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Abstract: Since phytoplankton is an autochthonous primary producer, it plays a vital role 24 

in driving the water quality of rivers and lakes. Therefore, in cases where measurements are 25 

lacking, its estimation is of the essence. In the present study, Morlet wavelet spectrum (periodicity) 26 

and multiple regression analyses were conducted on 15 chemical, biological and physical water 27 

quality variables sampled at 14 sites along the Hungarian section of the River Tisza and 4 sites 28 

from artificial tributary channels for 1993 – 2005. Results show that annual periodicity was not 29 

always to be found in the water quality parameters, at least at certain sampling sites. Periodicity 30 

was found to vary over space and time, but in general, an increase was observed in the company of 31 

higher trophic states of the river heading downstream. Based on the spatial distribution of the 32 

periodic behavior of the water quality parameters (runoff, ions, and nutrients given in so-called 33 

periodicity indices), an improved model was constructed which was capable of explaining about 34 

half (adjusted R2 = 0.5) of the phytoplankton variance in the study area.  35 

 36 

Keywords: annual periodicity water quality, chlorophyll-a estimation, Morlet wavelet spectrum 37 

analysis, multiple regression analysis, River Tisza 38 

 39 

1. Introduction 40 

River networks present dynamically changing physical gradients to all biota, including 41 

phytoplankton (Kingsford, 2000). From the headwater, the characteristics of streams may vary, 42 
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from the heavily shaded streams of forested catchments to the deep channels of large autotrophic 43 

lowland rivers, where inorganic turbidity often restricts light availability (Dokulil, 2006; 44 

Istvánovics and Honti, 2012). The highest autotrophic productivity is to be expected in medium to 45 

large rivers, and in large floodplain rivers (Istvánovics et al., 2014).  46 

With urbanization and rapid population growth, water bodies are being more and more 47 

threatened by over exploitation and pollution, rivers being one of the most endangered among them 48 

(Hering et al., 2006). Therefore, their monitoring is an absolute necessity if we are to be able to 49 

follow and predict negative changes/scenarios. The Water Framework Directive of the European 50 

Union (EC, 2000) stipulated the achievement of “good ecological status” in natural water bodies 51 

by 2015; this, in turn, requires the continuous development and cross-border intercalibration of 52 

monitoring networks in order to achieve a better understanding of rivers processes (Chapman et 53 

al., 2016). 54 

One focal issue in this is eutrophication (Neal et al., 2008), which highlights the use of 55 

phytoplankton in the assessment of large rivers as a new and emerging task of the EU (Hering et 56 

al., 2010; Reyjol et al., 2014). Offering increasing development time, the lower stretches of a river 57 

may more easily become dominated by the planktonic element (Moss and Balls, 1989; Várbíró et 58 

al., 2007). This is manifested in a progressive increase in planktonic chlorophyll as one moves from 59 

the upper reaches to the middle- and lower sections of the river. Although, chlorophyll-a 60 

determination is neither a difficult nor expensive measurement, long term data is generally only 61 

available from the 1990s in Eastern Europe, as only then was it first included as an important 62 

parameter in national water quality monitoring programs.  63 

Phytoplankton play a vital role in fluvial ecosystems, especially in cases of changing climatic 64 

and environmental conditions (Villegas and de Giner, 1973). Also, due to their short life cycle, 65 
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they serve as important indicator of water quality (Wu et al., 2014; 2012). Taken together, these 66 

points show why forecasting algal content is fundamental to the management of river systems 67 

(Jeong et al., 2008; Read et al., 2014). The need for the creation of a model of phytoplankton 68 

dynamics which is capable of approximating real life phenomena as closely as possible has already 69 

been formulated (Elliott et al., 2010), and successful models have been derived in the case of rivers 70 

(Jeong et al., 2001; Wu et al., 2014) and a lake, Lake Taihu (China; Huang et al., 2014, 2012). 71 

However, none of these models has taken the periodic behavior of various water quality parameters 72 

into account as a possible driving factor. despite the fact that, as emphasized much earlier 73 

(Reynolds, 1984), the role of periodic cycles of phytoplankton has a crucial impact on population 74 

dynamics and shaping community structure. 75 

The presence or absence of annual periodicity, as demonstrated in our research, is not as 76 

evident as it may seem at first. The complex nature of the interactions and the superimposed 77 

presence of (i) anthropogenic, as well as (ii) other natural processes may disturb the natural periodic 78 

behavior of different water systems (Kovács et al., 2010; Fehér et al., 2016). Therefore, the periodic 79 

behavior of the main characteristics of water quality and the status of a river section (both) play a 80 

determining role in whether the growth of riverine phytoplankton – a main characteristic of any 81 

given river section - occurs or not. In the upper section the natural riverine phytoplankton consist 82 

of mainly tichoplatonic elements (Ruyter van Steveninck et al., 1990; Descy, 1987) while in the 83 

lower-, true euplactonic cenrales diatoms tend to dominate the primary production pillar of riverine 84 

food webs (Descy et al., 2017). As primary producers, planktonic algae in aquatic environments 85 

have a determining role in shaping the composition of aquatic ecosystems through their production 86 

of organic carbon, oxygen, as well as providing a source of food for herbivorous grazers (Wehr 87 

and Descy, 1998). In addition, the disturbance in periodic behavior of phytoplankton in riverine 88 
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systems triggers a chain reaction through the food web, as periodic behavior makes its effects felt 89 

through all sections of the riverine ecosystem and the ecosystem services provided (Daily, 1997). 90 

