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 Abstract: The generation of printable shellcode is an important computer security research 
area. The original idea of the printable shellcode generation was to write a binary, executable 
code in a way that the generated byte code contains only bytes that are represented by the English 
letters, numbers and punctuation characters. In this way unfortunately only a limited number of 
CPU instructions can be used. In the originally published paper a small decoder is written with 
instructions represented by printable characters and the shellcode is decoded on the stack to be 
executed later. This paper, however describes a proof of concept project, which converts the 
source code of a full assembly program or shellcode to a new source code, whose compiled binary 
code contains only printable characters. The paper also presents new, printable character 
implementation of some CPU instructions. 
 
 Keywords: Shellcode, Source to source conversion, Printable ASCII characters 

1. Introduction 

 The process of executable code generation contains a step where the source code is 
translated into a binary code. This binary code is a sequence of CPU instructions and 
they can be directly executed by a CPU. Every CPU instruction can be represented by 
one or more bytes and they form the machine language. However some of these bytes 
represent the English letters (41h-5Ah (A-Z) and 61h-7Ah (a-z)), numbers (30h-39h), 
punctuation characters, brackets, etc. (20h-2Fh, 3Ah-40h, 5Bh-60h, 7Bh-7Eh), 
according to the ASCII table. The small ‘h’ letter after the numbers denotes that the 
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number is a hexadecimal number. These characters between 20h-7Eh are the printable 
bytes (sometimes called alphanumeric characters) and they are the basis of normal texts.  
 Naturally not only the printable bytes, but the full range of bytes between 00h-FFh 
are compiled into a normal program. This observation is usually a very simple way to 
recognize an executable program or code, since a program may contain any of the 256 
characters, while a normal text may contain only the above listed printable characters. 
 All this discussion is important, since a special technique has been proposed in the 
Phrack magazine [1] in 2001. The name of the proposed technique was ‘Writing ia32 
alphanumeric shellcodes’. Shellcodes are a form of attack against computer systems, 
where a code is injected and later executed. Usually the injection occurs when some 
data is received by a program. The program stores the received data, that is in reality an 
executable code and later, by exploiting some vulnerability of the system, the execution 
is redirected to the injected code. As described above the recognition of a code injection 
can be very simple by the non-printable characters, however if the injected code 
contains only printable characters then the injection cannot be detected in this way  
[2]-[4]. 
 The original technique [1] proposed that only a small decoder is written in the 
special way using only bytes representing letters and numbers - hence the name of 
alphanumeric shellcode - and the rest of the actual executable code is decoded on the 
stack by the decoder. At the end of decoding the execution is passed to the decoded 
exploit. This method has been improved and a ‘looped decoder’ [5] has been proposed. 
This technique is built into a fully automatic alphanumeric shellcode generator [6], 
however this decoder has been further improved recently [7]. 
 A very interesting variation of the alphanumeric shellcode has been described by 
Mason et al. [8]. They have created an alphanumeric binary code in such a way, that the 
resulting byte series is very similar to an English text. This technique makes the 
recognition of an executable code even more difficult. Another variation is where the 
shellcode is ‘Unicode-proof’ [9] or where the shellcode is UTF-8 compatible [10]. The 
technique has also been extended to the ARM computer architecture [11]. 
 It is important to mention here that the use of shellcode as an exploit is not possible 
in itself, since currently all modern operation systems are using Data Execution 
Prevention (DEP), which makes it impossible to rewrite and execute data in runtime. A 
working exploit with shellcode has to switch off the DEP runtime.  
 However this paper only concentrates on describing a conversion technique for 
shellcodes. The technique is based on the original idea [1], but uses a different 
approach, where the source code of the full program is converted to another source code 
with instructions, whose generated byte code falls in the range of printable characters. 

