
ON THE SLICE GENUS AND SOME CONCORDANCE INVARIANTS

OF LINKS

ALBERTO CAVALLO

Abstract. We introduce a new class of links for which we give a lower bound for the slice
genus g∗, using the generalized Rasmussen invariant. We show that this bound, in some
cases, allows one to compute g∗ exactly; in particular, we compute g∗ for torus links. We
also study another link invariant: the strong slice genus g∗∗ . Studying the behaviour of a
specific type of cobordisms in Lee homology, a lower bound for g∗∗ is also given.

1. Introduction

In the last ten years, after the publication of the paper “Khovanov homology and the
slice genus” [8] by Jacob Rasmussen, based on Eun Soo Lee’s work ([4]), more concordance
invariants of links have been studied: in [1], Beliakova and Wehrli introduced a natural
generalization to oriented links of the Rasmussen invariant s(L) and, more recently, John
Pardon introduced a new invariant called dL.

After a review on link cobordisms and Lee homology (Section 2), in Section 3 we use dL
to define a new class of links, that we call pseudo-thin links: a very large class that contains
both knots and Khovanov H-thin links. We prove more properties of s(L) than the ones
given in [1] for this class of links. Furthermore, we show that for pseudo-thin links, the
inequalities due to Andrew Lobb ([5]) can be improved in the following way:

(1) s(D,o) > 2− 2r + V (D,o)

where r is the number of split component of the link represented by (D,o) and V (D,o) is
an integer obtained from the diagram as in [5].

In Section 4, we compute, for some families of links, the slice genus g∗(L), namely the
minimum genus of a compact connected orientable surface S embedded in the 4-ball D4

with ∂S = L.

Figure 1. A P2h,−2k,2l+1 pretzel link: the number of crossings of each strand
is indicated.

With our first result we verify a generalization to links of the classical Milnor conjecture
on torus knots.

Date: 11th September 2014.

1

ar
X

iv
:1

40
3.

11
53

v2
  [

m
at

h.
G

T
] 

 1
0 

Se
p 

20
14



2 ALBERTO CAVALLO

Proposition 1.1. The slice genus of a n = gcd(p, q) component torus link Tp,q is given by
the following equation:

(2)
(p− 1)(q − 1) + 1− n

2

Then, we consider the 3-strand pretzel links given in Figure 1. Note that the second
parameter is negative because the second strand has negative twists, while we can always
suppose l > 0 because P−2h,−2k,−2l−1 is the mirror image of P2h,2k,2l+1 for every (h, k, l).

Under the hypothesis that h < 0 and k < 0 we prove the following proposition, using
Equation (1) and Proposition 1.1. Later, we will show that more can be said on pretzel
slice genus.

Proposition 1.2. If l + h > 0 then

g∗(P2h,2k,2l+1) = l + h

while if l+ h = −1 then g∗(P2h,2k,2l+1) = 0. Changing the relative orientation, if l+ k > 0,
we have

g∗(P2h,2k,2l+1) = l + k

and l + k = −1 implies g∗(P2h,2k,2l+1) = 0.

Finally, let Twn with n > 0 be the link of Figure 2.

Figure 2. The link Twn.

Twn is a two component non split link with a twist knot and an unknot as components.
Using Equation (1) we have s(Twn) = 3 for all n and, as we will see, this implies g∗(Twn) >
1. Indeed for n = 1 we can compute the precise value of the slice genus, that is g∗(Tw1) = 1.
All the links we mentioned before are pseudo-thin, but in general they are not H-thin.

We say that a cobordism between two n components links is strong if there exist n disjoint
knot cobordisms between a component of the first link and one of the second link. We study
these cobordisms in Section 5 where we prove the following theorem.

Theorem 1.3. Let L be a pseudo-thin link with h split components and let Σ be a strong
cobordism between L and M , where M is a link with k split components. Then g(Σ) > dk−h2 e,
where g(Σ) is the genus of the surface Σ. In particular, every non split pseudo-thin link
is not strongly concordant, namely if there exists a genus zero strong cobordism, to a split
link.

This is a generalization of Pardon’s main result in [7]; using the same ideas, we also
provide a lower bound for the genus of a strong cobordism between a pseudo-thin link and
the n component unlink:
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(3) g∗∗(L) >
|s(L)|+ n− 1

2
.

This bound leads us to study an invariant of links similar to the slice genus, but considering
only strong cobordisms: the strong slice genus g∗∗.

At last, in Section 6, we compute this invariant for an infinite family of pretzel links:

g∗∗(P2h,2h,2l+1) = l + h if h, l > 0 .

Acknowledgements. This paper is an expanded excerpt from a Master’s thesis prepared
at the University of Pisa under the supervision of Paolo Lisca, to whom many thanks are
due for his advice and support.

2. Cobordisms and filtered Lee homology

2.1. Link cobordism. First we give the definitions of weak and strong cobordism.

Definition 1. Let L,L′ be links such that

L : U = S1 t ... t S1︸ ︷︷ ︸
n times

→ S3 and L′ : V = S1 t ... t S1︸ ︷︷ ︸
m times

→ S3 .

