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Abstract  

Success of cancer treatment is often hampered by the emergence of multidrug resistance (MDR) 

mediated by P-glycoprotein (ABCB1/Pgp). Doxorubicin (DOX) is recognized by Pgp and 

therefore it can induce therapy resistance in breast cancer patients. In this study our aim was to 

evaluate the susceptibility of the pegylated liposomal formulation of doxorubicin 

(PLD/Doxil®/Caelyx®) to MDR. We show that cells selected to be resistant to DOX are cross-

resistant to PLD and PLD is also ineffective in an allograft model of doxorubicin-resistant mouse 

B-cell leukemia. In contrast, PLD was far more efficient than DOX as reflected by a significant 

increase of both relapse-free and overall survival of Brca1-/-;p53-/- mammary tumor bearing mice. 

Increased survival could be explained by the delayed onset of drug resistance. Consistent with the 

higher Pgp levels needed to confer resistance, PLD administration was able to overcome 

doxorubicin insensitivity of the mouse mammary tumors. Our results indicate that the favorable 

pharmacokinetics achieved with PLD can effectively overcome Pgp-mediated resistance, 

suggesting that PLD therapy could be a promising strategy for the treatment of therapy-resistant 

breast cancer patients.  

Keywords: breast cancer, multidrug resistance, pegylated liposomal doxorubicin, P-glycoprotein, 

genetically engineered mouse model 

 

Introduction 

Chemotherapy remains the principal therapeutic modality in cancer treatment. Despite 

recent successes, such as the discovery of the BCR-ABL tyrosine kinase inhibitors in chronic 

myeloid leukemia (CML), all-trans retinoic acid (ATRA) in acute promyelocytic leukemia (APL) 
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and other advances in testicular cancer, pediatric leukemias and Hodgkin’s lymphomas, which 

have demonstrated striking effects on patients survival [1], resistance and relapse remains a major 

obstacle [2].  

Breast cancer is the most common malignancy in women. Approximately 60% of the breast 

cancer patients diagnosed at an early stage of the disease receive chemotherapy, but only a minor 

fraction of patients actually benefit from it [3]. 30% of women diagnosed with early stage breast 

cancer will progress to metastatic disease where there are only few treatment options [4]. Response 

to anthracycline- or taxane-based treatment regimens is overall weak and not long-lasting [5]. A 

study concluded that 50-70% of relapsing tumors from surgically removed adenocarcinomas were 

already drug resistant [6].  

Resistance to anticancer agents is based on several mechanisms. Cancer cells can 

downregulate the drug target, tune down pathways leading to apoptosis, upregulate DNA repair 

mechanisms or increase the metabolism of drug molecules [7]. One of the most frequent and most 

investigated mechanisms of cellular drug resistance relies on the active efflux of the 

chemotherapeutical compounds from the cells. P-glycoprotein (ABCB1/Pgp), a member of the 

ATP Binding Cassette (ABC) transporter family was shown to extrude numerous, structurally 

unrelated chemotherapeutic drugs from resistant cancer cells [8]. There is ample evidence to prove 

the link between the activity of Pgp and clinical anticancer drug resistance. Pgp expression is an 

independent prognostic factor in acute myeloid leukemia (AML) [9,10] and acute 

nonlymphoblastic leukemia (ANLL) [11]. Pgp function in tumor cells shows negative correlation 

with response to the treatment and reliably predicts therapy response in AML [12].  

Recently, genetically engineered mouse models (GEMMs) have been introduced to the 

study of drug resistance mechanisms. GEMMs closely mimic cancer in human patients and 
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therefore offer a unique opportunity to study the evolution of drug resistance. In particular, 

conditional deletion of the Brca1 and p53 genes was shown to give rise to mammary carcinomas 

that mimic many aspects of the human disease [13]. In contrast to the xenograft models, these 

spontaneous tumors become drug resistant as a result of the treatment [14]. Like most human 

cancers, Brca1-/-;p53-/-  tumors show initial sensitivity to doxorubicin, topotecan, cisplatin [15], 

and the poly(ADP-ribose)-polymerase (PARP) inhibitor olaparib, which induce synthetic lethality 

in BRCA1- or BRCA2-deficient cells [16]. However, the tumors always acquire resistance to 

docetaxel, doxorubicin, topotecan or olaparib [17,18], based on the increased expression of the 

Abcb1 or Abcg2 genes. Inhibition of ABCB1 using tariquidar successfully reversed drug 

resistance [19], and the relevance of the efflux-based drug resistance was also confirmed in ABC 

transporter-deficient tumors [18].  

While there is a constant need for finding new targets, the efficacy of existing drugs could 

also be restored by eliminating resistance mechanisms. Unfortunately, attempts to circumvent the 

reduced drug accumulation by inhibiting drug efflux have failed in clinical trials, because 

inhibition of Pgp in cancer cells altered the pharmacokinetic properties of the coadministered 

cytotoxic compounds [20]. Because selective modulation of Pgp in cancer cells remains difficult 

to achieve, attempts to circumvent MDR rely on further strategies such as the targeting the 

paradoxical hypersensitivity of MDR cancer [21–24]. Another possibility is to develop drugs that 

bypass efflux either through the chemical modification of the cytotoxic compounds or through 

novel formulations of existing therapeutics [25].   

