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Abstract—The application of the Soft Computing based meth-
ods, especially, the Tensor Product (TP) transformation has
several beneficial properties from the biological modeling and
control point of view, because complex, nonlinear processes can
be handled by them effectively. Another advantage of these
tools consist on the Linear Parameter Varying (LPV) and
Linear Matrix Inequality (LMI) based techniques can be easily
connected to them. The aim of this study is to develop TP models,
which can describe the tumor growth beside anti-angiogenic
treatment. The role of the anti-angiogenic therapies is to decrease
the size of the tumor to operable or maintainable level. From
control engineering point of view, the treatment process can be
formulated as a control task. In this work, we realized two TP
models, which approximates the initial transformed model with
high accuracy, regardless the kind of input load and without
stability problems. The TP models will be used for TP-based
controller design on LMI basis.

Index Terms—Anti-angiogenic therapy, Tumor growth model,
Tensor Product model transformation, TP-based modeling

I. INTRODUCTION

Beside the well known classical cancer therapies as ra-
diotherapy, chemotherapy and surgical intervention, one of
the modern treatment directions are the Targeted Molecular
Therapy (TMT). In case of TMT, different drugs and/or other
substances are used to block or eliminate the growth and
spread of the cancer by interfering with specific molecules
which play important roles in biological processes regard to
the growth, progression and spread of the cancer. To sum up,
the aim is the inhibition of certain processes and not to kill
the tumor itself. Compared to the classical treatments, the
main benefits of them are the limited side effects and the
more focused therapy. Several TMTs exist, although, the most
important ones are the apoptosis inducers, signal transmission
inhibitors, gene expression modulators and anti-angiogenic
therapies [1].

In case of the anti-angiogenic therapies the goal of the
TMT is to inhibit the growing of the supplying vasculature
of the cancer. It is known, that the supplying vasculature is
needed to provide the oxygen and nutrients after the tumor
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grows beyond a certain volume. The limit coming from the
local diffusion, which does not satisfy the nutrition needed for
further growth or to maintain the reached size. By blocking
the formation of new blood vessels – which can cover the
nutrition of the tumor – the size of the affected cell population
can be decreased or kept below a given level which is bearable
from the human body point of view. Normally, the angiogenec
processes are infrequent in healthy adults, but frequent regard
to tumor growth and by applying inhibition only limited side
effects occur compared to the regular therapies.

The angiogenesis is regulated by pro- and anti-angiogen
factors. The most important pro-angiogen factor is the vascular
endothelial growth factor (VEGF). The VEGF regulates the
endothelial proliferation, namely, reproduction of endothelial
cells which form the blood vessels – that makes it excellent
target for such inhibitor therapy [1]–[3].

The anti-angiogenic therapies are mostly used beside reg-
ular therapies, such as chemotherapy and/or radiotherapy.
Although, the application of them as monotherapy was con-
sidered recently, there are several open questions regarding to
the appropriate drug dosage protocols [4]. In clinical practice,
three approach are used for drug delivery: bolus doses therapy
(BDT), metronomic low dose therapy (MLDT) and continuous
infusion therapy (CIT). In the first case, the amount of the
injected drug is mostly the maximum tolerable dosage and
between the boluses there are no anti-angiogenic kind drug
intake. The main drawbacks are the higher occurrence of
side effects, moreover, the remaining tumor cells may become
resistant to the therapy because of their fast evolution and
proliferation [5]. In order to avoid these unfavorable effects,
the MLDT can be used, in which case the anti-tumor drugs
are delivered in minimal dosage based on strict schedule over
longer periods [6]. Investigations concerning to the application
of CIT (based on animal- and in-silico-experiments) recently
showed that this can be the most effective treatment among
the current anti-cancer therapies [7]–[9]. Although, in order
to apply such kind of protocol, highly advanced biomedical
modeling and controller design tools are needed which can
efficiently handle the challenges regard this field, for example
intra- and inter-patient variability, nonlinearities and so on.

