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Magstabilitás és mag-jellegű megoldások háromoldalú 

hozzárendelési játékokra 

Ata Atay, Marina Núñez 

 

Összefoglaló 

 

Ebben a cikkben háromoldalú hozzárendelési játékokra vizsgálunk különböző stabilitási 

koncepciókat. Mivel a játék magja üres lehet, ezért más stabilitási fogalmakra fókuszálunk, a 

részmegoldásra és a von Neumann–Morgenstern-féle stabil halmazra. A domináns diagonális 

tulajdonság szükséges feltétele annak, hogy a mag egy stabil halmazt adjon, és elégséges is 

abban az esetben, amelyben minden szektorban csak két játékos van. Továbbá belátjuk azt is, 

hogy bármely háromoldalú hozzárendelési játékra egy adott μ optimális párosításra az összes 

μ-kompatibilis részjáték kibővített magjainak uniója nem üres, és megegyezik a játék 

magjával azon kimeneteket tekintve, amelyek kompatibilisek a μ párosítással. 
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Abstract

In this paper, we study different notions of stability for three-sided assignment
games. Since the core may be empty in this case, we first focus on other notions of
stability such as the notions of subsolution and von Neumann-Morgenstern stable
sets. The dominant diagonal property is necessary for the core to be a stable set,
and also sufficient in the case where each sector of the market has two agents.
Furthermore, for any three-sided assignment market, we prove that the union of
the extended cores of all µ-compatible subgames, for a given optimal matching µ,
is the core with respect to those allocations that are compatible with that match-
ing, and this union is always non-empty.

Keywords: assignment game · core · subsolution · von Neumann-Morgenstern sta-
ble set

JEL classification: C71 · C78

1 Introduction

In this paper we consider markets with three different sectors or sides. Coalitions of
agents can achieve a non-negative joint profit only by means of triplets if formed by one
agent of each side in the market. Then, a three-dimensional valuation matrix represents
the joint profit of all these possible triplets. These markets, introduced by Kaneko and
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Wooders (1982), are a generalization of Shapley and Shubik (1972) two-sided assignment
games. Also, Stuart (1997) makes use of three-sided assignment markets to study a
supplier-firm-buyer situation.

In a two-sided assignment game, the two sectors can be identified with a sector
of buyers and a sector formed by sellers. Each seller has one unit of an indivisible
good to sell and each buyer wants to buy at most one unit. Buyers have valuations
over goods. The valuation matrix represents the joint profit obtained by each buyer-
seller trade. From these valuations a coalitional game is obtained and the total profit
under an optimal matching between buyers and sellers yields the worth of the grand
coalition. The best known solution concept for coalitional game is the core (Gillies,
1959). Roughly speaking, a dominance relation is defined between imputations, that
is, individually rational payoff vectors that distribute the worth of the grand coalition
between all agents in the market. Then, the core is the set of undominated imputations.

An important difference between the two-sided and the three-sided assignment games
is that while the core is always non-empty in the first case, it may be empty in the latter.
This is why we are interested in the study of some other solution concept for these games.

Other well-known solution concepts for coalitional games, and hence also for assign-
ment games, are based on the same dominance relation between imputations. A von
Neumann-Morgenstern stable set (von Neumann and Morgenstern, 1944) is a set of im-
putations that satisfy internal stability and external stability: (a) no imputation in the
set is dominated by any other imputation in the set and (b) each imputation outside
the set is dominated by some imputation in the set. Even if its computation can be
difficult, the conjecture was that all games had a stable set. However, Lucas (1968)
provided an example of a game with no stable set. The core always satisfies internal
stability. Moreover, the core is included in any stable set and if the core is externally
stable, then it is the only stable set. An intermediate form of stability, weaker than
stable sets but stronger than the core, is the notion of subsolution introduced by Roth
(1976). Roughly speaking, a set of imputations is a subsolution if it is internally stable
and it is not dominated by the set of allocations it fails to dominate. Other notions of
stability are analyzed in Peris and Subiza (2013) and Han and van Deemen (2016).

In the case of two-sided assignment games, Solymosi and Raghavan (2001) shows
that the core of a two-sided assignment game is a stable set if and only if the valuation
matrix has a dominant diagonal. Later, Núñez and Rafels (2013) proves the existence
of a stable set for all two-sided assignment games. The stable set they introduce is the
only one that excludes third party payments with respect to an optimal matching µ and
is defined through certain subgames, which are called µ-compatible subgames.

However, when the market has more than two sides, most results for the two-sided
case do not extend to the three-sided case. Kaneko and Wooders (1982) shows that the
core of a three-sided assignment game may be empty. Moreover, when the core is non-
empty it fails to have a lattice structure. Lucas (1995) provides necessary and sufficient
conditions that yield non-emptiness of the core for the particular case where each side
of the market consists of two agents. Nonetheless, there are no results on stable sets for
three-sided assignment games.

The fact that the core may be empty makes the notions of subsolution and of stable
sets more appealing as a solution concept for three-sided assignment games.
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First, we generalize the notion of dominant diagonal to the three-sided case and
prove that it is a necessary condition for the core of this game to be a stable set. We
also show that for three-sided markets with only two agents on each side, the dominant
diagonal property suffices to guarantee that the core is stable. Furthermore, we extend
the notion of µ-compatible subgames introduced by Núñez and Rafels (2013) to the
three-sided case. As a consequence, given a three-sided game and an optimal matching
µ, we consider the set V µ formed by the union of the cores of all µ-compatible subgames.
However, different to the two-sided case, we show by means of a counterexample that
V µ may not be a stable set, not even a subsolution.

A second approach to our problem will be to modify the definition of the “core”.
Although the usual definition of the core and the stable sets of a coalitional game takes
as the set of feasible outcomes of the game the set of imputations (efficient allocations
that are individually rational), a more general setting can be considered. Lucas (1992)
defines an abstract game by a set of (feasible) outcomes B and a dominance relation
D (irreflexive binary relation) over this set of outcomes. Then, the core of an abstract
game is the set of undominated outcomes, C = B \D(B), and a stable set V is a set of
outcomes such that V = B \D(V ).

In a three-sided assignment game it seems natural to restrict the set of feasible
outcomes to those imputations that are compatible with some optimal matching µ, that
is, allocations where the only side-payments take place within the triplets µ. These
allocations are known as the principal section Bµ of the assignment game and we prove
that the set V µ introduced before is the set of undominated allocations: V µ = Bµ \
D(Bµ). In this sense, V µ, which is always non-empty, is the “core” with respect to the
principal section. Moreover, V µ coincides with the usual core if and only if the valuation
matrix has a dominant diagonal.