Doxorubicin (DOX) is still one of the most effective chemotherapeutic agents used in lung, 

breast, ovarian, uterine cancers and in lymphomas and leukemias [26–28]. The pegylated 

liposomal formulation of doxorubicin (PLD/Doxil®/Caelyx®) was developed to overcome 
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DOX’s dose limiting cardiotoxicity and myelosuppression [29]. PLD has the ability to avoid the 

reticuloendothelial system (“stealthness”) [30], and as a result of the enhanced permeability and 

retention (EPR) effect, PLD is “passively” targeted to tumors [31,32]. PLD’s efficacy was 

evaluated in several allo- and xenograft models of colon [33], breast [34], ovarian [35], lung [36], 

leukemia [37], lymphoma [38], bladder [39] and prostate cancer [40]. These studies have 

convincingly demonstrated that PLD has an equal or even better performance than DOX (reviewed 

in [41]). Clinical trials comparing PLD to DOX in patients with metastatic breast cancer (MBC) 

proved that both treatments are comparably efficient [42].  

DOX is recognized by Pgp and therefore it can induce therapy resistance in breast cancer 

patients [43]. In this study our aim was to evaluate the susceptibility of PLD to MDR. We show 

that cells selected to be resistant to DOX are cross-resistant to PLD. However, in contrast to 

doxorubicin, PLD treatment results in a durable response of BRCA1-deficient mammary tumors, 

and PLD remains effective in DOX-resistant ABCB1-expressing tumors.  

 

Materials and Methods 

Drugs 

Cytotoxic drugs Doxorubicin (DOX, TEVA), PEGylated liposomal Doxorubicin Caelyx® (PLD, 

Janssen) and Cisplatin (CDDP, Accord Healthcare) were purchased directly from the 

manufacturers. The compounds used in the DT40 cytotoxicity assays were purchased from 

Selleckchem (olaparib), Sigma-Aldrich (paclitaxel, SN-38, doxorubicin) or Accord Healthcare 

(PLD, 5-FU) or TEVA (etoposide). Daunorubicin was a kind gift from Dr. Gábor Mező (ELTE, 

Hungary). 

 



6 

 

 

 

Cell lines 

The human uterine sarcoma cell lines MES-SA and the doxorubicin selected MES-SA/Dx5 were 

obtained from ATCC (MES-SA: No. CRL-1976™, MES-SA/Dx5: No. CRL-1977™). The human 

mammary carcinoma cell lines MCF7, T47D, MDA-MB-231, MDA-MB-468, Hs578T, BT-549, 

the mouse leukemic P388 and its doxorubicin selected subline P388/ADR were obtained from the 

National Cancer Institute’s Developmental Therapeutics Program  (National Institutes of Health). 

P388/ADR, and Dx5 cells were maintained in 800 and 500 nmol/L doxorubicin (Adriamycin), 

respectively. The human breast cancer and the mouse leukemia cell lines were cultured in RPMI 

media (Life Technologies) supplemented with 10% fetal bovine serum, 5 mmol/L glutamine, and 

50 units/mL penicillin and streptomycin (Life Technologies). MES-SA and MES-SA/Dx5 cells 

were cultured in supplemented DMEM media (Life Technologies). The chicken DT40 B cell line  

was grown in RPMI-1640 medium supplemented with 7% fetal bovine serum, 3% chicken serum, 

50 μM 2-mercaptoethanol and penicillin/streptomycin. Wild-type DT40 clone18 cells [44] and a 

BRCA1 null mutant line [45] were used. All cell lines were cultured at 37 °C, 5% CO2. 

 

In vitro cytotoxicity assay 

Viability was assessed by the PrestoBlue® assay (Life Technologies), according to the 

manufacturer’s instructions. Briefly, cells were plated in 96- or 384-well plates, treated in the given 

concentration range with the indicated compounds for 120h or 72h in case of DT40 cells. Viability 

of the cells was measured spectrophotometrically using an EnSpire microplate reader (Perkin 

Elmer). Data were normalized to untreated cells; curves were fitted by the Graph Pad Prism 5 
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software using the sigmoidal dose–response model. Curve fit statistics were used to determine IC50 

values.  

 

Immunohistochemistry 

Snap-frozen tissues were cut with a cryostat into 5 μm sections. The tissue slices were transferred 

onto microscope slides and fixed with ice-cold methanol for 10 min. Tissue sections were then 

washed in PBS, blocked with 3% bovine serum in PBS (1 hr), stained with hematoxylin and eosin 

and then the sections were mounted with ProLong Gold (Life Technologies). 

Immunohistochemistry images were examined by an Eclipse TS100 microscope (Nikon). 

 

RNA isolation and RT-PCR 

Snap-frozen tumor samples were pulverized under liquid nitrogen and were homogenized in 

TRIzol™ Reagent (Life Technologies). Total RNA was isolated from tissue samples using Direct-

zol® MiniPrep kit (Zymo Research) according to the manufacturer’s guidelines. In-column 

DNAse I treatment was applied to prevent DNA contamination. cDNA samples were prepared 

from 300 ng total RNA using the Promega Reverse Transcription System Kit. The Pre-Developed 

TaqMan® assay Actin ß (Actß) (Life Technologies) was used as endogenous control in real-time 

qPCR experiments; for quantifying Abcb1a and Abcb1b mRNA levels the respective TaqMan® 

primers were used. Real time PCR analyses were carried out using the StepOne™ Real-Time PCR 

System (Life Technologies); mRNA fold changes were determined using the 2−ΔΔCt method. 