There is therefore, an obvious need to understand the driving constraints of phytoplankton 91 

dynamics in rivers.  92 

Annual periodicity is a natural behavior of riverine systems in the moderate climate zone and 93 

has been shown (Tanos et al., 2015) to play a major role in driving the periodic behavior of water 94 

quality parameters and in the shaping of natural phytoplankton dynamics. These in turn, can be 95 

traced by its main proxy, the chlorophyll-a content of the water (Borics et al., 2007; Tanos et al., 96 

2015). Although a number of empirical models have been developed to describe the relationship 97 

between macronutrients - mainly total phosphorus and total nitrogen - and phytoplankton 98 

chlorophyll-a, these models mostly focus on lakes (Phillips et al., 2008; Poikane et al., 2011). 99 

Therefore, if the periodic behavior of the general water quality parameters (runoff, ions, nutrients 100 

etc.) can be shown to play a significant role in driving the variance of chlorophyll-a content and 101 

quantify that effect, it could serve as a direct link in creating a new way of estimating phytoplankton 102 

chlorophyll-a presence. 103 

Therefore, the aims of the study are (i) to determine the change in annual periodic behavior 104 

of the water quality parameters of the riverine system of the Tisza and (ii) with the information 105 

gained to derive a model for the estimation of chlorophyll-a values from it in cases where direct 106 

measurements of these were lacking. 107 

 108 

2. Materials and methods 109 

2.1. Hungarian section of the River Tisza 110 
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The River Tisza collects the waters of the Carpathian Basin’s Eastern region. It is therefore 111 

a highly important ecological corridor (Zsuga et al., 2004). It stretches from its source in the Eastern 112 

Carpathians in the Ukraine to its confluence with the Danube at Titel in Serbia. The area of its 113 

watershed is 157,186 km2 (Lászlóffy, 1982), almost one third of which is located in Hungary 114 

(approx. 47,000 km2). The average amount of water brought by the Tisza into the Danube is 115 

25.4106 m3 y-1 (Pécsi, 1969). The main branch (river 966 km; Sakan et al., 2007) passes through 116 

five countries (the Ukraine, Romania, Hungary, Slovakia, and Serbia). 594.5 km of this main 117 

branch are to be found in Hungary. Its water quality, solely in Hungary, directly affects the lives 118 

of approx. 1.5M inhabitants. Heading downstream on the river’s Hungarian section, its tributaries 119 

are the following: the Szamos, Bodrog, Sajó, Zagyva, Kőrös, and Maros (Fig. 1). It becomes clear 120 

from the runoff values that the affluent having the strongest effect on the main flow is the Szamos 121 

(at its mouth its average runoff exceeds half of the average runoff of the Tisza) and a considerable 122 

“changing effect” is expected from the Bodrog, Sajó, Zagyva, Kőrös, and Maros Rivers regarding 123 

the periodic behavior of the river (Table A1). 124 

It has been documented that, besides the tributaries, other, mostly anthropogenic factors, 125 

such as e.g. the Tiszalök water barrage systems (WBS; Fig. 1), or lakes (e.g. Lake Tisza; Fig. 1) 126 

affect the water quality of the analyzed river section (Kentel and Alp, 2013; Moreira and Poole, 127 

1993). Even the current river ice regime may have changed due to the installation of WBSs (Takács 128 

et al., 2013; Takács and Kern, 2015). An artificial lake exists on the river, Lake Tisza, constructed 129 

in 1973. It was planned to function as a part of a future WBS. Nowadays, it is a much-frequented 130 

recreation zone and nature reserve. The lake’s length is 27 km, its mean depth is 1.3 m, and it has 131 

a total area of 127 km2. Moreover, non-point source nutrient loads arriving from agricultural areas 132 

have to be accounted for as well (Mander and Forsberg, 2000). Regarding large cities, there are 133 
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several along the river (e.g. Szolnok at sampling site T10 and Szeged at sampling site T13), which 134 

also have an environmental impact on the river’s water quality (Fig.1). 135 

 136 

Fig. 1. Hungarian catchment of the River Tisza, with its sampling locations. 137 

 138 

In the course of the analyses, the time series of 14 water quality variables (Table 1) for the 139 

years 1993-2005 were examined from 14 sampling sites (Fig. 1). The parameters were sampled by 140 

the various water inspectorates weekly and biweekly. Due to the large area monitored, these 141 

samples were not taken on the same day. Thus, after 2005, the sampling frequency was rarefied 142 

and the set of parameters changed. The number of data analyzed was ~50,000 in total. 143 

