
Accepted Manuscript

Full Length Article

Diffusion induced atomic islands on the surface of Ni/Cu nanolayers

Viktor Takáts, Attila Csík, József Hakl, Kálmán Vad

PII: S0169-4332(18)30089-8
DOI: https://doi.org/10.1016/j.apsusc.2018.01.087
Reference: APSUSC 38226

To appear in: Applied Surface Science

Received Date: 11 August 2017
Revised Date: 3 January 2018
Accepted Date: 9 January 2018

Please cite this article as: V. Takáts, A. Csík, J. Hakl, K. Vad, Diffusion induced atomic islands on the surface of
Ni/Cu nanolayers, Applied Surface Science (2018), doi: https://doi.org/10.1016/j.apsusc.2018.01.087

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/154883874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.apsusc.2018.01.087
https://doi.org/10.1016/j.apsusc.2018.01.087


  

1 

 

Diffusion induced atomic islands on the surface of Ni/Cu nanolayers 

 

Viktor Takáts, Attila Csík, József Hakl, Kálmán Vad 

 

Institute for Nuclear Research, Hungarian Academy of Sciences, Bem tér 18/C, 4026 

Debrecen, Hungary 

 

 

 

Corresponding author: K. Vad  

E-mail: vad@atomki.mta.hu 

 

 

Keywords:  

Grain-boundary diffusion 

Nanocrystalline film 

Multilayers 

NiCu 

Low energy ion spectroscopy 

 

 

Abstract 

Surface islands formed by grain-boundary diffusion has been studied in Ni/Cu 

nanolayers by in-situ low energy ion scattering spectroscopy, X-ray photoelectron 

spectroscopy, scanning probe microscopy and ex-situ depth profiling based on ion sputtering. 

In this paper a new experimental approach of measurement of grain-boundary diffusion 

coefficients is presented. Appearing time of copper atoms diffused through a few nanometer 

thick nickel layer has been detected by low energy ion scattering spectroscopy with high 

sensitivity. The grain-boundary diffusion coefficient can be directly calculated from this 

appearing time without using segregation factors in calculations. The temperature range of 
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423-463 K insures the pure C-type diffusion kinetic regime. The most important result is that 

surface coverage of Ni layer by Cu atoms reaches a maximum during annealing and stays 

constant if the annealing procedure is continued. Scanning probe microscopy measurements 

show a Volmer-Weber type layer growth of Cu layer on the Ni surface in the form of Cu 

atomic islands. Depth distribution of Cu in Ni layer has been determined by depth profile 

analysis. 
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1. Introduction 

Materials science plays a significant role in understanding of physical processes in 

microelectronics. Interconnections between microelectronics parts can be failed due to high 

current densities, if the line dimensions are significantly smaller than one micron. 

Deterioration of the quality of interconnections can be evoked by electromigration which is a 

forced motion of metal ions. Essentially, this is a diffusion process and it is governed by its 

activation energy. In solid state materials short-circuit diffusions along grain boundaries and 

dislocations, and surface diffusions have small activation energies. At nanoscale size the 

diffusion along grain boundaries plays a crucial role as it can cause serious damage or fast 

aging of materials used in electronic devices, so their study in nanoscale systems is inevitable. 

In lead-free soldering technologies nickel and copper are frequently used metals. Therefore, 

study of Ni/Cu nanolayers is important not only from academic point of view but also from 

technological point of view. 

Grain-boundary (GB) diffusion coefficients can be determined by the model of Fisher 

from diffusion profiles measured experimentally [1]. In this model polycrystalline 

microstructures were supposed to form large grains where the grain diffusion length was 

much smaller than the average grain size. In nanocrystalline materials this model required 

some modifications which were made by Mishin [2], but the essence did not change. In thin 

films, the mechanism of GB diffusion was worked out by Gilmer and Farell [3]. They 

described the diffusion in multiple grain boundaries with different flux boundary conditions. 

They introduced the concept of two surfaces: one of them is in contact with a reservoir and 

the other is the free exit surface. Finally, the diffusion profile along grain boundaries between 

these two surfaces was calculated as the average concentration distribution in the film. Hwang 

and Baluffi presented their results about the accumulation of diffusant atoms on the exit 

surface of a film formed by parallel grain boundaries [4]. 