Relative mRNA levels were presented as mean values ± S.E.M. of 3 independent experiments. 
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Animal experiments 

All animal protocols were approved by the Hungarian Animal Health and Animal Welfare 

Directorate according to the EU’s most recent directives. All surgical procedures were performed 

according to the Committee on the Care and Use of Laboratory Animals of the Council on Animal 

Care at the Institute of Enzymology, RCNS in Budapest, Hungary (22.1/2291/3/2010). 

P388 and P388/ADR cells (1×106/animal) were injected into the intraperitoneal cavity of 6-8 week 

old male BDF1 mice and 48h later a single dose of saline, doxorubicin (3 mg/kg) or PLD  (3 or 5 

mg/kg) were administered intraperitoneally. The animals were weighted 3 times per week and 

monitored multiple times per day for any sign of pain. MTD was determined based on the weight 

loss of healthy FVB mice. Drug resistance of tumor implants was induced as described by 

Rottenberg et al. [17]. Briefly, tissue pieces (1–2 mm in diameter) obtained from Brca1-/-;p53-/- 

FVB mouse mammary tumors (a kind gift from Sven Rottenberg, NKI) were transplanted 

orthotopically into the mammary fat pad of wild type FVB mice (Harlan) under anesthesia (20 

mg/kg zolazepam, 12.5 mg/kg xylazine, 3 mg/kg butorphanol, 20 mg/kg tiletamine). The tumor 

size was monitored at least 3 times per week by caliper measurements after the tumors became 

palpable. Tumor volume was calculated using the V=length×(width2/2) formula. When the volume 

of the tumors reached ~200 mm3, DOX and PLD treatment was initiated using the maximum 

tolerable dose (MTD, 5 and 8 mg/kg iv respectively). Treatments using the MTD were repeated 

every 10 days unless the size of the tumors decreased to 50% of its original volume. In that case 

treatment was repeated when the tumor relapsed to its original size. Animals were sacrificed when 

the tumor volume reached ~2000 mm3. 
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Measurement of serum and tumoral doxorubicin levels after DOX or PLD treatment 

FVB mice were treated with a single dose of intravenous doxorubicin (5 mg/kg) or PLD (8 mg/kg). 

Blood samples were taken before administration and after 5, 15, 30, 60, 180, 360, 1440, 2880 

minutes by cardiac puncture of euthanized animals. Blood serum was separated by centrifugation 

at 4000 rpm for 15 minutes at 4°C. For the determination of tumoral doxorubicin levels tumor 

pieces obtained from Brca1-/-;p53-/- FVB mouse mammary tumors were transplanted 

orthotopically into the mammary fat pad of wild type FVB mice. When the volume of the tumors 

reached ~200 mm3, DOX and PLD treatment was initiated using the maximum tolerable dose 

(MTD, 5 and 8 mg/kg iv respectively). Animals were sacrificed after 24, 48 and 72 hours; the 

tumors were mechanically homogenized in phosphate-buffered saline (~200mg/ml)  and subjected 

to acetonitrile protein precipitation. LC–MS/MS analysis was performed using a QTRAP 6500 

triple quadruple – linear iontrap mass spectrometer, equipped with a Turbo V Source in 

electrospray mode (AB Sciex, CA, USA) and a Perkin Elmer Series 200 micro LC system 

(Massachusetts, USA). Chromatographic separation was achieved using an Agilent Zorbax SB 

C18 column (75 mm × 4,6 mm, 3,5µm). Sample was eluted with a gradient of solvent A (0.1% 

formic acid in water) and solvent B (0.1% formic acid in acetonitrile). Quantitation of doxorubicin 

was performed using multiple reaction monitoring mode (MRM) with the transitions of m/z 544 

→ 361 (quantifier) and  m/z 544 → 130 (qualifier). 

 

Results 

PLD does not overcome ABCB1-mediated doxorubicin resistance in vitro 

To evaluate the effect of pegylated liposomal formulation on the in vitro toxicity of 

doxorubicin, we compared the toxicity of DOX and PLD in the NCI-60 breast cancer cell lines. 
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Whereas DOX showed strong toxicity in all six cell lines, the IC50 values of PLD were on average 

51-fold higher (Table 1). MDA-MB-468 cells were relatively more sensitive to both cisplatin and 

PLD, in line with the loss of PTEN expression in this cell line [46]. Next, we evaluated the 

susceptibility of DOX and PLD to Pgp-mediated MDR, using pairs of drug-sensitive and multidrug 

resistant cell lines. As expected, A431-B1, MESS-SA/Dx5 and P388/ADR cells expressing Pgp 

were resistant to DOX as compared to their sensitive counterparts. Pgp expression also conferred 

resistance to PLD, which was virtually nontoxic to A431-B1, MESS-SA/Dx5 and P388/ADR cells. 

