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ABSTRACT 
 

In this paper, we study the behaviour of a micro-
cantilever beam under electrostatic actuation using finite 
difference method. This problem has a lot of applications 
in MEMS based devices like accelerometers, switches 
and others. 

In this paper, we formulated the problem of a 
cantilever beam with proof mass at its end and carried out 
the finite difference solution. we studied the effects of 
length, width, and the gap size on the pull-in voltage 
using data that are available in the literature. Also, the 
stability limit is compared with the single  degree of 
freedom commonly used in the earlier literature as an 
approximation to calculate the pull-in voltage. 

 
1. INTRODUCTION 

 
Microsensors represent a large section of microsystems’ 
market. Microsensors offer the advantage of replacing 
conventional sensors in a one to one fashion while saving 
weight, energy and cost [3].  
Several studies have investigated the behaviour of 
electrostatically actuated microbeams in microsensors. 
Yang et al.[9] modelled a clamped-clamped beam with 
length 350 µm. The model is test by passing four steps 
electrostatic voltage of 21V, 22V, 25V and 30V. The 
model is solved by finite differential method (FDM) then 
compared with the results from the reduced model 
generated by Karhunen-Loeve/ Galerkin approach. The 
macromodel method saves more time (about 502.1 speed 
up factor) and only contribute about 0.9% error.  
Hu et al.[5] solved a model of microcantilever beam with 
analytical Reileigh Riz method. The purpose of this paper 
is to verify the validity of neglecting the higher terms in 
the electrostatic force term. The result shows that it only 
valid when the applied voltages are below the pull in 
voltage. Hu also do a dynamic analysis of the beam 

subjected to an AC bias using Runge Kutta method to 
solve ordinary differential equation. Hu found that the 
resonant frequencies decrease with the increasing 
magnitude of applying voltage. Nayfeh and Younis[8] 
presented a new approach to the modelling and 
simulation of flexible microstructures under the effect of 
squeeze-film damping. They applied perturbation 
methods to the compressible Reynolds equation and 
solved the equation using finite element method. The 
results compared to which get from experiment are 
acceptable. The further analysis was done on fully 
clamped and clamped-free-clamped-free plate. Abdel-
Rahman et al.[1] modelled a plate clamped at both ends 
and free along its width. They used shooting method to 
solve and compared the results from previous results. 
There are good agreement between them. At last, they 
concluded that one may use α1 (6 x gap 
distance/thickness) or axial force to stiffen the 
microbeam. However, only α1 are used to tune the 
relationship between the natural frequency and voltage. 
Collenz et al.[2] developed an alternative approach based 
on a sequential field-coupling (SFC) algorithm to deal 
with strongly non-conservative electrostatic loads. 
Collenz modelled a cantilever beam with length to gap 
ratio of one (l/g =1). Collenz found that pull in cannot 
occur because the gap is as big as the beam length, 
therefore the beam tip cannot touch the underlying plane. 
Hung and Senturia [6] focused on obtaining macromodels 
based on global basis functions generation from an 
approach that is mathematically equivalent to Karhunen-
Loeve/ Galerkin analysis of a small but representative 
ensemble of dynamic FEM runs. They found that 
macromodel speed up simulation by a factor of 37 over a 
FDM with less than 2% error. 
Faris and Abdalla [4] used Galerkin approximation 
approach to solve MEMS based sensor under thermal 
loading. 
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Finite difference was not exploited in the solution of 
MEMS based problems, though in our opinion it is quite 
effective for a domain of problems which are easily 
formulated mathematically. 
 