  

4 

 

However, due to the lack of desirable experimental results, description of nanoscale 

GB diffusion has some semi-quantitative nature. Depth profiling and surface accumulation 

methods are two different methods which give possibilities to study GB diffusion processes at 

nanoscale. By depth profiling the depth distribution of diffusant can be analyzed. One of the 

depth profiling techniques is SIMS (Secondary Ion Mass Spectrometry). This technique was 

used to study GB diffusion along an individually grain boundary of a Cu bicrystal [5]. The 

other very popular depth profiling technique is the radiotracer method when the diffusivity is 

determined by radioactive intensity measurements of an isotope used as diffusant. Due to a 

minimum thickness which is necessary to produce a high enough radioactive intensity to a 

reliable measurement, the best depth resolution which can be realized by this method is a few 

micrometers [6,7]. The radioactive tracer concentration cannot be decreased below the 

sensitivity limit of nuclear detectors with the decrease of thickness. The depth distribution of 

radioactivity (which is equivalent to the depth distribution of tracer concentration) reflects the 

penetration profile of diffusant from which the GB diffusion coefficient can be determined. 

Time evolution measurement of surface accumulation is another experimental method. An 

increase in surface concentration of diffusant atoms gives information about the quantity 

which diffused through the grain boundaries during annealing time. The GB diffusion 

coefficient can be calculated from this time dependence. The surface accumulation can be 

experimentally studied by Auger and X-ray photoelectron spectroscopy (AES, XPS). 

While in radiotracer analyses the depth resolution of tracer concentration distribution 

is limited by the serial sectioning technique used for depth profiling (a minimum but finite 

thickness is needed to a measurement), in surface accumulation methods the application of 

long accumulation time is needed because of the lack of high detection sensitivity of AES and 

XPS methods. As a solution to this problem, longer annealing times are applied in 

experiments. Moreover, to get pure grain-boundary diffusivity from the experimental data, a 
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mathematical method is required which is based on the accumulation kinetics of diffusant 

atoms using segregation factors as input parameters [4]. Surface accumulation is a result of 

grain-boundary and surface diffusion processes taken place at the same time. However, it is a 

problem that segregation factors cannot be simply determined experimentally at nanoscale 

and there are only a very few direct pieces of information about the surface distribution of 

diffusant atoms. 

The detection sensitivity of AES and XPS electron spectroscopy methods used to 

study the GB and surface diffusions is around 1 at%. In this paper we intend to show that Low 

Energy Ion Spectroscopy (LEIS) can be an alternative candidate to carry on precise 

measurements in this field due to the high detection sensitivity of this method (10 ppm instead 

of 1 at%). The GB diffusion coefficient can be calculated from the appearing time of diffusant 

atoms which, finally, form small surface islands due to surface diffusion. 

 

2. Theories 

The theory of the atomic motion inside grain boundaries can be described by random 

walk statistics. The root mean squared displacement of large number of diffusant particles in 

grain boundaries can be given by the well known Einstein-Smoluchowski relation,       

     , where     is the mean displacement, D is the coefficient of diffusion, t is the time 

[8]. In a thin film the mean displacement     corresponds to the film thickness h, and t is 

the time when diffusant atoms appear on the exit surface of the film, i.e. in our Ni/Cu//Si thin 

film arrangement when Cu appears on the Ni surface. The diffusion coefficient can be 

calculated very simply, D=h
2
/6t. The same result was received by Holloway and McGuire, 

who elaborated their model for the ideal case when the exit surface is an infinite capacity sink 

for diffusant atoms and the surface diffusion is very high [9]. 
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The precise measurement of the appearing time depends on the experimental details, 

especially on the detection level of the method applied in the experiment. For example, a 

radiotracer measurement requires extremely high sensitivity of the counting facilities and a 

radioisotope with high activity. To avoid this problem, Hwang and Balluffi [4] analyzed the 

GB diffusion on the basis of surface accumulation kinetics under the condition of kinetic 

regime C (kinetic regime C accords with Harrison’s classification [10] or see e.g. the work of 