Addition of the Pgp-inhibitor tariquidar restored sensitivity, proving that P-glycoprotein can 

protect cells against doxorubicin despite its stealth formulation (Table 1). ABCG2, another well-

characterized multidrug transporter, did not confer resistance against PLD (Supplementary Table 

S1).  

 

Cell line DOX 
DOX + 

TQ 
PLD 

PLD + 

TQ 
Cisplatin 

BT-549 0,02 - 1,68 - 7,62 

Hs578T 0,08 - 5,65 - 16,93 

MDA-MB-231 0,01 - 0,59 - 6,42 

MCF-7 0,13 - 3,63 - 48,75 

T47D 0,03 - 1,21 - 10,79 

MDA-MB-468 0,02 - 0,49 - 0,71 

A431 0,33 - 12,30 - 19,50 

A431-B1 8,52 0,32 >250 7,14 23,10 

RR 25,8  >20,3   

MES-SA 0,07 - 4,00 - 7,58 

MES-SA/Dx5 2,88 0,02 >250 0,10 12,52 

RR 41,1  >62,5   

P388 0,00015 - 0,00075 - 0,61 

P388/ADR 2,04 0,00069 10,19 0,00230 1,18 

RR 13600  13587   

Table 1. In vitro toxicity (IC50) of DOX, PLD and Cisplatin (µM) in six breast cancer cell 

lines (top) and in parental and Pgp-expressing MDR cells (bottom). Values represent the 
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average of at least three independent experiments. RR: Resistance Ratio (IC50 resistant cell/IC50 

sensitive cell). TQ: Pgp inhibitor tariquidar. 

PLD is ineffective in an allograft model of doxorubicin-resistant mouse B-cell leukemia  

In real tumors, the efficacy of treatment is also influenced by extracellular factors, such as 

tissue distribution or the cross-talk between microenvironment and cancer cells [47]. In the next 

set of experiments we monitored the effect of DOX or PLD treatment on the survival of BDF1 

mice bearing drug-sensitive (P388) or drug-resistant (P388/ADR) intraperitoneal ascites tumors 

(Fig. 1). In line with its reduced toxicity, PLD could be administered at significantly higher doses. 

P388 tumors responded well to DOX and PLD, which was reflected in a significant increase in the 

median survival (DOX: 29 days; PLD (3 mg/kg): 28 days; PLD (5 mg/kg): >63 days as compared 

to saline (15.5 days)), while the same treatment failed to prolong survival of mice inoculated with 

resistant P388/ADR cells (DOX: 12.5 days; PLD (3 mg/kg): 13 days). Whereas P388 tumors 

showed a dose-dependent response to PLD, the Abcb1-expressing P388/ADR tumors were 

completely resistant even at a higher PLD dose (PLD (5 mg/kg): 16 days). Thus, in line with the 

in vitro data, this particular in vivo model indicates that, despite the stealth formulation, PLD 

cannot be considered as an effective solution for the treatment of multidrug resistant tumors.  
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Fig. 1. DOX and PLD are ineffective in an ascites model of resistant leukemia. Drug-naive 

P388 or drug resistant P388/ADR tumor bearing mice were treated with saline (green and pink), 3 

mg/kg of DOX (red and blue) or PLD (orange and black) or 5 mg/kg of PLD (dashed dotted orange 

and black). The dotted vertical line indicates the time of treatment (T) at Day 2. 

 

PLD prolongs relapse-free and overall survival in a Brca1-/-;p53-/- tumor model of hereditary 

mammary cancer 

To test the therapeutic value of PLD in a more relevant model, we treated mice bearing 

orthotopically transplanted mammary tumors obtained from Brca1-/-;p53-/- mice [17,18]. Again, 

PLD could be administered at higher doses than DOX (8 mg/kg and 5 mg/kg, respectively). 

Whereas saline-treated mice had to be sacrificed within 12 days, treatment with the maximum 

tolerated dose (MTD) of doxorubicin increased the median survival of mice to 49.5 days. As 

compared to doxorubicin, treatment with the MTD of PLD resulted in a 6-fold increase in median 

relapse-free survival, and a 3-fold increase in median overall survival (9 vs 56 days and 49.5 vs 

151.5 days, respectively) with the longest survival of 247 days (Fig. 2A, B). Growth kinetics of 

individual tumors revealed fundamental differences between the DOX and PLD groups (Fig. 2C 
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and 2D).  Saline-treated animals had to be sacrificed by day 12 because the tumor volume reached 

the limit of ~2000mm3 (Fig. 2C, upper left graph). In some tumors, treatment with the MTD of 

DOX resulted in an initial response, but eventually all tumors relapsed and became resistant to 

therapy within 60 days (Fig. 2C). In contrast, 8 of the 10 tumors treated with the MTD of PLD 

were efficiently contained and only two tumors became refractory to treatment (PLD 1 and 7) (Fig. 

2D). However, responding tumors could not be completely eradicated before the mice had to be 

euthanized due to the cumulating side effects of the PLD treatment. Immunohistochemical 

characterization of tumor sections from the 3 treatment groups revealed increased necrosis in the 

PLD treated tumors. There were no further morphological or structural differences, nor a change 

in the number of infiltrating immune cells, suggesting that the superior efficacy of PLD is not due 

to an elevated immune response (Supplementary Fig. S1). 
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Fig. 2. PLD is superior to DOX in a clinically relevant mouse model of breast cancer. A. 