 144 

Table 1. Groups of water quality/quantity variables assessed in the study 145 
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Variables  Variable Groups 

Runoff (m3 s-1)   

Dissolved oxygen (DO; mg L-1)   

Biological oxygen demand (BOD-5; mg L-1)   

Ca2+ (mg L-1) 

Ions 

Mg2+ (mg L-1) 

Na+ (mg L-1) 

K+ (mg L-1) 

Cl- (mg L-1) 

SO4
2- (mg L-1) 

HCO3
- (mg L-1) 

NH4-N (mg L-1) 

Nutrients 
NO2-N (mg L-1) 

NO3-N (mg L-1) 

PO4-P (µg L-1) 

 146 

Data preparation was performed so that the dataset would meet the basic requirements of 147 

the applied method. Possible typos and incorrectly recorded extreme values were sought manually, 148 

because there were occasions when an “act of God” (e.g. the anomalies caused by the cyanide 149 

pollution that occurred in 2000 in the river (Koenig, 2000) caused the water quality parameters to 150 

behave differently (produce an extreme record) from the general tendencies, although its 151 

measurements were probably accurate. The equidistant characteristic of the dataset was achieved 152 

by the fitting a cubic spline function to it (for details see Table A1). Thus, the time intervals 153 

between the resampled data were adjusted to the longest temporal interval of the original dataset, 154 

30 days.  155 

 156 

2.2. Methodology 157 
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Based on the presumption that a fair amount of the variance of chlorophyll-a is driven by 158 

other water quality parameters, the following procedure was developed. First, the annual periodic 159 

behavior of the water quality parameters is determined as periodicity indices using wavelet 160 

spectrum analysis and averaged for each sampling site for the investigated time interval (1993-161 

2005) (see Section 2.2.2). Then various combinations (averages for sites and/or parameter groups 162 

e.g. nutrients) of these periodicity indices are incorporated into multiple regression models (Draper 163 

and Smith, 1998) to find the one which best explains chlorophyll-a variance based on multiple 164 

criteria (O’Brien, 2007). 165 

 166 

2.2.1. Periodicity analysis in practice 167 

The most basic way to assess annual periodicity is to calculate the monthly averages of all 168 

monthly values and visually inspect whether those are periodic or not. Clearly, there are more 169 

sophisticated approaches to dealing with periodicity, such as the Lomb-Scargle method (Lomb, 170 

1976; Scargle, 1982; Fig. 2A). However, this is only capable of indicating the presence of the 171 

annual period, but not its location in time or even if the periodic characteristic is present over the 172 

whole time period. 173 
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 174 

Fig. 2. Lomb-Scargle periodogram for NO3-N, indicating a 12 month period A). The Morlet 175 

mother wavelet (Morlet, et al., 1982) B). The wavelet spectrum analysis C). The upper figure in 176 

panel C represents the resampled datasets of the parameter, while the lower represents its PSD 177 

graph, on which the 5% significance level against red noise is shown as a thick black contour (for 178 

details see Torrence and Compo, 1998). The black shaded areas mark the COI and the black 179 

horizontal dashed line indicates the annual period. 180 

 181 

In numerous cases, it is not the type of the period which is important, but its location in 182 

time. To deal with such questions, the Short-Time Fourier Transformation is at hand (Allen, 1977). 183 

This uses a fixed width windowed approach, which is not, however, capable of arriving at a balance 184 

between an optimal resolution in time and frequency.  185 

 186 

http://dx.doi.org/10.1016/j.ecolind.2017.03.002


Pre-print of Ecological Indicators 78 (2017) 311–321; doi: 

http://dx.doi.org/10.1016/j.ecolind.2017.03.002  

2.2.2 Wavelet spectrum (periodicity) analysis 187 

To achieve a balance between the optimal resolution in time and frequency, wavelet 188 

spectrum analysis (WSA) was chosen, as has often been the case in related studies for different 189 

water bodies (Kovács et al., 2010, 2004; Lafreniére and Sharp, 2003; Tauber et al., 2011; Yanyou 190 

et al., 2006; Zhang et al., 2008), since WSA is localized in time (space) and scale (frequency), 191 

enabling it to grasp the signals’ temporarily changing characteristics. The wavelet transformation 192 

(WT; Eq. 1) may be defined as the convolution of the data and the wavelet function (Kovács et al., 193 