In the last twenty years, several possible theorems and tools
were developed to handle the aforementioned issues. One
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of these is the Linear Paramter Varying (LPV) methodology
which allows to use linear controller design theorems in
case of nonlinear systems by enclosing the nonlinearities into
internal bounded variables [10], [11]. The Robust Fixed Point
Theorem (RFPT) based controller design also suitable for
biological related controls, because of its flexibility and inverse
approach [12], [13]. Advanced Soft Computing (SC) based
methods can be appropriate solutions as well [14]. As the
part of the SC, the recently developed TP-based modeling
and control provides various beneficial tools, eg. transforms
the nonlinear models into linear ones with high accuracy.
The main goal of TP model transformation is to develop TP-
model objects, which are ready for TP-based controller design.
The resulting TP model and controller structures includes
the uncertainties as a hidden way – moreover, LMI based
techniques can be combined with them [15], [16].

In this study, we developed two TP model structures which
approximate the initial transformed model with high accuracy
and can be used for TP-based controller design.

The paper is structured in the following way: firstly the
applied original and transformed tumor growth model were
introduced. After, the TP model transformation was presented.
In Sec. IV., we introduced the qLPV models and the developed
TP models which is followed by the validation of them.
Finally, our findings were presented.

II. INVESTIGATED TUMOR GROWTH MODEL

The examined tumor growth model under angiogenic inhi-
bition originates from the well-known Hahnfeldt model [17].
This model describes the growing dynamics of the tumor and
supporting vasculature over t time as follows:

ẋ1(t) = −λ1x1(t) log

(
x1(t)

x2(t)

)
, (1)

ẋ2(t) = bx1(t)− dx2/31 (t)x2(t)− ηx2(t)g(t) , (2)

ġ(t) = −λ3g(t) + u(t) , (3)

where x1(t) [mm]3 and x2(t) [mm]3 are the volume of
the tumor and supporting vasculature, respectively and g(t)
[mg/kg] describes the inhibitor serum level in time. The
output of the model is the measurable state, x1(t). The
belonging model parameters are λ1 = 0.1921 1/day, b = 5.851
1/day, d = 0.00871 1/(mm2 day), η = 0.66 kg/(mg day)
and λ3 = 1.31 1/day – these model parameters coming
from [17] based on mice experiments (tumor: Lewis lung
carcinoma, inhibitor: endostatin). The model contains multiple
nonlinearities which have to be handled in practice. Although,
according to [17] there is strict limitation concerning to the
states, namely x1(t), x2(t) > ∀t (t > 0), feasibility problems

can be occurred due to the log

(
x1(t)

x2(t)

)
term in (1) – (0/0)

type singularity can be occurred, if x1(t) and x2(t) are equal
to zero and numerical stability problems may appear, if x1(t)
and x2(t) are close to zero. In order to handle these kind of
limitations, mathematical transformations can be applied such
as [18], [19]. In this work we used the transformed version

of the original model presented by [19]. By introducing the
y1(t) = log(x1(t)) [mm]3 and y2(t) = log(x2(t)) [mm]3 new
state variables, the following transformed model occurs:

ẏ1(t) = −λ1y1(t) + λ1y2(t) , (4)

ẏ2(t) = bey1(t)−y2(t) − de2y1(t)/3 − ηg(t) , (5)

ġ(t) = −λ3g(t) + u(t) . (6)

The nontrivial equilibrium of the original model ((1) and (2))
was described in [8], in which was proven that beside constant
inhibitor level g(t) ≡ g∞ the x1,∞ and x2,∞ can be calculated
as follows:

x1,∞ = x2,∞ =

(
b− ηg∞

d

)3/2

. (7)

From (7) it is clear that x1,max = x2,max =

(
b

d

)3/2

, if the

inhibitor level is equal to zero (g = 0). Thus, considering the
limitations and (7), the operating domain becomes: x1(t) =
x2(t) = (0, (b/d)3/2].