Relapse-free and B. Overall survival of DOX (5 mg/kg iv) and PLD (8 mg/kg iv) treated groups.  
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Fig. 2C. Growth kinetics of saline (upper left panel), DOX (DOX1-10) and D. PLD (PLD1-10) 

treated individual tumors. Arrows indicate treatment.  
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Fig. 2D. Growth kinetics of PLD treated individual tumors (PLD1-10). Arrows indicate treatment.  

 

Resistance to doxorubicin can be overcome by PLD in the Brca1-/-;p53-/- tumor model of 

hereditary mammary cancer 

Although PLD proved ineffective against doxorubicin-resistant cell lines in vitro (Table 1) 

and in vivo (Figure 1), we also wanted to evaluate the potential of PLD against doxorubicin 

resistant mammary cancer using the model described above. Doxorubicin-resistant tumors (Fig. 
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2C) were re-transplanted into the mammary fat pad of wild-type mice. After the tumors became 

palpable, mice were treated with the MTD of either DOX or PLD. As expected, doxorubicin 

treatment was largely ineffective (median overall survival was 27 days, as opposed to the median 

survival of 49.5 days observed when DOX was used in drug-sensitive tumors, Fig. 2B). 

Surprisingly, all the DOX resistant tumors responded to PLD treatment (Fig. 3B). Although the 

relapse-free period was significantly shorter (RFS of 56 vs 15 days, in first- and second-line PLD 

treatment groups, Fig. 2A and Fig. 3B, respectively), PLD treatment was able to significantly 

prolong the overall survival of mice bearing DOX-resistant tumors (OS of 151 vs 142 days, in the 

first- (Fig. 2B) and second-line (Fig. 3C) PLD treatment groups, respectively). Complete remission 

was achieved with one mouse (PLD16), which has been tumor-free for over 200 days. Only one 

of the 8 re-transplanted tumors became refractory to PLD treatment; all the others were efficiently 

contained until the experiment had to be stopped due to the cumulating toxicity associated with 

PLD treatment (Fig. 3A and Supplementary Fig. S2).  
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Fig. 3. PLD treatment of DOX-resistant tumors is remarkably effective A. Growth kinetics, 

B. Relapse-free survival and C. Overall survival of DOX-resistant tumors treated with DOX (5 

mg/kg iv.) or PLD (8 mg/kg iv.).  

PLD-resistant tumors show 20-400 fold higher expression of Abcb1a and Abcb1b  

Pgp expression conferred resistance to PLD in cytotoxity experiments and in the P388 

MDR ascites tumor model. Also, as described by Rottenberg and colleagues, in the case of DOX, 

treatment failure was due to a moderately increased expression of Abcb1a and b [19]. Strikingly, 

PLD-resistant tumors (PLD1 and 7) showed extremely high Abcb1a and b mRNA levels (200-400 

fold increase as compared to the saline-treated group). Similarly, tumors showing signs of 

resistance towards the end of the experiment (PLD 3, 8, 10) exhibited very high Abcb1a and 
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Abcb1b levels. Tumor tissue could not be extracted from responders (PLD 2, 4, 5, 9), except for 

PLD 6, which however did not overexpress any of the Abcb1 genes (Fig. 4). 

 

Fig. 4. Normalized Abcb1a and Abcb1b mRNA expression levels in tumors treated with 

saline, DOX or PLD.  

 

Superior activity of PLD over DOX can be explained by increased tumoral doxorubicin levels  

Liposomal formulation of doxorubicin allowed a 60% increase of the MTD (8 mg/kg vs 5 

mg/kg for PLD and DOX, respectively), which resulted in a 35-fold increase in the maximum peak 

doxorubicin concentration (31600 ± 6023 ng/μl vs 885.67 ± 240, measured 5 min after 

administration). Following intravenous injection of DOX, doxorubicin plasma levels decayed 

rapidly, whereas 7 days after treatment with a single dose of PLD, doxorubicin concentrations 
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were still comparable to maximum levels observed in DOX-treated mice (Fig. 5A). Consequently, 

the AUC value was ~2600-fold higher for PLD as compared to DOX (4.47×107 vs 1.7×104 

ng×h/ml). As expected based on the EPR effect, elevated plasma doxorubicin levels resulted in a 

significant increase of the tumoral drug load in the PLD-treated mice (Fig. 5B). Despite sustained 

high doxorubicin plasma concentrations, treatment with PLD was not limited by signs of pain, 

serious side effects or weight loss (see Supplementary Figure S4 for the histological analysis of 

vital organs). Long-term (>120 days) treatment with PLD however resulted in ulcerations 

reminiscent of the palmar-plantar erythrodysesthesia (“hand-foot syndrome”) observed in patients 

[48].  
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Fig. 5. Serum (A) and tumoral (B) doxorubicin concentrations in mice receiving DOX or 

PLD treatment.  Mice were injected (time 0) with either doxorubicin at a dose of 5 mg/kg (left 

panels) or PLD at a dose of 8 mg/kg (right panels). Doxorubicin levels were determined at the 

indicated time points by mass spectroscopy. Points represent means of triplicate aliquots from 3 

mice per time point; error bars represent ±SD.  

