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A reduced-cost implementation of the second-order algebraic-diagrammatic construction [ADC(2)]
method is presented. We introduce approximations by restricting virtual natural orbitals and natural
auxiliary functions, which results, on average, in more than an order of magnitude speedup com-
pared to conventional, density-fitting ADC(2) algorithms. The present scheme is the successor of
our previous approach [D. Mester, P. R. Nagy, and M. Kállay, J. Chem. Phys. 146, 194102 (2017)],
which has been successfully applied to obtain singlet excitation energies with the linear-response
second-order coupled-cluster singles and doubles model. Here we report further methodological
improvements and the extension of the method to compute singlet and triplet ADC(2) excita-
tion energies and transition moments. The various approximations are carefully benchmarked, and
conservative truncation thresholds are selected which guarantee errors much smaller than the intrin-
sic error of the ADC(2) method. Using the canonical values as reference, we find that the mean
absolute error for both singlet and triplet ADC(2) excitation energies is 0.02 eV, while that for
oscillator strengths is 0.001 a.u. The rigorous cutoff parameters together with the significantly
reduced operation count and storage requirements allow us to obtain accurate ADC(2) excita-
tion energies and transition properties using triple-ζ basis sets for systems of up to one hundred
atoms. Published by AIP Publishing. https://doi.org/10.1063/1.5021832

I. INTRODUCTION

There are several, nowadays, actively researched
phenomena related to the excited electronic states of molec-
ular systems. For instance, excited states play an impor-
tant role for photochromic materials, for photo-initialized
chemical processes, and for energy transfer and storage.
Quantum-chemical methods have now become routine tools
in the investigation of excited-state properties and processes.
Consequently, it is important to develop efficient but reli-
able methods for the excited states of extended molecular
systems.

Many theories have been developed in the past few
decades to investigate excited-state and transition properties.
These are, for example, the time-dependent density func-
tional theory (TD-DFT)1,2 as well as the wave function-based
semi-empirical3–6 and ab initio methods.7–27 Presently, for the
investigation of extended systems with more than 1500 basis
functions, a TD-DFT approach is the most common choice.
However, the limits of TD-DFT have been identified previ-
ously for challenging cases,28,29 such as Rydberg and charge
transfer (CT) states, or π → π∗ excitations of a conju-
gated system. The correlated wave function methods usu-
ally provide a more reliable option for small cases. Excited
states can simply be treated by the multi-configurational
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self-consistent field (MCSCF)30 method, by the multi-
reference configuration interaction,31 or with the various
propagator-based schemes.13,14 Excited-state theories have
also been developed for coupled-cluster (CC) approaches
invoking the equation-of-motion (EOM)7,8 and the linear-
response (LR)9–11 techniques. However, the much higher
computational demand of such methods is often a limit-
ing factor in practice. Some of the most affordable meth-
ods, such as the complete active space SCF (CASSCF)15

approach, the second-order CC singles and doubles
(CC2) method,16–21 the second-order polarization propagator
approximation (SOPPA)22–24 method, and the second-order
algebraic-diagrammatic construction [ADC(2)]25 approach
have already been applied to realistic, but relatively small
systems.

Among the theories suitable for excited-state property cal-
culations, ADC is one of the most promising approaches. It is
a Hermitian and size-consistent method, and it is relatively
easy to implement. The ADC scheme was first derived by
Schirmer25 employing a diagrammatic perturbation expansion
of the polarization propagator, utilizing the Møller–Plesset
partitioning of the Hamiltonian. A similar result was later
obtained with the so-called intermediate state representation
(ISR) approach developed by Schirmer et al.32–34 While the
initial implementations of the theory were limited to its second-
order variant [ADC(2)], later it was extended to the third-order
[ADC(3)].26,27 A more efficient implementation35–38 of the
ADC(2) and ADC(3) methods and extensive benchmark cal-
culations36 were reported by Dreuw et al. In these studies,
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the performance of ADC(2) was also compared to that of
the closely related but more demanding CC2 approach, and
it has been proven that the ADC(2) method is practically
as accurate as CC2.36,39 Furthermore, tools to compute two-
photon absorption,40 static polarizability,41 core-valence exci-
tations,42 and excited-state dynamics43 were also developed.
The ADC method was also combined with the spin-flip,44 the
scaled-opposite-spin,39 and the frozen density embedding45

approaches.
The ADC(2) method is often used to study the excited-

state properties of molecular systems; however, as it scales as
the fifth power of the system size, the upper limit of its appli-
cability is around 30 heavy atoms or 1500 basis functions.
For more extended systems, instead of using the less accurate
TD-DFT methods, an alternative solution may be the reduc-
tion of the computational costs of the ADC(2) method. One
of the most commonly used approximations for that purpose
is the density fitting (DF) approach which was introduced by
Shavitt et al.46 and further developed by Whitten47 and Dunlap
and co-workers.48 In the DF approach, the four-center electron
repulsion integrals are written in an approximate form as the
products of two- and three-center integrals; therefore, the oper-
ation count, the memory requirement, and the number of the
input-output (I/O) operations can be greatly reduced.19,49 As it
was demonstrated by Hättig, if the DF is combined with spin-
scaling and Laplace transform techniques, the fifth-order scal-
ing of ADC(2) can be reduced to fourth-order.50 A promising
new approach for the rank reduction of higher-order quantities,
such as the two-electron integral or the doubles coefficient ten-
sors, is the tensor hypercontraction (THC) scheme of Martı́nez,
Sherrill, and their co-workers.51–53 It was demonstrated that
the THC approach can reduce the scaling of CC2 and poten-
tially that of ADC(2) to fourth-order even if the full exchange
term is included.54,55

Another widely used technique to reduce the computa-
tional costs is to restrict the subspace in which the equations
are solved. One of the simplest approaches is the restricted
virtual space approach, where the canonical virtual orbitals
with orbital energies higher than a predetermined threshold
are neglected. The method was also employed for excited-state
CC models,56,57 while its applicability for ADC approaches
was recently demonstrated by Sundholm et al.58,59 as well as
Yang and Dreuw.60 A further possibility for reducing the sub-
space is the introduction of local approximations used often
nowadays, the basic idea of which comes from Pulay and co-
workers.61,62 Concerning the ADC(2) method, Schütz63 and
Helmich and Hättig64 developed localized molecular orbital
(MO)-based approaches, while local schemes for calculating
excitation energies and oscillator strengths with the related
linear response (LR) CC2 method have been proposed by
Schütz and co-workers65–70 as well as by Baudin and Kris-
tensen.71,72 In the case of the frozen natural orbital (NO)
approximation, a one-particle density matrix is constructed
and diagonalized. Of the resulting NOs, those ones are retained
which have large occupation numbers, i.e., eigenvalues, and
are supposed to give a significant contribution to the elec-
tron correlation.73–75 While the approximation is widely used
for ground-state correlation methods,76–79 its use for excited-
state calculations are rather limited.80,81 A closely related

approach, the quasiparticle virtual orbital scheme, was devel-
oped by Ortiz and co-workers for the cost reduction of elec-
tron propagator methods.82–84 The natural auxiliary function
(NAF) approach, which was introduced by one of us,85 is sim-
ilar to the NO approximation. In this case, the size of the
fitting basis is reduced in a similar way as for the above-
mentioned method. To the best of our knowledge, the ADC
variants of the NO and NAF approximations have not been
developed.

In this paper, our NO- and NAF-based approach86 is
extended to the ADC(2) method. We report an improved
version of the previous algorithm which is more robust and
enables significantly faster calculations. We also extend the
considered excited-state properties to triplet excitation ener-
gies and transition moments. We assess the accuracy of the
approach in detail and carry out calculations for organic dyes
of various sizes.

II. THEORY
A. The ADC(2) method

The ground-state ADC(2) correlation energy is simply
obtained from second-order Møller–Plesset (MP2) perturba-
tion theory as

∆EMP2 =
∑
ijab

(ia| jb)(2tab
ij − tab

ji ), (1)

where i, j, . . . (a, b, . . .) denote occupied (virtual) spa-
tial molecular orbital (MO) indices. Later, p, q, . . . will be
used as general MO indices. The above first-order ampli-
tudes, tab

ij , are given in the canonical Hartree–Fock (HF) basis
as

tab
ij =

(ia| jb)
εi + εj − εa − εb

=
(ia| jb)

Dab
ij

, (2)

where εi (εa) is the occupied (virtual) orbital energy and
(ia|jb) denotes a two-electron integral using the Mulliken nota-
tion. Utilizing this, the first-order Møller–Plesset (MP1) wave
function reads as

|ΨMP1〉 = (1 + T2)|0
〉
, (3)

where |0〉 is the HF determinant. Here the double excitations
are described by T2 in the following form:

T2 =
1
2

∑
aibj

tab
ij EaiEbj =

1
2

∑
µ2

tµ2τµ2 , (4)

where we have introduced a shorthand notation for the exci-
tation operator, τµ2 = EaiEbj, which is constructed from spin-
coupled one-particle excitation operators Eai = a+

αi−α + a+
βi−β

with creation operators a+
η , b+

η , . . . and annihilation operators
i−η , j−η , . . . for spin orbitals with η spin.

The ADC(2) ansatz for the wave function of the excited
states is given in the form of

|ΨADC(2)〉 = (R1 + R2)|ΨMP1〉, (5)
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where the spin-coupled single and double excitation oper-
ators, R1 and R2, respectively, can be defined similar to
Eq. (4) with rµ1 and rµ2 as the corresponding coefficients.

