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Abstract –Lakes are sensitive to changes in their environmental boundary conditions that can be 22 

indicated in the periodic behavior of water quality variables. The present work aims to assess the 23 

degree to which common annual periodic behavior is present (1994-2010) in the meteorological 24 

parameters (global radiation, air temperature, cloud cover), streamflow; and five primary nutrients 25 
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(e.g. total phosphorus, nitrate-nitrogen) as possible indicators of ecosystem vulnerability in four 26 

different ecosystems using wavelet coherence analysis. The cascade system is located in the mouth 27 

of a shallow river where the water flows through a eutrophic pond then a disturbed/undisturbed 28 

macrophyte covered wetland reaching a large shallow lake. The results highlight the differing abilities 29 

of the elements of the cascade of ecosystems to follow seasonality. The changes in water quality 30 

(nutrient cycle) in the eutrophic pond most closely mirror meteorological seasonality. The 31 

vulnerability of the wetland ecosystem was expressed by its decreased capacity to follow seasonal 32 

changes due to high algae loads and additional inflows. Moreover, the wetland proved to be weak 33 

and unstable regarding phosphorus and nitrogen retention. With the successful application of wavelet 34 

coherence analysis to the “black-box” cascade system the study sets an example for the implications 35 

of the method in such combined or stand-alone natural/partially-constructed ecosystems. 36 

 37 

Keywords: ecosystem management, eutrophication, Kis-Balaton Water Protection System, 38 

macrophyte cover, meteorological driving effect, nutrient retention, vulnerability 39 

 40 

1. Introduction  41 

Water, and especially fresh water, is one of the most critical natural resources which is highly 42 

endangered by climate change and anthropogenic activity (Vörösmarty et al., 2000). It has been 43 

documented that environmental (Reynolds, 1984) and anthropogenic factors (Kovács et al., 2010) 44 

govern and may indeed corrupt the capacity of freshwater ecosystems to follow seasonal changes. In 45 

the moderate climate zone aquatic ecosystems, e.g. rivers (Wong et al., 1978) and shallow lakes are 46 

per se susceptible to eutrophication (Padisak, 1992), while even constructed wetlands (Kadlec, 1999) 47 

tend to follow seasonal changes in hydrometeorology as far as the variables describing their quality 48 

and/or quantity are concerned. This phenomenon is mirrored in the seasonal behavior of e.g. runoff 49 

(Dettinger and Diaz, 2000), concentrations of nitrogen (Exner-Kittridge et al., 2016) and phosphorus 50 
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forms (Istvánovics, 1988), or phytoplankton biomass (Reynolds, 1984) through the changing 51 

temporal-, light- and hydrologic conditions. In all of these cases, these various characteristics hold 52 

vital information about the ecological state of the systems, i.e. of the shallow lakes, rivers, 53 

constructed/natural wetlands. 54 

Hitherto, the periodic behavior of a certain water quality variable has usually been studied. 55 

There are only a few cases in which sets or groups of parameters, e.g. nutrients, ions, etc. (Kovács et 56 

al., 2017), or multiple parameters individually (e.g. chlorophyll-a, sodium-, potassium ions, nitrate-57 

nitrogen) (Kovács et al., 2010) have been assessed together to describe the overall capacity of a habitat 58 

or several habitats, to follow the seasonal changes. Although the studies cited present a significant 59 

and validated picture of the periodic behavior of freshwater ecosystems, they do not directly explore 60 

the relationship - that is, the coherence - of the periodic behavior of water quality variables with 61 

meteorology. This present study aims to remedy this shortcoming and explore the direct relationship 62 

of water quality parameters (mostly inorganic nutrients) with local climate and streamflow in a 63 

cascade system consisting of a shallow river, a eutrophic pond and a wetland with both an 64 

undisturbed- and disturbed habitats. 65 

 66 

1.1. Study area description  67 

The Kis-Balaton Water Protection System (KBWPS) assessed here functions as a treatment 68 

reservoir-wetland system, and was constructed to reduce diffuse nutrient loads reaching Lake 69 

Balaton, the largest (surface area approx. 594 km2) lake in Central Europe. Improving water quality 70 

and preserving its good ecological status of the lake is one of the primary goals of European water 71 

management (EC, 2000; ICPDR, 2015). The largest tributary to the lake, the River Zala, supplies 72 

almost 50% of its water and 35-40% of its nutrient input (Hatvani et al., 2014), therefore significantly 73 

affecting its water quality. In the nineteenth century the water level of Lake Balaton and the River 74 

Zala was regulated (Lotz, 1988). As a result of this artificial modification, the former wetland areas 75 
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of Kis-Balaton - located in the Lower Zala Valley - partially dried up and to a great extent became 76 

incapable of performing their natural filtering function. Combined with increased agricultural activity 77 

(e.g. fertilizer usage) and urbanization (e.g. waste water production) in the course of the 20th century, 78 

these changes resulted in the continuous deterioration of Balaton’s water quality (Hatvani et al., 2014; 79 

2015; Somlyódy et al., 1983) and occasionally led to considerable economic losses in the tourism 80 

sector (Istvánovics et al., 2007). To halt and reverse these negative trends, comprehensive measures 81 

for nutrient reduction were taken (Hatvani et al., 2015; Somlyódy et al., 1983) resulting in a 50-60% 82 

decrease in biologically available nutrients (Padisák et al., 2006a). 83 

An important part of these measures, the Kis-Balaton Water Protection System (KBWPS) was 84 

created in two constructional phases. The remains of the former Kis-Balaton Wetland at the mouth 85 

of the River Zala (Fig. 1) were revitalized, and in Phase I, an 18 km2 reservoir was inundated, 86 

commencing operation in 1985. With average depth of ~1 m and a water residence time of approx. 87 

