
Comparison of numerical image reconstruction
methods in holography

Zoltán Garaguly∗‡, Miklós Kozlovszky†, and Levente Kovács‡
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Abstract—In favour of the reconstruction of the real or virtual
image’s phase and intensity, the complete digital holographic
images are being processed. This reconstruction takes place with
the numerical definition of the diffraction integral. One of the
possible realization is the Fresnel approximation, which employs
a sole Fourier-transformation. Another method is to interpret
the diffraction formula as a convolution integral, and if we
calculate the formula, it will be doubled or tripled because of the
transformation. The impulse response of wave fields should be
represented in this convolution approach, from which the Fourier
transform can be immediately determined. The impulse response
as well as the Fourier transform can be immediately specified, or
well approximated. The essential distinction between the Fresnel
and convolution approach is the different size of resultant images.
Furthermore, this size in case of the Fresnel process depends on
the distance of the object and the sensor, as well as the wavelength
of the illuminating light; but in the other case, it is invalid.

I. INTRODUCTION

Holography is a good way for recording and reconstructing
optical wave fields. Holographic interferometry in metrology
seems the most significant utilisation of holography, where,
before and after variation, wave fields are correlated. Defor-
mation fields and refraction index alterations are coded into
distinct interference fringes [1]. The patterns of interference to
the precision measurements are recorded with CCD or CMOS
cameras and are evaluated numerically. At first the interfer-
ence phase distribution is defined, from which, secondly, we
can calculate the displacement of vector fields, deformations,
stresses, refractive and physical quantities. The description
of digital holographic reconstruction- based on diffraction
theory- comes afterwards, after a short overview of the given
requirements of holographic method and sampling principle.
The numerical algorithm and the calculation of the diffraction
integral is being implemented. The typical features and ca-
pabilities of calculations should be identified and compared.
It is important, that not the numerically produced holograms
were refined, but the optically produced holograms had been
digitally recorded and after that these were reconstructed.

II. THE FRESNEL APPROXIMATION

On the following graph, the geometry for the description of
Fresnel holography is presented:
We think that the plane surface on (x, y) plane denote on
b(x, y) wave field. Let the hologram be on (ξ, η) plane, d
distance from the surface of the object [3]. The reconstructed

Fig. 1. Fresnel geometry [2].

real image is placed on (x, y) plane which is distance d from
the plane of the hologram.
The interference in the hologram in each point is determined
by angle θ between the reference wave and the object wave:

δ =
λ

2sin(θ/2)
(1)

where, δ the received ray distance and λ denotes the used wave
length. To the ∆ξ pixel distance sensor matrix the sampling
rule requires at least 2 pixels per ray period as 2∆ξ < δ or

θ <
λ

2∆ξ
(2)

since, for the small θ, sinθ ≈ tanθ ≈ θ. Small angles required
by the sampling rule can be used at survey of small objects;
remote objects from the sensor matrix or at magnification of
the wave field with negative lens [7].
Parallel or divergent reference waves can be used in digital
holography with normal or leaning incidence onto the sensor
matrix. Largely, which is the most suitable for numerical
evaluation, is the plane wave, generally with spatially constant
amplitude and phase. It can be modelled with r(ξ, η) = 1+0i
on the basis of real vectors.
Nevertheless, the optical reconstruction was executed by the
illumination of the advanced hologram with the reference
wave. Therefore, the digital hologram should be multiplied
with the reference wave field in the hologram’s plane and the
diffraction pattern in the image plane should be calculated.
The real image is represented by the complex field, if d = d,
or the virtual image, if d = −d is taken.
The Rayleigh-Sommerfeld equation disposes the diffracted
field in the image plane [8].
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b′(x′, y′) =
1

iλ

∫ ∫
h(ξ, η)r(ξ, η)

exp{ikp}
ρ

cosΘdξdη (3)

ρ =
√
d′2 + (ξ − x′)2 + (η − y′)2 (4)

Here h(ξ, η) is the recorded hologram, r(ξ, η) is the reference
wave field, k = 2/λ is the number of the wave, and cosθ
means the leaning factor which can normally be disposed with
cosθ = 1, thanks to the small angles between the normal
hologram and the rays from the hologram to the real image
points.
Whereas in case of (3), d′ can replace ρ in the denominator,
until d′ is bigger than (ξ − x′) and (η − y′), ρ, ρ in the nu-
merator determines the spatially quickly changing phase. The
same replacement in the numerator would cause unacceptable
mistakes. Binomial expansion (