The excitation energy, being correct up to second-order, is
obtained via the diagonalization of the following Hermitian
Jacobian:

AADC(2) =
*.
,

1
2

(〈µ1 |[[H, T2], τν1 ]|0〉 + 〈ν1 |[[H, T2], τµ1 ]|0〉) 〈µ1 |[H , τν2 ]|0〉

〈µ2 |[H, τν1 ]|0〉 〈µ2 |[F, τν2 ]|0〉

+/
-

, (6)

where |µn〉 stands for n-fold excited configurations and F is the
Fock-operator. Similar to the case of linear-response second-
order coupled-cluster singles and doubles (LR-CC2),19 in
practice, the

σ = AADC(2)r = ωADC(2)r (7)

eigenvalue problem is recast as a non-linear eigenvalue equa-
tion

σ(ωADC(2), r1) = Aeff (ωADC(2))r1 = ωADC(2)r1, (8)

where ωADC(2) is the ADC(2) excitation energy and r1 (r) is a
vector composed of the rµ1 (rµ1 and rµ2 ) coefficients. The ben-
efit is that the resulting equation with the effective Jacobian

matrix Aeff(ωADC(2)) has to be solved only for the rµ1 ampli-
tudes corresponding to single excitations. The elements of the
effective Jacobian read explicitly as

Aeff
µ1ν1

(ωADC(2)) = Aµ1ν1 −
∑
γ2

Aµ1γ2 Aγ2ν1

εγ2 − ωADC(2)
, (9)

with εγ2 = −Dab
ij if τγ2 = EaiEbj.

In the following, we briefly collect the working equations
required for the implementation of the ADC(2) method in spa-
tial MO basis because, to the best of our knowledge, they
are not published in the literature. Deriving the expressions
corresponding to Eq. (8) we arrive at the

σia =
∑

jb

[2(ia| jb) − (ij |ab)]rb
j + (εa − εi)r

a
i +

1
2

∑
kjbc

[2(kc| jb) − (jc|kb)]rc
k (2tab

ij − tab
ji ) +

1
2

∑
kjbc

[2(ia| jb) − (ja|ib)]rc
k (2tcb

kj − tcb
jk )

+
1
2

∑
kjbc

(ib|ck)(2tbc
jk − tbc

kj )ra
j +

1
2

∑
kjbc

(jb|ck)(2tbc
ik − tbc

ki )ra
j −

1
2

∑
kjbc

(jb|ck)(2tac
jk − tac

kj )rb
i −

1
2

∑
kjbc

(ja|ck)(2tbc
jk − tbc

kj )rb
i

+
∑
bkc

(ab|ck)R̂bc
ik −

∑
cjk

(ij |ck)R̂ac
jk (10)

sigma vector elements for singlet excitations, while for the triplet case the sigma vector reads as

σia = −
∑

jb

(ij |ab)rb
j + (εa − εi)r

a
i +

1
2

∑
kjbc

(jc|kb)rc
k tab

ji +
1
2

∑
kjbc

(ja|ib)rc
k tcb

jk +
1
2

∑
kjbc

(ib|ck)(2tbc
jk − tbc

kj )ra
j

+
1
2

∑
kjbc

(jb|ck)(2tbc
ik − tbc

ki )ra
j −

1
2

∑
kjbc

(jb|ck)(2tac
jk − tac

kj )rb
i −

1
2

∑
kjbc

(ja|ck)(2tbc
jk − tbc

kj )rb
i +

∑
bkc

(ab|ck)R̂bc
ik −

∑
cjk

(ij |ck)R̂ac
jk .

(11)

The required R̂µ2 intermediates, having different expressions
for the two different kinds of spin multiplicity, are defined
in step 4 of the algorithm in Table I and are obtained using
the

Rµ2 = −
∑
ν1

Aµ2ν1 rν1

εµ2 − ωADC(2)
(12)

amplitudes. The additional advantage of solving the rearranged
pseudo-eigenvalue problem of Eq. (7) is that the Rµ2 ampli-
tudes can be computed “on-the-fly” and their storage is not
required.

Our implementation follows the ideas of Hättig and
Weigend presented for their density-fitting LR-CC2 algo-

rithm.19 The main difference is that our working equa-
tions are written in the MO basis instead of the atomic
orbital (AO) representation of Ref. 19 in order to effi-
ciently utilize the reduced number of orbitals in the com-
pressed NO basis. In the DF approach, the four-center
two-electron integrals are approximated in a product form
as

(pq|rs) =
∑

Q

JQ
pqJQ

rs , (13)

where capital indices, such as Q, denote the functions of
the auxiliary basis set and the J quantities are built from
two- and three-center two-electron integrals, (P|Q) and (pq|P),
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TABLE I. Algorithm and working equations for calculating the sigma vector
for singlet and triplet excitations.

0. Perform MP2 calculation and store intermediate YQ
ai =

∑
jb JQ

jb (2tab
ij − tab

ji )

1. Calculate intermediates XQ, XQ
ij , and XQ

ia

XQ = 2
∑

ia JQ
iara

i XQ
ij =

∑
a JQ

iara
j XQ

ia =
∑

b rb
i JQ

ba

2. Add purely ra
i -dependent contributions to σia and construct Fia

if singlet: σia ←
∑

Q JQ
iaXQ

Fia = −
∑

jQ JQ
jaXQ

ij + σia

if triplet: Fia =
∑

jQ JQ
jaXQ

ij

σia ← −
∑

jQ JQ
ij XQ

ja + (εa − εi)ra
i

3. Compute t̂ab
ij , add corresponding contributions to σia

(ia | jb) =
∑

Q JQ
iaJQ

jb

if singlet: t̂ab
ij = [2(ia | jb) − (ja |ib)]/Dab

ij ]

if triplet: t̂ab
ij = (ja |ib)/Dab

ij

σia ←
1
2
∑

jb t̂ab
ij Fjb

if singlet: σia ←
1
2
∑

jb
∑

kc[2(ia | jb) − (ja |ib)]rc
k t̂bc

jk

if triplet: σia ←
1
2
∑

jb
∑

kc(ja |ib)rc
k t̂bc

jk

4. Construct the J
Q
ia list, build intermediate R̂ab

ij

J
Q
ia = XQ

ia −
∑

j JQ
ij ra

j

(ia |jb) =
∑

Q J
Q
iaJQ

jb (ia |jb) =
∑

Q JQ
iaJ

Q
jb

if singlet: R̂ab
ij = [2(ia | jb) − (ja |ib) + 2(ia | jb) − (ja |ib)]/(Dab

ij +ωADC(2))

= (2Rab
ij − Rab

ji )/(Dab
ij +ωADC(2))

if triplet: R̂ab
ij = [2(ia |jb) − (ja |ib) − (ja |ib)]/(Dab

ij +ωADC(2))

Y
Q
ia =

∑
jb R̂ab

ij JQ
jb

5. Add the remaining contributions to σia

σia ←
∑

Qb JQ
abY

Q
ib

σia ← −
∑

Qj JQ
ij Y

Q
ja

σia ←
1
2
∑

j
∑

Qb(JQ
ibYQ

jb + JQ
jbYQ

ib )ra
j

σia ← −
1
2
∑

b
∑

Qj(J
Q
jbYQ

ja + JQ
jaYQ

jb )rb
i

respectively, as

JQ
pq =

∑
P

(pq|P)(P |Q)−1/2. (14)

The steps of the algorithm are given in detail in Table I.
Inspecting the algorithm, one finds the construction of inter-
mediates t̂ab

ij and R̂ab
ij (steps 3 and 4) from the three-center

integrals and the contraction of the latter with the JQ
jb list

(step 4) as the rate-determining steps of the iterative pro-
cess. The operation count for these steps is proportional to
n2

occn2
virtnaux, where nocc (nvirt) denotes the number of occupied

(virtual) orbitals and naux stands for the number of auxil-
iary functions. Since the effective Jacobian, and thus σ as
well, depends on the excitation energy, the non-linear eigen-
value problem cannot be solved simultaneously for all excited
states. To solve the eigenvalue equations effectively, a pro-
cedure using a modified Davidson algorithm and the direct
inversion in the iterative subspace (DIIS)87 algorithm was
implemented.19,86

At the end of the iteration, the converged ADC(2) wave
function is normalized, which is necessary for the evalua-
tion of transition moments. To achieve this in spatial orbital
basis, the amplitudes obtained are divided by the normalization

constant

c =

√∑
aibj

Rab
ij Rab

ij −
1
2

∑
aibj

Rab
ij Rab

ji +
∑

ai

ra
i ra

i . (15)

Then the transition density matrix required for the ground to
excited state transition moments can be obtained as

ρpq = 〈Ψ
MP1 |p+q− |ΨADC(2)〉

= 〈0|(1 + T†2 )p+q−(R1 + R2)(1 + T2)|0〉

= 〈0|p+q−R1 |0〉 + 〈0|T†2 p+q−R1 |0〉

+ 〈0|T†2 p+q−R1T2 |0〉 + 〈0|T†2 p+q−R2 |0〉. (16)

This expression is often simplified88,89 by discarding dis-
connected contributions and by neglecting the higher than
fifth-power scaling second-order terms. It can be shown that,
analogous to LR-CC2, the resulting ADC(2) density matrix
is consistent with the LR-CC theory and correct up to the
first order. Our working equations for the transition density
matrix in the spatial orbital basis are given for its various blocks
by

ρab =
∑
ijc

Rac
ij (2tbc

ij − tbc
ji ), (17)

ρij = −
∑
abk

Rab
ik (2tab

jk − tab
kj ), (18)

ρai =
∑

bj

rb
j (2tab

ij − tab
ji ), (19)

and

ρia = ra
i −

∑
k

ra
k

∑
cbj

tcb
kj (2tcb

ij − tcb
ji ) −

∑
c

rc
i

∑
bjk

tcb
kj (2tab

kj − tab
jk )

= ra
i −

∑
k

ra
k DMP2

ik −
∑

c

rc
i DMP2

ac , (20)

where DMP2
ik and DMP2

ac are the elements, respectively, of the
occupied-occupied and the virtual-virtual block of the MP2
one-particle density matrix, and Rab

ij of Eq. (12) is, in practice,
built from the intermediates of step 4 of Table I as

Rab
ij =

(ia| jb) + (ia| jb)

Dab
ij + ωADC(2)

. (21)

B. Construction of the reduced subspace

We have shown previously that, while preserving the
intrinsic accuracy of the LR-CC2 excitation energies, the
dimension of the virtual subspace can be significantly reduced
by discarding NOs with low occupation numbers. On the other
hand, the analogous frozen occupied NO approximation was
found to be far less efficient for LR-CC2.86 We experienced
similar trends in the case of ADC(2), therefore we restrict
the present discussion to the application of frozen virtual
NOs. If they are of interest, the working equations required
for the frozen occupied NO approximation can be obtained
analogously.

