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Abstract

We prove that loose Legendrian knots in a rational homology contact 3-sphere,
satisfying some additional hypothesis, are Legendrian isotopic if and only if they have
the same classical invariants. The proof requires a result of Dymara on loose Legendrian
knots and Eliashberg’s classification of overtwisted contact structures on 3-manifolds.

1 Introduction

Knot theory in contact 3-manifolds turned out to be a very interesting field to study. In
this setting, an oriented knot is called Legendrian if it is everywhere tangent to the contact
structure and two such knots are said to be equivalent if they are Legendrian isotopic; that
is, there is an isotopy between them such that they are Legendrian at any step. In the last
twenty years much work has been done in order to find some criteria to determine whether
two Legendrian knots are Legendrian isotopic or not. Three invariants can be immediately
defined from the definition of Legendrian knot. For this reason they are usually called
classical invariants.

The first one is the knot type, that is the smooth isotopy class of our oriented Legendrian
knot K. The knot type of K is a Legendrian invariant; in fact it is known that two
Legendrian knots are Legendrian isotopic if and only if there is an ambient contact isotopy
of the 3-manifold sending the first knot into the second one as shown in [7].

The other two classical invariants are the Thurston-Bennequin number, which is defined
as the linking number of the contact framing of K respect to a Seifert framing of K, and
the rotation number; the latter being the numerical obstruction to extending a non-zero
vector field, everywhere tangent to the knot, to a Seifert surface of K (see [7]). These two
invariants are usually well-defined only for null-homologous knots in a rational homology
3-sphere, but a generalization exists for every Legendrian knot in such a manifold. See [1]
for details.

Legendrian knots in overtwisted contact 3-manifolds come in two types: loose and non-
loose. A Legendrian knot is loose if also its complement is overtwisted, while it is non-loose
if the complement is tight. More explicitely, a Legendrian knot is loose if and only if we can
find an overtwisted disk that is disjoint from the knot. While it was known that non-loose
Legendrian knots are not classified by their classical invariants [11], in the case of loose
knots such example was found only recently by Vogel [12]. Conversely, there were some
results that go in the opposite direction.
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Etnyre’s coarse classification of loose Legendrian knots [9] is probably the most impor-
tant one. It says that loose knots are completely determined by their classical invariants,
but only up to contactomorphism, which is a weaker relation than Legendrian isotopy. An-
other result was proved by Dymara in [3] and it states that two Legendrian knots, with
same classical invariants, such that the complement of their union contains an overtwisted
disk are Legendrian isotopic (Theorem 2.4). This result holds only in rational homology
spheres.

In this paper we show that Dymara’s result can be strengthened. In fact we prove the
following theorem.

Theorem 1.1. Consider a rational homology contact 3-sphere (M, ξ). Suppose that there
are two loose Legendrian knots K1 and K2 in (M, ξ) such that there exists a pair of disjoint
overtwisted disks (E1, E2), where Ei is contained in the complement of Ki for i = 1, 2. Then
K1 and K2 are Legendrian isotopic if and only if they have the same classical invariants.

Though we still need an assumption on the overtwisted disks, this version can be applied
in many interesting cases like disjoint unions of Legendrian knots. We say that a Legendrian
2-component link L is split if (M, ξ) can be decomposed into (M1#M2, ξ1#ξ2) and Ki ↪→
(Mi, ξi) for i = 1, 2. In other words, if L is the disjoint union of K1 and K2.

Corollary 1.2. Suppose K1 and K2 are two loose Legendrian knots in the rational homology
contact sphere (M, ξ) such that K1∪K2 is a split Legendrian link. Then they are Legendrian
isotopic if and only if they have the same classical invariants.

This paper is organized as follows. In Section 2 we define connected sums for contact
3-manifolds and Legendrian links and we prove Theorem 1.1. In Section 3 we explain what
is the disjoint union of Legendrian knots and give a precise definition of split Legendrian
links. Moreover, we apply our main result to this kind of loose knots.

Acknowledgements: The author would like to thank András Stipsicz for suggesting to
think about this problem. The author is supported by the ERC Grant LDTBud from the
Alfréd Rényi Institute of Mathematics and a Full Tuition Waiver for a Doctoral program
at Central European University.

2 A classification theorem for loose Legendrian knots

2.1 Contact and Legendrian connected sum

The definition of the connected sum of two 3-manifolds can be easily given also in the
contact setting. Let us take two connected contact manifolds (M1, ξ1) and (M2, ξ2); we
call M ′i (for i = 1, 2) the manifolds obtained from Mi by removing an open Darboux ball,
that is a 3-ball with the standard contact structure, and we define (M1#M2, ξ1#ξ2) the
contact manifold which is gotten by gluing together M ′1 and M ′2. The structure ξ1#ξ2 is
well-defined because it is always possible to glue two contact structures on the boundary of
a Darboux ball. Moreover, the result is independent of the choice of the balls themselves
and we have the following proposition.