√
1− a = 1+ 1

2a−
1
8a

2 +−...)
is applied in the Fresnel approximation for the square root (4)
which applies to small a. Preserving the first two conditions,
we get:

ρ ≈ d′
[
1 +

1

2

(ξ − x′
d′

)2

+
1

2

(η − y′
d′

)2
]

(5)

Afterwards the diffraction integral is the following:

b′(x′, y′) =
1

iλd′

∫ ∫
h(ξ, η)r(ξ, η)

exp

{
ikd′

[
1 +

1

2

(ξ − x′
d′

)2

+
1

2

(η − y′
d′

)2
]}
dξdη =

=
exp{ikd′}
iλd′

∫ ∫
h(ξ, η)r(ξ, η)

exp
{ ik

2d′
[
(ξ − x′)2 + (η − y′)2

]}
dξdη =

=
exp{ikd′}exp{iπd′λ(ν2 + µ2)}

iλd′∫ ∫
h(ξ, η)r(ξ, η)exp

{ iπ
d′λ

(ξ2 + η2)
}

exp{−2iπ(ξν + ηµ)}dξdη (6)

if ν = x′

dλ and µ = y′

dλ .
The diffracted field is the hologram’s Fourier transform, as it is
shown in (6)’s last line, multiplying with the reference wave
and the chirp function

{
iπ
d′λ (ξ2 + η2)

}
Then, the result of

this Fourier transformation with phase factor and the spatially
constant intensity factor 1/(iλd′) should be multiplied.
We take the discrete finite form of (6), for numerical evaluation
and we omit the spatially constant factors.

b′(n,m) = exp

{
iπd′λ

N2

(
n2

∆ξ2
+

m2

∆η2

)}
N−1∑
k=0

N−1∑
l=0

h(k∆ξ, l∆η)r(k∆ξ, l∆η)

exp

{
iπ

d′λ
(k2∆ξ2 + l2∆η2)

}
× exp

{
2iπ

(
kn

N
+
lm

N

)}
(7)

Or in short:

b′ = z · F−1{h · r · w} (8)

In these equations h(k∆ξ, l∆η) signifies the quantised and
digitalised hologram, r(k∆ξ, l∆η) is the reference wave,

w(k∆ξ, l∆η) = exp

{
iπ
d′λ (k2∆ξ2 + l2∆η2)

}
is the two

dimension finite chirp function, as well as z(n∆x′,m∆y′) =

exp

{
iπd′λ
N2

(
n2

∆ξ2 + m2

∆η2

)}
=

{
− iπ

d′λ (n2∆x′2 +m2∆y′2)

}
.

The reconstructed image’s pixel size:

∆x′ =
d′λ

N∆ξ
∆y′ =

d′λ

N∆η
(9)

where, N is the pixel number of the sensor matrix in each
direction.
In most application the phase factor z(n∆x′,m∆y′) is neg-
ligible, unless the reconstructions intensities are interested, or
phase differences count, for instance, in holographic interfer-
ometry [4] [6]. z does not depend on the evaluated hologram
thus it provides the same phase shift in each point in different
object positions reconstruction and drops out the holographic
interferometry’s process of phase deduction.
On the Fig. 2., a holographic record can be seen, made from
the USAF 1951 resolution testing slide preparation, where the
object is placed 4.5 mm from the sensor matrix, the pixelsize
is ∆ξ = 6.8µm and the wavelength is λ = 0.470µm. The
reference wave is: r(k∆ξ, l∆n) = 1 + 0i. The numerically
reconstructed wave field; the reconstructed image can be seen
on the Fig. 3. The d.c. condition of the high intensity Fresnel
transformation covers the reconstructed field’s central area,
which can be eliminated with the methods described in [9].