The paper is organized as follows. In Section 2 we give preliminaries on assignment
games and solution concepts. Section 3 is devoted to conditions on the three-sided
valuation matrix in order to obtain core stability. In Section 4, µ-compatible subgames
are introduced and the union of cores of all µ-compatible subgames is shown to coincide
with the core if the valuation matrix has a dominant diagonal. Finally, in Section 5,
we show that if the µ-principal section is considered as the set of feasible outcomes,
the union of the cores of all µ-compatible subgames, V µ, is the set of undominated
outcomes, that is, the “core” with respect to the set of feasible outcomes.

2 Preliminaries

Let U1, U2, U3 be pairwise disjoint countable sets. An m ×m ×m assignment market
γ = (M1,M2,M3;A) consists of three different sectors with m agents each: M1 =
{1, 2, ...,m} ⊆ U1, M2 = {1′, 2′, ...,m′} ⊆ U2, M3 = {1′′, 2′′, . . . ,m′′} ⊆ U3, and a three-
dimensional valuation matrix A = (aijk) i∈M1

j∈M2
k∈M3

that represents the potential joint profit

obtained by triplets formed by one agent of each sector. These triplets are the basic
coalitions of the three-sided assignment game, as defined by Quint (1991).

Given subsets of agents of each sector, S1 ⊆M1, S2 ⊆M2, and S3 ⊆M3, a matching
µ for the submarket γ|S = (S1, S2, S3;A|S1×S2×S3) is a subset of the cartesian product,
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µ ⊆ S1 × S2 × S3, such that each agent belongs to at most one triplet. We denote by
M(S1, S2, S3) the set of all possible matchings. A matching µ ∈ M(S1, S2, S3) is an
optimal matching for the submarket if∑

(i,j,k)∈µ
aijk ≥

∑
(i,j,k)∈µ′

aijk

for all other µ′ ∈ M(S1, S2, S3). We denote by MA(S1, S2, S3) the set of all optimal
matchings for the submarket (S1, S2, S3;A|S1×S2×S3).

The m×m×m assignment game, (N,wA), related to the above assignment market
has player set N = M1 ∪M2 ∪M3 and characteristic function

wA(S) = max
µ∈M(S∩M1,S∩M2,S∩M3)

∑
(i,j,k)∈µ

aijk

for all S ⊆ N . In the sequel, we will need to exclude some agents. Then, if we
exclude some agents I ⊆ M1, J ⊆ M2, and K ⊆ M3, we will write wA−I∪J∪K instead of
wA|(M1\I)×(M2\J)×(M3\K)

. Notice that these subgames need not have the same number of
agents in each sector. Nevertheless, the notion of matching and characteristic function
is defined analogously as for the m×m×m case.

Given an m×m×m assignment game, a payoff vector, or an allocation, is (u, v, w) ∈
Rm

+×Rm
+×Rm

+ where ul denotes the payoff1 to agent l ∈M1, vl denotes the payoff to agent
l′ ∈ M2 and wl denotes the payoff to agent l′′ ∈ M3. An imputation is a non-negative
payoff vector that is efficient, u(M1) + v(M2) + w(M3) =

∑
i∈M1

ui +
∑
j∈M2

vj +
∑
k∈M3

wk =

wA(M1 ∪M2 ∪M3). We denote the set of imputations of the assignment game (N,wA)
by I(wA).

Given an optimal matching µ ∈ MA(M1,M2,M3) we define the µ-principal section
of (N,wA), as the set of payoff vectors such that ui + vj + wk = aijk for all (i, j, k) ∈ µ
and the payoff to agents unassigned by µ is zero. We denote it by Bµ(wA). Notice that
Bµ(wA) ⊆ I(wA). In the µ-principal section the only side payments that take place are
those among agents matched together by µ.

We can assume that the optimal matching is on the main diagonal of the valuation
matrix, µ = {(i, i′, i′′)|i ∈ {1, 2, . . . ,m}}. Notice that the allocation (a, 0, 0), that is
ui = aiii for all i ∈ M1, vj = wk = 0 for all j ∈ M2, k ∈ M3, always belongs to the
µ-principal section. The same happens with the allocations (0, a, 0) and (0, 0, a). These
three vertices of the polytope Bµ(wA) will be named the sector-optimal allocations. The
core of a game is the set of imputations (u, v, w) such that no coalition S can improve
upon: u(S ∩M1) + v(S ∩M2) +w(S ∩M3) ≥ wA(S). In our case, it is easy to see that
it is enough to consider individual and basic coalitions. An imputation (u, v, w) belongs
to the core, (u, v, w) ∈ C(wA), if and only if for all (i, j, k) ∈ M1 ×M2 ×M3 it holds
ui + vj + wk ≥ aijk and ui ≥ 0 for all i ∈ M1, vj ≥ 0 for all j ∈ M2, and wk ≥ 0 for all
k ∈M3. Notice that, together with efficiency, the above constraints imply that the core
is a subset of the µ-principal section for any optimal matching µ ∈MA(M1,M2,M3).

It is well-known (see Kaneko and Wooders, 1982) that the core of a three-sided
assignment game may be empty. For the particular case where each sector contains only

1Rm
+ is the set of non-negative real numbers. Hence, to simplify notation, we only consider individ-

ually rational payoff vectors.
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two agents, Lucas (1995) gives necessary and sufficient conditions for balancedness (that
is non-emptiness of the core). Under the assumption that µ = {(1, 1′, 1′′), (2, 2′, 2′′)} is
an optimal matching, the core of a 2× 2× 2 assignment game is non-empty if and only
if it satisfies the following conditions:

2a111 + a222 ≥ a112 + a121 + a211,

a111 + 2a222 ≥ a221 + a212 + a122. (1)

Given a three-sided assignment market γ = (M1,M2,M3;A), we define a binary
relation on the set of imputations. It is called the dominance relation. Given two
imputations (u, v, w) and (u′, v′, w′), we say (u, v, w) dominates (u′, v′, w′) if and only if
there exists (i, j, k) ∈M1×M2×M3 such that ui > u′i, vj > v′j, wk > w′k and ui+vj+wk ≤
aijk. We denote it by (u, v, w) dom A

{i,j,k}(u
′, v′, w′). We write (u, v, w) dom A(u′, v′, w′)

to denote that (u, v, w) dominates (u′, v′, w′) by means of some triplet (i, j, k).2 Given
a set of imputations V ⊆ I(wA), we denote by D(V ) the set of imputations dominated
by some element in V and by U(V ) those imputations not dominated by any element
in V .