 

BRCA1 knock-out cells show increased sensitivity to DOX and PLD  

The surprising efficacy of PLD in treatment-naïve and DOX-resistant Brca1-negative mammary 

tumors prompted us to investigate the relevance of defective homology-directed DNA repair. We 

compared the sensitivity of wild-type and a BRCA1-null DT40 cells against a panel of cytotoxic 

compounds used in the treatment of breast cancer. BRCA1 is not essential for survival of DT40 

cells, which is likely due to p53 deficiency [49]. As expected, BRCA1-KO DT40 cells were 

hypersensitive to Olaparib and SN-38, but not to 5-fluorouracil (5-FU) or Paclitaxel. Surprisingly, 

BRCA1-deficient cells were also more sensitive to Topoisomerase II inhibitors. In particular, lack 

of BRCA1 resulted in a 3.3- and 2.8-fold higher sensitivity to DOX and PLD, respectively (Table 

2).  

Mechanism of action Compound WT BRCA1-/- Selectivity 

PARP-inhibitor Olaparib 3080 30 104.1** 

topoisomerase II inhibitor PLD 229.4 82.9 2.8** 
 Doxorubicin 8.45 2.57 3.3** 

 Daunorubicin 4.68 2.51 1.9* 
 Etoposide 51.0 29.3 1.7* 

topoisomerase I inhibitor SN-38 4.60 0.49 9.4** 

antimetabolite 5-FU 2.86 2.98 0.96 

microtubule-stabilizing agent Paclitaxel 384.5 448.2 0.86 
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Table 2. Cytotoxicity (IC50) of chemotherapeutics (nM) used in the clinical treatment of 

breast cancer. Selectivity >1 indicates that the compound kills BRCA1-KO DT40 cells more 

effectively than parental DT40 cells. *p<0.05; **p<0.01 

 

Discussion  

Effective treatment of cancer requires the use of toxic chemotherapy. In most cases, 

multiple drugs are used, as resistance to single agents occurs almost universally. One of the best 

studied mechanisms of multidrug resistance relies on the ability of P-glycoprotein to prevent drugs 

from reaching a toxic concentration inside cancer cells. Unfortunately, clinical efforts to inhibit 

efflux-mediated resistance have failed, due to unwanted side effects associated with the toxicity of 

the concomitantly administered chemotherapy [20]. A simple alternative to transporter inhibition 

would be to increase intracellular drug accumulation by elevating the dose of chemotherapy. 

However, while this approach may prove viable in vitro, even a slight increase in chemotherapy 

dosages can result in lethal side effects in patients. PLD was developed with the aim to overcome 

the dose-limiting cardiotoxicity and myelosuppression of doxorubicin [29]. Currently, PLD is 

approved for AIDS-related Kaposi’s sarcoma, ovarian cancer (after failure of platinum-based 

therapy), and multiple myeloma (in combination with bortezomib in patients who have not 

previously received bortezomib and have received at least one prior therapy). In addition, several 

reports showed benefit in advanced, metastatic and recurrent breast cancers [50,51] even with 

prolonged dose intervals [52]. Interestingly, only a small number of studies were performed using 

PLD as a neoadjuvant treatment in locally advanced breast cancer patients [53]. To our knowledge 

there are no studies focusing on PLD-resistance in any kind of cancer. 
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Since Pgp extrudes its substrates from the membrane bilayer (hydrophobic vacuum cleaner 

model [54]), liposomal formulations may bypass the transporter as they shuttle their cargo into the 

cells.  Several studies suggested that nanomedicines can overcome MDR to some extent [55] [56] 

[57,58] [59], but a systematic analysis found that the overall benefit may be quite small [60]. In 

our hands, the in vitro toxicity of PLD was significantly reduced in sensitive cells, and Pgp-

expressing cells were completely resistant (Table 1). However, in the case of PLD (but not DOX), 

we observed a gradual increase in the sensitivity and drug uptake of drug-sensitive cells. In 

contrast, MDR cells were resistant to both PLD and DOX even at later time points, and did not 

show any drug uptake unless Pgp was inhibited by Tariquidar (Supplementary Figures S3 and S5). 

These results are consistent with the slow extracellular release of free doxorubicin from PLD [61]. 

Since extracellularly released doxorubicin cannot cross the plasma membrane due to preemptive 

efflux by Pgp, MDR cells remain dim and resistant even at later time points. 

PLD was also inefficient against drug resistant P388/ADR cells in an ascites tumor model 

despite the dose-dependent response of the Abcb1-negative tumors. Extrapolation of these results 

suggested that Doxil treatment would not be effective in treatment-refractory patients. However, 

failure of the clinical trials conducted with transporter inhibitors has shown the complexity of 

translating knowledge gained from in vitro models. The evolution of cancer drug resistance is a 

multi-step process, which is best modeled with clinically relevant mouse models of cancer [14].  