2010) of a time series (Χn, n=1,. . . ,N) with uniform time steps δt, (Eq. 1), it is a function with a 194 

mean of zero and is localized in both frequency and time (Grinsted et al., 2004). 195 

𝑊𝑛
𝑋(𝑠) = √

𝛿𝑡

𝑆
∑ 𝑋𝑛′𝛹0 [(𝑛′ − 𝑛)

𝛿𝑡

𝑆
]𝑁

𝑛′=1  (1) 196 

Where ‘s’ represents the scale, ‘ψ0’ the wavelet function, and ‘𝛿t’ the degree of the resolution. 197 

Its adaptability lies in the scaling method. In the present study, a Morlet mother wavelet (Morlet, 198 

et al., 1982; Fig.2B) provided the source function to generate daughter wavelets. This was achieved 199 

by scaling and transforming the mother wavelet. Thanks to its adaptability, WSA is even able to 200 

handle the problem of non-stationarity (Daubechies, 1990). The purpose of the wavelet 201 

transformation is multiple dissociation, by decomposing the data in the scaling space. In this way, 202 

it is possible to reveal its self-similarity structure (Farge, 1992; Hatvani, 2014; Kern et al., 2016). 203 

Because wavelet spectrum is composed of two independent variables (time and frequency), it can 204 

be visualized in 3D through the plotting of power spectrum density (PSD) graphs (Fig. 2C). Note 205 

here that WTC produces edge artifacts, since the wavelet is not completely localized in time. Thus, 206 

the introduction of a cone of influence (COI), in which edge effects cannot be ignored (Torrence 207 

and Compo, 1998; Fig. 2C), is suggested. 208 
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Since the more thorough discussion of the WSA is not the main aim of the study, readers 209 

are referred to the following publications for further details: Benedetto and Frazier (1994) and 210 

Vidakovic (2009).  211 

For easier interpretation, the presence of the significant annual periods of the PSD graphs 212 

(Fig. 2C) was transformed into percentages (periodicity indices, PI), where the full time interval 213 

was taken as 100%. These PIs can be explored in terms of parameter-, parameter group and 214 

sampling site (Table 2). 215 

 216 

Table 2. Definitions of the periodicity indices 217 

Name Abbreviation Definition 

PI of each variable PIv The ratio of time where the annual period is present 

to the full assessed time period in percentages for a 

particular variable. 

PI of a particular  

parameter groups 

PIgv Average PIv of a particular variable group at a 

certain sampling site. 

PI of a particular sampling 

site 

PIsl The ratio of the sum of the length of time where the 

annual period is present to the sum of the time 

periods assessed at a particular sampling site 

considering all variable together. 

 218 

2.2.3 Software used 219 
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All mathematical and statistical computations were performed using R 3.2.3 (R Core Team 220 

2015) and MS Excel 2016. The WSA was conducted using the dplR package (Bunn, 2010; Bunn 221 

et al, 2016). For the visualizations of the results, CorelDRAW Graphics Suite X7 and MS Office 222 

2013 were used. 223 

 224 

3. Results 225 

3.1. Possibilities for the application of WSA 226 

Most periodicity analysis methods require equidistant sampling. Environmental data often 227 

fail to meet this criterion. On the Hungarian section of the River Tisza, due to the fact that it is 228 

about 600 km long, and the various sampling sites of the river are managed by different authorities, 229 

this criterion is very incompletely met. In the early years of the assessed time period, sampling was 230 

bi-weekly then monthly, in some cases with gaps even in this frequency. In the latter case, 231 

interpolation was necessary e.g. using a spline function (Fig. S1). A 30 day resampling was 232 

commenced complying with the requirements of the planned Wavelet spectrum analysis (WSA; 233 

see Section 2.2.2 for details). If, however, there was a gap in the data, spline interpolation has to 234 

be used with caution, because it supposes a certain smoothness of the data. 235 

In the course of WSA, special attention should be paid to those parameters which indicate 236 

shifts (changes in order of magnitude), because such anomalies will corrupt the periodic behavior 237 

detectable by WSA and mask any underlying periodicity. According to WSA, at the Szolnok 238 

sampling site annual periodicity was present in the time series (1974-2005) of the NH4-N parameter 239 

53% of the time (Fig. 3A). It should be noted that, after 1993, the concentration of NH4-N greatly 240 

decreases (Fig. 3A upper figure), causing the periodic behavior seemingly to diminish. Therefore, 241 
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if the period between 1993 and 2005 is assessed separately from the whole dataset (Fig. 3B), it 242 

becomes clear that NH4-N did indeed display periodic behavior between 1993-2005. Thus, based 243 

on the two spectra, over 93% of the investigated time period, annual periodicity was present in the 244 

data, which is far more than the 53% indicated in Fig. 3A for 1974-2005. 245 

 246 

Fig. 3. PSD graphs of the WSA of NH4-N from the Szolnok sampling site between 1975-2005 A) 247 

and 1993-2005 - the time interval assessed in the study B). The statistics for two different time 248 

periods demonstrate the shift in its measured values (inset table). 249 

 250 

From 1990, about 75% and 40% of the decrease in P and N emissions, respectively, was 251 

due to improved sewage treatment and a significant drop in fertilizer application rates, down to 5 252 
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kg P ha-1 (Csathó et al., 2007; Schreiber et al., 2005). The concentration of ammonium-nitrogen 253 

decreased greatly starting in the beginning of the 1990s (Mander and Forsberg (2000), especially 254 

in the Eastern European region, more specifically the River Tisza in Hungary (Tanos et al., 2015). 255 