The aim of the anti-angiogenic therapy is to reach lower
tumor volume via inhibition of its angiogenesis in order to
make it operable or maintainable – however, the volume of
the tumor cannot be totally eliminated only by anti-angiogenic
therapy [3]. From this consideration, it is reasonable to select
a higher lower limit for x1 and x2, which also leads to
a more manageable transformed model from mathematical
point of view as well. Assume the following domain for
x1(t) = x2(t) = [1, (b/d)3/2], which consequences that the
domain of the transformed states become y1(t) = y2(t) =
[log(1), log((b/d)3/2)]. In order to make the TP models nu-
merically stable, we applied an other restriction regard to the
lower limit of the investigated domain, which will be detailed
in Sec. IV. In this work we consider this new domain for the
y1(t) and y2(t) transformed states.

The deep investigation of such limitation and the trans-
formed model can be found in [19].

III. TENSOR PRODUCT MODEL TRANSFORMATION

The TP modeling originates from the Fuzzy System (FS)
theorems. More precisely, the Takagi-Sugeno FS (TSFS) is
able to describe a system model given by its quasi-LPV
(qLPV) state space representation, if the universe of the
FS (whereon the membership functions are defined) is the
parameter vector of the qLPV model [20]. The TP model
transformation has several beneficial properties compared to
the TSFS – the most beneficial is that the TP models describe
the original models with similar precision as the TSFS, but
the parameter domain of them can be much more tighter than
the TSFS’s domain.

The TP model transformation transforms a given qLPV
function into a TP model structure. Because of the qLPV
models (as state space representation) can be represented
by qLPV functions, the TP transformation can be easily
executed [16]. The occurring TP model is a multidimensional
tensor product structure consists of convex combination of a
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high-order core tensor and different weighting functions in
appropriate dimensions belong to the parameter vector [15].
The resulting TP models – thankfully the convex hull manip-
ulation – realizes convex polytopic structures, which allows to
combine the transformation with LMI-based techniques [16].
The approximation accuracy of the TP model is determined
by the number of samples in the parameter domain, namely,
the vertices of the polytopic structure.

A general qLPV model can be written as follows:

ẋ(t) = A(p(t))x(t) + B(p(t))u(t)
y(t) = C(p(t))x(t) + D(p(t))u(t)

, (8)

where the matrices A(p(t)) ∈ Rk×k, B(p(t)) ∈ Rk×m,
C(p(t)) ∈ Rl×k, and D(p(t)) ∈ Rl×m represent the state-,
input-, output- and forward-matrices, respectively. The x(t) ∈
Rk is the state vector, u(t) ∈ Rm is the input vector and
y(t) ∈ Rl is the output vector. The p(t) ∈ Ω ∈ RN is the time
dependent parameter vector – which consists of N scheduling
variables pi(t) i = [1, .., N ].

S(p(t)) =

(
A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
, (9)

where the parameter dependent complex S(p(t)) ∈
R(k+l)×(k+m) represents the qLPV function (system matrix).

The parameter vector p(t) ∈ Ω ∈ RN is enclosed into the
Ω domain, where Ω = [p1,min, p1,max] × [p2,min, p2,max] ×
... × [pN,min, pN,max] ∈ RN formalizes a limited hypercube
in the N -dimensional hyperspace – which is determined by
the extremes of the scheduling variables [15], [16].

The finite element polytopic TP model approximates
S(p(t)) inside the closed hypercube in the following way:

S(p(t)) ≡
R∑

r=1

wr(p(t))Sr , (10)

where wr(p(t)) are the parameter dependent weighting func-
tions and Sr is the core tensor.