2. MODELING OF A MICRO-BEAM 
 

 
Figure 1 Cantilever Beam with a Lumped Mass at the End 
 
Our model is a cantilever beam with a proof mass 
suspended at the end as shown in Figure 1. We apply 
Hamilton principle in developing models to analyze beam 
behaviour. Hamilton principle is a consideration of the 
motion of an entire system between two times, t1 and t2. 
The extended Hamilton’s principle: 
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We start derive the beam bending equation by write the 
kinetic energy expansion of the beam: 

2 2

0

1 ( , ) 1 ( , )( )
2 2

L y x t y L tT m x dx M
t t

∂ ∂⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦∫ ,       (2) 

 
and the strain energy (internal potential) is stated as: 
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The virtual work of the nonconservative distributed 
forces is expressed as: 
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Substituting into Hamilton’s principle (1), we obtain:  
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and the boundary conditions at 0x =                                                    
( , ) ( , ) 0,                0,   y x ty x t
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                                                            (5c) 
In the rest of the paper, we assume the I(x) and m(x) are 
constant over the length of the beam. 
It is our interest to consider the effect of electrostatic 
forces on the response of the microbeam. The 
electrostatic load depends on the beam deflection as: 

        
2
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−
                                   (6a) 

Where:  E = Young Modulus, m = mass per unit length of 
beam, I = bh3/12 = cross section area moment of inertia, b 
= width of beam, h = height of beam, G = gap distance, ε 
= free space permittivity or dielectric constant of vacuum, 
t = time. 
As a result, equation (5) can be expressed as: 
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           (6b) 

3. SYSTEM GOVERNING EQUATIONS 
 
We consider a cantilever beam with a proof mass 
suspended at the end, actuated by an electrostatic force 
which consists of a DC component, Vp and an AC 
component v(t). We assume that the transverse deflection 
of beam, y, is constant along the width of beam. The 
beam equation and its boundary conditions at 0x = and 
at  x L= can be expressed as: 
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                                                      (7b) 
Where:  E = Young Modulus, m = mass per unit length of 
beam, I = bh3/12 = cross section area moment of inertia, b 
= width of beam, h = height of beam, G = gap distance, ε 
= free space permittivity or dielectric constant of vacuum, 
t = time. 
The microbeam deflection under an electric force is 
composed of static component due to the DC voltage, 
termed as ( )sy x  and dynamic component due to the AC 

voltage, termed as ( ),u x t  that is:                  
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       ( ) ( ) ( ), , ,y x t y x t u x ts= +  (8) 
As a result, the beam equation can be modified as 
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                               (9) 
To calculate static deflection, sy , we put time derivation 
and the AC forcing term in equation (9) equal to zero and 
obtain 
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                                                          (10b) 
To solve the eigenvalue problem, we set AC forcing term 
in equation (9) equal to zero and use equation (10) to 
eliminate the term representing equilibrium position.  
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                                               (11) 
Expanding the nonlinear electrostatic force term by 
Taylor series with respect to equilibrium position, 0u = , 
gives 
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Based on the small displacement assumption, the higher 
order terms can be neglected, thus the nonlinear 
electrostatic force can be linearized as  
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                                              (13) 
Substituting equation (13) into equation (11) results in  
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3. FINITE DIFFERENCE SOLUTION 
 

Refer to the grid below, by assuming that at 0x = , 3i =  
and at 0t = , 4j = . Hence, for 4,j ≤ , , 0i jy =  since the 

beam is not deflected at 0t ≤ . 

 
Figure 2 Grid Point for the Dynamic Behavior Proble 
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At x = 0, , 0;i jy =             (15a) 
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At x = L, 

,2, 1, 1, 2,2 16 30 16 0
12 i ji j i j i j i j

EI y y y y y
h − − + +⎡ ⎤⎣ ⎦− + − + − =                                     

(15c) 

2, 1, 1, 2,3

,, 4 , 3 , 2 , 12

2 2
2

= 11 56 114 104 35
12

i j i j i j i j

i ji j i j i j i j

EI y y y y
h

M y y y y y
k

− − + +

− − − −

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

− + − +

− + − +

 

                                         (15d) 
According to the assumption stated above, at 0x = , 

3i = , from the boundary condition (22a) and (22b), we 
get :             
  3, 0jy = ,                                       (16a) 

