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Department of Measurement and Information Systems

Budapest University of Technology and Economics
Budapest, Hungary

Email:{guenfoud, antal}@mit.bme.hu

Abstract—Laboratory diagnostic tests provide a fundamental,
traditional level in clinical practice and biomedical research.
Despite the detailed diagnostic characterization of individual
laboratory tests, their overall interdependences has not been
investigated. We summarize a probabilistic framework to define
optimal measurements, which relies on comprehensive, multivari-
ate probabilistic models of laboratory diagnostic tests formal-
ized as probabilistic graphical models. Within the probabilistic
framework we propose sequential inference schemes to improve
requested tests. We discuss the challenges and propose scenarios
for the integrated application of a decision support system
optimizing the selection of laboratory tests with an interplay
of clinicians and the laboratory. We also present results of pre-
processing a dataset from a central laboratory of a large medical
center, which will be the basis of later real-world evaluations.

Index Terms—artificial intelligence, probabilistic graphical
models, Bayesian learning, optimal decision, laboratory diagnos-
tic test, cost efficiency

I. INTRODUCTION

The availability of massive, electronic health datasets pro-
vides an unprecedented opportunity in early diagnosis and per-
sonalized medicine. Modern cornerstones of personal health
information are the various molecular biological datasets cor-
responding to different biological levels and corresponding
measurement technologies, such as genetics, transcriptomics
or proteomics. However, clinical laboratories are still have a
central role in clinical practice: for myriads of clinical requests
about diagnostic tests from a wide range, they provide stan-
dardized, high-quality information with strict time-constraints.
On the one hand, this separated service model focusing on the
measurement of the requested tests may increase efficiency at
the population level, e.g. optimizing the measurement process
of multiple requests according to the laboratory infrastructure
and workload. But on the other hand, it can decrease efficiency
at the level of patient, e.g. the measurement process in an
actual case could be guided by the measured information,
optionally involving the clinical expert as well. Specifically, a
sequential, adaptive measurement process of laboratory tests,
potentially with an interaction between the laboratory and
clinical diagnostician could result in the following:

1) Canceled measurements The laboratory could inform
the clinician that certain requested tests are confidently
predictable based on earlier measurements from the
patient’s history and from current measurements. De-
pending on the suspected disease and corresponding

diagnostic protocol, the clinician could decide that the
in silico predictions are sufficient and could cancel the
pending requests.

2) Extended measurements The laboratory could inform the
clinician that the value of certain not requested tests
are abnormal with high confidence, predicted based on
earlier measurements from the patient’s history and from
current measurements. Depending on the suspected dis-
ease and corresponding diagnostic protocol, the clinician
could decide that the measurements could be indeed
valuable for those variables and expand the request.

We investigate the following scenario of adaptive, sequential
laboratory diagnostic tests, for which the assumptions are
motivated by our real-world cooperation with the Central
Laboratory of the Semmelweis University:

1) Separated laboratory information The laboratory has
no access to the patient’s medical history and current
suspected diseases, but basic demographic information,
such as gender and age and earlier laboratory tests for
the patients may be available.

2) Requested tests with urgent/compulsory subsets and sug-
gested ordering The clinician could ask the measurement
of test(s) indicating also that certain measurements are
urgent and/or compulsory. Suggested ordering for their
sequential measurement can be also indicated.

3) Predictable tests The laboratory could inform the clin-
ician that the value of certain tests are confidently
predictable based on earlier measurements from the
patient’s history and from current measurements.

The central assumption of our approach is that laboratory
diagnostic tests have a robust probabilistic dependency struc-
ture, in fact, the redundancy of the current set of tests is one
of the main challenge in laboratory medicine [15]. Because
in our scenario information about indications and diseases are
not available, we focus on the separated, standalone depen-
dency structure of the tests. Note that this property excludes
the usage of information about well-known disease-specific
multivariate tests. Furthermore, to simplify our task, as a first
approximation, we ignore the temporal aspect of laboratory
tests, e.g. we do not perform a time-series analysis and do not
model that certain tests are used to monitor the result of a
surgery.
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Based on these assumptions, the main questions of our work
is twofold:

1) Predictable measurements We try to estimate the distri-
bution, variance and expected value of the number of
correctly predictable measurements.

2) Unmeasured abnormalities We try to estimate the dis-
tribution, variance and expected value of the number of
unmeasured tests with abnormal values.

Two notes are in order. Note that certain measurements
are prescribed by medical protocols, e.g. to exclude vital
conditions. Thus, the expected value of predictable mea-
surements provides only an upper bound for the potentially
avoidable laboratory tests. Analogously, certain measurements
are trivially abnormal in certain medical conditions, so they are
not requested to measure, consequently the expected value of
unmeasured abnormalities is only an upper bound for missed,
medically relevant measurements.