Two main set-solution concepts are defined by means of this dominance relation:
the core and the stable set. On the one side, the core, whenever it is non-empty,
coincides with the set of undominated imputations. That is, C(wA) = U(I(wA)). The
other solution concept defined by means of domination is the von Neumann-Morgenstern
stable set.

A subset of the set of imputations, V ⊆ I(wA), is a von Neumann-Morgenstern
solution or a stable set if it satisfies internal and external stability:

(i) internal stability: for all (u, v, w), (u′, v′, w′) ∈ V , (u, v, w) domA(u′, v′, w′) does
not hold,

(ii) external stability: for all (u′, v′, w′) ∈ I(wA) \ V , there exists (u, v, w) ∈ V such
that (u, v, w) domA(u′, v′, w′).

Internal stability of a set of imputations V guarantees that no imputation of V is
dominated by another imputation of V : V ⊆ U(V ). The core is internally stable. Ex-
ternal stability imposes that all imputations outside V are dominated by an imputation
in V : I(wA) \ V ⊆ D(V ). In general, the core fails to satisfy external stability. Both
conditions (internal and external stability) can be summarized in V = U(V ).

There is an intermediate notion of stability introduced by Roth (1976). A subset of
imputations V ⊆ I(wA) is a subsolution if

(i) V is internally stable, that is, V ⊆ U(V ),

(ii) V = U2(V ) = U(U(V )).

2This dominance relation is the usual one introduced by von Neumann and Morgenstern (1944). It
is clear that in the case of multi-sided assignment games, we only need to consider domination via basic
coalitions. When no confusion regarding the valuation matrix can arise, we will simply write (u, v, w)
dom (u′, v′, w′).
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Together with the internal stability, that the concept of subsolution shares with the
core and the stable sets, the second condition for a set V to be a subsolution requires
that if an imputation x ∈ V is dominated by some y /∈ V , then y will be dominated
by some other z ∈ V . Notice that this is like an external stability restricted to those
external imputations that dominate some element of V . In this sense, this stability
notion is weaker than that of stable sets. For arbitrary coalitional games, Roth (1976)
proves a subsolution always exists but the existence of a non-empty subsolution is not
guaranteed.

Since for three-sided assignment games the core may be empty, our first attempt is
to investigate whether the stable set obtained in Núñez and Rafels (2013) for two-sided
assignment games can be extended to the three-sided case. To this end, we first analyse
under which conditions the core of a three-sided assignment game is already a stable
set.

3 Dominant diagonal and core stability

In this section we look for conditions on the three-sided valuation matrix that guarantee
the core satisfies external stability and hence it is a von Neumann-Morgenstern stable
set.

We begin by generalizing to the three-sided case the dominant diagonal property in-
troduced by Solymosi and Raghavan (2001) for two-sided assignment games. They prove
that, in the two-sided case, this condition characterizes stability of the core. Therefore,
we must define the appropriate generalization. We will assume that the valuation ma-
trix is square, that is, there is the same number of agents on each side. Notice that,
whenever necessary, we can assume without loss of generality that an optimal matching
is placed on the main diagonal.

Definition 1. Let (M1 ∪M2 ∪M3, wA) be a three-sided assignment game with |M1| =
|M2| = |M3| = m. Matrix A has a dominant diagonal if and only if for all i ∈ {1, 2, ...,m}
it holds

aiii ≥ max{aijk, ajik, ajki} for all j, k ∈ {1, 2, ...,m}.

Clearly, if A has a dominant diagonal, then µ = {(i, i′, i′′) | i ∈ {1, 2, . . . ,m}} is an
optimal matching.

As in the two-sided case, the dominant diagonal property characterizes those markets
where giving the profit of each optimal partnership to one given sector leads to a core
element.

Proposition 2. Let (M1 ∪M2 ∪M3, wA) be a three-sided assignment game with |M1| =
|M2| = |M3| = m. The valuation matrix A has a dominant diagonal if and only if all
sector-optimal allocations belong to the core.

Proof. First, we prove the “if ” part. Take the sector-optimal allocation for the first
sector: (u, v, w) = (a111, ..., ammm; 0, ..., 0; 0, ..., 0). If it belongs to the core, then we have
aiii = ui = ui + vj + wk ≥ aijk for all (i, j, k) ∈ M1 ×M2 ×M3. For the rest of optimal
allocations the proof is analogous.
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To prove the “only if ” part, let A be a three-dimensional valuation matrix with
the dominant diagonal property. By Definition 1, for all i ∈ {1, 2, ...,m} and for all
j, k ∈ {1, 2, ...,m}, aiii ≥ max{aijk, ajik, ajki}. If we take the sector-optimal allocation
(u, v, w) = (a111, ..., ammm; 0, ..., 0; 0, ..., 0), the above inequality trivially shows that it
belongs to the core. Analogously, (0, a, 0) and (0, 0, a) are also core allocations.

The above proposition provides a characterization of the dominant diagonal property.
Since the fact that the sector-optimal core allocations belong to the core does not depend
on the selected optimal matching, the dominant diagonal property is also independent
of the optimal matching that is placed on the main diagonal.

Next proposition shows that the dominant diagonal property is necessary for the
stability of the core.

Proposition 3. Let (M1 ∪M2 ∪M3, wA) be a three-sided assignment game with |M1| =
|M2| = |M3| = m, and an optimal matching on the main diagonal. The core is a
von Neumann-Morgenstern stable set, then its corresponding valuation matrix A has a
dominant diagonal.

Proof. Let us suppose, on the contrary, that the core of a three-sided assignment
game (N,wA) is a von Neumann-Morgenstern stable set but its corresponding three-
dimensional valuation matrix A has not a dominant diagonal. If A has not a dominant
diagonal, then there exists one sector-optimal allocation, let us say (a, 0, 0), that does not
belong to the core. But then, since C(wA) is assumed to be a von Neumann-Morgenstern
stable set, there exists (u′, v′, w′) ∈ C(wA) such that

(u′, v′, w′) dom{i,j,k}(a, 0, 0).

Then, u′i > ui = aiii which contradicts (u′, v′, w′) ∈ C(wA).