2. Basic assumptions 

 The main purpose of this paper is to describe a technique, which can convert a 16 bit 
x86 assembly source code to another source code. When the converted source code is 
compiled by an assembler the resulting executable code must contain only printable 
characters. The resulting executable code is a 16 bit COM program that can run only 
under Windows XP or earlier operating systems. The choice of a target system seems to 
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be limited and outdated, but this was an intentional decision, since the paper describes a 
proof of concept project, where the feasibility of the conversion of full programs is 
investigated. Furthermore generating only COM programs simplifies the conversion 
process, since the program always starts at the first instruction in the source code and 
once the program is loaded into memory the entry point of the execution is always  
at 100h. 
 As described above, only a limited number of the x86 instructions can be used in the 
resulting program. However, the limitation also applies to the numbers that are directly 
stored in the program. This means that a 16 bit number must fall in the range of 2020h-
7E7Eh and an 8 bit number must fall in the range of 20h-7Eh. 
 It should also be mentioned, that the paper presents one approach, however other 
conversion methods are possible. During the development several conversion 
techniques have been found for several instructions, but only one of the techniques will 
be described in this paper. 
 As in the original technique the stack is going to be heavily utilized, but no 
executable code will be created on the stack. The main benefit of using the stack is that 
during stack operations the status register is not modified. 
 In this paper the Intel syntax and the syntax of the NASM [12] assembly compiler 
will be used. 

2.1. Self-modifying code 

 It can be stated in advance, that at the moment there are instructions for which no 
equivalent alternative has been found. In this paper the approach to solve this problem is 
to use a self-modifying code. In higher level programming languages it is not very 
common to use this kind of technique, but in assembly it is possible to intermix data and 
code, since they are just a series of bytes and the only difference is whether it is get 
loaded and executed by the CPU or not. An example for the self-modifying code is: 

ADD [addr], byte 07h 
addr: db 00h 

where the ADD instruction adds the number 07 to the byte found at the address denoted 
as ‘addr’. The result is that after the execution of the ADD instruction the next 
instruction will be executed, which will have the bytecode of 07 and this is equivalent to 
the POP ES instruction. 
 Although this seem straightforward, but attention has to be paid to the address of the 
modified byte and to the instructions as well that are performing the modification, since 
all of them should be printable. First let’s consider the following code fragment: 

      PUSH SI 
      PUSH byte 033h 
      POP  SI 
      SUB  [addr], byte 07h 
      ... 
addr: db   040h 
      POP  SI 
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 The bytecode of all instructions of this fragment is in the range of printable ASCII 
characters and these instructions are also equivalent to the POP ES instruction. 
Theoretically it is a solution; however there are two problems with this code: 

• First the ‘addr’ address must be positioned in a way that the number of the 
address will also be in the range of printable ASCII characters. 

• Second this set of instructions can be executed only once and this can cause a 
serious problem if it should be executed in a loop. The problem is that this set of 
instructions has a side effect. They do more than perform the POP ES 
instruction, since the byte at the ‘addr’ address will be modified. 

 To solve the second problem the following general code fragment can be 
considered: 

      PUSH SI 
      PUSH AX 
      MOV AX, 0047h
      PUSH AX 
      POP  SI 
      POP  AX 
      XOR  [a1], SI 
      POP  SI 
a1:   db   040h 
      PUSH SI 
      PUSH AX 
      MOV AX, 0047h
      PUSH AX 
      POP  SI 
      POP  AX 
      XOR  [a1], SI 
      POP  SI 

 In this code fragment there are two instructions that are marked by bold letters. The 
reason for this that the bytecode of these instructions does not necessarily generate 
printable bytecodes, therefore another technique will be described later, which generates 
these instructions with the appropriate effects and printable bytecodes. 
 Another point to consider in the code fragment is that when the XOR instruction is 
applied first then it modifies the byte at address ‘a1’ and the byte afterwards since the SI 
register is 16 bit wide. However, the content of SI is 0047h and using the XOR operator 
between a value and 00h does not change the value, therefore the second byte will be 
unchanged. Furthermore when the XOR instruction is applied the second time to the 
byte at address ‘a1’ then the original value (0040h) will be restored. 
 This solution can be used for instructions with a single bytecode, however the same 
technique can be used for instructions with multiple bytecodes. In those cases the XOR 
instructions have to be applied to address ‘a1’, ‘a1+1’, …, ‘a1+n’. 
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3. Implementation of the instructions 

3.1. Frequently used code fragments 

 There are several code fragments that are used during the implementation of other 
assembly instructions. 