III. THE DIFFRACTION INTEGRAL, AS CONVOLUTION
(CONVOLUTION APPROACH)

The Rayleigh-Sommerfeld diffraction equation (3) is a su-
perposition integral for a b′(x′, y′) wave field’s reconstruction.

b′(x′, y′) =

∫ ∫
h(ξ, η)r(ξ, η)g(x′, y′, ξ, η)dξdη (10)

where, a g(x′, y′, ξ, η) impulse response is finitely given as
follows:
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Fig. 2. USAF 1951 holographic image.

Fig. 3. USAF 1951 reconstructed image.

g(x′, y′, ξ, η) =
1

iλ

exp{ikp}
ρ

cosΘ =

=
d′

iλ

exp
{
ik
√
d′2 + (ξ − x′)2 + (η − y′)2

}
d′2 + (ξ − x′)2 + (η − y′)2

(11)

Here cosΘ = d′/ρ has been applied. The second line of (11)
shows that g(x′, y′, ξ, η) = g(x′−ξ), y′−η)describes the linear
system which is spatially constant, in conclusion, the superpo-
sition integral equals to a convolution. It allows the economical
calculation of the diffraction integral without estimation [5].
The convolution theorem claims that the convolution with the
Fourier transformation of h · r, g is the result of F{h · r}
and F{g} individual transformations. Therefore b′(x′, y′) can
be calculated with the first Fourier transformation of h · r,
which is then multiplied with the Fourier transformation of g,
and then we take the result’s inverse Fourier transform. All the
three Fourier transformations are needed for the whole process,
to which the FFT (Fast Fourier Transformation) algorithm is
effectively applicable [5].
The impulse response’s numerical realisation:

g(k, l) =
1

iλ

exp
{

2iπ
λ

√
d′2 + (k −N/2)2∆ξ2 + (l −N/2)2∆η2

}√
d′2 + (k −N/2)2∆ξ2 + (l −N/2)2∆η2

(12)
Because of symmetrical reasons, the N/2 shift of coordinates
takes place. Furthermore, the intensity condition cosΘ = d′/ρ
is negligible, as cosΘ, based on Θ, defined by (2) is less
than 1/1000, results the difference from 1. (12) performs the
free expansion of the impulse response function. The Fourier
transform of g(k, l) impulse response is the G(n,m) transfer
function. Thus, the free space propagation’s transfer function
can also be defined directly as follows:

G(n,m) =

= exp

{
2πid′

λ

√
1 −

λ2
(
n+ N2∆ξ2

2d′λ

)2
N2∆ξ2

−
λ2
(
m+ N2∆η2

2d′λ

)2
N2∆η2

}
(13)

with this we have saved a Fourier transformation.
The survey of the first line of (6) shows that similarly the
Fresnel transformation is a convolution, with the following
impulse response:

gF (ξ − x′, η − y′) =

=
exp{ikd′}
iλd′

exp

{
iπ

λd′
[(ξ − x′)2 + (η − y′)2]

}
(14)

The transfer function’s Fresnel approximation:

GF (n,m) =

= exp

{
iπd′

[
2

λ
− λ
(

n

N∆ξ
+
N∆ξ

2d′λ

)2

−

−λ
(

m

N∆η
+
N∆η

2d′λ

)2
]}

(15)

The reconstructed image’s pixel size, when we reconstruct
with the product of the transfer function, is the following:

∆x′ = ∆ξ ∆y′ = ∆η (16)
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The emerged image covers image field N∆ξ×N∆η instead of
a in comparison with the Fresnel transformation. Afterwards
the bigger image size until (d′ > ∆ξ2/λ), demonstrates that
there is even more data coded in the hologram, than it was at
the reconstruction performed by the sole convolution integral.
It seems impossible to extract this additional data, with setting
distinct values for (ξ, η) and (x′, y′) plane. It would violate the
field invariant, which is a necessary condition for the validity
of the convolution theorem. Thus, the impulse response’s
application shifts the reconstructed field with (sk∆ξ, sl∆η)
vector [6].

g(k + sk, l + sl) =

=
1

iλ

exp
{

2iπ
λ

√
d′2 + (k −N/2 + sk)2∆ξ2 + (l −N/2 + sl)2∆η2

}
√
d′2 + (k −N/2 + sk)2∆ξ2 + (l −N/2 + sl)2∆η2

(17)

The extent of possible shifts is given by the sampling theorem,
in compliance with (2).
On Fig. 4. the reconstruction of 4 separate shifts can be seen.
The comparison on Fig. 3. clearly makes the different image
sizes in contrast with the Fresnel-results visible.