Proposition 3 rises the question of the equivalence between the von Neumann-
Morgenstern stability of the core and the dominant diagonal property of the matrix.
That is to say, if A has dominant diagonal, is the core of the assignment game, C(wA),
a von Neumann-Morgenstern stable set? We can answer this question affirmatively
when the market has only two agents in each sector. The proof is consigned to the
Appendix A.

Proposition 4. Given a 2× 2× 2 assignment game (N,wA) with an optimal matching
on the main diagonal, the core C(wA) is a von Neumann-Morgenstern stable set if and
only if A has a dominant diagonal.

Now, we return to the general case, that is to say, m×m×m assignment games, and
define µ-compatible subgames in search of a stable set. We give some results related to
stability but we do not achieve a characterization or an existence theorem.

4 The µ-compatible subgames

In this section, we follow an approach similar to the one in Núñez and Rafels (2013) to
construct a stable set for two-sided assignment markets. First, we extend to three-sided
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assignment games the notion of the µ-compatible subgame. Then, we introduce a set
that consists of the union of the extended cores of all µ-compatible subgames and we
look for stability properties of this set. We show that, in general, it fails to satisfy
external stability and hence, different from the two-sided case, it does not always result
in a von Neumann-Morgenstern stable set.

Definition 5. Let (M1 ∪M2 ∪M3, wA) be a three-sided assignment game, with m =
|M1| = |M2| = |M3|, µ ∈ MA(M1,M2,M3) an optimal matching, and I ⊆ M1, J ⊆
M2 and K ⊆M3. The subgame

(M1 \ I,M2 \ J,M3 \K,wA−I∪J∪K )

is a µ-compatible subgame if and only if

wA(M1 ∪M2 ∪M3) = wA((M1 \ I) ∪ (M2 \ J) ∪ (M3 \K))

+
∑

(i,j,k)∈µ
i∈I

aijk +
∑

(i,j,k)∈µ
j∈J

aijk +
∑

(i,j,k)∈µ
k∈K

aijk.

When a subgame is µ-compatible, each agent outside the subgame can leave the
market with the full profit of his/her partnership in the optimal matching µ, and what
remains is exactly the worth of the resulting submarket. As a consequence, any core
element of the subgame can be completed with the payoffs of the excluded agents to
obtain an imputation of the initial market.

Without loss of generality, assume that the diagonal matching is an optimal matching
for A: µ = {(i, i′, i′′)|i ∈ {1, 2, . . . ,m}}. Then, given a µ-compatible subgame wA−I∪J∪K
we define its extended core,

Ĉ(wA−I∪J∪K ) =

{
(x, z) ∈ Bµ(wA)

∣∣∣∣ xi = aiii for all i ∈ I ∪ J ∪K,
z ∈ C(wA−I∪J∪K )

}
.

Note that if C(wA−I∪J∪K ) = ∅, then Ĉ(wA−I∪J∪K ) = ∅. The following ones are two
straightforward properties of µ-compatible subgames.

If wA−I∪J∪K is a µ-compatible subgame, then:

(i) The restriction of µ is optimal for the subgame: µ|(M1\I)×(M2\J)×(M3\K) = {(i, j, k) ∈
µ | i ∈M1 \ I, j ∈M2 \J, k ∈M3 \K} is an optimal matching for wA−I∪J∪K , which
implies that the partners of agents in I∪J ∪K remain unmatched in the subgame,

(ii) if i, j ∈ I ∪ J ∪ K, then i and j cannot belong to the same basic coalition in µ
except if the value of this triplet is null.

Hence, if A > 0, that is all entries are positive, all µ-compatible subgames come from
the exclusion of a set of agents of only one side of the market. In particular, if we
exclude all agents in M1, then the game (N \ M1, wA−M1

) is always a µ-compatible
subgame since wA−M1

(N \M1) = 0. The core of this µ-compatible subgame is reduced

to {(0, 0)} ⊆ RM2×RM3 and the corresponding extended core is Ĉ(wA−M1
) = {(a, 0, 0)}.

Analogous µ-compatible subgames are obtained when we exclude the agents of one of
the remaining sides of the market.

Given a three-sided assignment market γ = (M1,M2,M3;A), we define the set of all
coalitions that give rise to µ-compatible subgames:
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Cµ(A) = {R ⊆M1 ∪M2 ∪M3 | wA−R is a µ-compatible subgame}.

Notice that when R = ∅ we retrieve the core of the initial game (N,wA).
Now, for any assignment market γ = (M1,M2,M3;A), we define the set V µ(wA)

formed by the union of extended cores of all µ-compatible subgames:

V µ(wA) =
⋃

R∈Cµ(A)

Ĉ(wA−R) (2)

A first immediate consequence of the above definition is that V µ(wA) is a subset of
the µ-principal section:

V µ(wA) ⊆ Bµ(wA).

Notice also that differently from the core, the set V µ(wA) is always non-empty since it
contains at least the three points (a, 0, 0), (0, a, 0), and (0, 0, a), which result from the
µ-compatible subgames where all agents of one sector have been excluded. In fact the
following example shows that V µ(wA) can be reduced to only these three points and
hence be non-convex and disconnected.

Example 6. Consider a three-sided assignment game where each sector has two agents,
M1 = {1, 2}, M2 = {1′, 2′}, and M3 = {1′′, 2′′}, and the valuation matrix A is the
following

A =

( 1′ 2′

1 3 1
2 2 5

) ( 1′ 2′

1 1 4
2 5 4

)
1′′ 2′′

Notice there is a unique optimal matching µ = {(1, 1′, 1′′), (2, 2′, 2′′)}. By Lucas’
conditions for balancedness, see (1), we notice that the core is empty: a111 + 2a222 =
11 < 14 = a221 + a122 + a212. We observe that the only µ-compatible subgames
are wA−{1,2} , wA−{1′,2′} and wA−{1′′,2′′} . Hence V µ(wA) = {(a, 0, 0), (0, a, 0), (0, 0, a)} =

{(3, 4; 0, 0; 0, 0), (0, 0; 3, 4; 0, 0), (0, 0; 0, 0; 3, 4)}. Now it is easy to realize that such points
do not dominate any imputation in the µ-principal section. Thus, external stability does
not hold for the set V µ(wA). This implies that the set V µ(wA) is not a von Neumann-
Morgenstern stable set.