Create zero on the top of the stack 

 In several cases it will be necessary to generate the zero value on the top of the 
stack. The following code fragment  

PUSH 2020h 
POP  AX 
XOR  AX, 2020h 
PUSH AX 

is equivalent to the instruction PUSH word 0000h. The code will use register AX, 
therefore saving it before and restoring afterwards is mandatory. 

Setting a register to zero 

 This is a variation of the previous code segment, however in this case the value of a 
register must be set to zero. This is also achieved through the stack. The code fragment 
that is equivalent to XOR reg, reg is: 

PUSH 2020h 
POP  AX 
XOR  AX, 2020h 
PUSH AX 
POP  register 

Setting register BP to any value 

 In several cases it will be necessary to access data on the stack, for example using 
the BP register, like: 

MOV reg, [BP+offset] 

 The problem in this case is with the ‘offset’, since that number will become the part 
of the compiled bytecode of the instruction, therefore this number must also be 
printable. To solve this situation the data will always be shifted on the stack by a 
printable value, for example 20h. To achieve this shifting the following code fragment 
can be used: 

PUSHA      ; SUB BP, 16 
PUSHA      ; SUB BP, 16 
PUSH BP    ; SUB BP, 2 
PUSH SP    ; MOV BP, SP 
POP  BP     
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 In the code fragment next to the instructions the equivalent instruction is also shown 
as a comment after the semi-column. The PUSHA instruction uploads the AX, CX, DX, 
BX, SP, BP, SI and DI registers and reduces the value of SP by 16. After this code 
fragment data can be accessed on the stack, for example using the [BP+34] address. 
 After the actual operation the stack should be restored using the POPA and the POP 
instructions. However, when the result of the operation is stored in a register a different 
method is required. In the current implementation the selected method is to execute the 
POP instruction several times for individual registers. An example can be seen later. 
 The following sections discuss the details of the implementations of the most 
important instructions. 

3.2. The MOV instruction 

 The MOV instruction is probably the most important instruction, since this 
instruction moves data between the registers and/or the memory. Its general form is: 

MOV op1, op2 

where the contents of ‘op2’ is copied into ‘op1’. ‘op1’ and ‘op21 can be a register or a 
memory location, but both of them cannot denote a memory location at the same time. 
‘op2’ can also be a constant number, but ‘op1’ cannot be a constant. To create 
equivalent instructions with printable bytecodes several cases have to be considered. 

Copying data between 16 bit registers 

 This is the simplest case when the full content of a 16 bit register has to be copied to 
another register. For example for the instruction: 

MOV AX, BX 

 first the content of register BX must be uploaded to the stack, then popped to 
register AX. Therefore the equivalent code fragment is: 

PUSH BX 
POP  AX 

 This method can be extended to other registers and all these instructions result in 
printable bytecodes. 

Copying a 16 bit value to a 16 bit register 

 In this case a 16 bit number is must be copied to a 16 bit register and the general 
syntax of the instruction is: 

MOV BX, number 

where the number can be in the range of 0 and 65535. Technically there is an easy 
solution, where zero is copied into the AX register then incremented as many times as 
required. For example: 
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MOV BX, 0003 

can be implemented in an equivalent way as follows: 

PUSH AX         ; save register AX 
PUSH 8224 
POP  AX 
XOR  AX, 8224   ; set register AX to zero 
INC  AX 
INC  AX 
INC  AX         ; increment three times 
PUSH AX 
POP  BX         ; copy to register BX 
POP  AX         ; restore register AX 

 Unfortunately this implementation is very inefficient especially for large numbers. 
To avoid this problem several techniques have been employed for different ranges of 
numbers, for example for the following ranges: 

• When number < 127 then the above described straightforward technique is used. 
• When 127 < number < 8225 then two operations (an AND and a XOR) are used 

to set the register to the required value. The following code fragment 
demonstrates the method that is developed in this paper for this case: 

MOV AX, 0ffffh  ; AX = 65535 
AND AX, op1 
XOR AX, 16254 

To determine the operand of the AND operation a mathematical formula 
can be used: op1 = (63 − d) × 256 + 94 where d = int(number/256). The formula 
ensures that op1 16 bit number can be represented by two printable characters. 
The division to determine value d is an integer division and the remainder (r = 
rem(number/256)) is also required, since the XOR operations with its constant 
operand does not provide the exact number in register AX. There are three sub-
cases depending on the remainder: 

o if the remainder is smaller than 32 then instruction DEC AX is repeated for 
32 - r number of times; 

o if the remainder is smaller than 143 then instruction INC AX is repeated for 
r - 32 number of times; 

o otherwise instruction DEC AX is repeated for 288−r number of times; 