To evaluate the clinical potential of PLD in treatment-naïve and therapy-resistant triple-negative 

breast cancer, we used a GEMM in which mammary tumors arise due to the tissue specific 

disruption of Brca1 and p53 [13]. An advantage of this model is that mammary tumors obtained 

from Brca1-/-;p53-/- mice can be transplanted orthotopically into female wild-type FVB mice 

without the loss of histomorphological features, molecular characteristics and the drug sensitivity 
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profile [17]. Although the incidence of BRCA1-deficient hereditary breast cancer is relatively low, 

the high prevalence of BRCA1 dysfunction identified in sporadic breast cancer [62] [63] could 

also be exploited. Reduced BRCA1 function as a result of gene silencing by hypermethylation was 

observed in sporadic breast and ovarian cancer [64,65], and BRCA1/2-deficiency is also present 

in non-gynecological malignancies [66]. 

In line with Phase 1 studies, we found that the circulation time, maximum peak 

concentration and AUC of doxorubicin were significantly higher in PLD treated groups as 

compared to DOX treatment [30,53,67]. PLD was far more efficient than DOX as reflected by a 

significant increase of both relapse-free and overall survival of Brca1-negative mammary tumor 

bearing mice (the relapse-free survival in the PLD treatment group (56 days) was longer than the 

overall survival of the DOX treated group (49.5 days)). Improved survival was clearly due to the 

delayed onset of drug resistance, suggesting that the increased cytotoxic payload could overwhelm 

the transporters expressed at relatively low levels. This result also highlights the shortcomings of 

typically used resistance models, which are based on the comparative study of sensitive and 

resistant cell lines in in vitro and xenograft experiments [60]. PLD was ineffective in the 

doxorubicin-resistant MES-SA/Dx5 [68] or P388/ADR cells and the retrovirally transduced 

A431/B1 cells because Pgp expression in these routinely used MDR cell lines is exceedingly high, 

whereas resistance of Brca1-negative mammary tumors to DOX was caused by a moderate 

overexpression of Abcb1/Pgp. The functional relevance of moderate transporter levels in 

conferring resistance to DOX or Olaparib has been previously established by demonstrating 

restoration of drug sensitivity with the addition of the Pgp antagonist tariquidar [17,19]. Strikingly, 

Abcb1/Pgp expression levels needed to confer resistance to PLD were 20 to 400 fold higher than 

those that conferred doxorubicin resistance, offering an explanation for the delayed and less 
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frequent emergence of PLD resistance. The possible involvement of Pgp in limiting human breast 

cancer therapy is still controversial. While the level of Pgp needed to confer clinical resistance in 

human tumors has never been established due to the insensitivity of the methods, our results 

suggest that PLD-refractory patients express high Pgp levels that may be readily detected even in 

a routine clinical diagnostic setting. 

Consistent with the higher Pgp levels needed to confer resistance, PLD administration was 

able to overcome doxorubicin insensitivity of the mouse mammary tumors. This may explain the 

result of the meta-analysis of four prospective trials, which proved that anthracycline re-challenge 

using PLD is effective in patients with metastatic breast cancer regardless of resistance, cumulative 

dose or time since prior conventional anthracycline therapy [69]. Likewise, a multicenter phase II 

study conducted on 79 MBC patients previously treated with anthracyclines found that PLD was 

as effective as other commonly used salvage regimens (eg. capecitabine) [70]. PLD was also found 

to be efficient in BRCA-related ovarian cancer (OC) even after resistance to platinum based 

treatments have emerged [71]. Strikingly, comparison of PLD and olaparib in heavily pretreated 

BRCA-heterozygous OC patients demonstrated similar efficacy, suggesting that PLD may also be 

advantageous in BRCA1-negative cancers [72]. Although olaparib has potent antitumor activity in 

BRCA-negative cancers, not all patients with cancer who carry BRCA1 or BRCA2 mutations 

respond to PARPi therapy, and the analysis of BRCA1-mutated mouse mammary tumors 

suggested that olaparib resistance is also due to the moderate overexpression of Pgp [73]. In light 

of our results, the clinical benefit of PLD re-challenge may be explained by the ability of PLD to 

overcome Pgp-mediated resistance that limits the efficiency of anthracycline-, taxane-, or olaparib-

based regimens. 
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While the effectiveness of PARP inhibitors for BRCA-deficient cells makes these the 

preferred agents for tumors harboring such cells, the choice of “cytotoxic” agent to use in the 

therapy of BRCA-deficient cells is less clear. Persuasive basic science suggests a topoisomerase I 

inhibitor should be the preferred agent [74,75] but clinically cisplatin has often been administered 

in drug combinations with evidence of benefit [76–81]. As expected, our in vitro studies 

demonstrate that BRCA-deficient cells are markedly sensitive to olaparib. Whereas drug uptake 

was not effected by BRCA1 (Supplementary Figure S3), we also found collateral sensitivity to 

doxorubicin and PLD, suggestive of some level of synthetic lethality. Furthermore, our in vivo 

experiments demonstrated a nearly 6-fold prolongation of disease free-recurrence and a 3-fold 

increase of overall survival with PLD compared to doxorubicin. By stabilizing the topoisomerase 

II complex after it has broken the DNA chain for replication, doxorubicin prevents the resealing 

of the DNA double helix, stops replication and leads primarily to DNA double strand breaks. This 

may explain the sensitivity of BRCA1 mutant cells to DOX and PLD, as BRCA1 plays an important 

role in DNA double strand break repair [82]. Whether this might render BRCA-deficient tumors 

more sensitive to doxorubicin will need to be more clearly established, but in our view it may be 

worthy of consideration given liposomal doxorubicin is used often in the therapy of ovarian cancer 

and less often in breast cancer. 