First, the virtual-virtual block of the one-particle density
matrix is constructed from a lower-level wave function Ψ,

Dab = 〈Ψ|a
+b− |Ψ〉. (22)
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The eigenvectors of this matrix are the virtual natural orbitals
(VNOs), while its eigenvalues are interpreted as the corre-
sponding occupation numbers of the VNOs. If Ψ is appro-
priately chosen, the NOs with smaller occupation numbers
usually give a smaller contribution to the correlation or exci-
tation energies. Therefore, in the frozen NO approximation,
the NOs with occupation numbers below a predefined thresh-
old, εVNO, are disregarded. The remaining VNOs will be
denoted with a tilde (e.g., ã, b̃, . . . ), and the integral lists trans-
formed to the VNO basis will also be distinguished with tildes
(e.g., J̃).

We have also demonstrated that the state-specific VNOs
obtained from state-averaged density matrices are most suit-
able to efficiently compute LR-CC2 singlet excitation ener-
gies.86 The state-averaged density matrix we have introduced
is defined as D = (DMP2 + DCIS(D))/2, where DMP2 and
DCIS(D) denote the density matrices obtained from the MP1
and the configuration interaction singles with perturbative dou-
bles [CIS(D)] wave functions. The one-particle MP2 density
matrix in a spatial orbital basis can be expressed in the form
of

DMP2
ab =

∑
ijc

(2tca
ij tcb

ij − tca
ij tbc

ij ). (23)

The CIS(D) density matrix, DCIS(D), is obtained as the sum of
the density matrices derived from the CIS wave function and
its second-order perturbative correction (D), DCIS(D) = DCIS

+ D(D). The CIS density matrix expressed in spatial orbitals
reads as

DCIS
ab =

∑
i

ca
i cb

i (24)

for both the singlet and the triplet states, where ca
i is a CIS

coefficient. The spin adaptation results in different expressions
for matrix D(D) in the singlet and triplet cases. The expression
for a singlet state is practically the same as for the MP2 density,
Eq. (23), the only difference is that the MP2 amplitudes are
substituted by the CIS(D) doubles coefficients. The latter can
be expressed as

cab
ij =

∑
c[(ac|bj)cc

i + (ai|bc)cc
j ] −

∑
k[(kj |ai)cb

k + (ki|bj)ca
k ]

Dab
ij + ωCIS

,

(25)
where ωCIS stands for the CIS excitation energy.90,91 For an
excited state of triplet multiplicity, the virtual-virtual block of
matrix D(D) is given as

D(D)
ab =

∑
ijc

(cca
ij ccb

ij + cca
ij ccb

ij − cca
ij cbc

ij ), (26)

where the cab
ij coefficients are still defined by Eq. (25), but

they are built using the triplet CIS coefficients and excitation
energy. Furthermore, cab

ij denotes the triplet-coupled CIS(D)
doubles coefficient, which is evaluated as

cab
ij =

∑
c[(ac|bj)cc

i − (ai|bc)cc
j ] +

∑
k[(kj |ai)cb

k − (ki|bj)ca
k ]

Dab
ij + ωCIS

.

(27)
The algorithms and the working equations for the computa-
tion of the singlet density matrix were published previously.86

The analogous steps and expressions for the triplet case are

TABLE II. Working equations for the evaluation of the triplet CIS(D) density
matrix.

1. Add CIS contribution to the density matrix

DCIS(D)
ab ←

∑
i ca

i cb
i

2. Compute intermediate YQ
ai

YQ
ai ←

∑
c JQ

accc
i

YQ
ai ← −

∑
j JQ

ij ca
j

3. Compute intermediate Vab
ij

Vab
ij =

∑
Q YQ

ai J
Q
bj

4. Calculate cab
ij coefficients

cab
ij = (Vab

ij + Vba
ji )/(Dab

ij +ωCIS)

5. Compute intermediate Xab
ij

Xab
ij = cab

ij − cba
ij

6. Add the first contribution to the density matrix

DCIS(D)
ab ←

∑
ijc cca

ij Xcb
ij

7. Calculate cab
ij coefficients

cab
ij = (Vab

ij − Vba
ji )/(Dab

ij +ωCIS)

8. Add the second contribution to the density matrix

DCIS(D)
ab ←

∑
ijc cca

ij ccb
ij

given in detail in Table II. Note that the one-particle MP2 den-
sity matrix is only constructed once, for the ground state. On
the contrary, the CIS(D) wave function and hence the CIS(D)
density matrix have to be evaluated for each excited state.
The rate-determining step of the density matrix calculation,
for both MP2 and CIS(D), is the assembly of the four-index
integral list of intermediate V (step 3), which is a fifth-power
scaling operation with costs proportional to n2

occn2
virtnaux. The

algorithm contains two additional fifth-power scaling opera-
tions (steps 6 and 8) with computational expenses proportional
to n2

occn3
virt, while there is only one such term in the case of MP2

or singlet CIS(D).
In our previous LR-CC2 study, we have also introduced

a simplification to the MP2 and (D) density matrices, with
which the NO approximation works similarly well. Here we
again take advantage of the neglect of the exchange-like
terms from the corresponding density matrix expressions.
With that approximation Eqs. (23) and (26) read, respectively,
as

DMP2
ab =

∑
ijc

2tca
ij tcb

ij (28)

and

D(D)
ab =

∑
ijc

(cca
ij ccb

ij + cca
ij ccb

ij ). (29)

One benefit of this simplification is that the evaluation of
intermediate Xab

ij (step 5) can be omitted. In addition, the cor-
responding contribution to the density matrix can be obtained
more efficiently via the multiplication of the CIS(D) doubles
coefficient matrix with its transpose (step 6). On top of that, the
implementation of the algorithm becomes significantly easier
even if the entire integral lists or intermediates cannot be kept
in the memory.

As expected, the VNOs constructed as described above are
only ideal for ADC(2) calculations if CIS(D) is a good approx-
imation to ADC(2). The prerequisite for this is that the CIS
method provides a qualitatively good description of the excited
state. If the coefficients of double excitations are not stored, a
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good measure for the quality of the CIS and CIS(D) approxi-
mations is the overlap of the CIS and the single excitation part
of the final ADC(2) wave functions. Our numerical experience
shows that, if this overlap is relatively small, the ADC(2) calcu-
lations performed in the reduced VNO space may yield inad-
equate excitation energies and transition moments. In these
cases, we found that the dominant excitations of the ADC(2)
wave function obtained in the reduced space correspond to
those of the CIS wave function, and particular excitations that
have considerable weight in the canonical ADC(2) are miss-
ing. This problem cannot be resolved by tightening the εVNO

threshold as the occupancy of the VNOs which do not notice-
ably contribute to the CIS wave function is rather low. To
overcome this problem, we found the following approach to be
useful.

In practice, for a particular excited state, the orbital ener-
gies of the canonical virtual orbitals contributing to the wave
function are relatively close to each other. Thus, we can sup-
pose that all the important orbitals will be included in the
reduced space if it is augmented with the canonical virtual
orbitals which are close in energy to the virtuals significantly
contributing to the CIS wave function. For the selection of
such orbitals, two further thresholds were introduced. First,
those canonical virtual orbitals are chosen for which at least
one CIS coefficient of an excitation involving them is greater
than threshold εCIS. Second, all those canonical virtual orbitals
are selected whose orbital energy is in a given interval. The
lower limit of the interval is the orbital energy of the lowest
MO selected in the first step minus threshold εE , while its
upper limit is the orbital energy of the highest chosen MO
plus εE . The orbitals of the reduced VNO space are projected
out of the selected canonical virtual orbitals, and the remaining
orbitals are orthonormalized employing canonical orthogonal-
ization dropping the eigenvectors of the overlap matrix with
eigenvalues lower than 10�7. The resulting orthonormal MOs
are added to the reduced VNO space, and the orbitals of the
extended space are canonicalized. In practice, it means that
the Fock-matrix is transformed to the extended MO space,
and the matrix is diagonalized. The resulting pseudo-canonical
orbitals and the corresponding orbital energies will be used in
the subsequent calculations. For the sake of simplicity, from
now on, this pseudo-canonical basis will be referred to as the
VNO basis.

