
 Physical
 universe
Fault

 Information
 universe
Error

 Outer
 universe

Failure

Figure 1. Three-universe

Fault-tolerant Software Solutions in

Microcontroller Based Systems

György Györök, Bertalan Beszédes
* Óbuda University/ Alba Regia Technical Faculty, Székesfehérvár, Hungary

e-mail: {gyorok.gyorgy, bertalan.beszedes}@amk.uni-obuda.hu

Abstract—In this article, the focus is on the different kind of

software solutions, how can a microcontroller increase the

fault-tolerance level of the embedded system. At the

beginning, it will be shown, the theoretical base connection

between fault, error and failure, the possible causes of

faults, fault tolerant solutions and fault tolerant software

solutions. In the realization part, it will be shown, how the

error-free running time and error detecting features can be

increase the robustness of the system.

I. INTRODUCTION

Fault-masking architectures can be classified into
mainly hardware or software categories. Of course, neither
can stand alone. It is containing mainly the type of the
solution, which is in its name. The duplication of
frequently failing units (typically, power supply unit [1])
is the most common way to realize a hardware redundancy
[2]. In software solutions, there are the multiple execution,
the multiple measurements [3] and the majority voters as
the most common major categories.

From the foregoing, it seems, depending to what kind
of redundancy had been used, it has significantly impact
to system performance, required power, weight, price and
reliability. It is important to review the various methods to
assess – the perspective of – the possibilities how to
increase the reliability.

But first, let us declare the exact meanings the three
basic concepts, fault, error and failure. These concepts are
connected through causes and effects. The fault causes an
error, which is causes failure.

A. Fault, error and failure

The fault is the errors proven or suspected cause. In
case of a hardware component it could be short circuit,
connection cut or parameter changes listed here, while in
software case, it could be unexpected input combination,
staying in an endless loop, make an addressing mistake, to
mentioning only a few. An example, during
manufacturing an AND gate, and the surface of the
semiconductor had been polluted by a micro-sized dust
particle, the AND gate’s input may stay in high logic
level.

The error – caused by the fault – is already appears the
internal state of the device. [4] For example, if the AND
gate’s input gets a high logic level input voltage, the input
signal is the same as the stacked leg’s signal. If the input
signal changing – gets a low logic level – the change is no
longer transmitted through the input drive, and the AND
gate’s output will not change. That will cause an error in
the system.

A failure occurs, when the error gets out of the system’s
output. The gate’s output did not enforce in the logical
function, so it affected for the system’s output signals.
Thereby, the error gets out to the outside world and
become a failure. [5].

The three mentioned type of errors, appears in three
different level (Fig. 1.). The fault is inherently physical,
the error is modifying the internal state of the system, it’s
informational nature, and failure essentially affect to the
outside world.

B. Causes of faults

The developing process of a device is starting with the
specification phase. If this is not successful, that will
cause a failure conception.

The formation of errors can be traced back to several
things, like external interference or the consequences of
the mistakes made during the design of the system or a
component. The fault will not come to the surface, even
during the examination of the final conformity test of the
finished product. The error only turns out during the
installation, operation and appears as a failure.

The topic of specification mistakes includes for
example not correct timing, conversion, leveling, etc.
between hardware or software modules.

The implementation mistakes may occurs when
specification is implemented into practice. Improper or
wrong component selection, not correct planning
decisions or mistakes in coding may be the root cause.

The component imperfection is the most common
source of fault. None of the components – neither from the
same type – are matching perfectly, because their

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/154883633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Sp
ec

if
ic

at
io

n

m
is

ta
ke

s

Software
faults

Hardware
faults

Im
p

le
m

en
ta

ti
o

n

m
is

ta
ke

s

Ex
te

rn
al

in

te
rf

er
en

ce

C
o

m
p

o
n

en
t

im
p

er
fe

ct
io

n

Errors

System
failures

Fault
avoidance

Fault
masking

Fault
tolerance

Figure 2. Preventing the spread of errors

parameters will may vary slightly. This can be easily
remedied with conscious design or with component
selection, however, the problems related to random
component failures are much more significant. Typical
causes are, for example, in case of microelectronic
components, – within the case – the rupture of the bonds;
metal corrosion; in case of electronic PCB’s, some
manufacturing imperfections or changes in the operating
conditions – operating in extreme conditions. The failure
type of component imperfection is also including the
failure due to aging of the parts.

Strong emphasis should be placed on the control of
external interferences. The foreseeing planning can give
the ability to control these unpredictable effects. It can be
classified into external interferences for example, the
electromagnetic interference, radiation, the mistake of the
operator, the result of a physical injury or environmental
extremity (vibration, temperature, dust, humidity, …), etc.