• When 8225 < number < 32382 then there are cases when a single operation is 
enough to assign the required value to register AX. The reason for this is that 
the numbers that can also be represented by printable characters fall in this 
range; 

• For other ranges of numbers similar techniques are used but they are not 
presented here in detail for the sake of brevity. 
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Copying a 8 bit (byte) value to an 8 bit register 

 This kind of data copying requires a different approach, since by default there are 16 
bit values on the stack. When the data should be copied to the high 8 bit register (e.g. 
AH or BH, etc), then the following code fragment can be the base: 

PUSH CX       ; register for intermediate storage 
PUSH AX       ; *** 
PUSHA 
PUSHA 
PUSH BP 
PUSH SP 
POP  BP 
XOR  AH, [BP + 35]  ; AH = 0 
POP  BP 
POP  CX 
...                 ; 16 times POP CX 
POP  CX 

 In this code fragment the XOR instruction accesses the high byte of the instruction 
marked by three stars, therefore register AH becomes zero. 
 After this an addition is simulated between the 8 bit register and the 8 bit value. This 
is discussed later. When the data should be copied to the low 8 bit register the approach 
is similar, but instruction XOR changes as: 

XOR  AL, [BP + 34] 

Other addressing modes 

 There are several other addressing modes that can be solved by the combination of 
the previously described methods. For the sake of brevity they are not discussed here. 

3.3. The arithmetic instructions 

 There are several arithmetic operations, like addition, subtraction, multiplication and 
division, but basically all of them can be simulated by addition. Addition is also one of 
the most common operations, therefore only its implementation will be discussed here. 
The syntax of the addition instruction is: 

ADD  op1, op2 

where ‘op1’ and ‘op2’ can be registers and memory addresses, but they cannot be 
memory addresses at the same time. This instruction adds ‘op2’ to ‘op1’ and stores the 
result in ‘op1’. As an example the implementation of an instruction that adds together 
16 bit registers will be discussed. In this case register AX must be used to create 
instructions with printable bytecodes. The addition will be simulated by three 
subtractions and the stack will also be utilized. In this regard the following values are 
uploaded to the stack: 0, ‘op1’ and ‘op2’. Using this stack the following instructions can 
simulate the addition: ADD DX, BX: 
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PUSH AX           ; saving AX 
PUSH 8224 
POP  AX 
XOR  AX, 8224     ; AX = 0 
PUSH AX           ; 0 on stack 
PUSH DX           ; op1 on stack 
PUSH BX           ; op2 on stack 
PUSHA 
PUSHA 
PUSH BP 
PUSH SP 
POP  BP 
SUB AX, [BP + 34] 
SUB AX, [BP + 36] 
SUB [BP + 38], AX 
POP BP 
POPA 
POPA 
POP BX          ; remove op2 from stack 
POP DX          ; remove value from stack 
POP DX          ; setting DX to result from stack 
POP AX          ; restore AX 

where the meaning of the first subtraction is 0 - op2, the meaning of the second 
subtraction is (0 - op2) - op1 and the meaning of the third subtraction is 0 - ((0 - op2) - 
op1), which is equal to op2 + op1. The result of the third subtraction is stored on the 
stack and later can be popped from it. 
 When a 16 bit number must be added to a register, the technique is the same, since 
the only thing that has to be done is to copy the number to a temporary register. 
Similarly copying an address to a register can be easily solved with this technique. 
Furthermore the 8 bit variation can be implemented in the earlier discussed way. 
 From this discussion, it can be seen that instruction SUB is compatible with 
printable bytecodes, therefore they can be used without any translation. Similarly the 
instructions to increment or decrement registers or memory places can be replaced by 
addition or subtraction. 