A weak cobordism of genus g between L and L′ is a smooth embedding

f : Sg,n+m → S3 × I
where Sg,n+m is a compact orientable surface of genus g in which ∂Sg,n+m = −U tV , every
connected component of Sg,n+m has boundary in L and L′, and f(U) = L(U) × {0} and
f(V ) = L′(V )× {1}.
L and L′ are said to be weakly concordant if there exists a weak cobordism of genus 0

between them.
A cobordism is strong if the links also have the same number of components and if they

satisfy the condition
Sg,n+n = Sg1,1+1 t ... t Sgn,1+1

with g1 + ...+ gn = g.
L and L′ are strongly concordant if there exists a strong cobordism of genus 0 between

them.

It is clear that the two definitions of cobordism are the same for knots. This means that
there is no ambiguity in saying that a slice knot is a knot which is concordant to the unknot.

Since H1(D4, S3,Z) ∼= {0} it is easy to see that there is always a properly embedded
orientable surface in D4 with a given link L as boundary: the minimum genus for this kind
of surface is called the slice genus of L and it is denoted with g∗(L). Then we say that a link
is slice if g∗(L) = 0, that is if it is weakly concordant to the unknot. We have g∗(L) 6 g(L)
where g(L) is the classic 3-genus of L.

The signature of a link L is the integer σ(L) = sgn (A + AT ), where A is a Seifert matrix
for L. Then, two strongly concordant links have the same signature; in particular a slice
knot K has σ(K) = 0. The signature of a link is a strong concordance invariant. In this
paper we will see some other examples of such invariants.

2.2. Link homology theories. It is well known that we can associate a bigraded Q-
cochain complex (C(D), d) to an oriented diagram D of a link. The process has first been
introduced by Mikhail Khovanov in [2], where he defined his own homology, and it is not
described again in this paper.
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The differential d is obtained from the following maps:

V ⊗ V m−−→ V

v+ ⊗ v+ → v+

v+ ⊗ v− → v−

v− ⊗ v+ → v−

v− ⊗ v− → 0

V
∆−−→ V ⊗ V

v+ → v+ ⊗ v− + v− ⊗ v+

v− → v− ⊗ v−

where V is the two-dimensional Q-space associated to a circle in each resolution of D. The
maps m and ∆ are the multiplication and the comultiplication of a Fröbenius algebra. This
is enough to claim that d is actually a differential; further details can be found in [2] and
[4].

Rational Khovanov homology is the homology of (C(D),d):

H i,j(D) =
Ker di,j

Im di−1,j

and it is invariant under Reidemeister moves.
We ask how we can change the maps m and ∆ so that they extend to a Fröbenius algebra

and that, at the same time, the homology of the new complex remains a link invariant; in
this case H∗(C(D),d) is called a homology link theory. The answer is that we must have

m(h,t) :


v+ ⊗ v+ → v+

v+ ⊗ v− → v−

v− ⊗ v+ → v−

v− ⊗ v− → hv− + tv+

∆(h,t) :


v+ → v+ ⊗ v− + v− ⊗ v+

− hv+ ⊗ v+

v− → v− ⊗ v− + tv+ ⊗ v+

(h, t) ∈ Q×Q .

According to Turner [9] the following theorem holds.

Theorem 2.1. There are only two, up to isomorphism, homology link theories: Khovanov
homology, with pairs (h, t) such that h2 + 4t = 0 and Lee homology, with (h, t) such that
h2 + 4t 6= 0.

We define Lee homology considering d obtained by the pair (0, 1
4), this simply for numeric

convenience. The differential dLee is graded, thus we have

H i
Lee(L) =

Ker di
Lee

Im di−1
Lee

.

From [4], we know that dim HLee(L)=2n, where n is the number of components of L.
Moreover, taking 2 · lk(o′,o) = n−(D,o′) − n−(D,o) where o and o′ are two orientations
of a diagram D of L, we also have ([4]) the following proposition.

Proposition 2.2.

dim H i
Lee(L) =

∣∣{o′ ∈ O(D) | 2 · lk(o′,o) = i
}∣∣

and
H i

Lee(L) = Span
{

[v(o′)] ∈ HLee(L) | 2 · lk(o′,o) = i
}

where (D,o) is an oriented diagram of L and O(D) is the set of all 2n orientations of D.
For every o ∈ O(D) [v(o)] is the canonical generator of HLee(L) associated to o as described
in [8].

Lee homology has been defined by Eun Soo Lee in order to prove an important conjecture
on H-thin links, namely links whose Khovanov invariantH i,j(L) is supported in two diagonal
lines j = 2i + s ± 1 for some integer s; see Lee’s paper for more informations. Our goal is
to show some other important applications of this theory.
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2.3. A filtration on HLee(L). Rasmussen has equipped Lee homology with the structure
of a decreasing filtration. Let (C(D),dLee) be the Lee complex for a link diagram D; for all
s ∈ Z we take

FsCi(D) = Span {v ∈ Ci,j(D) | j > s} .
It is easy to see that FsCi(D) ⊃ Fs+1Ci(D) and, from [8], we have

di
Lee(FsCi(D)) ⊂ FsCi+1(D)

so the filtration descends to homology:

FsH i
Lee(D) =

FsKer di
Lee

FsIm di−1
Lee

.

For [v] ∈ H i
Lee(D) we say that sdeg[v] = s if [v] ∈ FsH i

Lee(D) \ Fs+1H i
Lee(D) that is

FsH i
Lee(D) = Span{[v] ∈ H i

Lee(D) | sdeg[v] > s} .