30 days (Hatvani, 2014), this has become an algae-dominated “eutrophic pond” (Fig. 1). In it, summer 88 

phytoplankton biomass (chlorophyll-a concentration) exceeds 200 mg m-3 and is dominated by 89 

cyanobacteria. About 80% of the phosphorus (P) loads are bound in algae and sediment (Mátyás et 90 

al., 2003). In 1992 Phase II was put into operation, though up to 2014 only a part of it (16 km2) was 91 

inundated. This area (the “wetland”) is covered by macrophytes (Fig. 1). The water residence time 92 

here is approximately twice as long as in Phase I (Hatvani, 2014). This “classic wetland” part of the 93 

system is covered by reed-dominated macrophytes; euphytoplankton species are therefore scarce, 94 

while meroplanktonic species can be found in high number in open water patches (WTWD, 2012). 95 

 96 
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 97 

Fig. 1. Location of the study are and the sampling sites (US: upstream, AD: algae dominated, 98 

WD: macrophyte dominated, DS: downstream; detailed description in Section 2.2.) marked 99 

with red dots (based on Hatvani (2014)). Note, in other studies the sites assessed here (US, AD, 100 

WD, DS) are referred to as: Z15, Z11, Kb210, Z27 respectively.  101 

 102 

Since the water coming from the River Zala passes through the different ecosystems (habitats) 103 

of the KBWPS and changes into lake water, it is suspected that hydrochemical seasonality (Kolander 104 

and Tylkowski, 2008; Tanos et al., 2015) - governed mainly by temperature driving the dynamics of 105 

biological processes - will be present/corrupted to a different degree in the various habitats mirroring 106 

their local characteristics. This is the particular process that is investigated in the present study with 107 

state-of-the-art statistical tools using the key link between hydrochemical seasonality and the 108 

periodicity of the water quality parameters. 109 

 110 

1.2. Study aims  111 
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The specific questions of the study were, how are the differences in behavior (e.g. in nutrient 112 

retention) of the connected freshwater ecosystems (shallow river, eutrophic pond and an 113 

undisturbed/disturbed wetlands) indicated in the change in common periodicity between the daily 114 

measured water quality and the meteorological parameters or streamflow? It is to be expected that by 115 

exploring the previously mentioned characteristics a far-reaching overall picture may be obtained of 116 

the functioning of the cascade system prevailed by a consistent in/anti-phase coherence. This may 117 

serve as an example for the assessment of wetlands ecosystems set up with similar mitigation 118 

purposes (Cao et al., 2016; Dunne et al., 2015; Martín et al., 2013; Ni et al., 2016) and be a solid 119 

foundation laid down for the wider applicability of the methodology in limnology. 120 

 121 

2. Materials and methods  122 

2.1. Dataset used 123 

In the study, the daily time series of 5 water quality parameters (WQPs) - nitrate-nitrogen (NO3-124 

N); total nitrogen (TN); total phosphorus (TP); phosphate-phosphorus (abbreviated as SRP); total 125 

suspended solids (TSS, mg l-1) - were examined, along with background meteorological parameters 126 

and daily streamflow (Q; m3 min-1). This latter is the amount of water passing through a cross-section 127 

of the assessed system in a given time. The meteorological parameters included were global radiation 128 

(GR, J cm-2), air temperature (T, °C), precipitation (mm) and cloud cover (CC, tenths) (Spinoni et al., 129 

2015). The meteorological parameters together with Q will be referred to as independent variables 130 

(IVs) in the study. All data were assessed using wavelet spectrum and wavelet coherence analyses 131 

(Torrence and Compo, 1998) for the time interval 1994-2010 from four sampling sites of the KBWPS 132 

(Fig. 1). The sites were (Fig. 1): 133 

• Upstream, the input of the KBWPS, representing the River Zala, abbreviated in the present study 134 

as “US” 135 
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• The outflow of the algae-dominated shallow eutrophic pond Phase I., abbreviated in the present 136 

study as “AD”.  137 

• The outflow of the macrophyte-dominated wetland habitat, representing the undisturbed wetland, 138 

abbreviated in the present study as “WD”  139 

• The downstream outlet of KBWPS, including the outflow water of the wetland and additional 140 

external inputs reach the system bringing a 40% excess in streamflow (Hatvani et al., 2014), thus 141 

representing a “mixed” wetland habitat (disturbed wetland); abbreviated in the present study as “DS”. 142 

The latter two (WD and DS) will be referred to together in certain places of the paper as Phase II 143 

(Fig. 1). Please note that for Q at WD, the data was only available from 01.01.1995. 144 

 145 

2.2. Methodology 146 

The periodic behavior of the independent variables was evaluated using wavelet spectrum 147 

analysis to identify those time intervals lacking annual periodicity. Than to find the direct common 148 

periodic signal between the water quality parameters and the independent variables, wavelet 149 

transform coherence (WTC) was used, as it was applied e.g. to uncover the relationship between 150 

climate indices and streamflow variability (Nalley et al., 2016), to explore the relationship between 151 

water levels and chlorophyll-a in Lake Baiyangdian (Wang et al., 2012). This approach was also used, 152 

e.g. on stable isotopes in precipitation and temperature (Salamalikis et al., 2016), on speleothems and 153 

climate variables (Hatvani et al., 2017), or in assessing low-frequency variability in hydroclimate 154 

records from east Central Europe (Sen and Kern, 2016). 155 

Wavelet spectrum analysis is considered as a function localized in both frequency and time with 156 

a zero mean (Grinsted et al., 2004); it could also be taken as the convolution of the data and the 157 

wavelet function (Kovács et al., 2010) for a time series (Χn, n=1,. . . , N) with a ‘𝛥𝑡’ degree of uniform 158 

resolution (Eq. 1): 159 
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 𝑊𝑛
𝑋(𝑠) = √