In short, our assumptions are twofolds. Firstly, it relies
on a non-temporal learning phase, in which laboratory test
measurements in a given, recent period are merged into a vec-
torial description as current state, and earlier measurements are
neglected. This first phase results in a a posteriori distribution
over models. Secondly, we will approximate inference for a
given patient using this a posteriori distribution over models
and perform a sequential inference in a given model using
laboratory tests as evidences of the current state of a patient.

II. EARLIER WORKS

The broader context of our formalization and approxima-
tion for an adaptive, sequential use of laboratory diagnostic
tests encompasses the full-fledged Bayesian decision theoretic
framework, including actions for the selection of tests for
measurements, for the rejection of a measured value and
an action for stopping with the measurements and possibly
suggesting interventions based on the diagnosis. The optimal
selection of actions resulting in interventions and observations,
leads to the concept of expected value of an experiment
(EVE) [18].

Ignoring the potential interventional consequences, the uti-
lization of the temporal sequence of measurements for a given
patient can be seen as a time-series analysis, especially in the
prequential and online learning approaches for non-stationer
processes. This scenario corresponds to the monitoring of the
result of a surgery using a panel of biomarkers for example
in oncology.

The real-world constraints on measuring laboratory tests,
especially the financial and temporal constraints, can be also
investigated in the frameworks of active learning and budgeted
learning.

The measurement itself of a laboratory test usually indicates
an increased belief for a potential abnormal value, i.e. the
informativeness of the mere availability of a measured test.
Thus, the usual laboratory test datasets violate the missing-at-
random (MAR) assumption and require special approaches [5].

Assuming that the inductive part results in a limited number
of models, the adaptive, sequential use of laboratory tests

in this phase corresponds various types of inferences in a
complex, fixed model to explore the current state of a given
patient. If utility functions are available, then value of informa-
tion calculations could be used to support information gather-
ing [4], [6], [7], [9], [11]. Lacking informative utility functions,
general domain specific functions can be constructed and/or
sensitivity of inference could be used to support information
gathering. Another approach is to use explanation generation
methods [3], [10].

The joint analysis of all laboratory tests is a natural exten-
sion of the network paradigm from diseases, genes, drugs,
phenotypes and symptoms [20]. Indeed, both data mining
and deep analysis of electronic health records are among the
top priorities for improving health care [2], [8], with special
emphasis on using laboratory diagnostic tests [12]–[17], [19].

Unfortunately, these earlier frameworks and methods are not
directly applicable for this problem, so there are no available
benchmark results.

III. DOMAIN AND DATASETS

The raw dataset contains all results for the measurements
of 225 most relevant laboratory blood tests between 2011
and 2015 October at the Central Laboratory of the Semmel-
weis University. From this 4-year period, the original dataset
contains 13,754,888 measurements from 1,376,759 orders for
1,392 laboratory tests and 202,976 persons.

The measurements are grouped by their orders, which
usually correspond to a visit to a medical professional and
a respective blood sampling. For each order, the urgency of
the measurement and the institute of the doctor ordering the
tests are indicated, but not used in the current analysis. For
each patient, gender and age will be available, but could not
yet accessed. The identifiers and the abbreviated names of
the laboratory diagnostic tests are the World Health Organi-
zation (WHO) codes and the Logical Observation Identifier
Names and Codes (LOINC) codes. The reference interval
and the measurement unit for each measurement is separately
indicated in the database, which allows the following semi-
quantitative coding and interpretation:

1) Non-measured (0): not suspicious or relevant, default
assumption for the unmeasured value is normal.

2) Measured-normal (1): suspicious and relevant, but
measured test value is in the reference range.

3) Abnormally-low (2): the measured test value is below
the lower bound of the reference range.

4) Abnormally-high (3): the measured test value is above
the upper bound of the reference range.

In the current analysis, for each patient the measurements
in a given, most recent period are merged and earlier mea-
surements are neglected. We treat these merged tests vectorial
representation as the current state of the patient.

The applied combinations for the window size and merge
function are as follows. We split the data for 5 sub-data as
last month (1m), last 3 months (3m), last half year (6m), last
year (1y) and last 2 years (2y). In the continuous version
of the merge, we aggregate all the sub-data calculating the



maximum (max), minimum (min), average (avg) and median
(med) values or keeping only the last measurements (last). In
the discretized version of the merge, we first convert each
value into a binary normal(0)/abnormal(1) value, then we
aggregate all the sub-data calculating their AND (and) and
OR (or) combinations or keeping only the last measurements
(last, there is no difference in this case between the continuous
and discretized version).

For each aggregation, we generated the following three
types of matrices with semi-quantitative values, when the rows
are the patients and the columns are the laboratory tests.

1) Measurement indicator matrix (IM ) has binary values,
where 1 means that the laboratory test is performed for
the patient in the given period, and 0 if not performed.

2) Abnormality data matrix (D) The value 2 means that
lab-test is performed for patient and its merged value
is outside the reference/normal range in the continuous
case and 1 in the discretized case. The value 1 means
the analogous case and empty means that the lab-test is
not performed for the patient in the given period.