Definition 2. Let (C, d,F) and (C′,d′,F) be cochain complexes with a filtration, then a
map of complexes f : C → C′ is a filtered map of degree n if it satisfies f(FsCi) ⊂ Fs+n(C′)i
for every i. We say that f respects the filtration if it is filtered of degree 0.

It is obvious that, if f : C → C′ is a filtered map of degree n, then f∗(FsHi(C)) ⊂
Fs+nHi(C′) for every i, so that the induced map in homology has the same degree.
Rasmussen ([8]) has also proved that filtered Lee homology is a link invariant.

Theorem 2.3. If D and D′ are two diagrams of equivalent links then

FsH i
Lee(D) ∼= FsH i

Lee(D
′) for every i, s ∈ Z

in fact, if D and D′ differ by a Reidemeister move, all the isomorphisms in Lee homology
set in [4] and their inverses respect the filtration.

From [8] we have the following two propositions.

Proposition 2.4. Let L and L′ be links with diagrams D and D′ and let Σ be a weak
cobordism between them; then there is

FΣ : (C(D),dLee,F) −→ (C(D′), dLee,F)

a filtered map of degree χ(Σ) which induces

(F i
Σ)∗ : H i

Lee(L)→ H i
Lee(L

′)

filtered of degree χ(Σ).

Proposition 2.5. If Σ is a strong cobordism between L and L′ then

(F i
Σ)∗ : H i

Lee(L)→ H i
Lee(L

′)

is a filtered isomorphism of degree χ(Σ).

Corollary 2.6 follows immediately from Proposition 2.4 and 2.5.

Corollary 2.6. If L and L′ are strongly concordant then χ(Σ) = 0. In particular, (F i
Σ)∗

and its inverse respect the filtration and

FsH i
Lee(L) ∼= FsH i

Lee(L
′) ∀i, s ∈ Z .

Furthermore, (F i
Σ)∗ takes canonical generators of HLee(L) into canonical generators of

HLee(L
′).

This means that filtered Lee homology is a strong concordance invariant.
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3. s invariant lower bound for pseudo-thin links

3.1. Invariants from Lee homology. We expect filtered Lee homology to be a powerful
invariant, but it is very difficult to fully understand. What we do is to study two other
invariants that are numeric reductions of FHLee. Thus, they preserve the property of being
a strong concordance invariant, combined with the advantage of being easier to compute.

3.1.1. The Pardon invariant. Let D be an oriented diagram of a link L, then the function

dD : Z×Z→ Z>0

dD(i, s) = dim
FsH i

Lee(D)

Fs+1H i
Lee(D)

is the link concordance invariant defined by John Pardon in [7]. He proved the following
properties.

Proposition 3.1. Let L1, L2 be links and L be another link with orientation o. Then we
have

(4)
∑

s≡n+k (4)

dL(i, s) =


0 if k ≡ 1 mod 2

1

2
dim H i

Lee(L) if k ≡ 0 mod 2

(5) dL∗(i, s) = dL(−i,−s) for all i, s ∈ Z

(6) dD1tD2(i, s) = (dD1 ∗ dD2)(i, s) for all i, s ∈ Z

(7) d(D,o′)(i, s) = d(D,o)

(
i+ 2 · lk(o′,o), s+ 6 · lk(o′,o)

)
where ∗ is convolution, o′ is another orientation of L, while L1 t L2 and L∗ stand for
disjoint union and mirror of links respectively.

It is easy to see that the unknot has d(i, s) 6= 0 if and only if (i, s) = (0,±1). Using (6)
we obtain the values of d for the n component unlink

⊔n©:

d⊔n©(i, s) =


(
n

k

)
if i = 0, s = n− 2k

0 otherwise

with k = 0, ..., n .

3.1.2. The generalized Rasmussen invariant. This is the invariant introduced by Anna
Beliakova and Stephan Wehrli in [1].

Let (D,o) be a diagram of a link L, the generalized Rasmussen invariant is the integer

s(L) =
1

2

(
sdeg[v(o) + v(−o)] + sdeg[v(o)− v(−o)]

)
.

From [4] and [8] we know that H-thin links whose H i,j is non zero in j = 2i+ c± 1 have d
invariant supported in lines s = 2i+ c± 1. This implies that s(L) is necessarily equal to c
and this leads us to the following corollary.

Corollary 3.2. If L is a non split alternating link then s(L) = −σ(L).

We can also compute s(L) when L has a positive diagram. Recall that and are
said to be the 0-resolution and 1-resolution of ; the coherent resolution of an oriented
diagram is the diagram obtained by performing the only orientation preserving resolution
at every crossing.
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Proposition 3.3. Let (D,o) be a positive diagram, then

s(D,o) = −k(D) + c(D) + 1

where k(D) is the number of circles of the coherent resolution of (D,o) and c(D) is the
number of crossing of the diagram.

Proof. D is positive thus v(o) ± v(−o) ∈ C0(D). Further we have Im d−1
Lee = {0} whence

sdeg[v(o)± v(−o)] = {j, j + 2} with v(o)± v(−o) ∈ Ci,j(D) ∪ Ci,j+2(D).
The shift in the complex C(D) tells us that j = −k(D)+c(D) and the statement follows. �

As an example, for the n component unlink we have s(
⊔n©) = 1− n.

In [1] the following properties of s are proved.