Kolobov et al. [11]). In this regime the volume diffusion is negligible and material transport 

takes place only along grain boundaries. Under a quasi-steady state condition in grain 

boundaries and when the surface diffusivity is high, the surface accumulation process can be 

written in the next formula: 


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where cs and cso are the concentrations at the accumulation and diffusion source surfaces, s’ 

and s” are the segregation factors at the interfaces between the GB/accumulation surface and 

GB/source surface. δ is the width of a grain boundary, h is the thickness of the film, δs is the 

thickness of diffusant atoms layer at the accumulation surface, t is the time, ds is the thickness 

of a grain, and, finally, Dgb is the grain-boundary diffusion coefficient [12]. In Equation (1) 

the concentrations are supposed to be average concentration values. If the segregations are 

small, we can assume that s’=s”=1 and the Equation (1) can be written in the following form: 

 

                    ,where                    (2) 

 

The grain-boundary diffusion coefficient can be calculated from the time dependence 

of the average concentration cs at the accumulation surface (see e.g. the papers of Z. Erdélyi 

et al. and G. Erdélyi et al. [13,14]). For this purpose the accumulation kinetic plot is fitted by 
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an exponential function and is parameterized. The surface segregation coefficients s’ is 

defined by relative concentration ratio of diffusant atoms at the accumulation surface and in 

the grain boundary near the accumulation surface, and s” is also defined by relative 

concentration ratio of diffusant atoms at the source surface and in the grain boundary near the 

source surface. 

It can be seen that determination of a grain-boundary diffusion coefficient based on the 

surface accumulation method requires more parameters than a simple measurement of the 

appearing time of diffusant atoms. The C-type kinetic regime corresponds to very low 

temperatures and short diffusion times which suppress any diffusion from the internal part of 

GBs into the bulk direction of the material. Moreover, the diffusion length along the 

nanocrystalline GBs is very small. Therefore, due to the lack of nanometer depth resolution of 

a conventional sectioning method, the flux of diffusants at low temperatures and in short 

times cannot be detected at very small grain size (10-100 nm). So, GB diffusion experiments 

are typically performed in the Harrison’s B regime where the so-called triple product P =s δ 

Dgb can be determined from the penetration profiles of diffusant atoms (s is the segregation 

factor, δ is the grain boundary width, Dgb is the grain-boundary diffusivity). 

In a thin layer the grain-boundary diffusion coefficient can be determined directly by 

measuring the appearing time of diffusant atoms on the exit surface. LEIS is a sensitive 

technique for detecting the first few atoms appeared on the surface. If appearing time t and the 

film thickness h are known, the diffusion coefficient can be calculated by the equation of 

Dgb=h
2
/6t. Until now, the main inspiration of applying the accumulation method against 

appearing time method was just the lack of a high sensitive technique [4]. 

 

3. Experimental procedure 

The experimental procedure consists of three steps.  
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Sample preparation and characterization 

Nanocrystalline Ni and Cu layers were deposited by DC magnetron sputtering of Ni 

(99.99%) and Cu (99.99%) targets onto polished crystalline silicon wafers. During layer 

preparation the substrates were at room temperature, and the target-substrate distance was 70 

mm. Layer thicknesses were monitored by a quartz microbalance. The vacuum of the system 

was 3∙10
-7

 mbar and the Ar working pressure was 7∙10
-3

 mbar. Both the copper and the nickel 

layer had a thickness of 25 nm, i.e. the layer structure was Ni(25nm)/Cu(25nm)//Si. 

Thicknesses and quality of the layers were checked by depth profile analyses. The 

characterization of grains of Cu and Ni layers was made by X-ray diffraction measurements. 

The average crystallite size in the Cu layer was 10.5 nm, and in the Ni layers it was 8.7 nm. 