3) Ternary data matrix (T ). Technically, it is a completed
version of the Abnormality data matrix by setting its
all empty items to 0. An intuitive interpretation is that
a non-measured test indicate an a priori normal value,
which is in certain cases suggest a smaller risk then a
measured, i.e. suspicious, but normal value.

Fig. 1 shows the data preprocessing pipeline.

Fig. 1. The preprocessing pipeline resulting discrete data matrices.

We have developed Python scripts for these preprocessing
steps and exploratory statistical data analysis.

IV. METHODS

The central tasks according to our assumptions are the
indication of confidently predictable tests among the requested
ones and tests with confidently abnormal values among the
unrequested ones. In our non-temporal approach using the
described merging and discretization, we conceive these tasks

as (1) the indication of confidently predictable tests among
the known tests after merging and (2) as the indication of
tests with confidently abnormal values among the unknown
tests after merging. We introduce concepts for the probabilistic
formalization of these questions in case of a new, actual patient
with index N + 1, assuming that the same preprocessing is
applied in this case as for the data matrix DN with N samples.
Let KN+1 denote the set of the indices of known tests for
patient N+1: i ∈ K iff IN+1,i = 1. The known set is divided
to an evidence set E ⊂ K and query set Q = K \ E. Using
these index sets, DN+1,K denotes the subvector of known
tests. We call the tests in Q as l − τ predictable iff |E| = l
and tests DN+1,Q are predictable with at most τ probability:

∀i ∈ Q : τ < max
j=1,2

p(DN+1,i = j|DN+1,E , DN ). (1)

For a given τ , the minimal value with this property is
denoted with lN+1(τ), i.e. the size of the minimum number of
tests from the known set sufficient the predict the rest of the
known ones. Note that the set of potentially redundant tests
could be defined more precisely using a multivariate approach.
Using this univariate formalization, the number of τ -probably
redundant tests is defined as

rN+1(τ) = |KN+1| − lN+1(τ). (2)

Analogously, the set CN+1(τ) of probably abnormal vari-
ables with threshold τ is defined as follows

i ∈ CN+1 : τ < p(DN+1,i = ”abnormal”|DN+1,K , DN ).

We apply Bayesian network models Mi in the Bayesian
model averaging framework to approximate the predictive
distributions, i.e. for target Y

p(Y |DN+1,K , DN ) ≈
∑
Mi

p(Y |Mi, DN+1,K)p(Mi|DN ).

For this purpose, currently we are extending and evaluating
Markov Chain Monte Carlo (MCMC) methods over Bayesian
network structures developed earlier in our group [1]. In the
general batch case for M patients DN+1:N+M , we treat the
cases separately, because of computational limitations.

V. RESULTS

The laboratory test measurements are highly incomplete,
as they are specific to diseases and clinical conditions. Using
only the last laboratory visit for each patient, Fig. 2 shows
the proportion of cases with measurement, valid value and
normal value for the laboratory tests (proportion of ”Valid”
is not shown as nearly all measurements have proper syntax,
thus valid). The existence of a measurement means its presence
in the dataset, its validity means that it has proper syntactic
format and the reference interval (a.k.a. normal region) is
available, finally, normality means that the measurement of
a test has a valid decoding in the reference region.

In the current approach we merge the laboratory visits
using varying window size. Table I represents proportions of



Fig. 2. Proportion of cases that were requested (”Measured”) and their value
is in the reference range (”Normal”).

measured tests, valid values and normal values in the dataset
using 1 month (1M), 3 month (3M) and 6 month (6M) window
sizes for merging the results per patients.

TABLE I
PROPORTIONS OF MEASURED TESTS BY ACCUMULATING RESULTS.

Measured Valid Normal
1M 10.46% 10.44% 8.03%
3M 10.66% 10.64% 8.39%
6M 21.75% 21.71% 17.13%

As results in Table I show the effect of merging laboratory
test results in a 3 month period is negligible, which probably
related to clinical protocols limiting the repetition of certain
tests. These results indicate that the high level of incomplete-
ness of the laboratory test data remains a major challenge,
as the ratio of valid data is still around 20% after merging
results in a 6 month period (homogeneity assumptions of the
clinical state for longer periods usually cannot be expected).
However, incompleteness is informative for laboratory tests,
as indicated by the proposed semi-quantitative coding and
interpretation, which property suggest the use of respective,
complete datasets.

Currently, we are investigating the effect of discretization,
approaches to cope with incomplete data and computational
schemes to perform Bayesian inference using Monte Carlo
methods jointly over the missing part of the dataset and
predictive models.

VI. CONCLUSION AND FUTURE WORK

The prediction of unknown tests could be used both in
actual clinical decision support and in evaluation of health
policies. From clinical point of view, the investigated methods
aim to support the cost-effective use of laboratory capacities,
as the set of the requested tests can be adaptively modified.
Additionally, these functionalities can also support quality
control implementing professional protocols, but it could also
help the design and refinement of diagnostic protocols.
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[1] Péter Antal, András Millinghoffer, Gábor Hullám, Csaba Szalai, and
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