C. Nature of faults

If it could understand better the root causes of faults,
then it could be developed improved procedures to
prevent their formation. But until this, it need to be
intervened after the appearance of an error, to maintain the
operation of the system. [6]

As a first step, it is needed to know the types of faults:

• Source of faults:

o Specification mistakes

o Implementation mistakes

o External interference

o Component imperfection

• Type of faults:

o Software

o Hardware

▪ Analog

▪ Digital

• Duration of fault:

o Permanent

o Sporadic

o Transient

• Expense of fault:

o Local

o Global

• Value of the fault:

o Determined

o Not determined

Very many fault combinations can be imagined based
on the upper – broadly – classification. It is not expected
to give a proper global solution for the problems. As a
result, many theories have been advanced for the
treatment of certain causes of errors.

The discussion of these is beyond the scope of the
article, but it will be appreciated that, it needs to correct
the relevant faults. After the exploration of the fault
possibilities, it need to analyze the probability of the fault,
and its consequences, and the resources spent for the
troubleshooting.

It is practical – if the conditions allowing it – to choose
the minimal hardware-intensive solutions, and prefer the
software solutions, especially in embedded systems.

D. Propagation of faults

Fault tolerance, fault avoidance, fault prevention and
fault masking is also a constructive technic, which can
increase the reliability of the devices. Fig. 2. shows the
application areas of the mentioned techniques.

Fault avoidance, fault prevention is the first defense line
to prevent the formation of faults. Several techniques can
be used, to increase the quality of the used components
and the applied technologies. The method is characterized
in that the disorder can be treated even before the
formation. For example: plan criticism by an outside
expert, using design practices to increasing reliability,
component selection, oversizing, testing, shielding, and
other methods to improve quality.

The fault masking techniques are about to protect the
system from the evolution of faults become an error. [7]
When the fault has already occurred, fault masking is try
to eliminate the fault’s effect from the system – it does not
let the fault to step out from the physical universe. A
typical solution for a fault-masking system, is based on
majority voting, where several autonomous decisions are
made, and the result is given by the majority of voters. In
this example, if one of the participants generates incorrect
outcome, it becomes filter out, for this, it just need to be
compared with the results of the other participants. Thus,
the fault does not cause an error in the results.

The purpose of fault tolerance is to avoid faults, if the
fault evolved an error. In this case fault masking and/or
reconfiguration can be used. It can detect the error, then
find out the source of it and the defective item will be

Module 1

Module 2

Module 3

Voter

Input 1

Input 2

Input 3

Output

Figure 3. Triple modular redundancy

Module 3Module 2Module 1

VoterVoter Voter

Output 3

Module 3Module 2Module 1

VoterVoter Voter

Output 2

Input 1 Input 2

Output 1

Input 3

Figure 4. Sequential triple modular redundancy

removed from the system and might set into operation a
new one. [8]

II. FAULT-TOLERANT SOLUTIONS

At the beginning of the fault tolerance history, the
usage of redundancy is always limited to physical
hardware solutions. The most common solution to realize
fault tolerance was to multiply the physical parts of the
device, but nowadays we have more sophisticated
solutions [9]. A redundant system – compared to simple
system – have added information, resources or time.

The following types of redundancies are available:

• Hardware redundancy is when extra hardware is
added to the system, it is typically used for fault
detection and for fault tolerance. For example,
multiplication of modules.

• Software redundancy means that, the added extra
software modules, giving the possibilities to
detect the faults – if possible, fix them –, next to
the default functions of the original software. For
example, timeout monitoring assigned to
waiting’s.

• Information redundancy is the extra information
what is used to fault detection - if possible, fault
correction – which would not be necessary for the
default functions of the device. For example,
using error correcting bits.

• Time redundancy is the extra time what is used to
fault detection and fault tolerance features. For
example, running identical calculations multiple
times and checking the consistency of the
outcome.

Whichever type of redundancy is had been used, the
costs will rise. When choosing hardware redundancy extra
parts are required, also the power needs, the size of the
device, and the cost of the development will increase
parallel [10]. If we using software redundancy, it also has
some effect to hardware redundancy, because we need
stronger processor and bigger memory capacity, more
time in developing phase, and so on. [11]

III. SOFTWARE REDUNDANCY

Reliability can be increased by increasing the number
of the software segments. It need to be compare – with the
proper algorithm – these redundant software segments,
and calculate/chose the right result as a local output. This
result will be one of the input parameter of the next
software module. [12]

A. Majority voters

Majority voters need to have at least three different
inputs. If two of the inputs are working properly, the voter
will give a correct result. So, the method can tolerate only
one malfunction. If more than one of the inputs gets a
false signal, the output of the majority voter will be
incorrect (see at Fig. 3.).