Now, take the imputation (1, 4.5; 1, 0.25; 0.25, 0). Notice that it is not an element of
the set V µ(wA) and there is no element of the set V µ(wA) that dominates it. Further-
more, it dominates an element, (3, 4; 0, 0; 0, 0), of the set V µ(wA) via coalition {2, 2′, 1′′}.
Hence, there exist an imputation that dominates one allocation in V µ(wA) and no point
in V µ(wA) dominates the aforementioned allocation, which shows the set V µ(wA) is not
a subsolution.

The following proposition provides an equivalent definition of the set V µ(wA).

Proposition 7. Let (M1 ∪M2 ∪M3, wA) be a three-sided assignment game with |M1| =
|M2| = |M3| = m, and an optimal matching µ on the main diagonal. Let (u, v, w) be an
allocation of the principal section, that is, (u, v, w) ∈ Bµ(wA). Then (u, v, w) ∈ V µ(wA)
if and only if for all (i, j, k) ∈M1×M2×M3 at least one of the four following statements
holds:
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(i) either ui = aiii

(ii) or vj = ajjj

(iii) or wk = akkk

(iv) or ui + vj + wk ≥ aijk.

Proof. First, we prove the “only if ” part. Assume (u, v, w) ∈ Ĉ(wA−R) for some R ⊆
M1 ∪M2 ∪M3 and take (i, j, k) ∈ M1 ×M2 ×M3. If i ∈ R, then ui = aiii. If j ∈ R,
then vj = ajjj. If k ∈ R, then wk = akkk. Otherwise, ui + vj + wk ≥ aijk.

Next, we show the “if ” implication. Take (u, v, w) ∈ Bµ(wA) such that all (i, j, k) ∈
M1 ×M2 ×M3 satisfy either (i), or (ii), or (iii), or (iv). Define I = {i ∈M1 | ui = aiii},
J = {j ∈ M2 | vj = ajjj}, and K = {k ∈ M1 | wk = akkk}, and also R = I ∪
J ∪ K. Notice that z = (u, v, w) ∈ Ĉ(wA−R), since zl = alll for all l ∈ R, and for
all (i, j, k) ∈ (M1 \ R) × (M2 \ R) × (M3 \ R) it holds ui + vj + wk ≥ aijk. Hence,
z = (u, v, w) ∈ V µ(wA).

The above proposition shows that the allocations in the set V µ(wA) satisfy all core
constraints except maybe those constraints involving an agent that is paid the full profit
of his/her partnership in µ.

Making use of the above equivalent expression of the set V µ(wA), we can characterize
under which condition this set reduces to the core of the three-sided assignment market.

Proposition 8. Let (M1 ∪M2 ∪M3, wA) be a three-sided assignment game with |M1| =
|M2| = |M3| and µ an optimal matching on the main diagonal, µ ∈ MA(M1,M2,M3).
A has a dominant diagonal if and only if V µ(wA) = C(wA).

Proof. First, we prove the “if ” part. Taking R = M1 always gives a µ-compatible
subgame and Ĉ(wA−M1

) = {(a, 0, 0)}. Then, by the assumption, (a, 0, 0) ∈ C(wA).
Similarly, (0, a, 0) ∈ C(wA) and (0, 0, a) ∈ C(wA). By Proposition 2, we obtain that A
has dominant diagonal.

To prove the “only if ” part, assume (u, v, w) ∈ Ĉ(wA−R). Since Ĉ(wA−R) ⊆ Bµ(wA),
(u, v, w) satisfies the efficiency condition. By the definition of the extended core, we
know that, for all i ∈ R∩M1, ui = aiii; for all j ∈ R∩M2, vj = ajjj; for all k ∈ R∩M3,
wk = akkk; and for all (i, j, k) ∈ (M1\R)×(M2\R)×(M3\R) it satisfies ui+vj+wk ≥ aijk.
Now, if i ∈ R, for all j ∈M2 and k ∈M3 it holds ui+vj+wk = aiii+vj+wk ≥ aiii ≥ aijk,
where the last inequality follows from the dominant diagonal property. Similarly, if j ∈ R
and i ∈M1, k ∈M3 or k ∈ R and i ∈M1, j ∈M2 we obtain ui+vj+wk ≥ aijk. Together
with efficiency this means (u, v, w) ∈ C(wA).

We have seen that in general the set V µ(wA) is not a stable set nor a subsolution,
but it is always a non-empty set. In the next section, we give a characterization of the
set V µ(wA) by means of the dominance relation.
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5 The core of a three-sided assignment game with

respect to the principal section

We have just seen that under the dominant diagonal property the set V µ(wA) coincides
with the core and hence it is the set of undominated imputations.

In an assignment market, once an optimal matching µ is agreed on, agents must
negotiate on an outcome that distributes the profit of each optimally matched triplet
among its members. That is to say, it seems natural to consider payoff vectors that
exclude side-payments among agents that are not in the same optimal triplet. These
payoff vectors are those in the µ-principal section Bµ(wA).

Next theorem shows that, if we reduce to the outcomes in the µ-principal section, the
set V µ(wA) is precisely the set of undominated outcomes, even if the dominant diagonal
property does not hold.

Theorem 9. Let (M1 ∪M2 ∪M3, wA) be a three-sided assignment game with |M1| =
|M2| = |M3| = m, and µ ∈MA(M1,M2,M3). Then,

V µ(wA) = U(Bµ(wA))

where U(Bµ(wA)) is the set of imputations that are undominated by the µ-principal
section.

Proof. Let us write V = V µ(wA) and assume µ is on the main diagonal. First, we prove
U(Bµ(wA)) ⊆ Bµ(wA). Notice that this inclusion is equivalent to I(wA) \ Bµ(wA) ⊆
D(Bµ(wA)), where D(Bµ(wA)) is the set of imputations that are dominated by some
allocation in the µ-principal section.

Take (x, y, z) ∈ I(wA) \ Bµ(wA). Then, there exists i ∈ {1, ...,m} such that xi +

yi + zi < aiii. Take ε = aiii − xi − yi − zi > 0, and define λ1, λ2 and λ3 by λ1 =
xi+

ε
3

aiii
,

λ2 =
yi+

ε
3

aiii
and λ3 =

zi+
ε
3

aiii
. Note that λ1 + λ2 + λ3 = 1, and λ1aiii = xi + ε

3
> xi,

λ2aiii = yi + ε
3
> yi and λ3aiii = zi + ε

3
> zi.