In other way, the S(p(t)) can be described as a linear
combination of convex weighting functions and the LTI vertex
system for each p(t) ∈ Ω, which results convex combination
[16], [21]. Accordingly, – through applying a sampling on the
parameter space – the TP based polytopic finite element model
can be described as follows [16], [22]:

S(p(t)) =

I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

N∏
n=1

wn,in(pn(t))Si1,i2,...,iN .

(11)
The (11) can be written in the following TP form:

S(p(t)) = S
N
�
n=1

wn(pn(t)) , (12)

where S core tensor – built up from the Si1,i2,...,iN LTI vertex
system – contains the system coefficients in all dimensions
as S ∈ RI1×I2×...×IN×(k+l)×(k+m), further, the wn(pn(t))
vector consist of the continuous convex weighting functions
wn,in(pn(t)) (in = 1...IN ). The aforementioned convexity

criteria is satisfied regarding to the weighting functions and
via the TP model as well, if the following statements are true:

∀n, i, pn(t) : wn,in(pn(t)) ∈ [0, 1]

∀n, pn(t) :

In∑
i=1

wn,in(pn(t)) = 1
. (13)

Different convex hulls can be applied during the TP model
transformation depends on the goals, eg. extended or tight
operating domain [16]. In this work, we applied the a Minimal
Volume Simplex (MVS) kind convex hull [15], [21] for the TP
type polytopic qLPV model, which is able to provide a tight
operating domain in the parameter space. The TP model well-
approximates the original model inside the Ω hypercube and
the volume of the Ω is as low as possible. In this way, the TP
model with MVS type convex hull can be described as:

S(p) = S
N
�
n=1

w(n)(pn) , (14)

where S ∈ SJ1×...×JN core tensor is created from the Sj1,...,jN

vertices. In this way, the (S)jn=j n-mode sub-tensors realizes
a minimal volume bounding hypercube for the S×n w(n)

jn (pn)
trajectory over n = 1..N . Further details and explanations can
be found in [15], [16], [21], [23].

IV. QLPV- AND TP-MODELS

During the examinations, we used the mentioned trans-
formed model from (4), (5) and (6). Since, our future goal
is to use the developed models for control purposes, we
investigated two possible qLPV model realizations and via
TP model descriptions. Due to the fact, that the transformed
model contains nonlinearities only in (5), these have to be
selected as scheduling variables.

The selected terms from (5) were p1(t) = ey1(t)−y2(t) and
p2(t) = e2y1/3, which means p(t) = [p1(t), p2(t)]>. These
selections modify the (5) as follows:

ẏ2(t) = bp1(t)− dp2(t)− ηg(t) . (15)

To realize a qLPV model, both scheduling variables have to be
paired to a given state in order to involve them into the qLPV
function – although, this can be done in multiple ways. In this
study, we investigated two cases which requires the extension
of p1 and p2 as follows:

• Model I (qLPV): p1(t) =
ey1(t)−y2(t)

y1(t)
and p2(t) =

e2y1/3

y2(t)

• Model II (qLPV): p1(t) =
ey1(t)−y2(t)

y2(t)
and p2(t) =

e2y1/3

y1(t)
In both cases, the redefinition of the operating domain of the
states are needed in order to avoid the singularity. Due to this
fact, instead of the y1(t) = y2(t) = [log(1), log((b/d)3/2)]
domain at least the following tighter lower limit should be
considered: y1(t) = y2(t) = (log(1), log((b/d)3/2)] – which
is in accordance that the phenomena and the possible control
goals [8]. It has to be mentioned, that the lower limit can
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be as low as possible to avoid the singularity, however,
does not cause numerical problems. Although, we applied
log(2), thus y1(t) = y2(t) = [log(2), log((b/d)3/2)], which
means x1,min = x2,min = log(2) = 0.6931 [mm]3. As a
consequence, the developed TP models accurately describe
the transformed model between these limits, moreover, the
parameter domain became much more smaller which does not
decrease the generality, but increase the numerical stability.
For example, if the lower limit is log(1 + 10−5) = 10−5

the singularities can be avoided, but it results a much bigger
parameter domain than if the lower limit is log(2) = 0.6931.