𝛥𝑡

𝑆
∑ 𝑋𝑛′𝛹0 [(𝑛′ − 𝑛)

𝛥𝑡

𝑆
]𝑁

𝑛′=1  (1) 160 

Here N stands for the length of the time series, ψ0 the wavelet function and s the scale. In the 161 

present case to generate daughter wavelets the Morlet mother wavelet (Morlet et al., 1982) was used 162 

as the source function.  163 

Wavelet spectrum analysis provides the basis for wavelet transform coherence, which is able to 164 

indicate the common power of two variables, being in this way similar to a correlation coefficient, 165 

but localized in the frequency-time space (Grinsted et al., 2004). While wavelet spectrum analysis takes 166 

into account one variable in 3D (period, power and its localization in the time-frequency space), 167 

wavelet transform coherence does the same but for two variables (in this case, one dependent and one 168 

independent) in 4D, because the phase differences, which represent the temporal lags, are included 169 

as well. 170 

In the study only the positive signals significant (α=0.01) against a thousand first-order auto 171 

regressive AR(1), surrogate time series were considered; for details see Roesch and Schmidbauer 172 

(2014). It should be noted that, since the wavelet functions at each scale are normalized, the wavelet 173 

transforms of the results are comparable even to other time series (Torrence and Compo, 1998). Three 174 

main characteristics of the wavelet transform coherence were used:  175 

(i) the presence of the coherent periods in time, which meant that the significant periodic 176 

behavior –coherence - at a certain frequency was transformed into percentages, while taking as 100% 177 

the presence of the coherence/period throughout the whole investigated time as in previous studies 178 

(Hatvani (2014); Kovács et al. (2010)), 179 

(ii) the maximum global−wavelet power, which is the average cross-wavelet power in the 180 

frequency domain (averages over time(Roesch and Schmidbauer, 2014), 181 

and (iii) the phase differences between the pairs of water quality parameters and meteorological 182 

parameters which show which series is the leading one in this relationship (Fig. A1). 183 
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 184 

2.3. Software used 185 

For the calculations R statistical environment was used (R Core Team, 2016): the wavelet 186 

spectrum analysis was performed with the analyze.wavelet function, while the wavelet 187 

transform coherence results were generated with the analyze.coherency function of the 188 

WaveletComp package (Roesch and Schmidbauer, 2014). 189 

 190 

3. Results  191 

3.1. Overview of the system 192 

The varying concentrations of the examined water quality parameters indicate the presence of 193 

distinct borders between the different habitats/ecosystems. The River Zala brings a fair amount of 194 

nutrients (P and N) to the system through the US site, where about half of the TP is SRP, and where 195 

TN mostly consists of NO3-N (Table 1). In the eutrophic pond these nutrients (SRP; NO3-N) are 196 

mostly bound in algae, which in turn form most of the TSS (Pomogyi, 1996); Fig. A2). Thus, the 197 

level of TSS does not significantly decrease compared to that of the River Zala (US), due to the 198 

change in its composition from inorganic to organic. In Phase II (WD and DS), however the amount 199 

of N drops to ~50% and TSS to 20% of the concentrations seen in the eutrophic pond, while P 200 

retention in Phase II is clearly low (Table 1). It is known that the level of particulate N increases up 201 

to the outflow of the eutrophic pond (site AD) then decreases in the wetland (WD); organic matter is 202 

decomposed and filtered out by the macrophyte cover (Fig. 2). Dissolved organic nitrogen (DON) 203 

shows values similar to that of particulate nitrogen (PN) up to the outflow of the eutrophic pond and 204 

accounts for half of TN; it follows the increase of algae biomass (in this case approximated by TSS). 205 

In the wetland, DON slightly decreases, but not to the same degree as the nitrate-nitrogen. Therefore, 206 

at the downstream outlet of the wetland to Lake Balaton (DS; Fig. 1) N is in dissolved state, but it is 207 

not nitrate-nitrogen, rather DON. 208 
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 209 

Table 1. Descriptive statistics of the water quality parameters (WQPs) at the different 210 

sampling locations (SLs), where M denotes the mean, SD the standard deviation R the range 211 

in mg l-1, and CV the coefficient of variation in % (1994-2010). The number of measurements 212 

was equally 6209 for each site and variable. 213 

  SLs/WQPs SRP TP NO3-N TN TSS 

M 

US 0.10 0.19 2.01 3.20 33.74 

AD 0.02 0.17 0.42 2.84 24.05 

WD 0.12 0.17 0.22 1.62 3.49 

DS 0.10 0.16 0.27 1.73 5.44 

R 

US 0.80 3.14 7.83 10.84 3157.00 

AD 0.49 0.83 4.00 12.06 170.00 

WD 0.56 1.07 2.88 12.34 77.00 

DS 0.50 0.86 3.45 8.32 117.00 

±SD 

US 0.06 0.13 0.69 0.97 92.71 

AD 0.03 0.12 0.60 1.43 16.30 

WD 0.10 0.12 0.34 0.60 3.94 

DS 0.08 0.11 0.35 0.62 6.25 

CV 

US 0.59 0.71 0.34 0.30 2.75 

AD 1.73 0.72 1.44 0.51 0.68 

WD 0.81 0.70 1.53 0.37 1.13 

DS 0.83 0.68 1.31 0.36 1.15 

 214 

The highest degrees of variability (CV > 100%) are reported for TSS in the River Zala (US), 215 

and SRP and NO3-N in the eutrophic pond (AD), and again TSS and NO3-N in Phase II (WD and DS; 216 