After preparation, the samples were transferred from the preparation chamber to an assembly 

of machines where the measurements were carried out. These machines - a secondary neutral 

mass spectrometer, an X-ray photoelectron spectrometer equipped with a low energy ion 

source, and a scanning probe microscope – have a joint vacuum space and the samples are in 

ultra high vacuum during measurements (3 10
-10

 mbar). The procedure of measurements was 

started by surface cleaning of samples with low energy (350 eV) argon ion beam. The layers 

contained oxygen and argon impurities due to the preparation technique. The oxygen 

originated from the residual gas of the working chamber, the argon from the plasma used for 

sample preparation. The concentration of impurities was checked by LEIS and it proved to be 

negligible. Sample surfaces were investigated by the scanning probe microscope having 

atomic resolution which could be used as STM, AFM and Kelvin probe force microscope. 

The surface roughness of Ni layer was determined by STM and we received 0.6 nm RMS 

value (Fig. 1). 

 

In-situ XPS/LEIS measurements and sample annealing 
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The XPS and LEIS measurements were performed alternately during annealing times. 

Both photoelectrons during XPS measurements and helium ions (He
+
) scattered on the sample 

surface during LEIS measurements were detected by the same hemispherical energy analyzer 

(type Phoibos, SPECS, Berlin). The base vacuum in the instrument was 5·10
-10

 mbar. The 

partial working pressure during LEIS measurements was 10
-7

 mbar due to the He
+
 ion beam. 

XPS spectra were obtained by X-ray irradiation of the sample surface using an aluminium Kα 

source with 10 kV accelerating voltage and 10 mA emission current. The ion energy and 

intensity of the He
+
 beam used to LEIS measurements were typically 1 keV and 45 nA. Such 

low bombarding energy and intensity prevented an unnecessary sputtering of the sample 

surface during measurements. The sputtering rate of the He
+
 ion beam was checked by an 

AMBIOS XP-1 type profilometer in a separated measurement of crater depth and we received 

0.05 nm/min. Moreover, between two LEIS measurements the ion beam was blanked by an 

electrostatic beam blanker and the sample was rotated 10 degree around the axis 

perpendicular to the film surface. The beam was focused into a spot of 3 mm in diameter and 

shifted from the centreline axis of the sample with 3 mm. The sample rotation before 

measurements eliminated the surface ion-etching effect since each measurement was made on 

a virgin area of the sample surface. 

The first aim of our experiments was to determine the appearing time of Cu atoms 

migrated through the Ni layer along grain boundaries. This was the time when Cu appeared 

on the Ni surface. LEIS made it possible for us not only to measure this appearing time with 

high sensitivity, but to measure the surface concentration change of Cu atoms, too. The basic 

equation of low energy ion scattering can be found in the paper of H.H. Brongersma et al. 

[15]. According to this equation the mass resolution linearly depends on the initial energy of 

projectiles. This suggests that an increase in primary energy increases the mass separation. 

However, peaks in a LEIS spectrum also broaden with increasing energy. If the scattering is 
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inelastic, the peak width scales with the square root of the primary energy. If the scattering 

between projectiles and target atoms is elastic, the peak width scales linearly with the energy. 

At low ion energies, like in our case, the scattering process can be considered to be elastic, at 

least in first approximation, so the peak width broadens with the energy similar to the mass 

separation, i.e. higher energy does not result in better mass resolution, only the surface 

damage increases. Thus, it is desirable to carry out measurements at small projectile energies, 

although in this case the separation between adjacent masses is not so good and overlaps 

between peaks appearing in kinetic energy spectrum. The peaks, which are overlapped with 

each other, must be decomposed in order to get the exact amount of constituents. The 

decomposition was made by CasaXPS software. 

Annealing of samples was made in the vacuum chamber of the XPS instrument using a 

temperature controller type Eurotherm 3504 in combination with pyrometer temperature 

measurements (Sensortherm prodact, type Metis MI18). In front of the pyrometer onto the 

vacuum chamber flange, a zinc selenide window was mounted to receive an appropriate 

optical transmittance in the range of infrared wavelength. The pyrometer was optically 

focused on the heatable tungsten sample holder and measured its temperature, so the 

emissivity coefficient was chosen for tungsten. Temperature measurement was checked by a 

thermocouple prior to annealing procedures. Finally, the samples were annealed at 

temperatures ranged between 423 K and 473 K with 10 K steps. The temperature at the 

beginning of a measurement was reached in 30-40 s and it was stable within 1 K during the 

whole measurement.  