In software, there could run three different software
method in parallel. The results of these software methods
need to be compared by the majority voter. [13]

Majority voters are simple modules both is software
and hardware realization. Therefore, it has a fairly high
reliability compared with the other system modules. But,
if the voter gets out of order – single point of failure – the
whole systems operation becomes impossible. A solution
could be, if the voters are tripled, as showed in Fig. 4. By
converting functions as a sequence of sequential steps, and
by incorporating voters between each level, the reliability
of the system can be increased significantly [14]. This
way it is possible to stop the error near to the appearance
of the error, so it will not spread out to the other parts of
the system. Thanks to this, the system can tolerate
multiple errors if, they are appearing in different levels.

B. Software solutions

The advantage of the software solution – compared to
the hardware solution – is the flexibility, less parts
demand (against with a 32-bit long hardware voter),
resulting in lower consumption and cost. Although, the
algorithm requires only a small computing capacity, but it
is slower than the dedicated hardware, and in addition, in

Sensor value

Time

Chosen
value

Chosen
value

Chosen
value

Chosen
value

A

B

C

Figure 5. Mean value voter

NOK = 0;

Ok = 0;

read and store
sensor A, B, C

if (|A-B| < delta)

if (|B-C| < delta)

if (|C-A| < delta)

OK++;

OK++;

OK++;

if(OK > 1)

select and
send middle

value

NOK++;

NOK++;

NOK++;

if(NOK > 3)

send error
message

Figure 8. Flowchart of multiple majority voters

Sensor value

Time

Chosen
value

Chosen
value

Chosen
value

Chosen
value

A

B

C

Figure 5. Technological voter

the case of independent systems, synchronization
problems need to be solved. [15]

C. Redundant measurements

However, many times (such as outputs of sensors), the
values are correct, but they are not exactly the same, they
differ within their accuracy. In a software solution makes
it easy to produce the correct output. [16] A delta
deviation is allowed for the measured values. If the
measured values are within the delta range (relative to
each other), it does not count as an error. But, in the case
of multiple parallel voters, it is necessary to ensure that
each of the voting outputs is exactly the same (bits are
exactly the same).

If delta tolerance is selected according to the powers of
two, then this method can be used for both hardware and
software voters if the LSB bits are omitted from the
comparison – with masking or shifting right the measured
values. [17]

Mean value voter gives a different solution for the
above-mentioned problem. It is providing the best result
for multiple – even with significantly different – inputs.
[18] As shown in Figure 5., the voter is selecting the
middle value. As long as, two signs out of three are
correct, the voter always choose the correct signal. The
principle can be applied to any voter with an odd number
of inputs.

In some cases, it makes sense to determine the output
value as a function of the input values. For example, if not
the middle value had been chosen – like in the mean value
voter – but calculates the currently expected output signal
based on the values of the inputs recorded at previous
times. [19]

IV. REALIZATION

If we use only one actuator, we cannot duplicate the
voters. Therefore, if possible and the nature of the process
permits, several interveners and a sufficient number of
voters should be used.

In our solution three digital temperature sensors output
values are used as the input signals of the system, three
voters had been applied, and three fan used as actuators. It
is shown in Fig. 6 and Fig. 7. Fig. 8. shows the flowchart
of the demonstration project.

µC

C° C° C°

Figure 6. Operating plan of the multiple majority voter

Figure 7. Realization of the multiple majority voter

IN

OUT

Input 1

Input 2

Input 3

Figure 9. Technological voter

Another solution – to show a robust solution – is if the
voting circuit had been left, and the interconnected system
of several interveners are used, which also performs the
voting task, in addition to the process control. This is
called as a technology voter (Fig. 9). The voting takes
place by serial parallel coupling of six FET’s. Technology
voting does not only have the advantages of increasing
reliability due to the lack of a voting circuit, but it can also
be used to replicate the interveners and to deal with errors
in them.

V. CONCLUSION

In this paper, is showed the theoretical base connection
between fault, error and failure, the possible causes of
faults, fault tolerant solutions and fault tolerant software
solutions. In a realization, it had been shown, a redundant
software block based system, with a reliable measurement
algorithm. By the mentioned solutions, the error-free
running time and error detecting features can be increased,
as showed in the implementation of the system. We
believe that the presented methods can be used in several
applications.

REFERENCES

[1] Gy. Györök. A-class amplifier with FPAA as a predictive
supply voltage control. In: 9th International Symposium of
Hungarian Researcherson Computational Intelligence and
Informatics (CINTI2008). 2008. 361–368. p.