3.4. The CMP instruction 

 A basic instruction to control the execution of a program is instruction CMP, which 
compares two operands. The general form of the instruction is: 

CMP op1, op2 

 It should be noted, that this instruction is equivalent to a subtraction (op1 - op2) and 
it sets all of the status bits at the same time, which means that technically all 
combinations of comparisons is performed: equal, not equal, smaller, greater, smaller or 
equal and greater or equal. Once the status bit is set a conditional jump can be 
performed. 
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 In the implementation of instruction CMP it is important that the status bits do not 
change, therefore only stack operations should be used. Another important note that 
register AX is used as one of the operands in every comparison. For the second operand 
a value on the stack is used, therefore the technique presented in Section 3.1 can be used 
again. For example the instruction CMP BX, CX can be implemented in an equivalent 
way: 

PUSH AX 
PUSH BX 
POP  AX     ; op1 in AX 
PUSH CX     ; op2 on stack 
PUSHA 
PUSHA 
PUSH BP 
PUSH SP 
POP  BP 
CMP  AX, [BP + 34] 
POP  BP ; no status bit should change below 
POPA 
POPA 
POP  CX 
POP  AX 

 The other comparison instructions can be implemented in the same way, for 
example comparison of a 16 bit register with a number, comparison of an 8 bit registers 
and comparison of an 8 bit register with a number. 

3.5. Handling of interrupts 

 The COM programs use software interrupts to communicate with the operating 
system. The most common operations performed with interrupts are reading character(s) 
and printing on the screen. Unfortunately at the moment the only method to perform 
equivalent operation with printable bytecodes is to use a self-modifying code. In this 
case however two bytes has to be created. Generally instruction INT XX generates two 
bytecodes: CD XX, where XX is the number of the interrupt. The aspect that the self-
modifying code has to consider is that the Intel architecture uses little-endian storage, 
therefore in the memory actually XX CD will be stored. To create an equivalent 
instruction set with printable bytecodes the following should be considered: 

PUSH SI 
...                ; MOV SI, (16525 + 256 * XX) 
XOR  [intaddr], SI 
POP  SI 
intaddr: dw 4040h 
PUSH SI 
  ...                ; MOV SI, (16525 + 256 * XX) 
XOR  [intaddr], SI 
POP  SI 
... 
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where the setting of register SI is implemented by the previously described techniques. 
The code fragment contains the second XOR instruction as well, which restores the 
bytes at address ‘ntaddr’ to their original values. As discussed above it is necessary if 
the code fragment is used for example in a loop. 
 It should be noted that this technique works for software interrupts between 00-60. 
Although there are 256 different interrupts in the interrupt table, but the most common 
interrupts fall in this range, therefore only this variation has been implemented. 

3.6. The jump instructions 

 In the assembly language the unconditional jump instruction is also important to 
control the execution of programs. The general syntax of the instruction is: 

JMP op1 

where ‘op1’ can be an address or a register. In the following the instruction with explicit 
address will be discussed, since this is the most often used version of the instruction. 
Theoretically it is possible to replace the unconditional jump instructions with a 
conditional jump instruction, since the conditional jump instructions has printable 
bytecode. However in this case the appropriate condition has to be created before every 
jump instruction. For example when the result of the last operation is zero then the JZ 
instruction will jump to the given address. Although this method may work, but the 
other problem with the default unconditional and the conditional jump instructions is 
that they use a relative address. This means that the assembler will calculate the distance 
between the address of the actual position and the address of the jumping position. 
There are two problems with this approach. One of the problems is that this distance is 
not known, since the assembly code is transformed to a new source code. At the time of 
the compilation the transformed code after the current position is not known. The 
second problem is that operand must also be printable byte. 
 The current solution to the above described problem is to use an unconditional jump 
instruction, which uses absolute addresses, with segments and offsets. The byte codes of 
the instruction are: EAh, XXh, XXh, YYh, YYh, where XXh and YYh are hexadecimal 
numbers. Furthermore on the Intel architecture the segment and offset data is store with 
the little-endian convention. This instruction can only be implemented by a self-
modifying code. Since other instructions also utilize this solution therefore the size of 
the code must be smaller than 127 bytes, as discussed in the following subsection. 
Finally this instruction may also occur inside a loop, therefore the code has to modify 
itself and then modify back to its original bytecode, and thus it can be called repeatedly. 
The following code is proposed: 