The reason behind this phenomenon lies in the fact that WSA was unable to follow the signal if 256 

there are explicit discontinuities in it as stated before. One solution to this problem is to split the 257 

dataset into separate segments at the discontinuities and assess these separately. 258 

A similar problem may arise in the case of a large number of missing values (Fig. 4), when 259 

WSA gives false results for the interpolated segment, as in Fig. 4B, because it substituted the 260 

missing values with extreme values (Fig. 4B). Thus, the dataset should be split and assessed in two 261 

parts, leaving out the problematic section (Fig. 4C; Part I & II). Although, this increases the 262 

proportion of edge artifacts, in contrast to the original case, it nonetheless gives a meaningful result. 263 
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 264 

Fig. 4. Example of the PDS graph of dissolved oxygen from the Szolnok sampling site A). An 265 

artificial 1 year gap was introduced to the time series B) to show its negative effect on the 266 

wavelet spectra. Than by splitting the time series at the gap and exploring its wavelet spectrum in 267 

two section (Part I & Part II) its PSD graphs become meaningful and evaluable. 268 

 269 
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3.2. General trends observed 270 

The assessed river section is characterized by widely varying runoff (min 26 m3s-1 max 3220 271 

m3 s-1; Table A1) with the average runoff increasing 4-fold in Hungary as we proceed downstream. 272 

The water quality parameters increased in concentration downstream as well, by a factor of between 273 

1.02-2.45. The only exception is DO, the concentration of which decreased about 25% over the 274 

Hungarian section. The two most variable parameters were ammonium and runoff, while the other 275 

parameters’ coefficient of variation (CV) remained between 20-60%, which may be considered as 276 

quite conservative. The CVs showed a decrease downstream (Table S1; Fig. S2). 277 

 278 

3.3. Periodicity analysis 279 

The annual periodicity of the water quality parameters differed at the sampling sites, with an 280 

average 36% increase in its value downstream (Fig. 5). The smallest PIsl was seen at T1 (22%), 281 

while the largest PIsl at the penultimate site in Hungary, T13 (58%). The increase was not even 282 

because of the anomaly seen at the water barrage system of Tiszalök. Before the obstacle at 283 

sampling site T5, the water is slowed down and PIsl drops to 40%, while right after the dam (at T6), 284 

a remarkable increase is seen in annual periodicity (PIsl=49%), however, at one site downstream 285 

(T7), a less mature annual periodic behavior is once again to be (PIsl=46%, for details see Table 286 

A2). 287 

Since the River Tisza can be considered a linear system (Kovács et al., 2015), the PIsls of the sites 288 

can be evaluated against the distance between the sites, giving significant (p<0.01) linear models 289 

(adjusted R2 (R~2) = 0.5-0.8; Fig. 5). The PI of the nutrients increases most rapidly downstream 290 

(steepest slope), while the model with the PI of the ions included has the shallowest slope. 291 
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 292 

 293 

Fig. 5. Summary figure of the linear regression models of periodicity indices (PIs – 294 

defined in Table 2) with different combinations of water quality variables incorporated into them 295 

vs. river km. 296 

 297 

3.4. Chlorophyll-a estimation 298 

In the study, seven multiple regression models were derived to estimate the chlorophyll-a 299 

content of the water using the PIs of the water quality parameters at the different sites (Table 3). 300 

The obtained models were evaluated by taking into account multiple factors - R~2, root mean square 301 

error (RMSE), model p-value, and variance inflation factor (VIF) - as suggested by O’Brien (2007), 302 

in order to find the best combination of driving PIs. 303 

The estimated and measured chlorophyll-a values correlated at r>0.6, all the models were 304 

proven to be significant according to the chi square test (p<0.05), and a VIF of <2.48 indicated that 305 
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there is no multicollinearity in either model. The average RMSE was 1.048 µg L-1, the average 306 

R~2=0.446. Based on the preceding, it was possible to make a clear distinction between the models, 307 

with, two out of the seven proving to be better, lm6 & lm7. Regarding R~2, lm6 performed better 308 

than lm7 (difference in R~2 =0.041), while lm7 had a smaller RMSE than lm6 (difference 0.01 µg 309 