Proposition 3.4. Let L,L1, L2 be links and n be the number of components of L. Then
the following inequalities hold

(8) |s(L1)− s(L2)| 6 −χ(Σ)

(9) s(L1 t L2) = s(L1) + s(L2)− 1

(10) s(L1) + s(L2)− 2 6 s(L1]L2) 6 s(L1) + s(L2)

(11) 2− 2n 6 s(L) + s(L∗) 6 2

where Σ is a weak cobordism between L1 and L2, while L1]L2 stay for connected sum of
links.

3.2. Pseudo-thin links. Now we are going to introduce a new class of links for which we
can use dL and its properties to improve Inequalities (10) and (11).

Definition 3. Let L be a non split link. We say that L is pseudo-thin if for all [v] ∈ H0
Lee(L)

we have sdeg[v] = c(L) ± 1 with c(L) ∈ Z. This means that dL(0, ·) is supported in two
points. A link is pseudo-thin if each of its split components is pseudo-thin.

We see that, given an oriented diagram (D,o) of a pseudo-thin link, we have s(D,o′) = c
for all o′ ∈ O(D) such that lk(o′,o) = 0. Moreover, every knot or H-thin link is pseudo-thin.
We have already seen in Section 1 examples of non split pseudo-thin links which are not
H-thin.

3.2.1. Mirror of pseudo-thin links. The first proposition we prove is a generalization of
Rasmussen’s result on knots.

Proposition 3.5. If L is a pseudo-thin link then

s(L∗) = 2− 2r − s(L)

where r is the number of split component of L.

Proof. We proceed by induction on r.

• r = 1
This is the non split case.
dL(0, s) is non zero only for s = s(L) ± 1 since L is pseudo-thin. From (5) we

see that dL∗(0, s) = dL(0,−s) thus dL∗(0, s) is non zero only for s = −s(L)± 1 and,
from this, we have

s(L∗) = −s(L) .

• r > 2
L = L1 tL2. We can suppose L1 is non split and L2 has r− 1 split components.

By Equation (9) and the inductive hypothesis we have these equalities:
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s(L∗) = s(L∗1) + s(L∗2)− 1 = −s(L1) + 4− 2r − s(L2)− 1 =

= 2− 2r − (s(L1) + s(L2)− 1) = 2− 2r − s(L) .

�

Since H-thin links are non split ([6]) we have that s(L∗) = −s(L) for every L H-thin. In
Section 6 we will see that L10n36 on Thistlethwaite’s table is a non split non pseudo-thin
link for which the previous property is false.

Checking whether a link is pseudo-thin requires computing filtered Lee homology or at least
Khovanov homology. In the following proposition we give some geometric conditions that
ensure that a link belongs to this class.

Proposition 3.6. Let (L,o) be a non split link; then if (L,o) is quasi-alternating or

lk(o′,o) 6= 0 ∀o′ ∈ O(L) \ ±o

we have that (L,o) is pseudo-thin.

Proof. In [6], Manolescu and Ozsváth show that a quasi-alternating link is
H-thin while, in the other case, we have

dim H0
Lee(L,o) = 2

and, as we already know from [1], this is enough to conlude that d(L,o)(0, s) is non zero only
if s = s(L,o)± 1. �

Positive or negative links satisfy the second condition of Proposition 3.6 so that they are
pseudo-thin. Then we have the following formula for negative links.

Corollary 3.7. If (D,o) is a negative diagram

s(D,o) = 2− 2r − s(D∗,o) =

= 2− 2r − (−k(D) + c(D) + 1) = k(D)− c(D) + 1− 2r

where the second equality holds because k(D∗) = k(D) and c(D∗) = c(D). Notice that
r is the number of split component of the link represented by D.

3.2.2. Connected sum. Equation (10) tells us that s is not additive under connected sum of
links, but we can show that this is true for pseudo-thin links.

Proposition 3.8. If L1, L2 and L1]L2 are pseudo-thin then s(L1]L2) = s(L1) + s(L2).

Proof. We already know that

s(L1]L2) 6 s(L1) + s(L2)

and therefore also that
s(L∗1]L

∗
2) 6 s(L∗1) + s(L∗2) .

Since L1 and L2 are pseudo-thin then s(L∗i ) = 2− 2ri − s(Li) for every i, thus

2− 2(r1 + r2 − 1)− s(L1]L2) 6 2− 2r1 − s(L1) + 2− 2r2 − s(L2)

the previous expression becomes

s(L1]L2) > s(L1) + s(L2)

and we conclude. �

This proposition applies to knots, for which additivity of connected sum is proved in [8],
and H-thin links.

About the d invariant we have the following formula.
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Proposition 3.9. Let (L1,o1) and (L2,o2) be H-thin links then

d(L1]L2,o1]o2)(i, s± 1) =

∣∣∣∣∣
{(

(i1, s1), (i2, s2)
)
∈ Z2 ×Z2 |

| i1 + i2 = i, s1 + s2 = s and dLj (ij , sj ± 1) > 0 ∀j

}∣∣∣∣∣
and 0 otherwise.