 

Cap layer and depth profile analysis 

At the end of annealing, an 8 nm thick Ni top layer was sputtered on the sample 

surface for the purpose of depth profile analysis. The depth distribution of Cu along grain 
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boundaries and the concentration on the sample surface were measured by a Secondary 

Neutral Mass Spectrometer (SNMS) in direct bombardment mode. A low-pressure 

radiofrequency plasma was used for both sputter and post-ionization purposes [16,17]. At the 

beginning of plasma sputtering, some time is needed to stabilize the sputter process. The 8 nm 

thick Ni cap layer served as a buffer layer to this stabilization. Without cap layer the 

determination of the correct Cu intensity on the film surface could not be achieved. Ar
+
 ions 

with the kinetic energy of 350 eV were applied to sputter the sample surface through a Ta 

mask having a round-shaped open area with a diameter of 2 mm. The low energy of 

bombarding ions could not evoke a significant intermixing of atoms during sputtering. The 

surface roughness and crater shape were observed by the profilometer used in LEIS 

experiments. While the surface roughness determined the depth resolution [18], the crater 

shape gave information about the lateral homogeneity of the ion bombardment. The high 

detection sensitivity of SNMS gave a possibility to measure the depth distribution of diffusant 

atoms along short-circuits, i.e. along grain boundaries and dislocations, already at low 

temperatures when the lattice diffusion was completely frozen out and before the diffusant 

atoms migrated at the accumulation surface. 

 

4. Results and discussion 

The mass numbers of Ni and Cu are very close to each other, so at low kinetic energies 

used in our experiments their peaks in the energy spectrum were overlapped and their 

intensities could be determined by decomposition of the mixed peak. In order to make the 

decomposition correctly, prior to our annealing measurements, we carried on some calibration 

measurements on copper and nickel standard samples to determine the peak shapes, peak 

positions and relative sensitivity factors. Using these data, the peak decomposition was made 
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by the commercial software CasaXPS. Fig. 2 shows both the mixed NiCu peak in the LEIS 

energy spectrum and the decomposed Ni and Cu peaks. 

Time evolution of Ni and Cu peaks gave information about the time dependence of the 

coverage of Ni layer by Cu atoms. The appearing time was determined from this time 

dependence by extrapolation of Cu peak area to zero. Using the appearing time determined in 

this way, the GB diffusion coefficient could be calculated from the equation of Dgb=h
2
/6t. 

Since the GB diffusion coefficient Dgb is Arrhenius type as generally diffusion processes, Dgb 

can be written in the form of Dgb= Dgb0 ∙exp(-∆Hgb/RT) , where ∆Hgb is the enthalpy of GB 

diffusion, R and T are the gas constant and temperature. This expression can be changed into 

the form of lnDgb=lnDgb0 - (∆Hgb/R)∙1/T. In Fig. 3 lnDgb is plotted against 1/T. As it can be 

seen, the experimental data show this linear type relation and the enthalpy could be 

determined from the linear fit, ∆Hgb = (55±3) kJ/mol, which is much lower than that of 256 

kJ/mol measured by radiotracer method in polycrystalline materials in B-type kinetic regime 

[19]. 

Time evolution of Cu peak intensity yields information about the surface coverage of 

Ni layer by Cu atoms. The surface coverage denoted by θ is 1 at monolayer coverage. Fig. 4 

shows the time dependence of surface coverage. At a constant temperature, the surface 

coverage increased linearly in time until it reached a maximum value of θ = 0.45. This 

linearity completely differs from the exponential type function which is suggested by the 

Equation 2. Holloway and McGuire [9] showed theoretically this linear increase in surface 

concentration of diffusant atoms at the accumulation surface when the diffusion kinetic was 

clearly C-type and when both the source and the sink boundary conditions for diffusant atoms 

were infinite. The linear increase of surface concentration reflected a 2D surface accumulation 

process. The maximum value did not change during further annealing, at least under the 

period which was three times longer of the time needed to reach the maximum. The slope of 
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linear part represents the speed of surface coverage increase which was determined by the 

atomic flux diffused through the Ni layer and appeared on the Ni surface. The results are 

shown in the inset of Fig. 4. Temperature dependence of the slope could be well fitted with an 

exponential function according to the exponential temperature dependence of the GB 

diffusion process. The character and the slope of the curve measured at 473 K differed from 

those of the other curves, as it can be seen in Fig. 4. At 473 K the maximum value of coverage 

was higher than θ = 0.45 and its slope did not fit to the exponential curve in the inset. The 

reason of this behaviour is the mixing of different diffusion kinetics which will be explained 

below. 