This possible selectivity to BRCA1-deficient tumors, the high serum concentrations, the 

prolonged circulation time and the indirect targeting of tumor tissue by damaged blood vessel 

integrity could explain PLD’s significant success over conventional DOX treatment. In addition, 

we show that the favorable pharmacokinetics achieved with PLD– a remarkable 2,600-fold higher 

AUC and a concomitant increase of the tumoral drug load– can effectively overcome Pgp-

mediated DOX resistance. In response to the critical shortage of PLD, the US Food and Drug 
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Administration (FDA) allowed temporary importation of non-FDA-approved second-generation 

liposomal doxorubicin. With the expiry of the PLD patent, it is likely that several generics will be 

approved, which may also lead to the expansion of the current indications [29]. Considering the 

clinical failure of the many Pgp inhibitors that were previously developed and that were often 

encumbered by the need to reduce the doses of the concomitantly administered chemotherapy, 

novel formulations – liposomal, or nanoparticle – might offer a better alternative at reversing 

transporter mediated resistance. This is especially relevant given the heightened interest in such 

formulations as evidenced by four US FDA and EMA approvals in the recent past – including 

nanoparticle-albumin bound paclitaxel, doxorubicin hydrochloride liposome injection, irinotecan 

liposome injection and vincristine sulfate liposome injection. Approval is also expected for the 

first liposomal fixed drug combination of cytarabine and daunorubicin that will be used in AML 

[83]. 

 

Conclusion 

Pegylated liposomal formulation of doxorubicin has a significant impact on the evolution of drug 

resistance in cancer. While treatment with doxorubicin becomes rapidly inefficient, pegylated 

liposomal doxorubicin dramatically increases relapse-free and overall survival due to the delayed 

onset of multidrug resistance. Our results also show that P-glycoprotein is able to confer resistance 

against liposomal drug formulations, albeit at significantly higher levels that may not be readily 

achieved in patients. Consistent with the higher Pgp levels needed to confer resistance, PLD 

administration was able to overcome doxorubicin insensitivity of the mouse mammary tumors, 

suggesting that encapsulated doxorubicin can successfully evade moderate Pgp levels associated 

with acquired resistance to anthracyclines or olaparib. Our data suggest that PLD therapy could be 
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a promising strategy in breast cancer, not only in the metastatic stage, but also as a neoadjuvant 

treatment.  
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Figure legends 

Fig. 1. DOX and PLD are ineffective in an ascites model of resistant leukemia. Drug-naive 

P388 or drug resistant P388/ADR tumor bearing mice were treated with saline (green and pink), 3 

mg/kg of DOX (red and blue) or PLD (orange and black) or 5 mg/kg of PLD (dashed dotted orange 

and black). The dotted vertical line indicates the time of treatment (T) at Day 2. 

Fig. 2. PLD is superior to DOX in a clinically relevant mouse model of breast cancer. A. 

Relapse-free and B. Overall survival of DOX (5 mg/kg iv) and PLD (8 mg/kg iv) treated groups. 

C. Growth kinetics of saline (upper left panel), DOX (DOX1-10) and D. PLD (PLD1-10) treated 

individual tumors. Arrows indicate treatment.  
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Fig. 3. PLD treatment of DOX-resistant tumors is remarkably effective A. Growth kinetics, 

B. Relapse-free survival and C. Overall survival of DOX-resistant tumors treated with DOX (5 

mg/kg iv.) or PLD (8 mg/kg iv.).  

Fig. 4. Normalized Abcb1a and Abcb1b mRNA expression levels in tumors treated with 

saline, DOX or PLD.  

Fig. 5. Serum (A) and tumoral (B) doxorubicin concentrations in mice receiving DOX or 

PLD treatment.  Mice were injected (time 0) with either doxorubicin at a dose of 5 mg/kg (left 

panels) or PLD at a dose of 8 mg/kg (right panels). Doxorubicin levels were determined at the 

indicated time points by mass spectroscopy. Points represent means of triplicate aliquots from 3 

mice per time point; error bars represent ±SD.  
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Supplementary Table S1. In vitro toxicity (IC50) of DOX and PLD in parental and ABCG2-

expressing A431 cells. 

Supplementary Figure S1. Morphological comparison of three randomly selected, hematoxilin & 

eosin stained tumor samples per each treatment group shown in Figure 2. 

Supplementary Figure S2. Growth curves of DOX-resistant tumors treated with DOX (DOX 1-6) 

or PLD (PLD 11-18) shown in Fig. 3.  

Supplementary Figure S3.  In vitro studies measuring cellular fluorescence upon treatment with 

DOX or PLD.  

Supplementary Figure S4. Histopathological analysis of vital organs: effect of DOX and PLD 

treatment 
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Supplementary Figure S5. Cytotoxicity assays comparing the time-dependent toxicity of DOX and 

PLD. 
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