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Abstract 

Complex forming capabilities of [(
6
-p-cymene)Ru(H2O)3]

2+
 with aminohydroxamates (2-

amino-N-hydroxyacetamide (-alahaH), 3-amino-N-hydroxypropanamide (-alahaH) and 4-

amino-N-hydroxybutanamide(-abhaH)) having the primary amino group in different 

chelatable position to the hydroxamic function were studied by pH-potentiometry, NMR and 

MS methods. Formation of stable [O,O] and mixed [O,O][N,N] chelated mono- and dinuclear 

species is detected in partially slow with -alahaH and -alahaH or in fast processes with -

abhaH and the formation constants of the complexes present in aqueous solution are reported. 

Synthesis, spectral (NMR, IR) and ESI mass spectrometric characterization of novel dinuclear 

-alaninehydroximato complexes containing the half-sandwich type Ru(II) core is described. 

The crystal and molecular structure of [{(
6
-p-cymene)Ru}2(

2
--alahaH–1)(H2O)Br]Br∙H2O 

(1) and [{(
6
-p-cymene)Ru}2(

2
--alahaH–1)(H2O)Cl]BF4∙H2O (2) was determined by single 

crystal X-ray diffraction method. In the complexes one half-sandwich core is coordinated by a 

hydroxamate [O,O] chelate while the other one by [Namino,Nhydroxamate] fashion of the bridging 

ligand. In both cases the remaining coordination sites of one of the Ru cores are taken by a 

halide ion whiles the other one by a water molecule. Reaction of 2 with 9-methylguanine 

indicates the N7 coordination of this simple DNA model. Complexes 1 and 2 were tested for 

their in vitro cytotoxicity using human-derived cancer cell lines (A2780, MCF-7, SKOV-3, 

HCT116, HeLa) and showed no anti-proliferative activity in the micromolar concentration 

range. 

                                                 
*
 Corresponding author: buglyo@science.unideb.hu, phone number: + 36 52 512900/22305. 

mailto:buglyo@science.unideb.hu
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1. Introduction 

Hydroxamic acids with the general formula of R1(CO)N(R2)OH are important class of 

biomolecules and are attracting an increasing attention. They are known, for example, as 

constituents of siderophores and enhance the uptake of various metal ions (e.g. Fe
3+

) in 

microorganisms.
[1-3] 

Hydroxamates are also considered as effective inhibitors of various 

metalloenzymes.
[3-4]

  Both type of biological activity is obviously connected to their capability 

of forming stable five-membered [O,O] chelate(s) with various, mostly hard type metal ions. 

Based on the inhibition of a Zn(II)-containing metalloenzyme, histone deacetylase, a 

monohydroxamic acid, suberoylhydroxamic acid (SAHA), is currently undergoing clinical 

use as a treatment for cutaneous T-cell lymphoma.
[5] 

 

Half-sandwich type Ru(II) complexes with promising anti-proliferative properties are 

also in the focus of intensive research in recent decades. Earlier studies mostly dealt with the 

design, synthesis, characterization and biological test of these [(η
6
-arene)Ru(XY)Z] type 

(arene = benzene(derivative), XY = chelating, Z = monodentate ligand) complexes.
[6-10]

 

Recent years  research focusing on their solution behaviour or the interaction with various 

high
[11-17]

 or low molecular mass
[18-29]

 biomolecules is also in progress. 

Lately we have combined hydroxamates and half-sandwich [(η
6
-p-cym)M]

2+
 (p-cym = 

p-cymene = 1-methyl-4-(1-methylethyl)benzene; M = Ru, Os) entities, both having potential 

biological activity, into one molecule hoping to obtain compounds with beneficial 

features.
[18,30]

 Although detailed solution equilibrium studies revealed that monohydroxamates 

are capable of binding [(η
6
-p-cym)Ru(H2O)3]

2+
 in stable complexes over a wide pH-range in 

aqueous solution, biological tests on human-derived ovarian cancer cell lines (A2780 and 

A2780 cisR) indicated no improved biological activity. The lack of antiproliferative activity 

of these compounds was interpreted in terms of labile behaviour of the [O,O] chelate formed 

despite the high thermodynamic stability of the complexes.
[18]

 

Presence of Ru-Namino bond(s) in [(η
6
-arene)Ru(XY)Z] complexes seems to result in 

more inert behaviour.
[31] 

Hydroxamate derivatives of simple amino acids also bear a primary 

amino group beside the hydroxamic function therefore may represent ligands with beneficial 

binding properties for [(η
6
-p-cym)Ru(H2O)3]

2+
 in terms of the appropriate kinetic inertness. 