Now, recall that (a, 0, 0), (0, a, 0) and (0, 0, a) all belong to Bµ(wA) and take the point
(u, v, w) = λ1(a, 0, 0) + λ2(0, a, 0) + λ3(0, 0, a) ∈ Bµ(wA). Then, for all i ∈ {1, ...,m},
ui + vi + wi = (λ1 + λ2 + λ3)aiii = aiii. Together with ui > xi, vi > yi and wi > zi, this
implies that (u, v, w) dom {i,i′,i′′}(x, y, z) and hence (x, y, z) ∈ D(Bµ(wA)).

Now, we prove the equality, V = U(Bµ(wA)). First, we prove V ⊆ U(Bµ(wA)). We
want to show that no allocation in V is dominated by an allocation in the µ-principal
section. Consider two allocations (u, v, w) ∈ Bµ(wA) and (u′, v′, w′) ∈ V . We want to
show that (u, v, w) cannot dominate (u′, v′, w′) via any triplet {i, j, k}. Assume that
for some (i, j, k) ∈ M1 ×M2 ×M3, (u, v, w) dom{i,j,k} (u′, v′, w′) holds, which means
ui + vj + wk ≤ aijk together with ui > u′i, vj > v′j and wk > w′k. Two cases are
considered.
Case 1: (u′, v′, w′) ∈ C(wA).

We reach straightforwardly a contradiction, since core elements are undominated.
Case 2: (u′, v′, w′) ∈ Ĉ(wA−R) for some R ∈ Cµ(A).

If i ∈ R, then u′i = aiii. Then ui > u′i = aiii which contradicts (u, v, w) ∈ Bµ(wA).
The same argument leads to contradiction if j ∈ R or k ∈ R. If i /∈ R, j /∈ R and k /∈ R,
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then by Proposition 7, u′i+v
′
j+w

′
k ≥ aijk ≥ ui+vj+wk which contradicts our assumption

ui > u′i, vj > v′j and wk > w′k. This finishes the proof of (u, v, w) ∈ U(Bµ(wA)).
Now, we move to U(Bµ(wA)) ⊆ V . Assume on the contrary that (u, v, w) ∈

U(Bµ(wA)) and (u, v, w) /∈ V . Since U(Bµ(wA)) ⊆ Bµ(wA), (u, v, w) ∈ Bµ(wA). Then,
(u, v, w) ∈ Bµ(wA) and (u, v, w) /∈ V which implies by Proposition 7 there exist (i, j, k) ∈
M1 ×M2 ×M3 such that ui < aiii, vj < ajjj, wk < akkk and ui + vj + wk < aijk. Define
ε1 = aiii−ui > 0, ε2 = ajjj−vj > 0, ε3 = akkk−wk > 0 and ε4 = aijk−ui−vj−wk > 0.
Also, let us define u′i = ui+min{ε1, ε43 }, v

′
j = vj+min{ε2, ε43 } and w′k = wk+min{ε3, ε43 }.

Note that u′1 > u1, v
′
j > vj, w

′
k > wk and u′i + v′j +w′k < ui + vj +wk + 3 ε4

3
= aijk. Now,

we complete the definition of (u′, v,′w′) in the following way:
Since, by definition, u′i ≤ aiii, define v′i = aiii − u′i and w′i = 0. Similarly, since

v′j ≤ ajjj, define u′j = ajjj − v′j and w′i = 0. And finally, since w′k ≤ akkk, define
v′k = akkk − w′k and u′k = 0. For all l ∈ {1, ...,m} \ {i, j, k} define u′l = alll, v

′
l = 0 and

w′l = 0. Then (u′, v′, w′) ∈ Bµ(wA) and (u′, v′, w′) dom {i,j,k}(u, v, w) which contradicts
(u, v, w) ∈ U(Bµ(wA)). Hence, if (u, v, w) ∈ U(Bµ(wA)), then (u, v, w) ∈ V .

In Theorem 9 we show that there is no allocation in the µ-principal section that
dominates any element of V µ(wA). This ensures internal stability of V µ(wA). But, we
already know from Example 6 that V µ(wA) may not be externally stable. Hence, it
may not be a stable set. We have not been able to prove existence of stable sets for
three-sided assignment games. However, if given an optimal matching µ, there existed
a stable set included in the µ-principal section, then V µ(wA) would be included in this
stable set. Recall also that V µ(wA) contains the core C(wA) and V µ(wA) = C(wA)
whenever A has a dominant diagonal.

Moreover, the sets V µ(wA), one for each optimal matching, have several appealing
properties. They are always non-empty and moreover, if the set of feasible outcomes
is not the whole imputation set but the µ-principal section Bµ(wA), for some optimal
matching µ, then V µ(wA) is the set of undominated allocations. Hence, when no side
payments take place except those among the agents in an optimally matched triplet,
then V µ(wA) is like the “core” with respect to this set of feasible payoff sectors.

Even if we do not restrict to the µ-principal section, that is we allow for side payments
among agents not matched together and consider any imputation as a feasible outcome,
the set V µ(wA) has still an appealing economic interpretation. In any allocation in
V µ(wA), there may be some agents strong enough to require the whole profit of their
optimal partnership. Their partners cannot prevent them from doing so since these
partners will remain unmatched when these strong players leave the market. Finally,
the remaining agents agree on a core allocation of the resulting subgame.

A Appendix: the 2× 2× 2 Case

In this appendix, we show that the property of dominant diagonal is also a sufficient
condition for core stability in the particular case of three-sided assignment games with
two agents in each side. To this end, we need a remark regarding 2 × 2 assignment
games that will be of use in the proof of Proposition 4.
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Remark 10. Let (M ∪M ′, wB) be a 2 × 2 assignment game with M = {1, 2}, M ′ =

{1′, 2′}, and B =

(
b11 b12
b21 b22

)
. Let us denote by (ū, v), the buyers-optimal core

allocation, that is, each buyer maximizes his/her payoff while each seller minimizes
his/her payoff in the core; and (u, v̄) the sellers-optimal core allocation, that is, the core
allocation in which each seller maximizes his/her payoff while each buyer minimizes
his/her payoff. Assume the optimal matching is in the main diagonal, i.e. b11 + b22 ≥
b12 + b21 and b22 ≥ max{b12, b21}. Then, for each 0 ≤ η ≤ b11, there exists a core
element (u, v) of wB such that v1 = η. Indeed, we know from Demange (1982) and
Leonard (1983) that the maximum core-payoff of an agent in a two-sided assignment
game is his/her marginal contribution. Then, the reader can check that under the above
assumption ū1 = v̄1 = b11 and u1 = b11 − v̄1 = 0.