5,1, 2, 4,8 8 0jj j jy y y y− + − =              (16b) 

and from the beam equation at 0x = or 3i = ,  
1, 2, 4, 5,4 4 0j j j jy y y y− − + =   (16c)  

Rearrange equation (16), we get the equation 
for 1, 2, 3,,   and j j jy y y , which are 

1, 2, 4, 5,4 4 -j j j jy y y y= +   (17a) 

2,1 1, 4, 5,
1 8
8 j j jy y y y⎡ ⎤= + −⎣ ⎦  (17b) 

3, 0jy = ,   (17c) 
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Solving equation (15) for   4 2,i N≤ ≤ −  we get 
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In addition, for 2,i N= − we have to consider another 

two boundary condition to find 1,N jy −  and ,N jy . From 
equation (15c) and equation (15d), we get 
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To facilitate in programming, we assume that A 4

EI
h

= , 
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B 2
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the equations describe ,i jy  for 4j ≥  is expressed 
below. 
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4. RESULTS AND ANALYSIS 
 
In this paper, we study the behavior of a microbeam 
under a nonlinear electrostatic force. First, we present a 
numerical procedure to solve the static behaviour or 
boundary value problem of a microbeam under DC 
electrostatic force. We are interested in finding the pull-in 

voltages corresponding to static deflection at different 
beam lengths.  
Second, we determine the natural frequencies and mode 
shapes of microbeam under DC electrostatic force. 
Equations (10) describe the microbeam static deflection 
under static electrostatic force. We use finite difference 
method to solve the problem numerically for sy .                    
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We initially set 0

sy  as zero and iterate until it converge 
to a value within 0.1%. Considering a cantilever beam 
with a mass suspended at the end made of silicon. The 
geometries and material parameter are given in table 1.  
Parameters Values 
Length (L) 300 µm 
Width (W)  50 µm 
Thickness (t) 3 µm 
Initial Gap Distance (G) 3 µm 
Young Modulus (E) 160 x 109 kg/m2 
Density (ρ) 2330 kg/m3 
Free Space Permittivity (ε) 8.8541878 x 10-12 (F/m) 
Table 1 The Geometric and Material Parameters of the 
Microbeam   
We solve equations (21) for a range of electrostatic forces 
by changing the applied voltage. Then, we will change 
the length (L) to see its effect on static with respect to 
applied voltages (Vp).  
Figure 3 shows the deflection along the microbeam with 
dimensions    L = 300 µm, W = 50 µm, t = 3 µm, G = 3 
µm at voltage = 10 V. The beam is fixed at one end. The 
more distance the point from the fixed end is, the larger 
will be the deflection.   
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   Figure 3   Static Deflection of Microbeam 
( L = 300 µm, W = 50 µm, t = 3 µm, G = 3 µm and 
Voltage = 10 V) 

 
Figure 4 shows the variation of the maximum 

static deflection of microbeam, max ( )s sW Y y x L= = = , 
with applied voltages for L=200 µm, 225 µm, 250 µm, 
275 µm and 300 µm. Other geometry dimensions are 
remaining same. The dashed line represents the stability 
limit, Wmax = / 3G  predicted by the single-degree-of-
freedom spring-mass model. As applied voltage 
increases, the maximum deflection increases. The slope 
of maximum deflection, max py V∂ ∂ , increases as the 
voltage increases and finally approach infinity when it 
reaches pull in voltage. Beside this, maximum deflection 
is also larger for longer beam. This relationship is linear 
at low voltage and becomes increasingly nonlinear when 
the voltage applied is increased. The slope of maximum 
deflection, max py V∂ ∂ , is larger for longer beam at 
specific voltage. As a result, microbeam with shorter 
length can sustain larger voltage before it collapses. 

Variations of the maximum deflection with 
voltage for various thicknesses are shown in figure 5. As 
voltage increases, static deflection increases. At specific 
voltage, maximum deflection increasing as thickness is 
reduced. The slope of maximum deflection,

max py V∂ ∂ , 
increases more rapidly for thin beam. This proves that the 
pull in voltage is larger for thicker beam.  