Aminohydroxamates have been shown to act as exclusive [O,O] chelators for hard metal ions 

(Fe
3+

, Al
3+

) but soft metal ions were found to have a preference for [N,N] coordination in the 

basic pH-range with the involvement of the hydroxamate-N of primary hydroxamates in metal 

ion binding.
[32-37] 

For borderline metal ions (e.g. Cu
2+

) the formation of stable pentanuclear 
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metallacrowns with the parallel coodination of both types of the donor sets of – or –

aminohydroxymates was detected both in solution and in the solid state.
[38-39]

 

In the present work, we sought to gain a deeper insight into the effect of the presence 

of the terminal amino group beside the hydroxamate function on the [(η
6
-p-cym)Ru(H2O)3]

2+
 

ion binding in solution and its role on the stability, stoichiometry, nuclearity and binding 

architecture of the half-sandwich type Ru(II) aminohydroxamate complexes. 

Herein we report on the results of a solution equilibrium study relating the interaction 

of [(η
6
-p-cym)Ru(H2O)3]

2+
 with 2-amino-N-hydroxyacetamide (-alahaH), 3-amino-N-

hydroxypropanamide (-alahaH) and 4-amino-N-hydroxybutanamide(-abhaH) (Fig. 1) 

obtained by the combined use of pH-potentiometry, NMR and ESI-MS together with the 

synthesis, characterization, biological test and 9-methylguanine (as a simple DNA model) 

binding capabilities of [{(
6
-p-cym)Ru}2(

2
--alahaH–1)(H2O)Br]Br∙H2O (1) and [{(

6
-p-

cym)Ru}2(
2
--alahaH–1)(H2O)Cl]BF4∙H2O (2) complexes.    

      

2. Experimental  

 

Materials and methods 

RuCl3
.
xH2O, α-terpinene, AgNO3, O-benzylhydroxylamine hydrochloride, N-

carbobenzyloxy-γ-aminobutanoic acid, ethylchloroformate, N-methylmorpholine, Pd/C (10 

%), KBr and NaBF4, 9-methylguanine of highest purity were all commercial products (Merck, 

Aldrich, and Reanal) and used as received. CH3OH, CH2Cl2 and THF, used for the 

preparation of the ligands, were purchased from Molar chemicals. Hydroxylamine 

hydrochloride was purified by recrystallization.
[40]

 -AlahaH and -alahaH∙HCl were 

synthesized using a published method.
[41]

 [(η
6
-p-cym)RuCl2]2 was synthesized and purified 

according to a literature procedure.
[42] 

Aqueous solution of [(η
6
-p-cym)Ru(H2O)3](NO3)2 was 

obtained from [(η
6
-p-cym)RuCl2]2 by the removal of chloride ion using equivalent amount of 

silver nitrate.
 1

H NMR spectra were recorded on a Bruker Avance 360 or 400 NMR 

spectrometer at room temperature in D2O or CDCl3 and referenced to 3-(trimethylsilyl)-1-

propanesulfonic acid sodium salt (TSP) or to the 
1
H resonances of the residual solvents. ESI-

TOF MS measurements in the positive mode were carried out on a Bruker micrOTOF-Q 

instrument. IR spectra as KBr pellets were recorded on a Perkin Elmer FTIR Paragon 1000 

PC instrument. Elemental analyses were conducted on Elementar Vario MICRO CUBE 

instrument at the Department of Organic Chemistry, University of Debrecen, Hungary.  
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Crystal structure analysis  

Diffraction intensity data collection was carried out at 100 K on a SuperNova diffractometer 

equipped with an Atlas detector using Cu-Kα radiation (λ = 1.5418 Å). The structure was 

solved by SIR-92 program
[43] 

in centrosymmetric space group P-1 (No.2) as it is usually 

expected for a racemic compound and refined by full-matrix least-squares method on F
2
. 