Similarly, given a 2 × 2 assignment game, if it holds b11 + b22 ≥ b12 + b21 and
b11 ≥ max{b12, b21}, then for each 0 ≤ η ≤ b22 there exists a core element (u, v) of wB
such that u2 = η.

Next, we show that, for the particular case of 2×2×2 assignment games, the domi-
nant diagonal property is a necessary and sufficient condition for core stability.

Proof of Proposition 4:

Proof. The “only if” part is proved in Proposition 3. To prove the “if” part, assume A
has a dominant diagonal and denote by µ the optimal matching on the main diagonal.
Take an allocation α = (x, y, z) that is in the µ-principal section but outside the core.
Let us see that α is dominated by some core allocation. Since it is in the µ-principal
section, it satisfies the following conditions:

x1 + y1 + z1 =a111

x2 + y2 + z2 =a222.

Since (x, y, z) does not belong to the core, assume without loss of generality that
x2 + y1 + z1 < a211. All other cases are treated similarly. We first look for a core
allocation β = (u, v, w) that satisfies u2 + v1 + w1 = a211 such that β dominates α via
coalition {2, 1′, 1′′}. This equality, together with the core constraint u1 + v1 +w1 = a111
leads to u1 = u2 + a111− a211. Now, if we had such core allocation β, by substitution in
the core constraints, we would get:

(i) u2 + v1 + w1 = a211

(ii) u2 + v2 + w2 = a222

(iii) u2 + v2 + w1 ≥ a121 + a211 − a111

(iv) u2 + v1 + w1 ≥ a211

(v) u2 + v2 + w1 ≥ a221

(vi) u2 + v1 + w2 ≥ a112 + a211 − a111
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(vii) u2 + v2 + w2 ≥ a122 + a211 − a111

(viii) u2 + v1 + w2 ≥ a212.

Note that (i) implies (iv) and since {(1, 1′, 1′′), (2, 2′, 2′′)} is an optimal matching, (ii)
implies (vii). By (iii) and (v) we get v2 +w1 ≥ max{a221−u2, a121 + a211− a111−u2, 0}
and by (vi) and (viii) we get v1 +w2 ≥ max{a212−u2, a112 +a211−a111−u2, 0}. Hence,
a core element β = (u, v, w) satisfies u2 + v1 + w1 = a211 if and only if its projection
(v, w) belongs to the core of the 2× 2 assignment game defined by matrix Bu2 :

(
a211 − u2 max{a212 − u2, a112 + a211 − a111 − u2, 0}

max{a221 − u2, a121 + a211 − a111 − u2, 0} a222 − u2

)
.

Define ũ2 = x2 + ε with 0 < ε < min{a222 − x2, a211 − x2 − y1 − z1}. Notice that
this is always possible since x2 + y1 + z1 < a211 and because of the dominant diagonal
assumption x2 < a211 ≤ a222. We now consider the matrix Bũ2 .

By the dominant diagonal property and the fact that {(1, 1′, 1′′), (2, 2′, 2′′)} is opti-
mal, we always have

bũ222 = a222 − ũ2 ≥ max
{

max{a212 − ũ2, a112 + a211 − a111 − ũ2, 0},

max{a221 − ũ2, a121 + a211 − a111 − ũ2, 0}
}

(3)

= max{bũ212 , bũ221}.

Case 1: bũ211 + bũ222 ≥ bũ212 + bũ221 . That is,

a211 − ũ2 + a222 − ũ2 ≥ max{a212 − ũ2, a112 + a211 − a111 − ũ2, 0}
+ max{a221 − ũ2, a121 + a211 − a111 − ũ2, 0}.

Let us now define

v1 = y1 +
a211 − x2 − y1 − z1 − ε

2
> y1 ≥ 0,

w1 = z1 +
a211 − x2 − y1 − z1 − ε

2
> z1 ≥ 0.

Note that v1 + w1 = a211 − ũ2 and v1 ≥ 0, w1 ≥ 0.
By Remark 10, for all v1 such that 0 ≤ v1 ≤ a211 − ũ2 there exists a core allocation

γ = (ṽ1, ṽ2; w̃1, w̃2) of Bũ2 with ṽ1 = v1. Notice that such a core allocation γ satisfies the
constraint ṽ2 + w̃2 = a222− ũ2 since by assumption of Case 1, {(1, 1′), (2, 2′)} is optimal
for Bũ2 . Then, by completion with ũ1 = ũ2 + a111 − a211, we obtain a core allocation,
β = (ũ1, ũ2; ṽ1, ṽ2; w̃1, w̃2), of the three-sided assignment game such that β dom {2,1,1}α.

Case 2: bũ212 + bũ221 > bũ211 + bũ222 .
Since bũ222 ≥ max{bũ212 , bũ221}, it holds in this case that bũ211 < bũ212 and bũ211 < bũ221 .
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To sum up,

max{a212 − ũ2, a112 + a211 − a111 − ũ2, 0} > a211 − ũ2,
max{a221 − ũ2, a121 + a211 − a111 − ũ2, 0} > a211 − ũ2,

a211 − ũ2 + a222 − ũ2 < max{a212 − ũ2, a112 + a211 − a111 − ũ2, 0}
+ max{a221 − ũ2, a121 + a211 − a111 − ũ2, 0}. (4)

Note that, taking into account the dominant diagonal property, this implies

max{a212 − ũ2, a112 + a211 − a111 − ũ2, 0} = a212 − ũ2
max{a221 − ũ2, a121 + a211 − a111 − ũ2, 0} = a221 − ũ2. (5)

Then, by (4) and (5), a211−ũ2+a222−ũ2 < a212−ũ2+a221−ũ2 which is equivalent to
a211+a222 < a212+a221. Hence, (x2+y1+z2)+(x2+y2+z1) = (x2+y1+z1)+(x2+y2+z2) <
a211 +a222 < a212 +a221. This means that either x2 +y1 +z2 < a212 or x2 +y2 +z1 < a221.

Case 2.1: x2 + y1 + z2 < a212.

We now look for a core allocation β = (u, v, w) of wA such that β dominates α via
{2, 1′, 2′′}, and hence u2+v1+w2 = a212. Together with the core constraint u2+v2+w2 =
a222, we get v2 = v1 + (a222 − a212).