Proof. First we recall that a H-thin link L has dL invariant supported in s = 2i+ s(L)± 1.
There are 2n−1 pairs

(
i, s ± 1 = 2i + s(L) ± 1

)
counted with multiplicity, where n is the

number of components of L, and each one increases by one the value of dL(i, s± 1).
Let (i1, s1± 1) be such a pair for L1 and (i2, s2± 1) be another one for L2: this means that
there exist o′1 and o′2 orientations of L1 and L2 such that 2 · lk(o′j,oj) = ij for every j. Now

we have that the orientation o′1]o
′
2 of L1]L2 gives

i = 2 · lk(o′1]o
′
2,o1]o2) = 2 · lk(o′1,o1) + 2 · lk(o′2,o2) = i1 + i2

and it corresponds to the pair(
i = i1 + i2, s± 1 = 2i+ s(L1]L2)± 1 = 2i1 + 2i2 + s(L1) + s(L2)± 1 = s1 + s2 ± 1

)
where we have used Proposition 3.8. Finally, we note that all of the 2n1+n2−2 pairs of L1]L2

are obtained in this way, in fact L1]L2 has n1 + n2 − 1 components.
The proof is completed. �

This result gives the following theorem.

Theorem 3.10. If L1,L2 and L1]L2 are pseudo-thin oriented links then the value of
s(L1]L2) is independent from the choice of components used to perform the connected sum.

If, in addition, L1 and L2 are H-thin then this is true for dL1]L2 as well.

3.3. Improving Lobb’s inequality. Andrew Lobb in [5], working on Rasmussen invari-
ant, found an upper and a lower bound for the value of s(D,o), which depend from the link
diagram D. Now we want to show that, for pseudo-thin links, we can give a better lower
bound. This also allows us to give a better lower bound for slice genus of links.

Definition 4. Let (D,o) be an oriented diagram of a link. Then we define U(D,o) and
V (D,o) as

U(D,o) = k(D,o) + w(D,o)− 2S−(D,o) + 1

V (D,o) = −k(D,o) + w(D,o) + 2S+(D,o)− 1

where

• k(D,o) is the number of circles of the coherent resolution of (D,o).
• w(D,o) is the writhe of the diagram.
• S±(D,o) is the number of connected components of the graph obtained in the fol-

lowing way: for each circle of the coherent resolution of (D,o) we have a vertex,
and we connect two vertices with an edge if and only if they correspond to circles
connected by at least a positive (negative) crossing.

The following figure shows the computation of U and V for the figure eight knot. Lobb’s
inequalities are formulated in terms of U and V .
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Figure 3

Theorem 3.11. For every oriented diagram of a link is

(12) U(D,o) > s(D,o)

and
s(D,o) > 2− 2n+ V (D,o)

where n is the number of components of the link.

Proof. The first inequality is proved in [5]. Now, it is trivial that

V (D,o) = −U(D∗,o)

then
U(D∗,o) > s(D∗,o)

and from Equation (11)
−V (D,o) > 2− 2n− s(D,o)

that is equivalent to
s(D,o) > 2− 2n+ V (D,o)

which proves the lower bound in [5]. �

Our result improves the second inequality in terms of the number r of split components
of the link.

Theorem 3.12. If (D,o) is the diagram of a pseudo-thin link, then Inequality (1)

s(D,o) > 2− 2r + V (D,o)

holds.

Proof. It is enough to observe that

U(D∗,o) = −V (D,o) > s(D∗,o) = 2− 2r − s(D,o)

where the last equality follows from 3.5. �

In addition, for non split alternating links, these inequalities are indeed equalities. The
proof is identical to the one in [5] for knots.

Proposition 3.13. If (D,o) is a non split alternating diagram then
U(D,o) = V (D,o) and consequently, by Theorem 3.12, U(D,o) = s(D,o) = V (D,o), that
is

s(D,o) = −σ(D,o) = −k(D,o) + w(D,o) + 2S+(D,o)− 1 .

Theorem 3.12 gives a better lower bound for s than Lobb’s one, especially for non split
links with a high number of components.



ON THE SLICE GENUS AND SOME CONCORDANCE INVARIANTS OF LINKS 11

4. Computations of the slice genus

4.1. Morse moves and a connection between s(L) and g∗(L). We can say when two
diagrams represent weakly cobordant links. Given Σ a weak cobordism between links L and
L′, from Morse theory we know that Σ can be decomposed in a finite number of elementary
cobordisms.

Figure 4

This means that if we have D and D′ diagrams of L and L′, there is a weak cobordism
between them if and only if D′ is obtained from D with a finite number of Reidemeister and
Morse moves. Each Morse move corresponds to a k-handle in the cobordism decomposition.

Figure 5. Local behaviour of Morse moves.

Now we use Equation (8) to show that the s invariant gives a lower bound for the slice
genus of a link. In fact, given Σ a weak cobordism between a n component link L and the
unknot, we have

|s(L)| 6 −χ(Σ) = 2g(Σ) + n− 1

from which we obtain the following equation:

(13) g∗(L) >
|s(L)|+ 1− n

2
.

An upper bound for g∗(L) is easy to find using the following proposition.

Proposition 4.1. Given a link L, then the Seifert algorithm associated to a diagram (D,o)
of L, gives a Seifert surface S for L such that χ(S) = k(D,o)− c(D).

Proof. It simply follows from the construction of the surface in the Seifert algorithm. �

Thus

(14)
2− n− k(D,o) + c(D)

2
=

2− n− χ(S)

2
= g(S) > g(L) > g∗(L) .