In case of Model I, the (15) has to be modified as follows,
moreover, the qLPV function becomes:

ẏ2(t) = bp1(t)y1(t)− dp2(t)y2(t)− ηg(t) . (16)

and

S(p(t)) =


−λ1 λ1 0 0
bp1(t) −dp2(t) −η 0

0 0 −λ3 1
1 0 0 0

 . (17)

Based on the mentioned domains of the states, the operating
domain of the scheduling variables were p1(t) = [1.6548 ·
10−4, 892.6771] and p2(t) = [0.1625, 970.0880]. We applied
medium sampling: 555 in both domains, which was satisfying
from the accuracy point of view. The TP model transformation
was applied on (17), which results the following general TP
model structure:

S(p1(t), p2(t)) = S
2
�
n=1

wn(pn(t)) =

S ×1 w1(p1(t))×2 w2(p2(t))
. (18)

The vary of the applied MVS type weighting functions – which
are linear in this case – can be seen on Fig. 1.

p1
0 100 200 300 400 500 600 700 800

w
ei
g
h
ts

0

0.5

1

p2
100 200 300 400 500 600 700 800 900

w
ei
g
h
ts

0

0.5

1

Figure 1. Weighting function belong to TP model version 2

In case of Model II, the (15) has to be modified in the
following way:

ẏ2(t) = −dp2(t)y1(t) + bp1(t)y2(t)− ηg(t) . (19)

and

S(p(t)) =


−λ1 λ1 0 0
−dp2(t) bp1(t) −η 0

0 0 −λ3 1
1 0 0 0

 . (20)

Due to the symmetry, the operating domains of p1(t) =
[1.6548·10−4, 892.6771] and p2(t) = [0.1625, 970.0880] were
the same and the applied sampling was 555 in both domains.

The TP model transformation was applied on (20), which
results the following general TP model structure as follows:

S(p1(t), p2(t)) = S
2
�
n=1

wn(pn(t)) =

S ×1 w1(p1(t))×2 w2(p2(t))
. (21)

The vary of the applied MVS type weighting functions – which
are linear in this case as well – can be seen on Fig. 2.
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Figure 2. Weighting function belong to TP model version 2

V. VALIDATION

During the validation we compared the behavior of the
transformed model to the developed TP models. We applied
three scenarios which covered the most important intake
protocols from applicable control strategy point of view. These
were the followings:
• Natural answer of the models (without external input);
• Answer of the models beside continuous sinusoidal con-

trol input;
• Answer of the models beside impulse kind control input.

In all cases we applied the following initial conditions:
y1(0) = log(10000), y2(0) = log(9950), g(0) = 0. In both
cases, we simulated 100 virtual days.

The basis of the comparison was the L1 norm of the differ-
ence of the states of the transformed model and the developed
TP models. Beside, the vary of the p(t) and the applied input
signals (if any) were represented on the diagrams.

A. Natural Answer of the Models

The first investigated properties were the behavior of the TP
models compared to the transformed model without external
input. This property is important due to the internal insta-
bility of the original model originates from the phenomena.
However, the transformed model and via the TP models have
more convenient boundaries. During the simulations, both the
transformed model and the TP models reach their steady states
(yi,∞ = log(b/d)3/2 = 9.7663, i = 1, 2) started from their
initial conditions (y1(0) = log(10000), y2(0) = log(9950))
without stability problems. Due to external input was not
applied, the g(t) = 0, ∀t ≥ 0.

As it can be seen (Fig. 3 and 4), the deviation dynamics
were similar in case of the TP model I. and the TP model II.
as well. Since the scheduling variables were symmetrical with
the opposite dynamics.