Non-hydrogen atoms were refined anisotropically using the SHELX package
[44] 

except one 

fluorine of the tetrafluoroborate anion in structure 2. Publication material was prepared with 

the WINGX- suite
[45]

 and publCIF
[46]

. In structure 2 the BF4
–
 counter ion and the methyl 

groups of the i-Pr moiety of one of the p-cymene ligands are disordered over two positions 

with occupancy of ca. 68:32 ratio. Hydrogen atoms were treated with a mixture of 

independent and constrained refinement. C-H and N-H hydrogen atoms were placed into 

geometric position and methyl groups were refined using a riding model. Hydrogen atoms of 

water molecules were found at the difference electron density map but the distances of 

hydrogen and oxygen atoms should be restrained in the final stage of the refinement. Still the 

orientation of water molecules is ambiguous but presence of heavy atoms prevents more exact 

determination of place of hydrogen atoms and orientation of water molecules. This 

ambiguities resulted B and C level errors in donor-hydrogen distances, as detected by the 

checkcif facility, but they do not influence the overall correctness of the structures. 

Crystallographic and experimental details are summarized in Table 1. The remaining peaks at 

the difference electron density maps are located close to the ruthenium atoms. All the 

crystallographic data for 1 and 2 are deposited in the Cambridge Crystallographic Data Centre 

under CCDC 1423422-1423423. 

 

Preparation of the ligands and complexes  

 

Benzyl(N-carbobenzyloxy)-γ-aminobutanehydroxamate 

O-benzylhydroxylamine hydrochloride (4.07 g, 25 mmol) was dissolved in dry methanol (40 

ml) and chilled in an ice-bath under nitrogen. KOH (1.4 g, 25 mmol) as pellets, was added to 

the solution and the mixture was stirred in ice-bath for 10 min meanwhile solid KCl formed. 

In another flask N-carbobenzyloxy-γ-aminobutanoic acid (4.0 g, 17 mmol) was dissolved in 

dry THF (50 ml) under nitrogen and cooled to 0 °C in ice-bath.  Ethylchloroformate (2.0 ml, 

21 mmol) followed by N-methylmorpholine (2.4 ml, 22 mmol) were added while stirring. The 

reaction mixture was stirred for 40 min under inert conditions, white precipitate (N-



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

5 

 

methylmorpholinium chloride) formed. The free O-benzylhydroxylamine solution was filtered 

into a three-neck flask while the solution of the mixed anhydride filtered into a dropping 

funnel. The latter solution was added dropwise to the former within 5 min while stirring under 

nitrogen at 0 °C. The resulting reaction mixture was stirred overnight under nitrogen at room 

temperature. Next day the solvent was evaporated from the milky-like reaction mixture and 

the remaining solid was dissolved in CH2Cl2 (100 ml). It was extracted with 0.5 M aqueous 

citric acid solution (3x30 ml) and saturated NaHCO3 solution (2x25 ml). The extract was 

washed with 25 ml water, then dried on MgSO4 and evaporated in vacuo. The pure product 

was obtained as a white solid after recrystallization from 30 ml ethyl acetate. Yield: 4.31 g 

(75 %). 
1
H NMR (360 MHz, CDCl3, 298 K): δ = 1.81 m [-CH2]; 2.08 m [-CH2]; 3.20 m [-

CH2]; 4.93 s [-CH2]; 5.07 s [-CH2]; 7.34 m [Ar (-H)].  

 

4-amino-N-hydroxybutanamide hydrochloride (-abhaH∙HCl) 

In a two-neck flask benzyl(N-carbobenzyloxy)-γ-aminobutanehydroxamate (1.0 g, 2.9 mmol) 

was dissolved in dry ethyl acetate (35 ml) under nitrogen. Pd/C (10 %, 0.20 g) and methanolic 

solution of HCl (2.6 M, 1.12 ml) was added and the suspension was stirred under H2 

atmosphere at room temperature. After 4.5 h the catalyst was filtered off and washed with 

methanol (3x15 ml). The resulting solution was evaporated and the oily product was dried in 

vacuo. Yield: 0.39 g (87 %). 
1
H NMR (360 MHz, D2O, 298 K): δ = 1.93 m [-CH2]; 2.26 t [-

CH2]; 3.00 t [-CH2].  

 

[{(6
-p-cym)Ru}2(

2
--alahaH–1)(H2O)Br]Br∙H2O (1)  

[(η
6
-p-cym)RuCl2]2 (61.16 mg, 0.09987 mmol) and α-alahaH (11.79 mg, 0.1010 mmol) was 

dissolved in water (2 ml) and stirred for 1 h. The pH of the solution was set to pH ~ 5 with a 

few drops of concentrated fresh carbonate-free NaOH solution and stirred for another 2 h. The 

resulting red solution was filtered off and KBr (48.70 mg, 0.4092 mmol) was added. On 

cooling to 4 
o
C, the red crystalline solid was separated which was filtered, washed with dry 

diethyl ether and dried in vacuum. Yield: 42.20 mg (55 %). Calcd. for C23H38N2O4Ru2Br2: C, 