Proposition 2.1. For every Darboux ball B in the overtwisted manifold (M, ξ) there exists
at least one overtwisted disk disjoint from B. In particular, if (M, ξ) = (M1#M2, ξ1#ξ2)
and a summand Mi is overtwisted then we can always find overtwisted disks which are
contained entirely in M ′i ⊂M1#M2.
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Clearly if (M1, ξ1) is overtwisted then the connected sum is still overtwisted, but if both
the summands are tight then it is important to cite the following result of Colin [2].

Theorem 2.2. The connected sum of two contact 3-manifolds (M1#M2, ξ1#ξ2) is tight if
and only if (M1, ξ1) and (M2, ξ2) are both tight.

If a sphere S separates a contact manifold (M, ξ) into two components M1 and M2 such
that smoothly it is M = M1#M2 then we can ask whether ξ also splits accordingly. We
need to recall the definition of the dividing set of a convex surface in a contact 3-manifold.
If v is a contact vector field in (M, ξ) transverse to S then the set

ΓS = {x ∈ S | v(x) ∈ ξx}

is a collection of curves and arcs in S and is called the dividing set of S in (M, ξ). More
details can be found in [8]. Now we can state the following lemma.

Lemma 2.3. A convex separating sphere S in (M, ξ) gives a connected sum decomposition
(M, ξ) = (M1#SM2, ξ1#Sξ2) if and only if the dividing set ΓS is trivial, which means that
consists of a single closed curve.

Proof. The claim follows from the fact that a contact manifold, whose boundary is a convex
sphere, can be glued together with a Darboux ball if and only if its dividing set is trivial as
shown in [8].

Etnyre and Honda in [10] extended the definition of connected sum to Legendrian links.
In order to describe the construction we need to recall that Legendrian links in the standard
contact 3-sphere can be represented with their front projection. This is the map

S1 −→ R2

θ 7−→(x(θ), y(θ))

where (x(θ), y(θ), z(θ)) is the parametrization of L. The front projection of a Legendrian
link L is a special diagram for L with no vertical tangencies, that are replaced by cusps, and
at each crossing, the slope of the overcrossing is smaller than the one of the undercrossing.

Suppose now that we have two Legendrian links L1 and L2 in (M1, ξ1) and (M2, ξ2)
respectively. We take two Darboux balls D1 and D2 as before, but with the condition that

αi

Di

Figure 1: Front projection of αi in a Darboux ball.

Di∩Li is a Legendrian arc αi where αi∩∂Di consists of two points and its front projection
is isotopic to the one in Figure 1; we call this the standard Legendrian tangle. In this way,
the link L1#L2 in (M1#M2, ξ1#ξ2) is Legendrian and it does not depend of the choice of
the Darboux balls Di, but only of which component of Li contains the arc αi.
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Let us consider the case of Legendrian links in overtwisted structures. We observe that
if L1 is loose then L1#L2 is also loose, but the connected sum of two non-loose Legendrian
links can be loose. In fact from [6] we have that in (S3, ξ−1), where ξi is the overtwisted
structure on S3 with Hopf invariant equals to i ∈ Z, there is a non-loose Legendrian unknot
K. Then the knot K#K is a loose Legendrian unknot in (S3, ξ−2), because in [6] it is also
proved that non-loose unknots in S3 only appear in the structure ξ−1.

2.2 Proof of the main result

In this subsection we prove Theorem 1.1. We only have to show that loose Legendrian
knots with same classical invariants are Legendrian isotopic. We need the following result,
proved by Dymara in [3].

Theorem 2.4. Consider a rational homology overtwisted 3-sphere (M, ξ). Then two loose
Legendrian knots K1 and K2 in (M, ξ) with the same classical invariants and such that
K1 ∪K2 is loose are Legendrian isotopic.

Proof of Theorem 1.1. The idea of the proof is to find another Legendrian knot K, with
the same classical invariants as K1 and K2, and to show that there are overtwisted disks in
the complement of both K1 ∪K and K2 ∪K. Then Theorem 2.4 gives that K1 and K2 are
both Legendrian isotopic to K.

If there is an overtwisted disk in the complement of K1 ∪ K2 then the claim follows
immediately from Theorem 2.4. Then we suppose that this is not the case.

Since E1 and E2 are disjoint disks we can find two closed balls B1 and B2 such that
Ei ⊂ Bi for i = 1, 2. Moreover, we can suppose that each Bi is disjoint from Ki; this is
because we start from the assumption that each Ei is in the complement of Ki.