The copper intensity on Ni surface was measured by XPS, too. But in our experiments 

we did not experience any linear type increase and any definite saturation value in the 

intensities. The reason is that while in the case of XPS the information depth is a few nm (i.e. 

95 % of photoelectrons come from about 5 nm thick surface layer for Al Kα radiation) and the 

detection sensitivity is not better than 1 at%, in the case of LEIS the information depth is the 

topmost atomic layer and the detection sensitivity is about 10 ppm. While XPS has some 3D 

character, LEIS gives information directly about the surface. In addition to copper 

concentration, we also measured the Ni surface concentration by both LEIS and XPS. The 

XPS intensity of Ni was constant during annealing, the LEIS intensity changed opposite to Cu 

concentration. The XPS was not suitable for Ni concentration measurements because the 

thickness of the Cu layer on the Ni surface was much lower than the XPS information depth 

and the Cu layer did not absorb the electrons escaping from the Ni layer, i.e. the small amount 

of Cu on the surface did not influence the Ni signal. 

Before and after annealing procedures, the surface concentration of copper and its 

depth distribution in Ni layer were measured by SNMS depth profiling. The results measured 

on as-prepared and annealed samples are shown in Fig. 5. The real purposes of these 



  

14 

 

measurements were to observe directly the depth distribution of Cu in the bilayer nanosystem 

and to check the atomic mixing at the interface between Cu and Ni layers of as-deposited 

samples. This latter information was very important since the atomic mixing and, so, the 

interface roughness between Cu and Ni layers depends on the preparation conditions, namely 

on the incident energy of vapour atoms during deposition [20]. If the incident energy is high, 

like in our case which was about 10 eV, the surface roughness and atomic mixing are also 

high. In Fig. 5 the Cu and Ni depth distributions measured experimentally are denoted by 

open symbols. In depth profile analyses based on sputtering, the measured depth distribution 

of an element depends on the surface roughness. The effect of surface roughness can be 

estimated by calculation. Thus, using the experimentally measured surface roughness as an 

input parameter, we calculated a Ni distribution in the Cu film (the cyan curve in Fig. 5). 

Due to surface roughness, the elements of an A/B interface are mixed by sputtering 

even if they were not mixed before. Here the atomic mixing means that both elements are 

sputtered and detected at the same time, and it differs from that of which is evoked by ion 

bombardment in a surface layer. A sharp change in concentration of an element at a rough 

interface results in the same effect as a diffuse change in concentration at a smooth interface. 

The interface width depends on the surface roughness. In order to get the real depth 

distribution of an element, it is important to know the effect of surface roughness, i.e. how it 

modifies the real distribution. So, we supplemented our SNMS measurements with 

calculations of depth distributions induced by surface roughness. These calculations were 

made for an A/B interface with approaching the surface roughness by a Gaussian distribution 

[21]. In our calculations a thin surface layer was defined as a calculation volume and the ratio 

of A and B elements inside this calculation volume was determined. The surface layer was not 

smooth, so both elements could be found in the calculation volume. Finally, the interface 

layer was scanned by this calculation volume in the depth direction to receive the calculated 
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depth distribution of elements. If there was not any atomic mixing during preparation, the 

calculated values should be overlap with the experimental values. If there was some atomic 

mixing, the calculated values differ from the experimental values. As it can be seen in Fig. 5, 

the calculated and measured curves differ from each other, i.e. Cu and Ni atoms were mixed 

during deposition. Molecular dynamics simulations performed on Ni/Cu/Ni multilayers 

support this experimental result [20]. The SNMS depth profile analyses gave also information 

about the sample quality. The analyses showed that there was not any degradation in layer 

quality due to annealing up to 473 K temperature. 