So far an accurate lower-rank approximation to the MP2
and ADC(2) wave functions has been introduced by defining
the corresponding state-specific VNO basis. Analogously, the
auxiliary basis can also be compressed by finding an appro-
priate basis transformation. It can be shown that the truncated
singular vector basis of J gives the most efficient approxi-
mation to J itself and hence to the corresponding assembled
four-center integrals.85 In practice, it is more economical to
obtain the singular vectors as the eigenvalues of matrix W
with elements

WPQ =
∑
pq

JP
pqJQ

pq. (30)

Similar to the NO approach, the eigenvectors, the so-called
NAFs, with eigenvalues below a predefined threshold, εNAF,
are discarded in the compressed representation of J.

In the following, we will employ two different sets of
NAFs. First, as in our previous LR-CC2 study, we construct
NAFs to compress the representation of the integrals in the NO
basis. Here we build W of Eq. (30) using J̃, the integral list
transformed to the VNO basis. These NAFs will be referred
to as restricted NO space NAFs or RS-NAFs for short. The
RS-NAFs are suitable to reduce, for instance, the cost of cer-
tain assembly and σ-vector construction steps of the ADC(2)
calculation (see, e.g., Table I). Another option is to utilize
the NAF approximation right at the beginning, as soon as
the three-center integrals are transformed to the canonical HF
MO basis. These NAFs will be called the complete MO space
NAFs, or shortly, CS-NAFs, and the corresponding J integrals
will be denoted hereafter by Ĵ. We note here that, naturally,
the CS-NAF basis is usually significantly larger than the RS-
NAF basis but still represents a compressed, system-specific
auxiliary basis with which the expenses of the CIS calcula-
tion and density matrix evaluation steps can be cut roughly in
half.

C. General algorithm

In this section, we briefly collect all the steps required
for our reduced-cost ADC(2) algorithm. We introduce here
two branches for test purposes in order to assess the accu-
racy of the CS-NAF approximation, which was not present in
our previous study.86 Algorithm 1 is basically the generaliza-
tion of our VNO and (RS-)NAF approximation-based LR-CC2
scheme apart from the step that the VNOs selected using the
εVNO threshold are supplemented with the close-lying canoni-
cal orbitals. This is extended in Algorithm 2 by the introduction
of CS-NAFs as well (see step 2 below). Our general algorithm
is as follows.

0. Solve HF equations
1. Construct the canonical integral list J
2. If Algorithm 2: Calculate matrix W using three-center

integral list J [Eq. (30)], and transform the auxiliary
index of J to the CS-NAF basis to obtain Ĵ

3. Solve CIS equations for all the excited states
simultaneously using either J (Algorithm 1) or Ĵ
(Algorithm 2)

4. Loop over excited states
4.a. Calculate the state-averaged one-particle density

matrix D (Table II) using either J (Algorithm 1)
or Ĵ (Algorithm 2), and construct the truncated
virtual space. Transform the MO indices of J or
Ĵ to the VNO basis to obtain J̃.

4.b. Calculate matrix W using three-index integrals J̃
[Eq. (30)], and transform the auxiliary index of J̃
to the RS-NAF basis (J). Write integral list J to
disk.

End loop
5. Loop over excited states

5.a. Retrieve integral list J from disk
5.b. Perform MP2 calculation and solve ADC(2) equa-

tions (Table I)
End loop

We would like to point out that the CS-NAF approxi-
mation affects the accuracy of all the quantities computed
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subsequently, such as density matrices, VNOs, and RS-NAFs.
Besides that it is not guaranteed that the truncated RS-NAF
basis of Algorithm 1 is a subset of the truncated CS-NAF
basis even if the VNOs of the two algorithms can be con-
sidered the same in the case of a highly accurate CS-NAF
approximation. In other words, if both NAF approximations
are employed, contributions to the retained RS-NAFs coming
from the dropped CS-NAFs are present in Algorithm 1, but
they are lost in Algorithm 2. Both of these error sources will
be extensively investigated in Sec. III.

III. RESULTS
A. Computational details

The presented reduced-cost ADC(2) algorithm has been
implemented in the Mrcc suite of quantum chemical programs
and is available in the current release of the package.92

For the benchmark calculations, Dunning’s correlation
consistent basis sets augmented with diffuse functions (aug-cc-
pVXZ, where X = D, T, Q) were used,93–95 and the correspond-
ing auxiliary bases developed by Weigend et al. were employed
in both the HF and the excited-state calculations.96–98 In
the CIS and ADC(2) calculations, the core MOs were kept
frozen.

To quantify the errors originating from our approxima-
tions, a test set of small molecules was employed containing
examples for all important types of excitation.86 Valence exci-
tations (n → π∗, π → π∗, and σ → π∗) are present among
the transitions taken from the benchmark set of Thiel and
co-workers.99,100 We have also added a couple of the Ryd-
berg excited states of these systems to our test set as well as
the CT excitations of an ethylene-tetrafluoroethylene system

(10 Å separation, taken from the work of Dreuw et al.101). We
have also assessed the accuracy of our approach on a more
realistic set of systems containing seven medium-sized, fre-
quently studied molecules.86,102–110 Additional calculations
were performed for even larger systems to demonstrate the
efficiency of our implementation. For this purpose, molecules
were taken from the studies of Grimme103 and Schütz and
co-workers.65–69 The systems included in the three sets are
collected in Table III, while their structures are shown in the
supplementary material.

The reported computation times are wall-clock times
determined on a machine equipped with 128 GB of
main memory and a 6-core 3.5 GHz Intel Xeon E5-1650
processor.

B. Small molecules

First, we study the accuracy of our approximations on
the example of the test set containing the smaller molecules.
We analyze the accuracy of the singlet and triplet excitation
energies as well as of the oscillator strengths correspond-
ing to singlet transitions using the aug-cc-pVTZ basis set,
which is probably the most relevant from the practical point
of view; double- and quadruple-ζ-quality basis sets will be
considered later. In order to find reliable default values for the
VNO and NAF truncation thresholds, we rely on the results
of our extensive convergence tests for εVNO and εNAF that
we obtained for our related reduced-cost LR-CC2 scheme.86

We found, with the default values of εVNO = 7.5 × 10�5 and
εNAF = 0.1 a.u., the mean absolute error (MAE) of the sin-
glet LR-CC2 excitation energies to be about 0.02 eV, which
is an order of magnitude smaller than the intrinsic error of
LR-CC2.111,112 Considering the close relation of the formula-
tion of ADC(2) and LR-CC2,113 their comparable numerical

TABLE III. The size of the systems studied and the number of the basis functions in the basis sets considered.

Number of basis functions

Molecule Number of atoms aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ

Formaldehyde99,100 4 64 138 252
Formamide99,100 6 96 207 378
Acetamide99,100 9 137 299 550
Acetone99,100 10 146 322 596
Butadiene99,100 10 146 322 596
Benzene99,100 12 192 414 756
Ethylene-tetrafluoroethylene101 12 220 460 824

Hydrazone dye105 21 828
Diphenylamine105 21 851
Azobenzene105 24 874
6,6′-difluoro-indigo102,103 28 1150
Bithiophene derivative102,103 29 1135
N-methyl-2,3-benzocarbazole102,103 31 1127
Flavone derivative109,110 36 1311

Flv(a)66 51 2001
Dyad65,67,68 53 2051
Bisimide derivative102,103 60 2346
Flv(b)66 78 2829
D21L668,69 98 3412

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022810
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performance,36,64,108,114–116 and that our present scheme (espe-
cially Algorithm 1) employs similar considerations as our
LR-CC2 method, the above default thresholds may seem
appropriate for ADC(2) as well. However, the newly intro-
duced elements of the algorithm require careful consideration.
Accordingly, extensive benchmark calculations were carried
out to study the size of the errors as a function of the vari-
ous thresholds. The details can be found in the supplementary
material. On the basis of our numerical experience, the VNO
and NAF thresholds have not been changed, while we propose
εCIS = 0.35 and εE = 0.15 a.u. as the default thresholds for
the virtual space completion. The errors of the approximate
ADC(2) scheme for singlet excitation energies and the cor-
responding oscillator strengths (f ) with respect to canonical
ADC(2) are presented in Table IV using the default thresholds
for both the VNO and NAF truncations. Looking at the results
obtained with Algorithm 1, the MAE for singlet excitation
energies in the small-molecule test set is 0.019 eV, while the
maximum absolute error (MAX) is 0.040 eV. This accuracy
is achieved by keeping only a fraction of the functions in the
transformed bases, precisely, 52.6% of the VNOs and 81.6% of
the RS-NAFs are dropped on the average. These mean values
are quite representative; the fluctuation of the ratio of dropped
VNOs and RS-NAFs for this test set is below 10% and 5%,
respectively. The MAE of the excitation energies is less than
that reported for singlet LR-CC2 excitations; however, the
number of the VNOs and RS-NAFs is slightly larger86 since
the originally selected VNOs are augmented with the corre-
sponding canonical orbitals. The errors for the corresponding

ADC(2) oscillator strengths are also highly acceptable being
lower than 0.001 a.u. in average and below 0.005 a.u. in every
case. If we compare the accuracy of Algorithm 2 (i.e., when
CS-NAFs are also employed at the CIS iterations as well as at
the VNO and RS-NAF construction steps) to that of Algorithm
1, we find its numerical performance just as good. There are
only 2 meV and 1 meV differences in their MAE and MAX val-
ues, while the oscillator strengths are similarly accurate. This
is explained by the fact that, except for a difference of less than
0.5%, the same portion of the VNOs and RS-NAFs is discarded
by the two algorithms. The benefit of using Algorithm 2 over
Algorithm 1 is that about 60% of the CS-NAFs can also be
dropped without introducing any significant inaccuracy on top
of that already present with Algorithm 1. Consequently, most
of the steps preceding the ADC(2) calculation in the reduced
VNO/RS-NAF basis can be performed about 60% faster with
Algorithm 2.