PUSH 
PUSH 02020h 
POP AX 
PUSH AX 
POP BX 
PUSH BX 
POP DI 
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PUSH 03e3eh 
POP DX 
SUB AX, 03536h    ;1 
XOR [jump1], AH   ;2 
XOR [jump3], DH   ;3 

jump3: db 020h     
POP SI     ;4 
XOR [jump3], DH   ;5 
XOR [jump1 + 3], SI  ;6 
PUSH arg2 
POP SI 
XOR [jump1 + 1], SI  ;7 
XOR [jump1], DI   ;8 
XOR [jump1 + 2], DI  ;9 
PUSH byte 020h 
POP DI 
XOR [jump1 + 4], DI  ;10 
JP jump2     ;11 
XOR [jump1], AH   ;12 
XOR [jump4], DH 

jump4: db 020h 
POP SI 
XOR [jump4], DH 
XOR [jump1 + 3], SI 
PUSH arg2 
POP SI 
XOR [jump1 + 1], SI 
PUSH BX 
POP DI 
XOR [jump1], DI 
XOR [jump1 + 2], DI 
PUSH byte 020h 
POP DI 
XOR [jump1 + 4], DI 

jump2: 
POPA 

jump1: db 020h, 020h, 020h, 020h, 020h 

 After the semicolon a number is placed as a comment, which is referred below: 

1. From the beginning of the code to comment 1 the code only saves the registers 
and sets the required values in them; 

2. This instruction creates the byte code EAh, which is the instruction code; 
3. The PUSH DS instruction is created at position `jump3’; 
4. The segment register DS, which is on the stack, is stored in register SI; 
5. The byte code at address `jump3’ is restored to its original byte; 
6. The segment value is stored in the last two bytes of the jump instruction; 
7. The offset address, used in the original jump instruction, is stored in the second 

and third bytes of the jump instruction; 
8-11. These lines create the final byte code of the jump instruction. At address 

‘jump1’ the original bytes are 20h. These values are XOR-ed with the required 



 AUTOMATIC TRANSLATION OF ASSEMBLY SHELLCODES 15 

Pollack Periodica 13, 2018, 1 

value by earlier instructions. Here this new value is XOR-ed with 20h again, 
therefore only the required values will remain at the address. Furthermore there 
are three XOR instructions here. Their order can be arbitrary, thus the last XOR 
instruction is used to determine whether this code segment is in an odd or even 
iteration; 

12. Instructions between comment 1 and 10 are repeated here.  

Conditional jump instruction 

 The bytecode of the conditional jump instructions are printable, therefore 
theoretically there is no problem with them. However in the case of conditional jump 
instructions the second byte, after the instruction byte, is the distance between the 
current position and the target position. This byte actually represents a signed integer; 
therefore its range is from -128 to +127. Naturally not all these values are printable, 
which is the source of the problem in this case. One of the possible solutions is to 
rewrite a conditional jump instruction into an equivalent set of instructions. For example 
the instruction JZ addr (jump if zero) is equivalent to: 

JNZ @@over 
JMP addr 
@@over: 

 In this case the above discussed implementation of the unconditional jump 
instruction can be used. If the length of this implementation is designed carefully, then 
the byte after instruction JNZ, which represent the relative distance of the jump, will be 
a printable byte. Another benefit of this method is that in this case the implementation is 
direction independent. It means that it does not matter whether the original instruction 
JZ jumps forward or backward, since this problem is handled by the implementation of 
the unconditional jump instruction implementation. 

Handling of addresses 

 Labels are important in assembly programs, since they represent memory addresses 
symbolically. In an assembly program labels are used by conditional or unconditional 
jump instructions and they can also denote the address of a data. In both cases there are 
two difficulties. First of all in the source code labels are only symbolic. This means that 
modern compilers usually use a two pass technique to determine their actual value. In 
the first pass all instructions are translated to byte code and position and references of 
labels are only remembered. In the second pass when the byte code of all instructions is 
known the compiler fills the missing information in the byte code. The second difficulty 
with labels is that the address that they represent becomes a part of the instructions. 
Naturally in the current method the address should have a printable byte code. 
 The current solution for the first problem is that there is a direct translation between 
the original instruction and the instructions with the printable byte code, therefore the 
length of the transformed code is always known. Furthermore all addresses are placed at 
the end of the code at a position which has an address that is printable bytecode. The 
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space between the end of the code and position of the first labels are filled with some 
random printable characters. 