Table 1). 217 

 218 
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 219 

Fig. 2. Average annual (2011) concentrations of TN: total nitrogen; NO3-N: nitrate-nitrogen; 220 

DON: dissolved organic nitrogen; PN: particulate N and TDN: total dissolved N; based on 221 

data taken from WTWD (2012) 222 

 223 

3.2. Periodic behavior of the meteorological parameters 224 

As expected, wavelet spectrum analysis indicated a strong and significant annual periodicity 225 

throughout the whole investigated period for all (e.g. Fig. 3a) but one of the independent variables. 226 

The exception is precipitation (Fig. 3b). In the power spectrum density graph of precipitation major 227 

gaps were observed in its annual periodicity, e.g. between ~2000 and ~2002 (Fig. 3b). In addition, it 228 

indicated the weakest global wavelet power in the one-year period band (Table 2). Thus, due to its 229 

more intermittent and weak seasonality, it was omitted from the wavelet transform coherence 230 

analyses to avoid misleading and unstable results. Regarding the other independent variables, the 231 

global wavelet power was highest for T and GR, while the second weakest was for CC. In the case of 232 

Q, a clear continuous increase (~34%) can be observed downstream from US to DS. 233 
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 234 

 235 

Fig. 3. Power spectrum density (left panels) and time-averaged wavelet power (right panel) 236 

graphs indicating the presence of annual periodicity in (a) the temperature and (b) 237 

precipitation time series at the US sampling site location for 1994-2010. The white contours in 238 

the left panels and the red dots in the right ones show the 90% confidence levels calculated 239 

against a thousand AR (1) surrogates. It should be noted that wavelet spectrum analysis 240 

coherence and wavelet transform coherence produce edge artifacts, since the wavelet is not 241 

completely localized in time, thus the introduction of a cone of influence (COI; dimmed area 242 

on the left panels) is suggested, in which edge effects cannot be ignored (Torrence and Compo, 243 

1998). 244 

 245 

Table 2. Global wavelet power of the independent variables at the one-year period for the 246 

different sampling site locations (1994-2010; for streamflow (Q) at the WD site location 1995-247 

2010) 248 

WQPs/SLs US AD WD DS 

CC 0.18 0.18 0.19 0.18 

GR 1.25 1.25 1.25 1.25 
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Precipitation 0.03 0.03 0.03 0.03 

T 1.35 1.40 1.40 1.35 

Q 0.23 0.25 0.33 0.35 

 249 

3.3. Common presence of the annual period and maximum global power 250 

As the main step, pairs were set up using the water quality parameters and the independent 251 

variables and their coherence was examined using wavelet transform coherence. Results showed that 252 

most of the corresponding water quality parameters and the independent variables pairs have a 253 

significant common annual periodicity over the entire studied time interval. In the frequency bands 254 

other than those corresponding to the annual period, the global wavelet powers of the coherences 255 

were always noticeably weak and/or insignificant (α=0.01; as an example, see later Fig. 4a).  256 

This coherence in annual periodicity was most powerful between the P forms and the 257 

independent variables (especially GR and T; Table 3). At the US site SRP, and in the eutrophic pond 258 

TP, gave a higher global wavelet power at the one-year period band. These powers reached their 259 

maxima after the year 2000 (see later Fig. 4). The coherence of P forms with streamflow was the 260 

weakest at US and in the AD area, while it was the highest and of the same magnitude in the two 261 

sampling locations (WD and DS) of Phase II of the KBWPS. It should be noted that, in general, TP 262 

displayed the strongest coherences in the system (avg. global power = 0.70). 263 

Regarding the N forms, the global wavelet power of TN was of the same magnitude at US and 264 

in Phase II (WD and DS); it was strongest at AD with GR and T. In the meanwhile, for NO3-N, the 265 

picture was somewhat similar to that of TN, but more balanced. However, coherence was still highest 266 

at AD. 267 

In the case of TSS in general, weak coherences were observed in the system, avg. global power 268 

= 0.26 except at AD (Table 3). Its coherence with e.g. CC at US and in Phase II (WD and DS) was 269 

<0.08, making it hard to draw solid conclusions. The highest degrees of coherence were to be seen at 270 

AD, where the coherence of the WQPs with CC and Q increased as well. TSS here had nearly as high 271 
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a degree of coherence with GR and T as did the TP (Table 3). The weakest coherences in general for 272 

TSS were seen at WD (avg. power=0.07). 273 

 274 

Table 3. Global wavelet powers of the WQPs and the independent variables (IVs) for 1994-275 