To demonstrate the robustness of our approach, we have
also studied the triplet excitations of the molecules of the same
test set. The triplet excitations considered were selected so that
their character and excited-state wave function (in terms of its
dominant configurations) will be as close to the singlet excita-
tions included in the test set as possible. Note that the oscillator
strength is zero for the spin-forbidden transition from the sin-
glet ground state to the triplet excited state; hence, oscillator
strengths are not reported for the triplet excited states. The
numerical values for the triplet excitation energies are col-
lected in Table V. The MAE and MAX errors are somewhat
larger than the corresponding values obtained for the singlet

TABLE IV. Canonical ADC(2) singlet excitation energies (ω, in eV), oscillator strength (f, in a.u.), the error of excitation energies (δω, in eV) and oscillator
strengths (δf, in a.u.) with the present approach, and the percentage of VNOs and NAFs dropped using the default thresholds with the aug-cc-pVTZ basis set for
small molecules. Oscillator strengths for symmetry-forbidden (s.f.) transitions are not displayed.

Algorithm 1 Algorithm 2

Dropped Dropped Dropped Dropped Dropped
Molecule State Character ω f δω δf VNOs RS-NAFs δω δf CS-NAFs VNOs RS-NAFs

Acetamide S1 n→ π∗ 5.356 0.000 0.005 0.000 53.7 82.3 0.006 0.000 59.3 54.1 82.6
S2 Rydberg 5.869 0.018 0.017 0.000 53.7 81.5 0.018 0.000 59.3 54.1 82.1
S3 Rydberg 6.450 0.012 0.028 0.000 51.6 81.0 0.028 0.000 59.3 51.6 81.7

Acetone S1 n→ π∗ 4.252 s.f. 0.011 s.f. 55.9 82.9 0.017 s.f. 60.1 56.2 83.1
S14 σ → π∗ 8.959 0.000 0.009 0.000 55.6 82.9 0.012 0.000 60.1 55.6 83.0
S16 π → π∗ 9.102 0.000 0.011 �0.005 55.6 82.9 0.015 �0.005 60.1 56.2 83.4

Benzene S3 π → π∗ 6.507 s.f. 0.026 s.f. 55.5 83.7 0.026 s.f. 61.7 55.7 83.9
S5 π → π∗ 7.041 0.069 0.029 0.000 56.0 83.7 0.033 0.000 61.7 57.0 84.0

Butadiene S1 π → π∗ 6.095 0.707 �0.009 0.001 54.7 83.3 �0.009 0.000 61.4 55.7 83.9
S5 π → π∗ 7.112 s.f. 0.009 s.f. 51.5 83.4 0.008 s.f. 61.4 52.1 83.4

Formaldehyde S1 n→ π∗ 3.834 s.f. 0.037 s.f. 48.5 79.3 0.036 s.f. 59.5 50.0 80.3
S6 σ → π∗ 9.030 0.001 0.016 0.000 49.2 79.6 0.020 0.000 59.5 49.2 80.3
S12 π → π∗ 10.557 0.038 0.026 0.000 46.9 79.9 0.025 0.000 59.5 46.9 79.9

Formamide S3 Rydberg 6.688 0.015 0.028 0.000 49.7 79.6 0.027 0.000 59.0 49.7 80.0
C2F4 → C2H4 S17 CT 9.577 0.000 0.040 0.000 53.0 79.6 0.041 0.000 58.1 53.0 79.8
C2H4 → C2F4 S34 CT 10.915 0.000 0.006 0.000 50.5 79.2 0.008 0.000 58.1 46.5 79.3

Average 0.019a 0.000a 52.6 81.6 0.021a 0.000a 59.9 52.7 81.9
Maximum 0.040b 0.005b 56.0 83.7 0.041b 0.005b 61.7 57.0 84.0
Minimum 0.005c 0.000c 46.9 79.2 0.006c 0.000c 58.1 46.5 79.3

aMAE.
bMAX.
cMinimum absolute error (MIN).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022810
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022810
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TABLE V. Canonical ADC(2) triplet excitation energies (ω, in eV), the error of excitation energies (δω, in eV) with the present approach, and the percentage
of VNOs and NAFs dropped using the default thresholds with the aug-cc-pVTZ basis set for small molecules.

Algorithm 1 Algorithm 2

Dropped Dropped Dropped Dropped Dropped
Molecule State Character ω δω VNOs RS-NAFs δω CS-NAFs VNOs RS-NAFs

Acetamide T1 n→ π∗ 5.099 0.017 50.2 80.9 0.019 59.3 50.5 81.3
T2 Rydberg 5.831 0.029 55.8 81.5 0.030 59.3 55.8 82.6
T4 Rydberg 6.298 0.035 54.1 80.9 0.034 59.3 54.1 81.7

Acetone T1 n→ π∗ 3.887 0.025 56.2 82.7 0.026 60.1 56.2 82.9
T8 σ → π∗ 8.345 0.020 55.2 82.1 0.023 60.1 55.9 83.0
T9 π → π∗ 8.999 0.033 54.6 82.3 0.034 60.1 54.6 82.7

Benzene T5 π → π∗ 6.468 0.033 55.5 83.6 0.032 61.7 56.0 83.7
T7 π → π∗ 6.986 0.038 56.5 83.4 0.038 61.7 57.0 83.8

Butadiene T1 π → π∗ 3.434 0.027 55.7 83.3 0.027 61.4 55.7 83.3
T8 π → π∗ 7.483 0.013 56.4 83.6 0.013 61.4 56.7 84.0

Formaldehyde T1 n→ π∗ 3.375 0.048 49.2 78.9 0.047 59.5 50.0 79.6
T7 σ → π∗ 8.260 0.036 49.2 79.3 0.037 59.5 49.2 79.3
T14 π → π∗ 10.506 0.022 46.2 79.6 0.022 59.5 46.2 79.6

Formamide T3 Rydberg 6.159 0.037 52.8 80.9 0.038 59.0 52.8 81.1
C2F4 → C2H4 T19 CT 9.573 0.040 53.0 79.5 0.041 58.1 53.0 79.7
C2H4 → C2F4 T37 CT 10.913 0.007 50.2 78.9 0.005 58.1 50.9 79.4

Average 0.029a 53.2 81.3 0.029a 59.9 53.4 81.7
Maximum 0.048b 56.2 83.6 0.047b 61.7 57.0 84.0
Minimum 0.007c 46.2 78.9 0.005c 58.1 46.2 79.3

aMAE.
bMAX.
cMIN.

excitations, but both values are more than appropriate. The
comparable accuracy can be explained by the fact that the
VNO and NAF approximations function almost identically in
the two spin cases if the default thresholds are applied. Since
we find the CS-NAF approximation similarly accurate for the
triplet states as well, we simplify the rest of our numerical
analysis by focusing on Algorithm 2 from this point. For the

sake of completeness, the corresponding data for Algorithm 1
are presented in the supplementary material.

We also investigated the AO basis-set dependence of
our approximations by comparing the results calculated with
the aug-cc-pVTZ basis set to those obtained with aug-cc-
pVDZ and aug-cc-pVQZ. The statistical measures for the
corresponding errors are collected in Table VI, while the

TABLE VI. Error measures for the ADC(2) excitation energies (δω, in eV) and oscillator strengths (δf, in a.u.),
and the average, maximum, and minimum percentage of VNOs and NAFs dropped using the default thresholds
with various basis sets for small molecules.

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ

Singlet Triplet Singlet Triplet Singlet Triplet

δω MAE 0.045 0.039 0.021 0.029 0.064 0.080
MAX 0.086 0.079 0.041 0.047 0.125 0.124
MIN 0.013 0.000 0.006 0.005 0.002 0.034

δf MAE 0.001 . . . 0.000 . . . 0.001 . . .

MAX 0.008 . . . 0.005 . . . 0.008 . . .

MIN 0.000 . . . 0.000 . . . 0.000 . . .

Dropped CS-NAFs Avg. 76.5 76.5 59.9 59.9 45.8 45.8
Max. 77.5 77.5 61.7 61.7 47.5 47.5
Min. 75.9 75.9 58.1 58.1 44.7 44.7

Dropped VNOs Avg. 18.3 17.2 52.7 53.4 73.1 73.2
Max. 25.1 25.1 57.0 57.0 76.2 76.8
Min. 9.6 7.1 46.5 46.2 70.5 70.5

Dropped RS-NAFs Avg. 80.5 80.3 81.9 81.7 87.8 87.9
Max. 82.5 82.5 84.0 84.0 89.1 89.8
Min. 77.9 77.4 79.3 79.3 86.3 86.3

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022810
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results for the individual molecules are given in Tables SIII–
SVI of the supplementary material. The MAE and MAX
errors of the excitation energies with the aug-cc-pVDZ and
aug-cc-pVQZ bases are about 2-3 times larger than the aug-
cc-pVTZ errors. Not surprisingly, the same trend was observed
for LR-CC2 in our previous study.86 We find this accept-
able because the errors are still significantly lower than the
intrinsic error of the ADC(2) method. Moreover, usually at
least a triple-ζ basis set augmented with diffuse functions is
necessary to bring down the AO basis-set error to the level
comparable to the intrinsic error of ADC(2) (or LR-CC2).
In other words, double-ζ-quality basis sets are less relevant
in production level calculations. On the other hand, the use
of the quadruple-ζ-quality sets is often not economical or
even impossible in practice. Additionally, the error of our
approximations for the transition moments is fairly basis set
independent.