Now we have that the contact manifold (Bi, ξ|Bi) is an overtwisted D3. Then from
Eliashberg’s classification of overtwisted structures [4, 5] we know that (Bi, ξ|Bi)#(S3, ξ0)
is contact isotopic to (Bi, ξ|Bi). This holds since the contact connected sum with (S3, ξ0)

(M, ξ)

K1

K2

(D2, ξ0)

(D1, ξ0)

K

Figure 2: Three overtwisted disks are drawn in grey.

does not change the isotopy class of the 2-plane field given by ξ. From this we have that
inside (Bi, ξ|Bi) there is a sphere with trivial dividing set which bounds a closed ball Di such
that ξ|Di is contact isotopic to ξ0. Moreover, both D̊i and Bi \Di contains some overtwisted
disks by Proposition 2.1.
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At this point, we have found two closed balls D1 and D2 in (M, ξ) such that each
Di is in the complement of Ki and ξ|Di is contact isotopic to the overtwisted structure
ξ0; furthermore, the contact manifold M \ (D1 ∪ D2) is also overtwisted. This situation
is pictured in Figure 2. Let us denote with M ′ the overtwisted manifold M \ D2; the
boundary of D1 gives a contact connected sum decomposition of M ′ where the components
are M \ (D1 ∪D2) and D1. Then the same argument that we applied before tells us that
(M \ (D1 ∪D2), ξ) is contact isotopic to (M ′, ξ) without a Darboux ball.

Since K2 is a Legendrian knot in M ′ and we can suppose that a Darboux ball is missed by
it, we can identify K2 with a Legendrian knot K inside M \(D1∪D2) with the same classical
invariants as K2, which are assumed to coincide with the ones of K1. The Legendrian knot
K is disjoint from both the overtwisted balls Di and then we find overtwisted disks in the
complement of both Ki ∪K. This concludes the proof.

The condition on the overtwisted disks in Theorem 1.1 cannot be removed. Vogel in [12]
gives an example of two loose Legendrian unknots, both with Thurston-Bennequin number
equal to zero and rotation number equal to one, that are not Legendrian isotopic. In fact,
although we can find overtwisted disks in the complement of both knots such disks always
intersect themselves.

3 Disjoint union of Legendrian knots

An important case where the situation described in Theorem 1.1 appears is when we
have a disjoint union of two Legendrian knots. In order to explain this application we need
to define what is a disjoint union in the Legendrian setting, and to show that is strictly
related to the concept of split Legendrian links.

Take Li Legendrian links in (Mi, ξi) for i = 1, 2. We define the disjoint union L1 tL2 in
(M1#M2, ξ1#ξ2) as the Legendrian link given by a particular connected sum L1#O2#L2;
where O2 is the standard Legendrian unlink with 2 components in (S3, ξst). The connected
sum is such that one component of O2 is summed to L1 and the other one to L2 as shown
in Figure 3. Note that L1 and L2 are Legendrian links in (M1#M2, ξ1#ξ2).

L1

L2

(M1, ξ1) (M2, ξ2)

Σ = S2 × {0}

Tight S2 × I

Figure 3

In the same way, we say that a Legendrian link L, in a contact 3-manifold (M, ξ), is
split if there exist Li ↪→ (Mi, ξi) for i = 1, 2 such that (M, ξ) = (M1, ξ1)#(M2, ξ2) and
L is Legendrian isotopic to the disjoint union of L1 and L2. Otherwise, we say that L is
non-split. From this definition we have the following proposition.
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Proposition 3.1. A Legendrian link L in (M, ξ) is split if and only if there are two Leg-
endrian links Li ↪→ (M, ξ) and a separating, convex sphere Σ ↪→ (M, ξ), whose dividing set
is trivial, such that

• The surface Σ determines a contact connected sum decomposition of (M, ξ); where the
summands are (M1, ξ1) and (M2, ξ2).

• Each Li is embedded in (Mi, ξi).

• The Legendrian link L is the union of L1 and L2.

Proof. The only if implication is trivial. For the other one we take B1 to be a Darboux ball
in (M1, ξ1) such that (B1, B1 ∩ L1) is the standard Legendrian tangle as in Figure 1.

In B1 we find a standard Legendrian unknot K, disjoint from L1. We denote by L′1
the new Legendrian link obtained from L1 by adding the unlinked component K. Since
(B1, B1 ∩ L1) is the standard Legendrian tangle, we can find another convex sphere in B1

which gives that L′1 = L1#O2.
At this point, it is clear that L1 tL2 = L′1#L2, where this connected sum is performed

between K and L2, is a Legendrian link wich is Legendrian isotopic to L.

From Theorem 2.2 we observe that if ξ is tight then L is a split Legendrian link if and
only if its smooth link type is split.

Proof of Corollary 1.2. We have that (M, ξ) = (M1#M2, ξ1#ξ2) and Ki ↪→ (Mi, ξi). Hence,
if K1 is loose in (M1, ξ1) then clearly we can apply Theorem 2.4; on the other hand, if
(M1, ξ1) is tight then Theorem 2.2 gives that K2 is loose in (M2, ξ2) and then we can
use the same argument. We only have to consider the case when both Ki are non-loose in
(Mi, ξi). Then we apply Theorem 1.1, since we can find overtwisted disks in both summands
using Proposition 2.1.

We conclude with the following observation. Let us consider two loose Legendrian
knots K1 and K2 in (M, ξ) with same classical invariants and such that L = K1 ∪ K2 is
a topologically split 2-component Legendrian link. Corollary 1.2 says that if K1 is not
Legendrian isotopic to K2 then L is not split as Legendrian link. The example of Vogel
that was mentioned at the end of Section 2 falls into this case.
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