2010. In the case of streamflow (Q), at the WD sampling location, for 1995-2010. The darker 276 

red shades indicate higher powers, the darker blue shades smaller ones. 277 

    Sampling location 

WQP IVs US AD WD DS 

SRP 

CC 0.35 0.15 0.40 0.40 

GR 0.95 0.40 1.10 1.10 

T 1.00 0.48 1.20 1.20 

Q 0.39 0.19 0.53 0.53 

TP 

CC 0.23 0.38 0.40 0.40 

GR 0.60 1.10 1.10 1.15 

T 0.60 1.10 1.20 1.20 

Q 0.25 0.47 0.54 0.55 

NO3-N 

CC 0.25 0.32 0.30 0.28 

GR 0.67 0.80 0.72 0.78 

T 0.68 0.90 0.75 0.80 

Q 0.27 0.39 0.38 0.43 

TN 

CC 0.15 0.26 0.15 0.14 

GR 0.39 0.78 0.39 0.40 

T 0.42 0.79 0.42 0.40 

Q 0.15 0.29 0.27 0.19 

TSS 

CC 0.08 0.34 0.04 0.07 

GR 0.25 0.95 0.10 0.18 

T 0.25 0.95 0.10 0.18 

Q 0.10 0.40 0.05 0.10 

 278 

From the independent variables side, the weakest coherences were observed between the WQPs 279 

and CC, and, secondly, with Q. On average, the global wavelet powers were the lowest US (0.4) and 280 

highest at site AD (0.57), while they were of the same magnitude in Phase II (0.51 and 0.52 for WD 281 

& DS respectively). 282 
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 283 

3.3.1. Absence of coherence between the WQPs and the meteorological parameters 284 

Overall, in the whole KBWPS there were 16 occurrences when coherence over an annual scale 285 

between the WQPs and the independent variables was interrupted. The absence of annual coherence 286 

was only considered if its length was longer than one year, i.e. ~6% of the total investigated time 287 

(Table 4). From the perspective of independent variables, these cases were mostly associated with Q 288 

(in 12 out of the 17 pairs). Moreover, the highest portion of absence in coherence was usually related 289 

to streamflow (~50% of the absence between Q & SRP at AD and Q & TSS at US, WD, DS; Table 290 

4). From the perspective of WQPs these episodes of absence in annual coherence were mostly related 291 

to SRP and TSS at AD and WD respectively. With regard to the spatial aspect, the average absence 292 

decreased in the eutrophic pond and the wetland with respect to the River Zala, after which it 293 

increased again at DS (Table 4).  294 

 295 

Table 4. Percentage of the absence of annual coherence for those WQP & independent 296 

variable (IV) pairs where the absence was longer than one year (≥ 6 %) of the total time 297 

(reference period: 1994-2010; for Q at WD 1995-2010). 298 

    Sampling location 

WQP IVs US AD WD DS 

SRP 

CC   13%     

GR   11%     

T   25%     

Q 

  56% 7%   

TP   7%     

NO3-N   20% 11%   

TN 40% 9% 14% 29% 

TSS 
12%   52% 46% 

T     18%   

Average absence 26% 20% 21% 37% 

 299 
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3.4. Phase differences 300 

From the phase differences on the power spectrum density graphs, it is clear that it was mostly 301 

the independent variables that were leading the WQPs (e.g. later in Figs. 4-7). The P forms, for 302 

example, were mostly in antiphase with CC and Q and in phase with GR and T in the whole system, 303 

just as TSS at US and at site AD (Table 5). It was interesting to observe that while T was leading 304 

certain WPQs by 1-2 months (e.g. TP at AD; Fig. 4a), GR was leading these by 2-3 months (Fig. 4b). 305 

The only habitat where the phase difference of SRP and the independent variables was 306 

changing/inconclusive was in the eutrophic pond (AD). TSS in Phase II seems to tend towards 307 

keeping the pattern indicated upstream, but its phase differences become changing and inconclusive. 308 

It should be noted, that its powers were the lowest here in the whole KBWPS (Table 3). 309 

 310 

Table 5. Phase differences of the WQPs and the independent variables (IVs) for 1994-2010. In 311 

the case of Q at sampling location WD, this is for 1995-2010. ‘-’ stands for an antiphase, ‘+’ 312 

for an in-phase and IC for an inconclusive/changing phase relationship between the WQPs 313 

and the independent variables 314 

    Sampling location 

WQP IVs US AD WD DS 

SRP 

CC - - - - 

GR + IC + + 

T + + + + 

Q - - - - 

TP 

CC - - - - 

GR + + + + 

T + + + + 

Q - - - - 

NO3-N 

CC + + + + 

GR - - - - 

T - - - - 

Q + + + + 

TN 

CC IC - IC IC 

GR IC + IC IC 

T - + IC IC 

Q IC - IC IC 
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TSS 

CC - - IC IC 

GR + + IC IC 

T + + IC IC 

Q - - IC IC 

 315 

 316 

Fig. 4. Time–frequency coherency images (left panel) and time-averaged cross-wavelet power 317 

(right panel) of (a) total phosphorus and temperature and (b) global radiation at the AD site. 318 

The white contours in the left panels and the red dots in the right ones show the 90% 319 

confidence levels calculated against a thousand AR(1) surrogates. The black arrows indicate 320 

the phase-angle difference of the parameter pairs. For further details see Rösch and 321 

Schmidbauer (2014).  322 

 323 

As for the N forms, NO3-N, displayed a pattern opposite to that of the P forms (except for SRP 324 

and GR at AD). It is in antiphase with T and GR and in-phase with Q, while TN is mostly 325 

inconclusive, especially in Phase II (Table 5; e.g. Fig. 5a). However, in the River Zala, TN indicates 326 

a quasi-persistent antiphase pattern with T, while with GR it was rather hectic (Table 5). It 327 

nevertheless showed a quasi-persistent in-phase relationship with T and GR at AD (Fig. 5b). This 328 

implies that the N forms besides NO3-N, organic and particulate, are in-phase with T and GR (Fig. 329 