L-1).  310 

 311 

Table 3. Parameters of the linear regression models used to estimate chlorophyll-a, the 312 

best two models are in bold (for equations of the linear regression models see Table A3) 313 

Code Dependent variable Independent variable(s)  R~2 p-value RMSE 

lm1 

cl
o
ro

p
h
y
ll

-a
 

PIrunoff 0.357 0.014 1.16 

lm2 PInutrients 0.460 0.005 1.06 

lm3 PIions 0.411 0.008 1.11 

lm4 PI runoff, nutrients 0.447 0.015 1.03 

lm5 PI runoff, ions 0.433 0.018 1.04 

lm6 PI nutrients, ions 0.504 0.008 0.98 

lm7 PI runoff, nutrients, ions 0.463 0.026 0.97 

 314 

4. Discussion 315 

The presence of an annual period was to be expected in the analyzed section of the river, 316 

since the main meteorological processes driving the water quality of the river have annual 317 

periodicity (Tanos et al., 2015). This annual periodic behavior increases downstream, and so does 318 

chlorophyll-a content, as the river turns into more of a lower section stream having “lake-like” 319 
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characteristics. Its waters’ residence time increases, flow velocity decreases, better light conditions 320 

are achieved, with more available nutrients etc. downstream. This was similar to the phenomenon 321 

observed on the Loire (Abonyi et al., 2012), or as an “extreme” example, that section of the River 322 

Zala beyond the point where its waters reach a constructed wetland. The River Zala’s flow velocity 323 

decreased, chlorophyll-a content increased and so did the annual periodicity of its water quality 324 

parameters (Kovács et al., 2010). A similar phenomenon was expected and observed in the case of 325 

the River Tisza as well, and will be discussed in the following section. Consequently, for the first 326 

time, the periodic behavior of water quality parameters was used to model the phytoplankton 327 

biomass in rivers. 328 

 329 

4.1. General trends 330 

Starting from the upper section of the river Tisza in Hungary, a higher variability was 331 

observed for runoff, dissolved oxygen and nutrients than for other parameters, and this then 332 

decreased downstream. In parallel with this decrease in their variability, their periodic behavior 333 

increased, indicating a fundamental change in the most important characteristics of the river 334 

(Reynolds, 1984). As the water slows down, the residence time increases, furnishing the conditions 335 

for a close-to-equilibrium state to form (Kovács et al., 2010). Thus, heading downstream, the river 336 

becomes ever more similar to a turbid lake than to a fast flowing upper section river (Reynolds, 337 

1984; Stanković, et al., 2012).  338 

 339 

4.2 Changes in the periodic behavior of the River Tisza 340 
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If the above information is combined not only in the case of the focus parameters, but for all 341 

the measured parameters and each sapling site, then the same pattern as discussed above may be 342 

seen, that is, increasingly periodic behavior downstream (Fig. 5). This was observed to be 343 

interrupted by (i) anthropogenic influences and/or (ii) natural ones (Fig. 5 boxes). 344 

As for the former (i), site T06 can be mentioned as an example, where the increasing trend 345 

of PIsl is interrupted by the Tiszalök Water Barrage System. Here, the river temporarily slows 346 

down, the PIsl peaks (Fig. 5: box2), then decreases once again. This concurs with the more general 347 

observation that with an increased residence time, periodic behavior should increase as well (Tanos 348 

et al., 2015). 349 

As for the latter (ii), after T01, the River Szamos enters the Tisza, and this tributary displays 350 

approximately 30% higher periodic behavior. The Szamos-PIsl = 50%, and its runoff was 52% more 351 

than the closest site upstream from the mouth in the River Tisza (T01). This boosted the increase 352 

in periodicity in the main branch (Fig. 5: box1). As the Kőrös tributary is reached, it might be 353 

though that a change should be anticipated in the PIsl of the River Tisza. Interestingly, however, no 354 

such phenomenon is observed. The reason is probably because the Kőrös River (Kőrös-PIsl=41%) 355 

only brings an additional 23% runoff compared to the nearest site of the main branch upstream 356 

(Tanos et al., 2015), which was not enough for the periodic behavior of the River Tisza to change. 357 