Fig. 4. Reconstructed images with the process of convolution and different
shifts.

The image can be scaled as well, until the same scaling takes
place on (ξ, η) and (x′, y′) planes. Black pixels can be added
in order to increase the margin of N ×N hologram and have
a 2N × 2N hologram. The N × N pixels in centre derives
from the original hologram, whereas the surrounding pixels
possess 0 intensity. The size of the reconstructed image is

2N∆ξ × 2N∆η. There is an example on Fig. 5., where on
the left side, the magnified hologram can be seen, as well as
on the right side, the corresponding reconstructed image.

Fig. 5. Magnified hologram and the reconstructed image.

IV. COMPARISON OF THE RECONSTRUCTION METHODS

Different realisations of the diffraction integral are shown
in the following table:

TABLE I
METHODS

Method Algorithm
Fresnel approximation
(Chirp function) z · F−1{h · r · w}

Fresnel approximation
(Impulse response) F−1{F{h · r} · F{gF }}

Fresnel approximation
(Transfer function) F−1{F{h · r} ·GF }

Diffraction integral
(Impulse response) F−1{F{h · r} · F{g}}

Diffraction integral
(Transfer function) F−1{F{h · r}·, G}

There is fundamental difference between the Fresnel transform
(the evaluation of the given chirp function in the first line of
the table) and the given method presented in the following 4
lines. If plane (ξ, η),is taken as the spatial field of the digital
hologram, then the first process ensures result for spatial
frequency domain, because of the sole Fourier transform. The
other 4 algorithms comprise the multiplication of spectrum h·r
and the transfer function in the spatial frequency domain and
from a next transformation.
The result of the distinction is the pixel size diversity in recon-
structed images, in compliance with (9) and (16) correlation.
Even though of the different sizes, it is still important that
size ∆x′ × ∆y′ in the Fresnel case uses the chirp function,
depending on λ wavelength and d′ reconstruction depth while
in the other 4 cases, the size is independent from these
parameters. These algorithms are especially well-applicable at
inline hologram recordings, where depth information is made
from the examined objects. Every reconstructions size allows
and provides direct comparison. For size adaptation, there is
no need for magnification with final interpolation. These kinds
of experiments are described in detail at these processes [10].
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Theoretically all mentioned methods are attainable in holo-
graphic interferometry for giving phase shifts. The two con-
ditions of the examined object which is to be compared are
individually recorded and evaluated. The interference phase
can be calculated after the evaluation of b′1(n,m) and b′2(n,m)
complex fields phase distribution [1]. There is no significant
difference between the 4 methods interference phase distribu-
tion, which are based on the convolution approach. If we apply
the Fresnel transformation, only the reconstructed image’s
size will make a contrast from those reconstructed by the
convolution approach.
If we examine small objects, theoretically we can work in
that field, where the process based on Fresnel approach evoke
real/minimal mistakes. Afterwards the convolution approach is
suggested, as it gives an exact solution for diffraction integral,
until it does not violate the sampling theorem. In the last 4
algorithms of the table, where we take its inverse transform in
the spatial frequency field, it brings similar results, however,
the numerical process differs. There are such distinctions in
the calculation of impulse response or the transfer function
fields, where the complex exponential difference differs more
than π between the neighbouring pixels. In these points the
calculated impulse response’s or transfer function’s absolute
value must be set for zero. This method takes place with
Fourier transform as well, that outlines the impulse response in
the transfer function as well as vice versa. Therefore, the result
has nothing to do with the selection of each (above mentioned
four) reconstruction algorithm.

V. CONCLUSION

The digital hologram recording and numerical reconstruc-
tion of holograms provides new opportunities in optical
hologram technology. The numerical interpretation of digital
Fresnel holograms can be implemented with Fresnel trans-
formation or convolution, in accordance with the diffraction
integral. The essential difference between the results of the
two approaches resides in the reconstructed image’s pixels.
If we compare reconstructions with two different depth, the
convolution approach is suggested, because here, the image’s
size does not depend on the depth of the reconstruction. Insofar
the examined object is transparent or opaque, the Fresnel
transformation is recommended for the reconstruction.
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