2). 330 
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 331 

Fig. 5. Time–frequency coherency images (left panel) and the time-averaged cross-wavelet 332 

power (right panel) of (a) total nitrogen and temperature at sampling location WD and (b) at 333 

sampling location AD. For further details, see the caption to Fig. 4. 334 

 335 

4. Discussion 336 

4.1. Overview of the coherences 337 

The annual coherence between the water quality- and climatic variables of a river, eutrophic 338 

pond and wetland was directly compared. Since there is no transitional area (ecotone) between the 339 

ecosystems, the differences in annual coherence clearly represent the distinct habitats, and are as 340 

much as possible. In the whole system, the most important factors driving the coherences between 341 

the water quality parameters and independent variables were global radiation/temperature, the setting 342 

of the different habitats, and the nutrient loads arriving through the River Zala.  343 

In the River Zala (US), annual coherence was strongest between the P forms, nitrate, and T & 344 

GR, while absence of coherence was most characteristic of TN and TSS with Q. This can be explained 345 

by the general characteristics of small, shallow rivers like the River Zala, with an average depth of 346 

1.4 m at mean water level (GDWM, 2016). The shading effect of riparian vegetation is a key factor 347 

in both the heat budget and nutrient cycles of river sections (Allan and Castillo, 2007; Wetzel, 2001). 348 
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The upper section of the River Zala traverses a forested area, its riparian vegetation shades the water, 349 

and the dense canopy prevents excessive warming. The lower section of the river, which is 350 

represented by sampling location US, is however much less shaded, since it flows through arable land 351 

with scarce riparian vegetation (GDWM, 2016) and with high exposure to heat and radiation, causing 352 

the strong coherences with the primary meteorological parameters. Moreover, the fact that nitrate had 353 

the weakest antiphase relationship with T and GR in the River Zala can be explained by the generally 354 

lower rate and less pronounced seasonal variation of denitrification in rivers compared to lakes (Piña-355 

Ochoa and Álvarez-Cobelas, 2006).  356 

The eutrophic pond (AD) was even more exposed to the effects of air temperature and radiation 357 

than the River Zala. The water here slows down, the residence time increases and the pond is slightly 358 

shallower than the River Zala (average depth 1.1 m (Tátrai et al., 2000)). With regard to P, its main 359 

processes can be delineated by the Vollenweider model, which describes the relationship of the 360 

trophic state of the system based on P loads and mean depth/retention time (Reynolds, 1992; 361 

Vollenweider and Kerekes, 1982). It thus provides ideal conditions for algae to reproduce and 362 

consume the SRP in the water (Hatvani et al., 2014) arriving via the River Zala. This is the reason for 363 

the lowest SRP values in the whole system (avg. = 0.02 mg l-1; Table 1) being found in the eutrophic 364 

pond. In the meanwhile, an opposite process is also present here: with the increase of temperature, 365 

the internal P loads of the eutrophic pond increase as well, P is released from the sediment 366 

(Istvánovics et al., 2004), especially in drier and warmer years (Chambers and Odum, 1990). This 367 

should account for the high degree of coherence between TP (including bounded P in algae cells: 368 

“algae-P”) and T & GR in the particularly warm and dry years after 2000 (Fig. 4). These previously 369 

discussed processes acting simultaneously (peaking at the same time in the growing season) are 370 

responsible for the inconclusive phase difference of SRP and independent variables and the decreased 371 

power and occasional absence of their annual coherence. Moreover, since TSS consists mostly of 372 

algae in the eutrophic pond (Pomogyi, 1996), it comes as no surprise that the power of its coherence 373 
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with GR and T was as high as that obtaining between TP and GR & T, because TP consists of “algae-374 

P”. The same notion is true for the N forms as well, especially TN. It predominantly represents the 375 

algae – the organic N fraction (Fig. 2) - of the eutrophic pond (Wetzel, 2001). At the same time, 376 

inorganic N (nitrate and nitrite) decreased in concentration as SRP, where nitrite was already present 377 

in small portions. TSS only indicated a strong coherence with the independent variables where it 378 

consists mostly of algae; this occurred only in the eutrophic pond.  379 

The waters arriving from eutrophic pond slow down even more and reach the undisturbed- and 380 

the disturbed wetland habitat of the KBWPS. Due to the excess loads (see Section 1.1 and Fig. 1), the 381 

disturbed “mixed” wetland habitat shows the characteristics of both a classic wetland and a stream. 382 

The latter observation manifested itself in the similarity of the disturbed wetland to the River Zala 383 

with regard to the global wavelet powers and the absence of annual coherences. In the case of the 384 

phase differences, however, the disturbed wetland resembles the classic wetland, indicating that 385 

despite the additional inputs both (i.e. the whole of Phase II) are decomposition dominated 386 

(Istvánovics et al., 1997), with much lower P retention capacity than the eutrophic pond (Somlyódy, 387 

1998). TN here consists of both organic and inorganic forms, mainly characteristic of processes such 388 

as phase changes. Thus, meteorological factors are unlikely to drive TN concentrations. Moreover, 389 

the shading of the macrophytes is also a major factor here in controlling the biological processes. It 390 

has been documented that shading is a factor in dampening the capacity of a wetland to indicate 391 

seasonal changes (Kovács et al., 2010). It is suspected that the lowest global wavelet power of TN 392 

and TSS and the significant gaps in their annual coherence with the independent variables are because 393 

of the previously mentioned phenomena. The coherence with the independent variables and the 394 

concentration of TSS (Table 1) slightly increases as the additional inputs reach the system. On the 395 

one hand, the gaps in annual coherence of TSS and the independent variables were present in the 396 

undisturbed wetland because of the mostly low concentrations of TSS (Table 1; Fig. A2) as in 397 

macrophyte dominated constructed wetlands (Dunne et al., 2012). While, on the other hand, the gaps 398 
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between TSS and Q at the output of the system were present due to the unbalanced additional inputs 399 