Annealing procedures resulted in interdiffusions between the Ni/Cu layers already at 

low temperatures. The Ni atoms diffused into the Cu layer, and vice versa. But while the Si 

substrate worked as a diffusion barrier for Ni atoms, the Ni surface was free for Cu atoms. 

Therefore Cu atoms could diffuse through the Ni layer and accumulate on the exit surface 

called accumulation surface. In Fig. 5 the peak in the Cu intensity (red line) near the surface 

shows this accumulation. The intensity gradient inside the Ni layer is proportional to the 

concentration gradient of Cu in the grain boundaries. Similar concentration gradients were 

calculated for thin films containing uniformly spaced grain boundaries by Gilmer and Farrell 

[3]. 

The annealing temperatures applied by us were so low that the diffusion was confined 

to GBs forming a pure C-type kinetic, except the highest temperature where B-type kinetic 

was also launched besides C-type. That is why at the highest temperature the diffusion 

coefficient and atomic flux do not fit well with the curves in Figs. 3 and 4. To our knowledge, 

this was the first experimental arrangement by which the temperature border between C- and 

B-type diffusion kinetics could be measured so precisely. It should be noted that the appearing 

time measured by us belongs to many GBs, so we could only determine an average value for 

GB diffusion coefficient. 
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The other important result is the saturation of surface coverage with Cu atoms which is 

independent of the temperature (Fig. 4). In previous works of GB diffusion measurements 

published in scientific papers no surface saturation was suggested. E.g. in the papers of G. 

Erdélyi et al. [14] and J.C.M. Hwang et al. [22] the authors definitely supposed a uniform 

distribution of diffusant atoms on the accumulation surface in the form of one or two 

homogeneous atomic layers. Our experimental result, that the surface coverage of Cu is lower 

than 1, shows just the opposite of this statement. The model which helps us to understand our 

results is the DDA model (Deposition, Diffusion and Aggregation model) applied by A.-L. 

Barabási et al. to describe the atomic morphology on a flat surface during submonolayer 

deposition [23]. In this model, the atoms are deposited by MBE (molecular beam epitaxy) 

with a constant flux. In our experiments the atomic flux is provided by grain-boundary (short-

circuit) diffusion through a thin layer. The atoms which diffused along grain boundaries leave 

the GB surface area and continue their motion on the surface with much higher diffusivity like 

the atoms deposited by MBE. It does not matter how the atoms get onto the surface, by grain-

boundary diffusion or deposition, their motion and surface arrangement are independent of the 

preparation method. 

A free atom moves on the surface until it meets another one and they form atomic 

clusters with much smaller surface diffusivity. By meeting with newer atoms, the cluster 

diameter increases and the diffusivity decreases. Finally, these clusters form islands having 

fixed surface positions. If free atoms meet such an island, they stick to the edge of this atomic 

island and become also immobile. The real process is determined by the ratio of F/DS, where 

F is the atomic flux arriving on the surface and DS is the surface diffusivity. In our 

experiments F is the slope of the linear part of the time dependence of surface coverage (Fig. 

4), so it can be easily determined experimentally. Both processes are temperature controlled, 

i.e. they depend on energy barriers of ∆ES and ∆Egb (DS = DS0 ∙exp(-∆ES/RT) and Dgb = Dgb0 
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∙exp(-∆Egb/RT), where ∆ES and ∆Egb determine the surface and GB diffusivities, DS0 and Dgb0 

are constants). At temperatures of our measurements ∆ES is lower than ∆Egb, and, as a 

consequence, DS is higher than Dgb by 3 or 4 orders of magnitude. In other words, surface 

diffusion is much faster than GB diffusion [24]. However, the temperature dependence of the 

two types of diffusion is approximately the same, so the temperature dependence of the ration 

of F/DS can be neglected, at least in the first approximation. That is why we experienced a 

temperature independent maximum value in the time dependence of surface coverage 

functions (Fig. 4). We believe that this maximum value (θ = 0.45) is not a universal constant, 

it rather depends on the material itself. As we mentioned previously, this maximum value 