We want to apply what we have shown to some families of links in order to compute g∗.
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4.2. The Milnor conjecture. For a long time this important conjecture about the slice
genus of torus knots was unsolved. Later, in the early nineties, Kronheimer and Mrowka
proved it using gauge theory. One of the most interesting result of Rasmussen in [8] consists
precisely in providing a purely combinatorial proof of the Milnor conjecture, with his own
invariant. In this paper we use the same technique to prove Proposition 1.1.
Since a torus link Tp,q, with all components oriented in the same direction, is positive we
can find the value of the s invariant for every (p, q). The coherent resolution of Dp,q, the
standard diagram of T (p, q), gives:

Figure 6

Then k(Dp,q) = p and c(Dp,q) = q(p− 1), whence Proposition 3.3 says

s(Tp,q) = −p+ q(p− 1) + 1 = (p− 1)(q − 1) .

Now Equation (13) says that

g∗(Tp,q) >
(p− 1)(q − 1) + 1− n

2

instead Equation (14) gives

g∗(Tp,q) 6
2− n− p+ q(p− 1)

2
=

(p− 1)(q − 1) + 1− n
2

so we have found that Equality (2)

g∗(Tp,q) =
(p− 1)(q − 1) + 1− n

2
holds for every p, q.

Taking n = 1, we have the same formula of the original conjecture. We observe that the
only non trivial slice torus link is the Hopf link: in fact, we should have (p−1)(q−1) = n−1,
so p− 1 would be a divisor of n− 1, whence p 6 n, but n is the gcd of p and q, thus n 6 p
and then p = n. The equation becomes

(n− 1)(q − 1) = n− 1

which, dividing by n − 1 (because no non trivial torus knot is slice) gives q − 1 = 1. The
same holds for p, and then we have p = q = 2 which corresponds exactly to the Hopf link.
Finally, since Tp,q is a positive link, we can say that every torus link is pseudo-thin thanks
to 3.6: in fact, every orientation other than the reverse has lk(o′,o) 6= 0. This means that
all the results we obtained on torus links hold even for their mirrors, which are negative
links.

4.3. Pretzel links. In this subsection we prove Proposition 1.2. First we make some
general considerations: these links have always two components L1 and L2, so they have
two relative orientations. It follows that lk(o′,o) = lk(L1, L2) = h− k. If h 6= k, P2h,2k,2l+1

is pseudo-thin thanks to 3.6: they are non split because their determinant is non zero.
When h or k are zero, links are either trivial or torus links and we ignore them; also, we

do not consider the case h > 0, k > 0 that we will study later. Hence there are three cases
remaining.
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a) h < 0 , k < 0 and h 6= k
We can use Inequalities (1) and (12) to obtain that

s(P2h,2k,2l+1) = 2l + 2h+ 2± 1

as we can see in the following figure.

Figure 7

While, for the other relative orientation, the same argument says that

s(P2h,2k,2l+1) = 2l + 2k + 2± 1 .

Now we take a look at Figure 1: if we apply a type 1 Morse move to two arcs on the central
strand which belong to different components, we obtain that P2h,2k,2l+1 is cobordant to the
following knot.

If we set the condition that l+h > 0, that is 2l+ 1 > |2h|, then, with some Reidemeister
moves, the |2h| crossings in the left strand can be canceled out with |2h| of the 2l + 1
crossings in the right strand. Then we have that P2h,2k,2l+1 is cobordant to the torus knot
T2,2l+1+2h.

Now we make two observations: the first is that the cobordism we found consists of a
saddle which connects two components (so the genus does not change); the second one is
that g∗(T2,2l+1+2h) = l + h. From these facts we have

g∗(P2h,2k,2l+1) 6 l + h .

If s(P2h,2k,2l+1) = 2l+2h+3 then (13) would give g∗(P2h,2k,2l+1) > l+h+1 and this would
be a contradiction; so

s(P2h,2k,2l+1) = 2l + 2h+ 1 and g∗(P2h,2k,2l+1) = l + h .

If l + h = −1 the knot of the figure is the unknot so we can directly deduce that
g∗(P2h,2k,2l+1) = 0.
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With the other relative orientation we work similarly, except that the Morse move is done
on the left strand. These results follow as in the previous case:
if l + k > 0 then

s(P2h,2k,2l+1) = 2l + 2k + 1 and g∗(P2h,2k,2l+1) = l + k .

If l + k = −1 then g∗(P2h,2k,2l+1) = 0.

b) h > 0 and k < 0
The link is positive so, thanks to 3.3, we know that

s(P2h,2k,2l+1) = 2l + 2h+ 1 .

If we change the relative orientation then we must use estimates:

Figure 8

the s invariant can be 2l + 2k ± 1.
Conclusions follow exactly like before: for the standard orientation we have

g∗(P2h,2k,2l+1) = l + h .

For the other one, if l + k < 0 then

s(P2h,2k,2l+1) = 2l + 2k + 1 and g∗(P2h,2k,2l+1) = −k − l − 1 .

If l + k = 0 then g∗(P2h,2k,2l+1) = 0.

c) h < 0 and k > 0
This case is formally the same as the previous one so we only report the results:

s(P2h,2k,2l+1) = 2l + 2h± 1

if l + h < 0 then

s(P2h,2k,2l+1) = 2l + 2h+ 1 and g∗(P2h,2k,2l+1) = −l − h− 1 .