If we had such core allocation β, by substitution in the core constraints, we would
get

(i) u1 + v1 + w1 = a111

(ii) u2 + v1 + w2 = a222 + a212 − a222 = a212

(iii) u1 + v1 + w1 ≥ a121 + a212 − a222

(iv) u2 + v1 + w1 ≥ a211

(v) u2 + v1 + w1 ≥ a221 + a212 − a222

(vi) u1 + v1 + w2 ≥ a112

(vii) u1 + v1 + w2 ≥ a122 + a212 − a222

(viii) u2 + v1 + w2 ≥ a212.

Note that from the fact that {(1, 1′, 1′′), (2, 2′, 2′′)} is optimal for A and the domi-
nant diagonal property, (i) implies (iii) and (ii) implies (viii) . By (vi) and (vii) we
get u1 + w2 ≥ max{a112 − v1, a122 + a212 − a222 − v1, 0} and by (iv) and (v) we get
u2 +w1 ≥ max{a211−v1, a221 +a212−a222−v1, 0}. Hence β = (u, v, w) ∈ C(wA) satisfies
u2 + v1 + w2 = a212 if and only if its projection (u,w) = (u1, u2;w1, w2) belongs to the
core of the 2× 2 assignment game Bv1

(
a111 − v1 max{a112 − v1, a122 + a212 − a222 − v1, 0}

max{a211 − v1, a221 + a212 − a222 − v1, 0} a212 − v1

)
.
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Let us now take ṽ1 = y1 + ε where 0 < ε < min{a111−y1, a212−x2−y1− z2}. Notice
this is always possible since 0 ≤ y1 < a212 ≤ a111. Consider now Bṽ1 . Note that

bṽ111 = a111 − ṽ1 ≥ max
{

max{a112 − ṽ1, a122 + a212 − a222 − ṽ1, 0},

max{a211 − ṽ1, a221 + a212 − a222 − ṽ1, 0}
}

= max{bṽ112, bṽ121}.

(6)

From a211 + a222 < a212 + a221 and a222 ≥ a221 we know that a211 < a212. Together with
(6) this implies that a111 − ṽ1 + a212 − ṽ1 ≥ max{a112 − ṽ1, a122 + a212 − a222 − ṽ1, 0}+
max{a211 − ṽ1, a221 + a212 − a222 − ṽ1, 0}, that is bṽ111 + bṽ122 ≥ bṽ112 + bṽ121.

Let us define

u2 = x2 +
a212 − x2 − y1 − z2 − ε

2
> x2 ≥ 0,

w2 = z2 +
a212 − x2 − y1 − z2 − ε

2
> z2 ≥ 0.

Note that u2 + w2 = a212 − ṽ1 and u2 > 0, w2 > 0.
By Remark 10, there exists a core allocation γ of Bṽ1 with ũ2 = u2. Such a core

allocation γ satisfies the constraint ũ1 + w̃1 = a111 − ṽ1. Then, by completion with
ṽ2 = ṽ1 + a222 − a212, we obtain a core allocation of the three-sided assignment game,
(ũ1, ũ2; ṽ1, ṽ2; w̃1, w̃2), such that β dom {2,1,2}α.

Case 2.2: x2 + y2 + z1 < a221.
We now look for a core allocation β = (u, v, w) of wA such that β dominates α via
{2, 2′, 1′′} and u2 +v2 +w1 = a221. Together with the core constraint u2 +v2 +w2 = a222,
we get w2 = w1 + (a222 − a221).

If we had such a core allocation β, by substitution in the core constraints we would
obtain

(i) u1 + v1 + w1 = a111

(ii) u2 + v2 + w1 = a222 + a221 − a222 = a221

(iii) u1 + v1 + w1 ≥ a112 + a221 − a222

(iv) u1 + v2 + w1 ≥ a121

(v) u1 + v2 + w1 ≥ a122 + a221 − a222

(vi) u2 + v1 + w1 ≥ a211

(vii) u2 + v1 + w1 ≥ a212 + a221 − a222

(viii) u2 + v2 + w1 ≥ a221.

Note that because of the dominant diagonal property and the fact that the matching
{(1, 1′, 1′′), (2, 2′, 2′′)} is optimal for A, we have (i) implies(iii) and (ii) implies (viii).
By (iv) and (v) we get u1 + v2 ≥ max{a121 − w1, a122 + a221 − a222 − w1, 0} and by
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(vi) and (vii) we get u2 + v1 ≥ max{a211 − w1, a212 + a221 − a222 − w1, 0}. Hence, a
core element β = (u, v, w) satisfies u2 + v2 + w1 = a221 if and only if its projection
(u, v) = (u1, u2; v1, v2) belongs to the core of the 2× 2 assignment game Bw1 :

(
a111 − w1 max{a121 − w1, a122 + a221 − a222 − w1, 0}

max{a211 − w1, a212 + a221 − a222 − w1, 0} a221 − w1

)
.

Let us now take w̃1 = z1 +ε where 0 < ε < min{a111−z1, a221−x2−y2−z1}. Notice
that this is always possible since 0 ≤ z1 < a221 ≤ a111. Consider now Bw̃1 . Then,

bw̃1
11 = a111 − w̃1 ≥ max

{
max{a121 − w̃1, a122 + a212 − a222 − w̃1, 0},

max{a211 − w̃1, a212 + a221 − a222 − w̃1, 0}
}

= max{bw̃1
12 , b

w̃1
21 }.

(7)

Now, from a211 + a222 < a212 + a221 and a222 ≥ a212 we get a221 > a211, and together
with (7) this implies a111− w̃1 + a221− w̃2 ≥ max{a121− w̃1, a122 + a212− a222− w̃1, 0}+
max{a211 − w̃1, a212 − w̃1 + a221 − a222, 0}, that is bw̃1

11 + bw̃1
22 ≥ bw̃1

12 + bw̃1
21 .

Let us define

u2 = x2 +
a221 − x2 − y2 − z1 − ε

2
> x2 ≥ 0,

v2 = y2 +
a221 − x2 − y2 − z1 − ε

2
> y2 ≥ 0.

Note that u2 + v2 = a221 − w̃1 and u2 > 0, v2 > 0.
By Remark 10, there exists a core allocation γ = (u1, u2; v1, v2) of Bw̃1 with ũ2 = u2.

Such a core allocation γ satisfies the constraint ũ1+ ṽ1 = a111−w̃1. Then, by completion
with w̃2 = w̃1 + a222 − a221, we obtain a core allocation of the three-sided assignment
game β = (ũ1, ũ2; ṽ1, ṽ2; w̃1, w̃2) such that β dom {2,2,1}α.

References

Demange, G. (1982), “Strategyproofness in the assignment market game.” Laboratorie
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