Considering the basis-set dependence of the ratio of the
retained VNOs and NAFs, we again find the similar trend
observed previously for LR-CC2. Explicitly, the portion of
the neglectable VNOs increases with the basis set size from
18% through 53% up to 73% for aug-cc-pVDZ, aug-cc-pVTZ,
and aug-cc-pVQZ, respectively. As expected, larger basis sets
can be compressed more when describing the same correlation
effect. An opposite trend is present for the CS-NAFs, which is
explained by the fact that the ratio of the functions in the AO
and the corresponding auxiliary bases increases with the car-
dinal number, but the number of the AO product densities also
increases, and a larger portion of the original auxiliary basis
is required to be retained for their accurate fitting. Finally,
after introducing the system-dependently compressed VNO
and CS-NAF spaces, the percentage of the discarded RS-NAFs
becomes nearly basis set independent. All in all, the oper-
ation count and data size reduction is sizeable with all the
basis sets. For instance, the 53% VNO and the 82% RS-NAF
reduction yield a 25-fold cut in the operation count in the rate-
determining steps of the ADC(2) iteration as well as a 25-times
smaller three-center integral list with the aug-cc-pVTZ basis.
This gain is even larger, almost 120-fold with the aug-cc-pVQZ
basis set.

C. Representative examples

We have also tested the accuracy of our approximations on
larger systems to demonstrate that the errors do not grow with
the system size. For that purpose, seven medium-sized dye
molecules were collected from the literature (see the middle
panel of Table III), which were also useful in realistic appli-
cations. Using the default truncation thresholds determined
above, we computed the errors of singlet excitation energies
and the corresponding oscillator strengths using Algorithm 2
with respect to conventional ADC(2) (see Table VII). Com-
paring the error measures with those obtained for the smaller
molecules (see Table IV), we find a very good agreement. In
fact, the MAE (MAX) of singlet excitation energies of the
larger systems is even slightly better, being 0.015 (0.036) eV,
than the corresponding value of 0.021 (0.041) eV presented in
Table IV. We note that the oscillator strengths are more repre-
sentative from the practical point of view than for the smaller

molecules because there is at least one large value (around
0.2 a.u.) for each molecule. However, the errors of the individ-
ual oscillator strengths are only moderately larger than those
for the smaller test molecules; the quality of the approximate
oscillator strengths and the simulated spectra is excellent. The
MAE of the oscillator strengths is 0.002 a.u., but two salient
errors can be found in the test set. For the S1 state of dipheny-
lamine and the S7 state of the benzocarbazole derivative, the
errors are �0.023 and 0.013 a.u., respectively. In both cases,
the CIS wave function is a poor approximation for the corre-
sponding ADC(2) wave function; nevertheless, the improved
version of the reduced space construction algorithm results in
acceptable errors.

The average portion of the dropped CS-NAFs, VNOs,
and RS-NAFs, being about 60%, 56%, and 82%, respec-
tively, does not decrease either; hence, similarly good or
better speedups are expected in practice for these larger
systems.

The above analysis is also performed for the seven lowest-
lying triplet excitations on the same set of medium-sized dye
molecules. If we first compare the errors obtained for the triplet
excitations compiled in Table VIII to the corresponding singlet
excitation energy errors in Table VII, we find that the triplet
MAE is slightly smaller (0.009 vs. 0.015 eV), while the triplet
MAX is a bit worse (0.042 vs. 0.036 eV), but both values are
more than acceptable. A more noticeable difference, 0.009 vs.
0.029 eV, appears if the average triplet excitation energy error
is compared to that for the smaller test molecules (see Table V).
However, this is at least partly explained by the fact that the
smaller-molecule test set is less balanced in terms of low- and
high-lying excited states. Finally, looking at the portion of the
omitted VNOs and NAFs, we find the former to be around 57%
and the latter to be around 82% in average, which are very
close to the corresponding values calculated for the smaller
test systems. For the sake of completeness, we also mention
that these findings hold not only for the results obtained with
Algorithm 2 but with Algorithm 1 as well. The corresponding
data for the singlet and triplet excitations are provided in Tables
SVII and SVIII of the supplementary material.

So far we have characterized the efficiency of our approx-
imations by reporting the ratio of the omitted VNOs and
NAFs and determining the expected operation count reduc-
tion at certain steps of the algorithm. An even better measure
for that purpose is to compare the actual wall-clock times
measured for the conventional and the reduced-cost ADC(2)
variants. The total wall-clock times will be further partitioned
into contributions required for the major steps of the com-
putation. For the conventional approach, these parts include
the time of the transformation of the three-center integrals
from AO to canonical MO basis (tJ), and the time of the
CIS (tCIS) and the ADC(2) (tADC(2)) iterations. In the case
of the reduced-cost algorithm, the overhead required for the
evaluation and diagonalization of the necessary state-averaged
density matrices and the W matrices and the integral transfor-
mation to the VNO/NAF bases are accumulated into tJ. On
top of this, in the case of Algorithm 2, the time required for
the construction of the CS-NAF basis (tCS–NAF) and the corre-
sponding integral transformation is added to tJ leading to tĴ = tJ
+ tCS–NAF.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022810
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022810
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TABLE VII. Canonical ADC(2) singlet excitation energies (ω, in eV), oscillator strengths (f, in a.u.), the error of excitation energies (δω, in eV) and oscillator
strengths (δf, in a.u.) with the present approach, and the percentage of VNOs and NAFs dropped using the default thresholds with the aug-cc-pVTZ basis set for
medium-sized molecules. Oscillator strengths for symmetry-forbidden (s.f.) transitions are not displayed.

Dropped Dropped Dropped
Molecule State Character ω δω f δf CS-NAFs VNOs RS-NAFs

Hydrazone dye S1 π → π∗ 3.475 �0.002 0.111 �0.001 58.7 54.1 80.4
S2 CT 3.643 0.004 s.f. s.f. 58.7 55.3 80.9
S3 n, σ → π∗ 3.670 0.005 s.f. s.f. 58.7 54.5 80.7
S4 π → π∗ 4.073 �0.007 0.459 �0.004 58.7 53.4 80.3
S5 n, σ → π∗ 4.268 0.006 0.000 0.000 58.7 54.5 80.7
S6 n, σ → π∗ 4.287 0.006 0.001 0.000 58.7 55.2 80.9
S7 π → π∗ 5.007 �0.026 0.050 �0.006 58.7 54.0 80.5

Azobenzene S1 n, σ → π∗ 2.795 0.023 s.f. s.f. 61.1 58.6 83.5
S2 π → π∗ 4.064 �0.009 0.718 �0.005 61.1 57.1 83.0
S3 π → π∗ 4.448 �0.019 0.020 �0.001 61.1 56.2 82.9
S4 π → π∗ 4.455 �0.019 s.f. s.f. 61.1 57.4 83.0
S5 π → π∗ 5.182 �0.024 s.f. s.f. 61.1 56.9 82.9
S6 Rydberg 6.127 0.027 0.001 0.000 61.1 56.2 83.3
S7 Rydberg 6.315 0.028 s.f. s.f. 61.1 57.5 83.3

Diphenylamine S1 π → π∗ 4.335 �0.011 0.104 �0.023 60.8 56.9 83.5
S2 π → π∗, Ryd. 4.418 �0.010 0.194 0.002 60.8 56.7 83.3
S3 π → π∗ 4.460 �0.010 0.021 0.000 60.8 56.7 83.3
S4 Rydberg 4.649 0.015 0.158 �0.008 60.8 56.6 83.3
S5 Rydberg 5.045 0.027 0.049 �0.004 60.8 58.3 83.8
S6 Rydberg 5.144 0.036 0.000 0.000 60.8 58.6 83.9
S7 π → π∗ 5.275 0.027 0.003 0.000 60.8 58.1 83.8

6,6′- S1 n, σ → π∗ 1.965 0.006 0.000 0.000 59.9 54.7 81.0
difluoro-indigo S2 n, σ → π∗ 2.479 0.004 s.f. s.f. 59.9 54.8 81.1

S3 π → π∗ 2.933 �0.009 0.173 �0.003 59.9 55.8 81.2
S4 π → π∗ 3.431 �0.010 s.f. s.f. 59.9 54.6 81.0
S5 π → π∗ 3.678 �0.018 s.f. s.f. 59.9 54.4 80.9
S6 π → π∗ 3.697 �0.017 0.140 0.000 59.9 54.4 80.9
S7 n, σ → π∗ 3.748 �0.003 s.f. s.f. 59.9 55.9 81.2

Bithiophene S1 π → π∗ 3.803 �0.017 0.588 0.000 60.7 55.3 82.3
derivative S2 π → π∗ 4.555 �0.016 0.012 �0.001 60.7 53.3 82.0

S3 Rydberg 4.844 �0.004 0.000 0.000 60.7 55.3 82.2
S4 π → π∗ 4.886 �0.022 0.041 �0.004 60.7 55.1 82.2
S5 Rydberg 5.034 0.005 0.001 0.000 60.7 52.4 81.9
S6 n, σ → π∗ 5.497 �0.003 0.001 0.000 60.7 52.4 81.9
S7 π → π∗ 5.582 0.018 0.021 �0.006 60.7 55.0 82.3

N-methyl-2,3- S1 π → π∗ 3.304 �0.005 0.031 0.000 61.6 58.2 83.4
benzocarbazole S2 π → π∗ 4.057 �0.016 0.036 0.000 61.6 58.3 83.4