If l + h = 0 then g∗(P2h,2k,2l+1) = 0.
While, with the other relative orientation, the link is positive and then we have

s(P2h,2k,2l+1) = 2l + 2k + 1

hence it is always g∗(P2h,2k,2l+1) = l + k.

4.4. Linked twist knots. We have already defined Twn links in the introduction. The
linking number between their components is always 2 so they are non split pseudo-thin
links. Figure 9 shows the coherent resolution of the diagram in Figure 2.

We obtain that s(Twn) = 3 for every n > 0 and, using Equation (13) and keeping in
mind that links have two components, we also have g∗(Twn) > 1.

We see that no link of this family is slice. However, if n = 1, one component is a Stevedore
knot which is known to be slice; taking advantage of this we can prove that g∗(Tw1) = 1.
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Figure 9

All we need is to find a genus 1 surface properly embedded in D4 which has a Tw1 link
(L10n19 in Thistlethwaite’s table) as boundary.

Now we apply a type 1 Morse move in the highlighted tangle of previous figure.

We have decribed a cobordism between L10n19 link and the connected sum of two positive
Hopf links which has genus 0. This means that the slice genus is 0 as well, and we can
outline the cobordism in this way.

Figure 10. The surface and its boundary are actually knotted in D4.

To sum up, we proved that L10n19 link is the boundary of a torus in D4.
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5. Results on strong cobordisms

5.1. Strong slice genus. In this paragraph we want to define the invariant g∗∗, as men-
tioned in the introduction.

Definition 5. Given L a n component algebrically split link (which means lk(Li, Lj) = 0
for every i, j) we call the strong slice genus of L the minimum genus of a strong cobordism
between L and

⊔n©. We denote this number with g∗∗(L).

This invariant is well defined: there is always at least one strong cobordism as in the
definition. To see this we prove the following lemma.

Lemma 5.1. If L is a n component algebrically split link then each component bounds a
compact, orientable surface in D4 and these surfaces are all disjoint.

Proof. Let Si be Seifert surfaces in D4 for each component of L. We can suppose Si to be
tranverse, so they intersect only in a finite number of points. Each pair of surfaces Si and
Sj intersect in an even number of points, one half positive and one half negative; this is
because the sum of all signs is equal to lk(Li, Lj), which is zero. Let x+ and x− be two
points such that x+, x− ∈ Si ∩ Sj : we can cancel these two intersections by adding a tube
on Si disjoint from the other surfaces. Since Si is orientable and x± have opposite signs,
the new surface is still orientable.

Finally, after removing all the intersections from every pair of surfaces, we obtain what
we wanted. The reader can observe that, in the process, the genus of Si has been increased
a lot. �

We have that g∗(L) 6 g∗∗(L), because a strong cobordism is indeed a weak cobordism,
and g∗∗(L) = 0 if and only if L is strongly slice, that is, strongly concordant to the unlink
or, in other words, each component bounds a disk in D4 and all these disks are disjoint.

We conclude with the following proposition, which states some basic properties of g∗∗.

Proposition 5.2. Let L be a n component algebrically split link, then

• If L′ is obtained from L reversing the orientation of one component then g∗∗(L) =
g∗∗(L

′).
• g∗∗(L) = g∗∗(L

∗).

Proof. Both statements are obvious:

• If Σ is the minimum strong cobordism between L and
⊔n©, then Σ′, obtained

reversing the orientation of one component of Σ, is the minimum strong cobordism
between L′ and the unlink.
• Suppose D is a diagram of L, then there is a sequence of Reidemeister and Morse

moves that take D into
⊔n©. Then the same sequence, mirrored, take D∗ into⊔n©. This means that we have a strong cobordism of the same genus for L∗.

�

5.2. Applications to pseudo-thin links. Now we prove Theorem 1.3; the proof uses the
same techniques of Pardon applied to all pseudo-thin links, not only H-thin links as in [7].
First, we call diameter of a link L the value

max{s | dL(0, s) > 0} −min{s | dL(0, s) > 0}
Then the diameter of Mi is at least 2 for every i, from Property (4), so Equation (6) says
that M has diameter at least 2k. Since a non split pseudo-thin link has always diameter
equal to 2, we have that the diameter of L is 2h, for the same reason.
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The cobordism Σ and its inverse induce the following maps in homology:

H0
Lee(L)

F ∗Σ−−→ H0
Lee(M)

F ∗−Σ−−−→ H0
Lee(L)

both are filtered isomorphisms of degree −2g(Σ) for 2.5.
This says that filtered Lee homology of M in 0 is supported in degrees between

max{s | dL(0, s) > 0}+ 2g(Σ) and min{s | dL(0, s) > 0} − 2g(Σ)

this means that 4g(Σ)+2h should be at least equal to the diameter of M and so 4g(Σ)+2h >
2k. Thus we conclude that

g(Σ) >

⌈
k − h

2

⌉
>
k − h

2
.

We have the following corollary.

Corollary 5.3. If L and M are strongly concordant links with h and k split conponents
and L is pseudo-thin then h > k.
In particular

• Every non split pseudo-thin link is not strongly concordant to a split link.
• A pseudo-thin link is strongly slice if and only if it is a disjoint union of slice knots.

Proof. Suppose that k > h + 1, then from the previous theorem, we have that a strong
cobordism between L and M has g(Σ) > 1; this is a contradiction because the links are
strongly concordant.