(e.g. Fig. A2) from natural streams, constructed canals and fish ponds (drained three times a year, but 400 

irregularly) to Phase II of the KBWPS. 401 

In general, the average percentage of absences in coherency between the water quality 402 

parameters and the independent variables decreases as the waters’ residence time increases from the 403 

River Zala, up to the undisturbed wetland (Section 3.3.1; Table 4). Then, with the additional 40% 404 

temporarily irregular input of streamflow downstream of WD, the average percentage of absence 405 

increases to values higher than those witnessed in the river. Besides the increased residence time, in 406 

the algae dominated eutrophic pond, the cyclic planktonic eutrophication (Wetzel, 2001) played a 407 

major role in increasing the ecosystem’s capability to follow/indicate meteorological seasonality. A 408 

similar pattern was observed by Kovács et al. (2010) in their assessment of annual periodicity using 409 

wavelet spectrum analysis on a wider set of weekly sampled parameters for a shorter period (1993-410 

2007). Although in their study the undisturbed wetland showed a higher percentage of absence of 411 

annual periodicity (59.1%) than the eutrophic pond (40.9%), still, the disturbed wetland did display 412 

a higher absence in annual periodicity (68.2%) than the river (63.6%), as in the present case. The 413 

reason for the difference between the obtained absence in periodicity lies not only in the different 414 

time interval and applied methodology, but in the fact that the present study focused solely on the 415 

nutrient forms and the closely related TSS. The observation that the irregular excess loads arriving to 416 

the disturbed wetland corrupt its capability to indicate the seasonal changes emphasizes wetlands’ 417 

exposure to anthropogenic activity (Brinson and Malvárez, 2002). This vulnerability becomes even 418 

more pronounced with climate change (Finlayson, 2016). 419 

 420 

4.2. Phase differences  421 

4.2.1. Inconclusive phase differences of P forms and TSS 422 

http://dx.doi.org/10.1016/j.ecolind.2017.07.018


Ecological Indicators 83 (2017) 21–31; http://dx.doi.org/10.1016/j.ecolind.2017.07.018  

 22 

The pattern of the phase differences concurs with the previously discussed observations; 423 

nevertheless, it does provide excess information on the functioning of the system by describing the 424 

possible temporal shift between the common annual coherence of the water quality parameters and 425 

the independent variables. In the eutrophic pond, TSS for example behaves similarly to TP, being in-426 

phase lead by T (by 1-2 months) and by GR (by 2-3 months), indicating that TSS is composed mostly 427 

of algae (Fig. 4), which corresponds to the delay between the weekly average maxima of GR and T. 428 

Unsurprisingly, the delay between the two meteorological variables was 7 weeks in the investigated 429 

time period, with the GR maxima occurring in the 24th week, i.e. mid-June. By mirroring this 430 

meteorologically forced relationship, it underlines the capability of the methodology (phase 431 

differences) to follow fine changes even under the annual scale. As for TP, in the eutrophic pond it is 432 

most likely to occur in particulate form because of the algae, while in Phase II its wavelet transform 433 

coherence results resemble that of SRP, since it is dissolves in the water. 434 

The inconclusive/confusing phase differences between SRP and the independent variables in 435 

the eutrophic pond can be explained by the changes in the concentration of P forms through the year, 436 

where SRP displayed almost no increase in summer (Fig. A3) due to the continuous algal uptake. 437 

Moreover, these inconclusive/confusing phase differences of SRP and T & GR occur for the most 438 

part after the year 2000, as was the case of TSS in Phase II. This was a well-documented dry period 439 

in the region (Padisák et al., 2006b). In these years, although external nutrient loads decreased, the 440 

internal loads acted in the opposite way (Hatvani et al., 2014) due to the higher T and GR. These 441 

counter-processes caused e.g. the phase differences of SRP and T to become meaningless, since 442 

according to the arrows (Fig. A4), around 2004 T should have been leading SRP by almost 6 months. 443 

In the case of TSS, the inconclusive phase differences in Phase II are presumably caused by the 444 

generally low concentrations near the level of detection (Fig. A2) and the hectic inputs from the 445 

canals. 446 

 447 
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4.2.2. Inconclusive phase differences of N forms 448 

Upstream, in the River Zala, NO3-N dominated (Table 1; Figs. 2, 6a) the N forms, with slightly 449 

lower concentrations in summer, mostly because the higher exposure of the river section to radiation 450 

increases biological activity, thus denitrification (Mulholland et al., 2008). It should be noted, 451 

however, that the dissolved organic fraction of TN (Fig. 2) is able to modify the phase differences of 452 

TN, and this was especially so in the dry years around 2000 (Fig. 7a). It happened to such an extent 453 

that TN was not able to display a pattern (decrease with T and GR in the summer) as clear as in the 454 

case of nitrate (Fig. 7b). 455 

In the algae dominated eutrophic pond TN changed its phase with reference to the River Zala, 456 

and displayed a clear in phase pattern with T and GR. This occurred because, in the eutrophic pond, 457 

as GR and T increase in the growing season, the inorganic N uptake of algae also increases 458 

proportionately (Reay et al., 1999). This process decreases the nitrate concentrations (Fig 6b), thus 459 

leaving the TN loads at a similar level as the input from the river (Table 1; Figs. 2 and 6b). 460 