The River Maros (Maros- PIsl=40%), however, brought an additional 30% runoff, which was 358 

enough to interrupt the periodicity of the water quality parameters in the Tisza, decreasing the PIsl 359 

from 58 to 52% between sites T13 and T14 respectively (Fig. 5: box III). 360 

 361 
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4.3 Estimating chlorophyll-a content based on the periodicity indices of the sampling 362 

locations (PIsl) 363 

As periodicity is a natural behavior of a riverine system, it plays a role in forming natural 364 

phytoplankton dynamics. Heading downstream, the River Tisza takes on the characteristics of a 365 

lower section type river (Section 4.1), its periodic behavior increases (Section 4.2) and so does its 366 

chlorophyll-a content (Table A1). The light conditions get better, due to the decreased amount of 367 

sediments supporting phytoplankton growth. In parallel with this, the longer residence time allows 368 

true riverine phytoplankton to grow. These natural longitudinal changes are reflected in the 369 

transition from benthic Pennales in the upper section to meroplanktic greens via unicellular centric 370 

diatoms at the lower sections (Abonyi et al., 2012; Duleba et al., 2014) 371 

However, besides the clear longitudinal changes, there were anomalies in the general picture, 372 

as in some sections the chlorophyll-a decreased. Thus, it was a logical step to investigate the 373 

strength of the parallel change of chlorophyll-a content and periodic behavior of the different 374 

combinations of parameters by means of multiple regression analysis. This formed the backbone 375 

of the presented chlorophyll-a estimation approach. The best two estimations for chlorophyll-a 376 

were provided by the models consisting of the PIs of the nutrients, ions and, in the case of lm7, the 377 

PI of runoff.  378 

To verify the wide applicability of the methodology, using the same set of water quality 379 

variables and the same time interval (1993-2005), the possibility of estimating chlorophyll-a with 380 

the presented methodology in the Hungarian section of the River Danube was assessed and shown 381 

to be successful (Table A4). The results converged with those from the River Tisza (Table 3). In 382 

the best two models for estimating chlorophyll-a in the River Danube, one was the same as in the 383 

case of the River Tisza (PIrunoff, nutrients, ions), while the other one was PIrunoff, ions. This observation 384 
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provides an additional example of the success of the presented approach in estimating chlorophyll-385 

a concentrations. 386 

These results support the idea that the periodicity of these parameters has a significant and 387 

quantifiable effect on primary production. Both anthropogenic and natural disturbances which 388 

reduce periodicity decrease primary production as well. This can then affect the whole riverine 389 

ecosystem through the food web (Ou and Winemiller, 2016; Roach and Winemiller, 2015). The 390 

increasing number and frequency of extreme events due to climate change in turn makes a 391 

decreasing phytoplankton biomass in rivers more likely. Extreme flooding can change the growth 392 

and resistance to flow detachment of the algae, as has been found to be the case in Taiwan (Chiu 393 

et al., 2016), and could be partly the effect of decreased algal biomass in rivers reported through 394 

Europe (Duleba et al., 2014). An additional important result is that in the lower section from the 395 

model a baseline chlorophyll-a concentration could be established (~8.5 µg L-1). This can be 396 

considered as a natural background chlorophyll-a level of the Tisza, indicating that the river should 397 

be in a mesotrophic state. This is accordance with the recommendation of the large river 398 

intercalibration group that riverine plankton be accorded high status.  399 

 400 

6. Conclusions 401 

Rivers are one of the most endangered ecosystems; besides their environmental value, they 402 

produce a wide range of ecosystem services. Therefore, their monitoring is a focal point of action 403 

strategies with the aim of conserving/improving environmental conditions. Through the analysis 404 

of a river on a broad timescale (1993-2005) it was proven that the periodicity of water quality 405 

variables has a significant and quantifiable effect on riverine ecosystems, specifically 406 

http://dx.doi.org/10.1016/j.ecolind.2017.03.002


Pre-print of Ecological Indicators 78 (2017) 311–321; doi: 

http://dx.doi.org/10.1016/j.ecolind.2017.03.002  

phytoplankton biomass. Unfortunately, because there is still insufficient information available on 407 

species–habitat interactions, the integration and prognosis of ecosystem properties is not yet fully 408 

available (Wu et al., 2014). By modeling such water quality parameters as indicators of 409 

phytoplankton biomass we have the opportunity to bypass this step. In this sense, the present study: 410 

(i) fills a gap by determining the spatial distribution of the periodic behavior of a river’s 411 

general water quality parameters with Wavelet spectrum analysis, 412 

(ii) by the means of multiple regression analysis indicates a clear relationship between 413 

the obtained periodicity indices and chlorophyll-a, and 414 

(iii) presents a significant model explaining about 50% of the phytoplankton variance in 415 

the studied river section. 416 

Thus, the present predictions will hopefully now help to make the  assessment of future 417 

changes in ecosystem services, ecological status and the development of the most efficient water 418 

management policy possible (Chapman et al., 2016). Further studies are encouraged, if we are to 419 

see how this relationship changes if different rivers, or river sections (e.g. lower section, river delta) 420 

are assessed and additional (meteorological, physical, etc.) parameters are incorporated into the 421 