• If L is a non split pseudo-thin link then every link strongly concordant to it is also
non split.
• If h = 1, from the previous statement it follows that M is a slice knot and the

converse is obvious. For h > 1 we reason in the same way.

�

The most important application of Theorem 1.3 is found by using the techniques of its
proof to prove the following estimate, which is a version of (13) for the strong slice genus.

Theorem 5.4. Let L = L1 ∪ ... ∪ Ln be a n component non split pseudo-thin link which is
also algebrically split; then we have Inequality (3):

g∗∗(L) >
|s(L)|+ n− 1

2
.

Proof. First we recall that a non split pseudo-thin link has dL(0, s) > 0 only for s = s(L)±1.
Let Σ and M =

⊔n© be as in Theorem 1.3 and let F ∗±Σ be the same homology maps as
in its proof. We already know the values of d⊔n© and then we have

max{s | d⊔n© > 0} = n and min{s | d⊔n© > 0} = −n .
Since these maps are filtered of degree −2g(Σ) we have

s(L) + 1 + 2g(Σ) > n and s(L)− 1− 2g(Σ) 6 −n

that means g∗∗(L) >
±s(L) + n− 1

2
which is the statement. �

6. Examples

We talked about strongly slice links in the previous section, but we have not yet shown
any non split one. In fact, it is not so easy to find an example of such a link. Let us take a
look at Figure 11:
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Figure 11. A L10n36 link: orientations are irrelevant for 5.2.

this link is a symmetric union, a class of links introduced by Kinoshita and Terasaka in
[3], which are strongly slice. Moreover, we can say that it is non split because it is classified
in Thistlethwaite’s table, so this is the example we were looking for.

Since s and d are strong concordance invariants we have

s(L10n36) = s((L10n36)∗) = s(©t©) = −1

and

dL10n36
= d©t©(i, s) =


(

2

k

)
if i = 0, s = 2− 2k

0 otherwise

for k = 0, 1, 2 .

So s(L10n36) 6= −s((L10n36)∗) and this shows that Proposition 3.5 does not hold in this case.
Indeed L10n36 is not pseudo-thin since its d(0, ·) invariant is supported in 3 points. This
means that the pseudo-thin hypothesis in 3.5 is necessary.

Finally, we compute the value of the strong slice genus for some interesting links, using The-
orem 5.4. We consider only one relative orientation because, in all the following examples,
links are algebrically split so g∗∗ does not change.

Let Tin, with n > 0, be links represented by the following diagram:

Figure 12. A Tin link.

all these links are non split alternating, further we have lk(L1, L2) = 0. Since they are
alternating we can easily compute their s invariant.

We show in Figure 13 the coherent resolution of Tin and, in this way, we obtain that
s(Tin) = 2n+ 1 and Theorem 5.4 says that

g∗∗(Tin) >
2n+ 1 + 1

2
= n+ 1 .
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Figure 13

We apply a Reidemeister move and, in the highlighted point of next figure, a type 1
Morse move.

We obtain that Tin is cobordant to ©tT2,2n+2 and we know the slice genus of this link:
g∗(T2,2n+2) = n. Finally, we obtain the surface in the next figure.

Figure 14

This is a strong cobordism of genus n+ 1 between Tin and the unlink, so
g∗∗(Tin) = n+ 1.

For n = 0 we have the Whitehead link.



20 ALBERTO CAVALLO

If we take n = 1 then Ti1 = L7a3. This link is an example where the slice genus and the
strong slice genus are different: we have just shown that the second one is equal to 2, while,
since s(L7a3) = 3, we have g∗(L7a3) > 1 from Equation (13). To see that the slice genus is
exactly 1 we need to find a weak cobordism of genus 1 between L7a3 and the unknot. This
construction is described in the following figures.

The figure on the left shows a L7a3 link, while the one on the right a L6a5 link. The
highlighted tangles mark the points where we apply type 1 Morse moves.

Where L51 is the Whitehead link.

Figure 15

The last cobordism has genus 1. In general, g∗ and g∗∗ are actually two distinct invariants.

Now we consider 3-strand pretzel links P2h,2h,2l+1 with h > 0. This is the only case we
did not study in the previous section. Such links are non split alternating and the linking
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number between their components is zero. Moreover, we have that P2,2,2l+1 = Til thus the
previous example is simply a particular case of the following one.

We can compute the s invariant as we did for the other pretzels, and we omit the details:

s(P2h,2h,2l+1) = V (D2h,2h,2l+1) = U(D2h,2h,2l+1) = 2l + 2h− 1 .

Theorem 5.4 says
g∗∗(P2h,2h,2l+1) > l + h .

We prove by induction that there exists a strong cobordism of genus l+h between P2h,2h,2l+1

and the unlink:

h = 1
From previous result on Til = P2,2,2l+1 they have strong slice genus equal to l + 1.

h→ h+ 1
We apply two type 1 Morse moves as shown in the following figure, which represents the
upper part of the left and central strands of the standard diagram of P2h+2,2h+2,2l+1.

The tangle on the right belongs to a pretzel link similar to P2h+2,2h+2,2l+1, but with h
lowered by 1: we can use the inductive hypothesis.

We obtain the following cobordism.

Figure 16

The genus of this surface is l + h+ 1 and so we conclude.
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