S3 Rydberg 4.487 �0.015 0.310 �0.007 61.6 59.1 83.7
S4 Rydberg 4.516 0.033 0.007 0.000 61.6 56.9 83.2
S5 Rydberg 4.950 0.031 0.000 0.000 61.6 59.1 83.7
S6 π → π∗ 5.027 0.031 0.105 0.000 61.6 59.1 83.7
S7 Rydberg 5.271 �0.013 0.005 0.013 61.6 57.6 83.4

Flavone S1 CT 3.280 �0.009 0.616 �0.005 59.7 58.6 83.0
derivative S2 π → π∗ 3.922 �0.002 0.000 0.000 59.7 58.7 83.1

S3 n, σ → π∗ 4.040 �0.016 0.065 0.000 59.7 58.7 83.1
S4 π → π∗ 4.197 �0.004 0.014 0.000 59.7 56.9 82.9
S5 Rydberg 4.398 0.030 0.015 0.000 59.7 59.1 83.2
S6 π → π∗ 4.730 �0.020 0.030 0.009 59.7 58.2 82.9
S7 Rydberg 4.869 0.024 0.001 0.000 59.7 59.0 83.2

Average 0.015a 0.002a 60.4 56.4 82.4
Maximum 0.036b 0.023b 61.6 59.1 83.9
Minimum 0.002c 0.000c 58.7 52.4 80.3

aMAE.
bMAX.
cMIN.
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TABLE VIII. Canonical ADC(2) triplet excitation energies (ω, in eV), the error of excitation energies (δω, in
eV) with the present approach, and the percentage of VNOs and NAFs dropped using the default thresholds with
the aug-cc-pVTZ basis set for small molecules.

Dropped Dropped Dropped
Molecule State Character ω δω CS-NAFs VNOs RS-NAFs

Hydrazone dye T1 π → π∗ 3.161 0.009 58.7 54.4 80.5
T2 CT 3.427 0.011 58.7 55.3 80.9
T3 π → π∗ 3.447 0.012 58.7 54.5 80.7
T4 π → π∗ 3.751 �0.002 58.7 54.1 80.5
T5 π → π∗ 3.792 0.004 58.7 54.5 80.7
T6 CT 4.189 0.004 58.7 54.8 80.7
T7 π → π∗ 4.279 0.013 58.7 54.5 80.7

Azobenzene T1 n, σ → π∗ 2.189 0.036 61.1 53.8 82.7
T2 π → π∗ 2.879 0.014 61.1 58.0 83.2
T3 π → π∗ 4.004 0.011 61.1 57.7 83.1
T4 π → π∗ 4.241 �0.004 61.1 57.5 83.1
T5 π → π∗ 4.302 �0.002 61.1 57.5 83.1
T6 π → π∗ 4.712 0.011 61.1 56.4 83.0
T7 π → π∗ 4.827 0.004 61.1 56.2 82.9

Diphenylamine T1 π → π∗ 3.634 0.012 60.8 57.6 83.4
T2 π → π∗ 4.103 0.008 60.8 57.1 83.3
T3 π → π∗ 4.110 0.003 60.8 59.2 83.7
T4 π → π∗ 4.263 0.009 60.8 57.2 83.4
T5 Rydberg 4.531 0.042 60.8 58.8 83.8
T6 π → π∗ 4.729 0.005 60.8 56.9 83.2
T7 π → π∗ 4.817 0.002 60.8 57.3 83.4

6,6′-difluoro- T1 π → π∗ 2.087 0.011 59.9 56.0 81.2
indigo T2 π → π∗ 2.786 0.006 59.9 54.6 80.9

T3 π → π∗ 3.286 �0.003 59.9 54.5 80.9
T4 π → π∗ 3.448 0.001 59.9 54.6 81.0
T5 π → π∗ 4.212 0.002 59.9 52.9 80.8
T6 π → π∗ 4.292 �0.010 59.9 55.7 81.1
T7 π → π∗ 4.357 0.002 59.9 52.9 80.7

Bithiophene T1 π → π∗ 2.697 0.011 61.6 55.4 82.2
derivative T2 π → π∗ 3.863 0.011 61.6 53.6 82.0

T3 π → π∗ 4.013 0.009 61.6 55.5 82.3
T4 π → π∗ 4.301 0.007 61.6 53.7 82.1
T5 Rydberg 4.784 0.004 61.6 55.4 81.9
T6 π → π∗ 5.262 �0.001 61.6 52.1 82.1
T7 n, σ → π∗ 5.380 �0.005 61.6 55.2 82.2

N-methyl-2,3- T1 π → π∗ 2.703 0.011 60.7 58.7 83.5
benzocarbazole T2 π → π∗ 3.487 0.004 60.7 58.5 83.5

T3 π → π∗ 3.764 0.003 60.7 58.4 83.4
T4 π → π∗ 4.100 0.006 60.7 58.4 83.4
T5 π → π∗ 4.379 �0.020 60.7 59.5 83.5
T6 π → π∗ 4.489 0.008 60.7 59.1 83.7
T7 π → π∗ 4.604 �0.009 60.7 59.6 83.7

Flavone T1 CT 2.585 0.010 59.7 59.0 83.1
derivative T2 n, σ → π∗ 3.537 0.002 59.7 59.0 83.1

T3 π → π∗ 3.940 0.011 59.7 59.0 83.1
T4 n, σ → π∗ 4.007 0.004 59.7 58.8 82.9
T5 π → π∗ 4.277 �0.008 59.7 57.1 82.8
T6 π → π∗ 4.650 0.001 59.7 57.2 82.9
T7 π → π∗ 4.738 0.035 59.7 59.0 83.1

Average 0.009a 60.4 56.5 82.4
Maximum 0.042b 61.6 59.6 83.8
Minimum 0.001c 58.7 52.1 80.5

aMAE.
bMAX.
cMIN.
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TABLE IX. The wall-clock times required for the various steps of the calculations in minutes.

Canonical Algorithm 2

Molecule tJ tCIS tADC(2) tTotal tĴ tCIS tJ tADC(2) tTotal Speedup

Azobenzene 6.2 4.4 352.6 363.1 6.5 1.7 6.7 19.7 34.6 10.5
Hydrazone dye 4.9 3.8 492.8 501.5 5.1 1.5 7.6 35.9 50.1 10.0
Diphenylamine 5.6 3.2 511.8 520.5 6.0 1.3 6.2 20.4 33.9 15.4
Benzocarbazole derivative 16.9 10.2 2218.1 2245.2 18.0 4.2 20.3 97.7 140.2 16.0
Indigo derivative 17.3 10.9 2032.4 2060.5 18.2 4.2 31.9 125.3 179.6 11.5
Bithiophene derivative 16.8 13.7 2894.5 2925.0 17.9 5.1 30.8 185.7 239.6 12.2
Flavone derivative 29.8 19.1 4926.7 4975.6 31.7 7.5 47.9 201.8 288.9 17.2

Average 13.3
Maximum 17.2
Minimum 10.0

Our wall-clock time measurements for the lowest-lying
seven singlet and seven triplet excitation energies and the cor-
responding singlet transition moments of the seven medium-
sized test molecules discussed previously are presented in
Table IX for Algorithm 2. The analogous wall-clock times
with Algorithm 1 are given in Table SIX of the supplemen-
tary material. Most importantly, the average overall speedup
factor with Algorithm 2 compared to the conventional algo-
rithm is about 13 using the same hardware. This significant
efficiency increase occurs quite reliably considering that the
maximum (minimum) overall speedup is 17.2 (10.0). It can
be seen that the time required for the CIS iterations as well
as for the construction of VNOs and RS-NAFs can be halved
compared to Algorithm 1 (cf. Table SIX of the supplemen-
tary material), while the additional computation cost needed
for the construction of the CS-NAF basis with respect to the
evaluation of the canonical integral list J is only about 5%.
Consequently, the total calculation can be performed about
25% faster (and with considerably reduced storage require-
ment) via Algorithm 2. We expect similar benefits from
the introduction of CS-NAFs in our reduced-cost LR-CC2
method.86

To demonstrate the potential of our approach, we deter-
mined the excitation energies and oscillator strengths for even
larger molecules containing up to 98 atoms using the aug-
cc-pVTZ basis set. Such extensive ADC(2) calculations with
more than 3400 AOs are prohibitive or at least highly chal-
lenging with the conventional ADC(2) implementations. The
calculated excited-state properties are collected in Table X for
Algorithm 2, while Table SX of the supplementary material
contains the analogous data for Algorithm 1. Again, the numer-
ical result for the excitation energies and oscillator strengths
computed with the two algorithms agree within a few thou-
sandths of an eV and a.u., respectively. The characters and
the energies of the studied singlet excitations match the ones
obtained previously with our reduced-cost LR-CC2 method.86

The percentage of the dropped VNOs and RS-NAFs lies again
in the previously experienced regions at around 60% and 83%,
respectively. Since these five systems cover a sizable range
containing 51–98 atoms and 2001–3412 AOs, it seems nor-
mal that we observe a slight shift in the ratio of the omitted
basis functions when going towards the larger systems. This

increase is, however, only about 6% for the VNOs and 2%
for the RS-NAFs and can at least partially be attributed to
the increasing quasi-redundancy in the augmented triple-ζ
AO basis of these extended molecules. We also present in
Table X the measured wall-clock times for the most demand-
ing operations using Algorithm 2. Compared to the results of
the measurements performed for the medium-sized systems,
these timings are affected by the fact that neither the com-
plete canonical integral list J nor its CS-NAF compressed Ĵ
variant fits into the memory. For such cases, we also imple-
mented the out-of-core versions of the necessary operations
where the entire integral list is stored on the hard disk, and
only blocks of suitable size are processed at a time. The use
of the out-of-core algorithms is only required until the integral
transformation to the VNO/RS-NAF bases is complete, for
the ADC(2) iterations our scheme benefits from the greatly
reduced data sizes in the compressed MO/auxiliary function
spaces.