3.7. Instruction LAHF 

 This instruction loads the status bits into register AH. This instruction can be 
important since this can be used to store the status bits that are used by the conditional 
jump instructions. On the other hand the implementation of the instruction is difficult 
since for example a self-modifying code cannot be used as the used instructions may 
also modify the status bits.  
 The implementation of this instruction uses conditional statements and depending on 
the value of the examined status bit different values are pushed on the stack. When the 
value of the status bit is one then 8225 otherwise 8224 are pushed on the stack. The 
implementation should not contain any jumping backward and the jumping forward 
should cover larger distance than 20h, as only these values will result in printable bytes. 
However to fill the distances only stack operations can be used as they are the only 
instructions that do not modify the status bits. The implemention of the instruction 
therefore is the following: 

PUSH BX 
PUSH AX   ; save the registers 
JNC s1   ; examining carry bit 
PUSH 8224 
jc s2 
...   ; 30 bytes of filling 

s1: 
PUSH 8225 

s2: 
JNZ s3   ;examining zero bit 
PUSH 8224 
JZ s4 
...   ; 30 bytes of filling 

s3: 
PUSH 8225 

s4: 
JNP s5   ; examining parity bit 
PUSH 8224 
JP s6 
...   ; 30 bytes of filling 

s5: 
PUSH 8225 

s6: 
JNS s7   ; examining sign bit 
PUSH 8224 
JS s8 
...   ; 30 bytes of filling 

s7: 
PUSH 8225 
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s8:  
PUSH 8736 
POP ax 
SUB ax, 8224 
PUSH ax 
POP bx   ; initial value of BX (512) 
POP ax   ; sign bit in AX 
CMP ax, 8224 
JNE s9 
...    ; add bx, (128 * 256) 
...   ; 20 bytes of filling 

s9: 
POP ax   ; value of parity bit 
CMP ax, 8224 
JNE s10 
...    ; add bx, (4 * 256) 
...    ; 20 bytes of filling 

s10: 
POP ax   ; value of zero bit 
CMP ax, 8224 
JNE s11 
...    ; add bx,(64 * 256) 
...    ; 18 bytes of filling 

s11: 
POP ax   ; value of carry bit 
CMP ax, 8224 
JNE s12 
...    ; add bx,(1 * 256) 
...    ; 20 bytes of filling 

s12: 
POP ax 
...    ; mov ah, bh 
POP bx 

 The triple dots with comments represent instructions in the comment that should be 
implemented with printable byte codes. 

4. Implementation of the compiler 

 The above described method has been implemented in a compiler, which reads in an 
assembly source and outputs another assembly source code. The input and output source 
code can be compiled by the NASM assembler [12]. The current implementation uses 
the GNU flex [13] for the tokenization and GNU bison [14] for the parsing phase. After 
parsing the compiler directly translates the instruction to a series of instructions with 
printable bytecode. There is no optimization during the generation. 
 The implementation of the compiler has been extensively tested on three levels. First 
every instruction has been tested individually. In this case the content of the registers 
has been recorded before and after the instruction and compared with the required 
results. On the second level several combinations of the instructions have been tested. 
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Unfortunately in this case the transformed code may contain several hundreds of 
instructions, therefore only the input and the output have been compared with the 
required results. Finally several full working assembly programs have been transformed 
and tested. In this case again only the input the output effect has been observed and 
compared. 