[2] György Györök, Bertalan Beszedes. Fault tolerant power
supply systems In: Orosz Gábor Tamás 11th International
Symposium on Applied Informatics and Related Areas
(AIS 2016). Székesfehérvár, Magyarország, Budapest:
Óbudai Egyetem, 2016. pp. 68-73. (ISBN:978-615-5460-
92-0)

[3] Györök György, Beszédes Bertalan. Duplicated Control
Unit Based Embedded Fault-masking Systems. In: Szakál
Anikó IEEE 15th International Symposium on Intelligent
Systems and Informatics : (SISY 2017) Óbudai Egyetem.
Szabadka, Szerbia. 2017. pp. 1-6. (ISBN:978-1-5386-
3855-2)

[4] Bray W. Johnson. Design and Analysis of Fault-Tolerant
Didital Systems. 1989. Addison-Wesley Publishing

[5] Gy. Györök. Embedded hybrid controller with
programmable analog circuit. In: Intelligent Engineering
Systems (INES), 2010 14th International Conference on.
IEEE, 2010.

[6] K. Lamár, J. Neszveda. Average probability of failure of
aperiodically operated devices. In: Acta Polytechnica
Hungarica, 10.(8.). 2013. 153–167. p.

[7] Gy Györök, T Orosz, M Makó, T Treiber To Achieve
Circuit Robustness by Co-operation of FPAA and
Embedded Microcontroller In: Szakál Anikó (szerk.) IEEE
8th International Symposium on Applied Computational
Intelligence and Informatics: SACI 2013. Konferencia
helye, ideje: Timisoara, Románia, 2013.05.23-2013.05.25.
(IEEE) New York: IEEE, 2013. pp. 315-320. (ISBN:978-
1-4673-6397-6)

[8] Gy. Györök. The FPAA realization of analog robust
electronic circuit. In: Computational Cybernetics, 2009.

ICCC 2009. IEEE International Conference on. IEEE,
2009.

[9] Gy Györök Embedded hybrid controller with
programmable analog circuit In: Szakál A (szerk.) 14th
International Conference on Intelligent Engineering
Systems: Proceedings. Konferencia helye, ideje: Las
Palmas, Spanyolország, 2010.05.05-2010.05.07. Budapest:
IEEE Hungary Section, 2010. pp. 1-4. (ISBN:978-1-4244-
7651-0)

[10] György Györök, Bertalan Beszédes. Artificial Education
Process Environment for Embedded Systems In: Orosz
Gábor Tamás (szerk.) 9th International Symposium on
Applied Informatics and Related Areas - AIS2014.
Konferencia helye, ideje: Székesfehérvár, Magyarország,
2014.11.12 Székesfehérvár: Óbudai Egyetem, 2014. pp.
37-42. (ISBN:978-615-5460-21-0)

[11] J. Kopják J. Kovács. Compering event-driven program
models used in embedded systems. In: Automotive-
Entwicklungen und Technologien. 2011. 90-95. p.

[12] J. Kopják. Dynamic analysis of distributed control network
based on event driven software gates. In: IEEE 11th
International Symposium on Intelligent Systems and
Informatics. Subotica. Serbia. 2013. ISBN: 978-1-4673-
4751-8. 293–297. p.

[13] J. Kopják, J. Kovács. Implementation of event driven
software gates for combinational logic networks. In: IEEE
10th Jubilee International Symposium on Intelligent
Systems and Informatics. Subotica, Serbia. 2012. ISBN:
978-1-4673-4751-8. 299–304 p.

[14] Gy Györök, M Seebauer, T Orosz, M Makó, A Selmeci
Multiprocessor Application in Embedded Control System
In: Szakál A (szerk.) 2012 IEEE 10th Jubilee International
Symposium on Intelligent Systems and Informatics, SISY
2012, Subotica, 2012, September, 20-22. Konferencia
helye, ideje: Subotica, Szerbia, 2012.09.20-2012.09.22.
Piscataway: IEEE, 2012. pp. 305-309. (ISBN:978-1-4673-
4751-8)

[15] Gy. Györök, M. Makó. Configuration of EEG input-unit by
electric circuit evolution. In: 9th International Conference
on Intelligent Engineering Systems (INES2005), 2005. 1–
7. p.

[16] Gy. Györök, M. Makó, J. Lakner. Combinatorics at
electronic circuit realization in FPAA. In: Acta
Polytechnica Hungarica, Journal of Applied Sciences,
2009. 6(1). 151–160. p.

[17] Gy. Györök. The function-controlled input for the IN
CIRCUIT equipment. In: 8th Intelligent, Engineering
Systems Conference(INES2004), 2006. 443–446. p.

[18] Gy. Györök. Self configuration analog circuit by FPAA.
In: 4th Slovakien – Hungarien Joint Symposium on
Applied Machine Intelligence (SAMI2006), 2006. 34–37.
p.

[19] Gy. Györök, L. Vokorokos, L. Hluchý. Crossbar network
for automatic analog circuit synthesis. In: 12th
International Symposium on Applied Machine Intelligence
and Informatics (SAMI 2014). IEEE Computational
Intelligence Society. Szerk.: J. Fodor. Budapest. 2014.
ISBN:978-1-4799-3441-6, 263–267. p.