Looking at the wall-clock times, we can conclude that
a single CIS iteration takes somewhat smaller time for the
triplet states. This result is not surprising since the calcu-
lation of the Coulomb-term is not necessary. However, as
it can be inferred from Table II, the construction of the
triplet CIS(D) density matrix requires more operations; hence,
tJ is about 20% more expensive for the triplet states. An
ADC(2) iteration takes slightly less time for the singlet states
although it requires somewhat more operations. However, a
couple of rate-determining steps (see in Table I) can be imple-
mented more efficiently for singlet excitations. Compared to
the ADC(2) excitation energy computation, the cost of the
transition moments is almost negligible, taking only the time
of roughly 1.2 iterations. If we compare the performance of
the two algorithms (cf. Table X and Table SX of the supple-
mentary material), we observe a small increase (from 5% to
20%) in the overhead required for the CS-NAF construction.
This is explained by the disk I/O demand of the out-of-core
CS-NAF algorithm not present previously. This cost increase
is, however, amply compensated by the about 50% percent
more economical CIS iteration and VNO as well as RS-NAF
construction of Algorithm 2. In principle, the expenses of
the ADC(2) iterations are independent of the choice of the
auxiliary basis used for the VNO density matrix construction

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022810
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022810
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022810
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022810
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022810
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022810
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-022810
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TABLE X. ADC(2) excitation energies (ω, in eV) and oscillator strengths (f, in a.u.) computed with the present approach, the percentage of VNOs and NAFs
dropped, and computation times (in min) using the default thresholds with the aug-cc-pVTZ basis set for the largest molecules.

Dropped Dropped Dropped
Molecule State Character ω f CS-NAFs VNOs RS-NAFs tĴ tCIS

a tJ
b tADC(2)

c tf
d

Flv(a) S1 π → π∗ 2.601 0.303 59.2 58.1 82.2 226.3 1.4 34.8 4.0 5.3
S2 π → π∗ 2.868 0.187 59.2 58.1 82.1 34.8 4.1 5.1
S3 n, σ → π∗ 3.309 0.001 59.2 58.4 82.2 34.8 3.7 5.0
S4 π → π∗ 3.511 0.112 59.2 58.1 82.2 34.8 3.7 5.0
T1 π → π∗ 1.870 . . . 59.2 58.3 82.2 1.1 43.6 4.7 . . .

T2 π → π∗ 2.367 . . . 59.2 58.3 82.1 43.5 4.5 . . .

T3 CT 3.241 . . . 59.2 58.1 82.1 43.5 4.7 . . .

T4 π → π∗ 3.602 . . . 59.2 58.3 82.1 43.4 4.5 . . .

Dyad S1 π → π∗ 2.944 0.169 59.8 58.3 82.8 254.7 1.4 35.8 4.4 4.9
S2 CT 3.314 0.001 59.8 58.6 82.9 35.9 4.3 4.8
S3 π → π∗ 3.486 0.142 59.8 56.4 82.5 35.8 4.8 5.4
S4 CT 3.790 0.045 59.8 58.1 82.8 35.8 4.3 4.8
T1 π → π∗ 2.447 . . . 59.8 58.4 82.8 1.1 45.0 4.3 . . .

T2 CT 3.010 . . . 59.8 56.6 82.5 45.2 5.0 . . .

T3 CT 3.342 . . . 59.8 58.3 82.8 45.3 4.6 . . .

T4 π → π∗ 3.701 . . . 59.8 58.2 82.7 45.1 4.5 . . .

Bisimide derivative S1 π → π∗ 2.481 0.683 58.3 59.7 82.7 375.3 7.8 71.1 8.4 9.3
S2 π → π∗ 3.434 0.000 58.3 59.8 82.8 71.1 7.9 9.3
S3 π → π∗ 3.690 0.021 58.3 59.8 82.8 71.1 7.9 9.3
S4 π → π∗ 3.782 0.000 58.3 57.3 82.5 71.1 8.6 9.9
T1 π → π∗ 1.600 . . . 58.3 59.8 82.7 7.7 87.3 8.4 . . .

T2 π → π∗ 2.993 . . . 58.3 57.6 82.5 87.2 9.8 . . .

T3 π → π∗ 3.079 . . . 58.3 57.5 82.5 87.2 9.4 . . .

T4 CT 4.267 . . . 58.3 60.1 82.9 87.3 8.3 . . .

Flv(b) S1 π → π∗ 2.431 0.368 57.9 60.7 83.3 835.8 22.7 166.8 17.4 20.2
S2 π → π∗ 2.847 0.169 57.9 61.5 83.4 166.8 16.4 19.1
S3 n, σ → π∗ 3.219 0.148 57.9 60.8 83.3 166.7 16.9 19.7
S4 π → π∗ 3.267 0.000 57.9 61.6 83.5 166.7 16.5 19.0
T1 π → π∗ 1.741 . . . 57.9 60.9 83.3 16.8 203.4 15.7 . . .

T2 π → π∗ 2.353 . . . 57.9 61.6 83.5 203.3 16.9 . . .

T3 π → π∗ 2.727 . . . 57.9 61.0 83.4 203.4 17.9 . . .

T4 π → π∗ 4.078 . . . 57.9 61.6 83.5 203.3 17.7 . . .

D21L6 S1 CT 2.600 1.056 59.0 61.9 84.4 1468.3 38.0 370.6 38.6 40.3
S2 π → π∗ 3.368 0.109 59.0 60.6 84.2 370.7 39.3 42.2
S3 Rydberg 3.464 0.061 59.0 61.6 84.3 370.7 37.6 41.6
S4 Rydberg 4.044 0.019 59.0 61.5 84.3 370.8 37.6 41.3
T1 CT 1.972 . . . 59.0 62.0 84.4 25.2 455.5 37.1 . . .

T2 π → π∗ 2.601 . . . 59.0 61.9 84.4 455.7 38.0 . . .

T3 π → π∗ 3.253 . . . 59.0 61.7 84.3 455.6 37.9 . . .

T4 CT 3.482 . . . 59.0 61.9 84.3 455.9 37.5 . . .

Average 58.8 59.6 83.1
Maximum 59.8 62.0 84.4
Minimum 57.9 56.4 82.1

aAverage wall-clock time for a CIS iteration using a multi-state algorithm.
bAverage wall-clock time for the construction of the J integral list. The calculation of the MP2 density is distributed equally among the excited states.
cAverage wall-clock time for an ADC(2) iteration.
dWall-clock time required for the oscillator strength calculation.

(i.e., conventional vs. CS-NAF). As expected, in practice, we
only see a negligible difference due to the fact that the size of
the VNO and RS-NAF bases with Algorithms 1 and 2 are not
completely identical but are very similar.

IV. CONCLUSIONS

An improved version of our virtual natural orbital and
natural auxiliary function-based approximation86 has been

presented, and the approach has been extended to the eval-
uation of triplet excitation energies and ground to excited
state transition moments. In contrast to our previous approach,
in the modified scheme the NAF approximation is invoked
right at the beginning of the calculation, and the originally
selected VNOs are supplemented with canonical orbitals.
With the improved algorithm, we have significantly reduced
the computation time required for the solution of the CIS
equations and the construction of the VNOs and NAFs
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necessary for the correlated excited-state calculations, which
were among the rate-determining steps previously. Further-
more, the augmented reduced subspace considerably improves
the robustness of the method and the accuracy of the computed
properties.

We have derived and implemented the required work-
ing equations for the triplet CIS(D) density matrix and set
up the infrastructure for the calculation of triplet excitation
energies. The efficiency of the approximation has been demon-
strated for the ADC(2) method, which is currently one of the
most promising low-scaling correlated approaches for excited-
state properties. We have implemented the working equations
for ADC(2) singlet and triplet excitation energies as well
as transition moments in the framework of our reduced-cost
scheme.

Extensive benchmark calculations have been performed
for singlet and triplet excitation energies as well as oscillator
strengths for a representative test set including excitations of
all the important types. On the basis of the results obtained, it
can be stated that the average errors in the singlet and triplet
excitation energies (0.02 eV) are an order of magnitude smaller
than the error of the ADC(2) method. The maximum absolute
error in the computed oscillator strengths does not exceeded
0.025 a.u., while the mean absolute error is 0.002 a.u. The
percentage of the neglected VNOs and NAFs seems to be con-
stant independently of the size of the system for any type of
excitation. With these approximations, an average speedup of
more than an order of magnitude can be achieved for ADC(2)
calculations. Our results also demonstrate that, using the new
approach, the excited states of extended systems including up
to 100 atoms can be routinely studied with reliable basis sets
at the ADC(2) level.

SUPPLEMENTARY MATERIAL

See supplementary material for molecular structures,
excitation energies, and oscillator strengths computed with
various algorithms and basis sets.
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92M. Kállay, Z. Rolik, J. Csontos, P. Nagy, G. Samu, D. Mester, J. Csóka,
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and V. G. Pivovarenko, Anal. Biochem. 369, 218 (2007).
110C. A. Kenfack, A. S. Klymchenko, G. Duportail, A. Burgerc, and Y. Mély,
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