5. Testing and examples 

 The following assembly code will print an 8x8 square: 

org 100h 
 MOV AH,2 
 MOV CX, 8 
outer: 
 PUSH CX 
 MOV CX, 8 
inner: 
 MOV DL, 58h 
 INT 21h 
 LOOP inner 
 ; new line 
 MOV DL, 0dh 
 INT 21h 
 MOV DL, 0ah 
 INT 21h 
 POP CX 
 LOOP outer 
 INT 20h 

 The size of the original compiled code is 38 bytes. After the transformation the 
compiled assembly program has the size of 9837 bytes. Since the compiled version of 
the converted program is printable therefore it can be presented in this paper, however 
for the sake of brevity only the beginning of the code is presented here. It has to be 
noted that unfortunately the text processor does omit some of the spaces at the end of 
the line, therefore this representation is not perfectly reproduced here: 

SP``UT]2f#][[[[[[[[[[[[[[[[[[SPh  X5  
H%^=5~?HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHP[XPh  X5  
PS``UT]+F"+F$)F&]aa[XX[Ph  X5  
@@@@@@@@PYX`V^V[R^PZPYPZSZRXRZP^RXSZQXR^RXP[RYS[P[VXQXP[SYQYQYR^S
YRZPXSXQXS^VYVZVXRYSYPZPYP^P[Q^VZS[PXSZS[SYR^P^VYVXR^Q[QXR^Q[PYP^
SXSYQZP[S[RXRXV[RZPYVZVXV[PZR[RZSXPXQXPZPXRYR^S^QZVZQ[S[S^Q[RXS^P
XS[S^PZQ[VZR[QXSZVZS^S[VYVZQ^QXPXQXR^S^R^P^RYV[SZQ^V[PZVZQ^S^Q^QX
P^SXQXP[S[RYSYPZRYQZQZPYV^QYP[VXS^QZVXQYQXSZVXSXP^Q^QXRZVZP[R[QZS
^PXV[SYRZVZR[P^PZS^P^RXS[Q[PYR^R^RXR[Q[VXR^S^PZR^RZP[P[SYR[V^V^V[
Q[R^V[VZSXRYQ[P[QYSYP^Q[P[R[QXS[V[RYQYPXSXQXR[S^VYQ^QZP[SYVYQYQXS
YPXS[VZS[SYQXRYV[SYQ[Q^S[Q^Q[PXQ^Q^V[P[QXR[PZS^PYRZQ[RXR^PYP^SYSY
PYRZVXQYQZSZPYVXPYVYV[S[QZVZR[V[S^Q[V^VYV^P^VXVXVZSYV^VZP[SZRYQ[P
[PZRZV[P^SXVYP[PZS^P[QZQ^RZR^RYQ[R[QZPYQZQXP[PXS[RZVXPZV^SYR^QYRX
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V[QZVZPYS^Q^PXRYRYSYPXR^P[RYPYSXSYP^PYSZVXQYP^SYP[RYQXQYSZRZR^RXS
XVXP^QZQ^VYSXPXSYQZV^S[SXPZVXVZV[SZSXSYS^QYR[PXVXQXQXQYP[PXP^QZP[
S[S[R^V^P[RYVXRZQYRYSXQ[QZQ[SZVZPXRXP[V^Q^Q^V[R^QXQ^PXPYSYQ^PZSXR
YQXRZRZQ[QXR^SXQ[SYPXSZS^VZR[QYR^PXRXQZV^Q^VXRYQXSYS[SYPZR[PYRXR^
VYSXSZRZV^V^R[V^PXV^PYQ^QYQXS^S^P^QYR[R[S^V[QYPZP^Q^QYS^QZPXRZQ[P
XRZP^S^V^V[P[R[QXVZQZS[R^R^VYV[SXSYQXSXVZVXSYRXP[VXSZQ^S^V[P[VYQ^
R[RXR[V^PYP^SXQYR^VYP^RYPZPYPZRYV^QYVXQZQYPZQ^PXPYS[QYV 

Conclusions 

 The paper has presented a method to convert full assembly programs into another 
assembly program, which can be compiled into only printable bytes. The method has 
been implemented as a proof of concept. The number of implemented instructions is 60 
and 40 different variations of the MOV instruction are also implemented. Naturally the 
method can be extended to further instructions. More importantly the implementation of 
the instructions can be optimized or in other words, their size can be reduced by 20-50% 
according to a preliminary analysis. 
 It must be mentioned, that an interesting future application of this method is to use it 
as an obfuscator. An obfuscator performs a code transformation or conversion, but in 
this case the output result would be very difficult to be read and understood by a human. 
Looking at the final result of the above discussed method it can be stated that the 
method is a good starting point for a code obfuscator. 
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