It is visible on Fig. 3 and 4, the differences were only
numerical (≈ 10−10) in both cases between the states of the
transformed model and the TP models.
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Figure 3. Upper Diagram: Comparison of the states of the transformed model
and TP Model I. based on L1 norm, without external load (States: x(t) =
[y1(t), y2(t), g(t)]>). Lower Diagram: Vary of scheduling parameters over
time. OoM: Order of Magnitude.
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Figure 4. Upper Diagram: Comparison of the states of the transformed model
and TP Model II. based on L1 norm, without external load (States: x(t) =
[y1(t), y2(t), g(t)]>). Lower Diagram: Vary of scheduling parameters over
time. OoM: Order of Magnitude.

B. Answer of the Models beside Continuous Sinusoidal Con-
trol Input

In this scenario, we tested the long term stability of the
models beside continuous, softly oscillating input. Since, only
positive input (thus, only inhibitor intake) is possible, the ap-
plied sinusoidal signal had the following properties: amplitude:
5 mg/kg; offset: +10 mg/kg; frequency: 1 rad/day.
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Figure 5. Upper Diagram: Comparison of the states of the transformed model
and TP Model I. based on L1 norm, beside sinusoidal input (States: x(t) =
[y1(t), y2(t), g(t)]>). Lower Diagram: Vary of scheduling parameters over
time. OoM: Order of Magnitude.

As it can be seen on Fig. 5 and 6, the differences were
only numerical (≈ 10−9) in both cases between the states of
the transformed model and the TP models beside sinusoidal
input. Over the 100 day, the steady states of the models were
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Figure 6. Upper Diagram: Comparison of the states of the transformed model
and TP Model II. based on L1 norm, beside sinusoidal input (States: x(t) =
[y1(t), y2(t), g(t)]>). Lower Diagram: Vary of scheduling parameters over
time. OoM: Order of Magnitude.

not reached, however, it became around the day 140 – the
order of the differences did not change.

C. Answer of the Models beside Impulse kind Control Input

From practical point of view, this test was the most im-
portant one, since, similar drug dosage delivery is applied in
clinical environment and we would like to use similar strategy
regard to the future controller design. As in the previous
case, only positive input can be applied. The applied control
input had impulse kind nature with the following properties:
amplitude: 200 mg/kg; period: 10 mg/kg; pulse width: 1 % of
the period.
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Figure 7. Upper Diagram: Comparison of the states of the transformed model
and TP Model I. based on L1 norm, beside impulse kind input (States: x(t) =
[y1(t), y2(t), g(t)]>). Lower Diagram: Vary of scheduling parameters over
time. OoM: Order of Magnitude.

Based on the results – Fig. 7 and 8 –, however the dynamics
of both differences were similar and the order of them are
only numerical (≈ 10−10) as well, the highest dissimilarity
occurred in this case concerning to the vary of the parameter
vectors p(t) over time.
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Figure 8. Upper Diagram: Comparison of the states of the transformed
model and TP Model II. based on L1 norm, beside impulse kind input
(States: x(t) = [y1(t), y2(t), g(t)]>). Lower Diagram: Vary of scheduling
parameters over time. OoM: Order of Magnitude.

VI. CONCLUSION

In this paper we investigated the applicability of the TP
model transformation in case of a transformed tumor model in
order to develop such TP models which can be used for control
purposes in our future work. We compared the behavior of
the transformed model to the developed TP models without
external input signal and beside the presence of inhibitor
intake. In all cases, we experienced that the TP models ap-
proximate the transformed model with high precision and in all
cases only numerical deviation occurred between the models.
During the numerical simulations, we did not experienced
stability problems thank to the applied limitation – although,
the introduced operating domain of the states and parameter
vector were tighter than the original tumor growth model.
Since, the control goal in such kind of tasks is to decrease
the volume of the tumor to a maintainable or operable size,
the selected limits do not decrease the generality of the TP
models – which can be applied for TP-based tumor growth
control. In our future work we will compare our results with
measurements from animal experiments.
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