stayed constant during further annealing. In this period, Cu atoms on the accumulation surface 

diffused to already existing Cu islands, stuck to them, and formed the second, third, etc., 

atomic layer of islands. It is well known that Volmer-Weber type film growth produces three 

dimensional islands on a substrate [25]. In our case, Ni layer had a nanocrystal structure 

which supported the Volmer-Weber type film growth instead of layer by layer growth. A Cu 

island on the surface of a Ni nanolayer is shown in Fig. 6. The copper content of these islands 

was identified by Kelvin probe force microscope based on non-contact SPM technique. We 

could measure local contact potential difference between the island and other part of the film 

due to different surface structures and atoms, but the irrefutable evidence for high copper 

content of surface islands is the peak in copper intensity in Fig. 5 at the film surface. The 

thickness of the surface Cu layer measured by SNMS was about 7 nm which equals the peak-

to-valley height of surface islands measured by STM. 

In the paper of Rasuli et al., the Cu diffusivity through a Ni layer was measured by 

AES surface accumulation method [26]. The authors claimed that Cu diffused through the Ni 

layer, if the Ni layer thickness was lower than 4 nm (see the Fig. 3 in [26]). Contrary to this 

result, in our experiments we measured the time dependence of surface concentration of Cu 
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when the Ni layer thickness was 25 nm. The authors of the paper Rasuli et al. did not see Cu 

on the Ni surface at higher thicknesses because the sensitivity of their experimental method 

was probably too low [26], while in our work the sensitivity of LEIS was about 4 order of 

magnitude higher. 

 

5. Conclusion 

Experimental determination of diffusion coefficients in pure C-type kinetic regime 

was presented. A combined measurement technique of LEIS and SNMS gave a unique 

possibility to measure the fast diffusion in nanolayers at low temperatures. Furthermore, the 

advantage of this technique was that determination of Dgb did not require a complicated 

calculation with segregation factors in order to remove the effect of B-type diffusion kinetic 

and, as a result of this, the diffusivity could be studied in a simply way, only by measurement 

of the appearing time. The temperature range of pure C-type diffusion kinetic could be 

determined very precisely. Fast atomic motions in grain boundaries resulted in short 

appearing times. By STM measurements we could prove that diffusant atoms on the 

accumulation surface did not form a continuous layer. Instead, a Volmer-Weber type layer 

growth was realized in nanoscale islands form. 
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Figure captions 

 

Fig. 1. The grain structure of Ni nanolayer measured by STM. 

 

Fig. 2. The mixed NiCu peak in a LEIS spectrum and its decomposition. The sample was 

annealed at 443 K during 35 min. 

 

Fig. 3. Temperature dependence of GB diffusion coefficient of Cu in Ni nanolayers. The 

experimental errors equal with about the diameter of the dots. 

 

Fig. 4. Time dependence of surface coverage (θ) at different temperatures. Inset: temperature 

dependence of the atomic flux diffused through the Ni layer. The experimental errors are not 

shown in figure because the size of error bars is not higher than the size of symbols. 

 

Fig. 5. Depth distributions of Cu and Ni on a silicon substrate were measured experimentally 

by SNMS. The thickness of the Cu and Ni layers was 25 nm. For simplicity we present only 

the results of as-deposited and annealed at 463 K samples. The depth distribution of Si and the 

calculated depth distribution of Ni are also presented in the figure. 

 

Fig. 6. STM image of a Cu island formed on the Ni layer due to GB and surface diffusions at 

the beginning of diffusion process. The sample was annealed at 463 K during 8 minutes. This 

annealing time includes both the warm-up time needed to reach the annealing temperature and 

the appearing time of Cu diffusant atoms. 

  



  

23 

 

 

  



  

24 

 

 

  



  

25 

 

 

  



  

26 

 

 

  



  

27 

 

 

  



  

28 

 

 

  



  

         Surface coverage                                                                                                  Depth structure 

 

 

 

 

 

 



  

29 

 

 

Highlights 

 

Grain-boundary diffusion at nanoscale. 

Surface atomic islands formed by grain-boundary and surface diffusions. 

Application of low energy ion scattering for study of nanoscale diffusion mechanisms. 

 