Then the water arrives to the macrophyte covered wetland dominated habitat, where 461 

decomposition processes are prevailing (Kovács et al., 2010; Wetzel, 2001), especially in the growing 462 

season. Because of the decomposition of algae, oxygen availability is low (Istvanovics, 2002), thus, 463 

temperature becomes the most important factor in organic matter loss (Brinson, 1981). If the waters 464 

of the River Zala were to enter the wetland directly, probably all N forms would show an 465 

opposite/antiphase relationship with T and GR, i.e. lower values in the growing season and higher in 466 

winter. This is indeed the case for nitrate (Table 5; Fig. 6c,d), but not for TN, the levels of which do 467 

not drop in parallel to this. However, PN is retained by wetlands (Romero et al., 1999) thus decreasing 468 

the TN output in the KBWPS accordingly. Unfortunately, in summer organic N is continuously 469 

resupplied from the decomposition of algae. Therefore, despite the seasonal increase of denitrification 470 

(Seitzinger, 1988) and the N uptake of the macrophyte cover (Dvořáková Březinová and Vymazal, 471 

2016) with water temperature, these opposite-tending processes disrupt the periodic characteristic of 472 

http://dx.doi.org/10.1016/j.ecolind.2017.07.018


Ecological Indicators 83 (2017) 21–31; http://dx.doi.org/10.1016/j.ecolind.2017.07.018  

 24 

TN in the wetland area. Nevertheless, a net decrease in the output of TN from the KBWPS is observed 473 

due to the previously discussed processes (Table 1); it is just not observable in the seasonal cycle. 474 
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 475 

 476 

Fig. 6. Centered 7 day moving average of (a) total nitrogen and nitrate-nitrogen in the River Zala, (b) the eutrophic pond, (c) the un-477 

disturbed wetland and (d) the disturbed wetland in 1999. The black lines indicate the winter seasons. 478 

 479 
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 480 

Fig. 7. Time–frequency coherency images (left panel) and time-averaged cross-wavelet power (right panel) of (a) total nitrogen and (b) 481 

nitrate-nitrogen with temperature in the River Zala (US). For further details, see the caption to Fig. 4. 482 

 483 

http://dx.doi.org/10.1016/j.ecolind.2017.07.018


Ecological Indicators 83 (2017) 21–31; http://dx.doi.org/10.1016/j.ecolind.2017.07.018  

 27 

 484 

5. Conclusions 485 

The water quality variables of a cascade-like engineered ecosystem consisting of a shallow 486 

river, a eutrophic pond, and an undisturbed/disturbed macrophyte covered wetland were assessed to 487 

track the capacity of the system to indicate meteorological seasonality. In particular, the annual 488 

coherence of the water quality parameters and meteorological parameters (including streamflow) 489 

indicated the explicit differences in the functioning of the different habitats of the assessed system 490 

and these were shown to be in concurrence with previously documented knowledge. It was also 491 

pointed out that the eutrophic pond is more capable of mirroring meteorological changes. In the 492 

meanwhile, continuous upstream- (from the eutrophic pond) and temporarily irregular additional 493 

nutrient inputs (from the southern watershed) tend to counteract the characteristic processes of the 494 

wetland (including macrophyte shading). Taken together, these decrease its capacity to indicate 495 

seasonality, as seen in the pond upstream. Moreover, it was found that in this particular setting, the 496 

wetland is less suitable/unstable in terms of nitrogen retention, and can only decrease the incoming 497 

waters’ phosphorus concentrations to a small degree, most probably due to the excess- and the high 498 

algae loads. 499 

With the successful application of wavelet transform coherence to the “black-box” cascade, 500 

where the boxes represent different ecosystems without any transition areas (ecotone) in between 501 

them, a promising example is set for the wider application of the method in limnology. The present 502 

paper provides a more precise overall picture on the previously discussed behavior of the cascade 503 

system, which was designed to restrain the nutrients brought by the River Zala responsible for a fair 504 

part of Lake Balaton’s eutrophication. 505 
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Appendices 698 

 699 

Fig. A1. The full set of possible phase-differences and their interpretation taken from (Roesch and Schmidbauer, 2014) based on 700 

(Conraria and Soares, 2011), where the phase differences are shown as arrows in the image plot of cross-wavelet power. In the present 701 

study the water quality parameter was always the first (x) while the meteorological parameters were the second (y) components of the 702 

calculation. In a practical sense for an annual period, the upper left figure would indicate that the meteorological parameter is leading 703 

the water quality one in antiphase and with about 2 months; upper right: water quality parameter leading the meteorological one with 2 704 

months in-phase; lower right: water quality parameter antiphase leading the meteorological one with 2 months and lower left: 705 

meteorological parameter leading the water quality one with about 2 months in-phase. 706 
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 707 

 708 

Fig. A2. Centered 7 day moving average of the concentration of total suspended solids in the different habitats of the KBWPS for 1999 709 

 710 
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 711 

Fig. A3. Centered 7 day moving average of (a) total phosphorus and soluble reactive phosphorus in the River Zala (US), (b) the 712 

eutrophic pond (AD), (c) the un-disturbed- (WD) and (d) the disturbed wetland (DS) in 1999. The black lines indicate the winter seasons. 713 
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 715 

Fig. A4. Time–frequency coherency images (left panel) and time-averaged cross-wavelet power (right panel) of soluble reactive 716 

phosphorus and temperature at sampling location AD. For further details, see the caption of Fig. 4. 717 
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