j = 3k + 3,

rj =
ej

λj

=



















































L

kA

64

π4(4k + 1)4

[

1 1

1 1

]

j = 3k + 1,

L

kA

64

π4(4k + 2)4

[

1 1

1 1

]

j = 3k + 2,

L

kA

256

π4(4k + 3)4

[

1 −1

−1 1

]

j = 3k + 3,

k being any natural number. TheR(λ) cumulative resistance
matrix defining the Foster I canonical form is shown in Fig. 1.

50 100 150 200 250 300 350 400 450 500
0

0.02

0.04

0.06

0.08

0.1

0.12

L2c

k
λ

kA

L
R11 =

kA

L
R22

kA

L
R12 =

kA

L
R21

Figure 1:R(λ) cumulative resistance matrix defining Foster I
canonical form.

The admittance matrixY(s) is

Y(s) =
kA

L
H

(

L2c

k
s

)

(28)
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in which

H(p) =
p

4













1

f
(√

p

2

) +
1

f
(√

p

4

)

1

f
(√

p

2

) −
1

f
(√

p

4

)

1

f
(√

p

2

) −
1

f
(√

p

4

)

1

f
(√

p

2

) +
1

f
(√

p

4

)













Determining the Mittag-Leffler’s partial fractions expansion of
H(p), the Foster II canonical form follows

µj =







































k

L2c
(2ξ2k+1)

2 j = 3k + 1,

k

L2c
(2ξ2k+2)

2 j = 3k + 2,

k

L2c
(4ξk+1)

2 j = 3k + 3,

,

cj =



















































LAc
1

ξ2
2k+1

[

1 1

1 1

]

j = 3k + 1,

LAc
1

ξ2
2k+2

[

1 1

1 1

]

j = 3k + 2,

LAc
1

ξ2
k+1

[

1 −1

−1 1

]

j = 3k + 3,

,

k being any natural number andξj being thej-th positiveroot
of the equation

tan ξj = ξj .

TheC(λ) cumulative capacitance matrix defining the Foster II
canonical form is shown in Fig. 2.

8 Generalized Cauer I Canonical Form
Let us consider a passivemulti-conductorRC transmission line
of lengthx̄ in thex dimension described at a complex frequency

s by equations

∂V

∂x
(x, s) = −r(x)I(x, s) (29)

e(x)
∂I

∂x
(x, s) = −sV(x, s) (30)

in whichV(x, s), I(x, s) are the Laplace transforms of the volt-
age and currentn×1 vectors atx andr(x), e(x) are symmetric,
positive semi-definiten×n matrices representing the resistance
matrix density and the elastance matrix density of the line at x.

By introducing the impedance matrixZ(x, s) at eachx along
the line, Eqs. (29), (30) can be reduced to the single Riccati-type
matrix equation

∂Z

∂x
(x, s) + r(x) = sZ(x, s)e+(x)Z(x, s), (31)

in which + is the pseudo-inverse operator. Thus, if the output
port of the line is short-circuited, the impedance matrixZ(x, s)
and, in particular, the input impedance matrix

Z(s) = Z(0, s) (32)

can be determined by solving Eq. (31) with boundary condition

Z(x̄, s) = 0. (33)

The inverse problem can also be considered. By assigning the
input impedance matrixZ(s) when the output port of the line is
short-circuited, a passive multi-conductor RC transmission line
can be determined, by solving Eqs. (31), (32), (33) forr(x) and
e(x). In this way, as a consequence of Theorem 5, the following
result can be proved

Theorem 11 The Z(s) impedance matrix of a passive multi-
port dynamic thermal network is the short-circuit input
impedance matrix of a passive multi-conductor RC transmission
line ruled by Eqs. (29), (30).

Thus passive multi-port dynamic thermal networks can be rep-
resented by passive multi-conductor RC transmission lineswith
short-circuited output ports. This is the generalization of Cauer
I canonical form of passive multi-port lumped RC networks to
passive multi-port dynamic thermal networks.

As shown in [5], with passive one-port dynamic thermal net-
works, the RC transmission line is not uniquely determined.
Similarly with passive multi-port dynamic thermal networks,
the multi-conductor RC transmission line is not uniquely de-
termined.

Such passive RC multi-conductor transmission line defines
partial resistance matrices of theR0 total resistance matrix and
can be decomposed into the shunt connection of a passive capac-
itive multi-port of capacitance matrixC∞ and a second passive
multi-conductor RC transmission line.

9 Generalized Cauer II Canonical Form
As a consequence of Theorem 6, it can be proved that a con-
tinued fraction expansion can be performed for the impedance
matrix Z(s) of a passive multi-port dynamic thermal network,
exactly as when determining the Cauer II canonical form of a
passive multi-port lumped RC network [7].



Theorem 12 Given the impedance matrixZ(s) of a passive
multi-port dynamic thermal network, it results in

Z(s) =



r+
1 +

(

e1

s
+

(

r+
2 +
(e2

s
+. . .

)+
)+
)+




+

(34)

in which r1, r2, . . . and e1, e2, . . . are symmetric, positive
semi-definite.

This expansion defines an infinite network composed of
passive resistive multi-ports of resistance matricesr1, r2, . . .
and of passive capacitive multi-ports of elastance matrices
e1, e2, . . . which generalizes the Cauer II canonical form of
a passive multi-port dynamic thermal network. The first resis-
tance matrixr1 is the total resistance matrixR0, the first elas-
tance matrixe1 is the inverse of the total capacitance matrix
C0. The elastance matrix of the series connections of the pas-
sive capacitive multi-ports of elastance matricese1, e2, . . . is
the inverse of matrixC∞. Thus the Cauer II canonical form of
a passive multi-port dynamic thermal networks defines partial
elastance matrices of the inverse of matrixC∞.

10 Application Example: Part II
From Eqs. (31), (32), (33), a generalized Cauer I canonical form
of the passive multi-port dynamic thermal network of section 7,
is

r(x)=



























L

kA

[

0 0

0 0

]

, 0 ≤ x < 1

L

kA

[

5

16

3

16

3

16

5

16

]

·
1

x4
, x ≥ 1

e(x) =

{

1

LAc

[

2 0

0 2

]

, x ≥ 0

as shown in Fig. 3.
The Cauer II canonical form can be determined by perform-

ing a continued fraction expansion ofZ(s). The first resistance
matrices are

r1 =
L

kA

[

5

48

1

16

1

16

5

48

]

,

r2 =
L

kA

[

5

4032

1

1344

1

1344

5

4032

]

,

r3 =
L

kA

[

1

7920

1

13200

1

13200

1

7920

]

, . . .

r1 beingR0. The first elastance matrices are

e1 =
1

LAc

[

5

3
0

0 5

3

]

,

e2 =
1

LAc

[

1

5
0

0 1

5

]

,

e3 =
1

LAc

[

13

210
0

0 13

210

]

, . . .

e1 being the inverse ofC0.
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Figure 3: Resistance matrix of the Cauer I canonical form.

11 Conclusions
In this paper four canonical forms have been introduced for
multi-port dynamic thermal networks, which generalize thefour
canonical forms of passive multi-port lumped RC networks. In
particular it has been shown that the generalized Foster I canon-
ical form is equivalent to the time-constant representation and
that the generalized Cauer I canonical form is a passive multi-
conductor RC transmission line.
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