 
Figure 4 Variation of maximum Deflection with applied 
Voltage until Pull-In for L=200 µm, 225 µm, 250 µm, 
275 µm and 300 µm. 

 
 

Figure 5 Variation of the Maximum Deflection with 
Voltage until Pull-In for t=2 µm, 2.5 µm, 3 µm, 3.5 µm 

and 4 µm. 
Gap distance has influence on the static deflection too. 

As represent in Figure 6, static deflection will be reducing 
when the gap between microbeam and support is 
increased. 

 
. 

 



W. Faris, H.M. Mohammed, M.M. Abdalla, and C. H. Ling 
INFLUENCE OF MICRO-CANTILEVER GEOMETRY AND GAP ON PULL-IN VOLTAGE. 

©TIMA Editions/DTIP 2006 -page- ISBN: 2-916187-03-0 

 
Figure 6   Variation of the Maximum Deflection with 
Voltage for until Pull-In for G=2 µm, 2.5 µm, 3 µm, 3.5 
µm and 4 µm. 

. 
 

 
5. CONCLUSIONS 

 
 
In this paper, we formulate the problem of a cantilever 
beam with proof mass at the end which is used in many 
applications, most notably is MEMS based accelerometer. 
We used Hamiltonian principle as a tool of this 
formulation. Also, we explained the solution using finite 
difference technique. We solved the static part of the 
problem and decided the pull-in voltage for different 
geometric parameters of the beam. The parameters 
studied were beam length, thickness, width, and gap. The 
finite difference method proved to be effective and easy 
to code for solving such problems. The length and 
thickness were found to have a great influence on the 
pull-in voltage while the width was found of no influence 
on the pull-in voltage. The gap also was found to have a 
significant influence on the pull-in results as well. 
Also, it was found that the stability limits from the single 
degree of freedom approximation is quite erroneous 
compared to full geometry calculations. 
.  
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Appendix 
One-Dimensional Pull-In Voltage Analysis 

 
When a voltage is applied between two 

electrodes, the electrostatic force between them pulls 
them together. The restoring force of the beam, arising 
from the beam’s stiffness, resists the electrostatic force. 
When the voltage is increased, a point is reached where 
the electrostatic force equals the spring restoring force of 
the beam. If this point, known as pull-in voltage, is 
passed, the beam will snap to the substrate. 

 
In one-dimensional geometries, the pull-in 

phenomenon is greatly simplified and the basic 
dependencies are easily visible. Now, the displacement 
field is just a scalar y, and the mechanical force, mF  and 

electric force, eF  are algebraic functions of u. The pull-in 
position is determined by the equality of the forces and 
their derivatives, 
                  m eF F=     (1) 
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               m eF F
y y

∂ ∂=
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   (2) 

Dividing the two equations we obtain 
               m e

m e

F F
K K

=     (3) 

where we have defined the electric and mechanical spring 
constants, e

e
FK
y

∂=
∂

 and m
m

FK
y

∂=
∂

 respectively and it is 

valid for all voltage driven electro-mechanical systems. It 
may equally well be written as 
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where 
m my K Fγ = describes the nonlinearity of the 

elasticity. For linear cases 1γ =  by definition. Equation 
(4) provides a starting point for the pull-in iteration 
scheme. 
 

In the one-dimensional case the electric field has 
an analytical solution, ( )E V G y= − , where G is the 
initial aperture between the mass and the ground level. 
The electric energy now yields 
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where A is the area of the capacitor. The electric force 
and spring constant with fixed potential may be obtained 
by differentiations, 
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Inserting the above formulas in Equation (4) and 
solving for the pull-in position gives 3y G= . The 
relative displacement of 1/ 3  is a characteristic value for 
this one-dimensional case. Also more complicated cases 
have values independent of the scale and of the material 
parameters. 

The pull-in voltage can be obtained from 
equation (1) by equating electric and mechanical spring 
constants,

e mK K= .  
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