model. 422 
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Appendices 652 

Table A1. Characteristics of the Hungarian section of the River Tisza 653 

Code Sampling location 
River 
Km EOVX EOVY 

Number of 
data 

Chlorophyll-a  
averages in µg L-1 

T01 Tiszabecs 757 313555 931595 196 1.5 

T02 Aranyosapáti 668.6 324874 890067 185 4.1 

T03 Záhony 636.8 345788 881408 186 4.1 

T04 Balsa 565 317800 836068 176 5.7 

T05 Tiszalök upstream of WBS 525.1 300124 819642 313 3.9 

T06 Tiszalök downstream of WBS 523.1 300419 815511 164 4.5 

T07 Polgár 487.2 287048 801740 181 5.3 

T08 Tiszakeszi 464.1 272985 796336 162 5.3 

T09 Tiszafüred 433.5 256591 776155 170 5.3 

T10 Szolnok 335.4 203891 738554 196 6.1 

T11 Tiszaug 266.4 169753 726219 170 5.9 

T12 Mindszent 216.2 132631 735619 161 5.6 

T13 Tápé 177.5 101759 739083 186 6 

T14 Tiszasziget 162.5 93990 731637 191 8.6 

 654 

Table A2. Average periodicity of water quality variables for each sampling site with the average 655 

periodicity indices for the whole Hungarian river section (PIvs) given in the last row and the PIs 656 

giving the average periodic behavior of each sampling location (PIsl) in the last column. 657 

Code Runoff DO BOD-5 Ca2+ Mg2+ Na+ K+ Cl- SO4
2- HCO3

- NH4-N NO2-N NO3-N PO4-P PIsl 

T01 41% 70% 0% 43% 10% 13% 8% 12% 14% 29% 0% 0% 68% 0% 22% 

T02 52% 54% 32% 21% 0% 46% 28% 29% 28% 32% 17% 13% 59% 26% 31% 

T03 79% 40% 31% 36% 9% 38% 12% 32% 42% 0% 18% 31% 63% 36% 33% 

T04 53% 31% 44% 28% 0% 51% 15% 34% 31% 12% 20% 39% 58% 36% 32% 

T05 57% 100% 0% 17% 45% 55% 49% 41% 0% 57% 39% 0% 35% 48% 40% 

T06 87% 99% 16% 46% 16% 48% 75% 54% 0% 50% 59% 3% 100% 39% 49% 

T07 77% 100% 0% 19% 26% 26% 75% 37% 30% 30% 62% 17% 99% 39% 46% 

T08 75% 100% 22% 20% 32% 15% 85% 29% 24% 32% 60% 12% 98% 30% 45% 

T09 65% 100% 4% 23% 13% 42% 88% 40% 17% 32% 88% 19% 98% 50% 49% 

T10 79% 100% 38% 14% 35% 44% 81% 43% 19% 46% 72% 22% 97% 43% 53% 

T11 79% 100% 36% 28% 14% 28% 75% 30% 13% 45% 83% 12% 99% 40% 49% 

T12 83% 100% 76% 55% 24% 20% 20% 58% 20% 50% 37% 32% 95% 86% 54% 

T13 72% 100% 100% 29% 22% 37% 53% 51% 14% 46% 88% 22% 97% 82% 58% 

T14 83% 100% 15% 50% 30% 59% 47% 72% 28% 24% 66% 33% 95% 19% 52% 

PIv 70% 85% 30% 31% 20% 37% 51% 40% 20% 35% 51% 18% 83% 41% 
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Table A3. Equations of the linear regression models 659 

Code Equations of the linear regression models 

lm1 chlorophyll-ai = 6.93∙PIrunoff i + 0.27 

lm2 chlorophyll-ai = 6.99∙PInutrients i + 1.74 

lm3 chlorophyll-ai = 14.02∙PIions i + 0.45 

lm4 chlorophyll-ai = 2.79∙PIrunoff i + 5.14∙PInutrients i + 0.68 

lm5 chlorophyll-ai = 3.68∙PIrunoff i + 9.35∙PIions i − 0.57 

lm6 chlorophyll-ai = 4.60∙PInutrients i + 7.69∙PIions i + 0.33 

lm7 chlorophyll-ai = 1.36∙PIrunoff i + 3.95∙PInutrients i + 6.87∙PIions i − 0.03 

 660 

Table A4. Parameters of the linear regression models used to estimate chlorophyll-a on 661 

River Danube; the best two models are in bold. 662 

Code Dependent variable Independent variable(s)  R~2 p-value RMSE 

lm1_Danube 

cl
o
ro

p
h
y
ll

-a
 

PIrunoff 0.464 0.013 2.224 

lm2_Danube PInutrients 0.312 0.043 2.250 

lm3_Danube PIions 0.405 0.021 2.085 

lm4_Danube PI runoff, nutrients 0.582 0.012 1.921 

lm5_Danube PI runoff, ions 0.710 0.002 1.736 

lm6_Danube PI nutrients, ions 0.356 0.071 2.109 

lm7_Danube PI runoff, nutrients, ions 0.669 0.013 1.735 

 663 
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