35.95; H, 4.98; N, 3.65; found C, 35.69; H, 5.08; N, 3.67. 
1
H NMR (400 MHz, D2O, 298 K): 

δ = 1.25 m [12H, -CH(CH3)2 (p-cym)] and [3H, -CH3 (α-Alaha)]; 2.21 s, 2.23 s [6H, -CH3 (p-

cym)]; 2.77 m, 2.85 m [2H, -CH(CH3)2 (p-cym)]; 3.38 m [1H, -CH (α-Alaha)]; 5.47 d, 5.53 d, 

5.69 d, 5.74 d, 5.55 m, 5.64 m, 5.78 m [8H, Ar(-H)]. IR (KBr): νmax/cm
-1

 = 3380 br (O-H), 
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2961 s (C-H), 2927 s (C-H), 2871 s (C-H), 1578 s (C=O). MS (ESI-TOF): m/z = 652.983 

[((η
6
-p-cym)Ru)2(α-alahaH‒ 1)(Br)]

+
 (simulated = 652.989).  

 

[{(6
-p-cym)Ru}2(

2
--alahaH–1)(H2O)Cl]BF4∙H2O (2)  

[(η
6
-p-cym)RuCl2]2 (61.20 mg, 0.09994 mmol) and α-alahaH (11.70 mg, 0.1002 mmol) was 

dissolved in water (3 ml) and stirred for 1 h. The pH of the solution was set to pH ~ 5 with a 

few drops of concentrated fresh carbonate-free NaOH solution and stirred for 90 min. The 

resulting red solution was filtered and NaBF4 (22.00 mg, 0.2004 mmol) was added. The 

solution was then cooled to 4 
o
C, the red crystalline complex obtained was filtered, washed 

with dry diethyl ether and dried in vacuum for 10 min. Yield: 38.29 mg (52 %). Calcd. for 

C23H38N2O4Ru2ClBF4: C, 37.79; H, 5.24; N, 3.83; found C, 37.67; H, 5.36; N, 3.87. 
1
H NMR 

(360 MHz, D2O, 298 K, TSP): δ = 1.25 m [12H, -CH(CH3)2 (p-cym)] and [3H, -CH3 (α-

Alaha)]; 2.21 s [6H, -CH3 (p-cym)]; 2.80 m [2H, -CH(CH3)2 (p-cym)]; 3.38 m [1H, -CH (α-

Alaha)]; 5.45 d, 5.52 d, 5.56 d, 5.63 d, 5.67 d, 5.73 d, 5.78 d, 5.83 d [8H, Ar(-H)]. IR (KBr): 

νmax/cm
-1

 = 3384 br (O-H), 2963 s (C-H), 2930 s (C-H), 2873 s (C-H), 1578 s (C=O), 1060 br 

(B-F). MS (ESI-TOF): m/z = 609.040 [((η
6
-p-cym)Ru)2(α-alahaH‒ 1)(Cl)]

+
 (simulated = 

609.040). 

 

Solution studies  

For solution studies doubly deionised and ultra-filtered water was obtained from a 

Milli-Q RG (Millipore) water purification system. pH-potentiometric measurements were 

carried out at an ionic strength of 0.20 M KCl and at 25.0  0.1 ºC. Carbonate-free KOH 

solutions of known concentrations (ca. 0.2 M) were used as titrant. HCl stock solutions were 

prepared from concentrated HCl and their concentrations were determined by potentiometric 

titrations using the Gran's method.
[47]

 A Mettler Toledo DL50 titrator equipped with a DGi 

114-SC electrode was used for the pH-metric measurements. The electrode system was 

calibrated according to Irving et al.,
[48]

 the pH-metric readings could therefore be converted 

into hydrogen ion concentration. The water ionization constant, pKw, was 13.75 ± 0.01 under 

the conditions employed. Titrations were performed in the pH range 2.0 – 11.0. Initial volume 

of the samples was 15.00 ml. The metal ion concentrations were varied in the range 1.0 – 3.5 

mM and 1:1, 1:2 and 2:1 metal to ligand ratios were titrated. For the metal ion containing 

systems a maximum waiting time of 15 minutes was applied. The reproducibility of the 

equilibrium titration points included in the evaluation was within 0.005 pH unit. The samples 
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were in all cases completely deoxygenated by bubbling purified argon for ca. 15 min prior the 

measurements. Calculation of the stability constants (p,q,r = [RupAqHr]/[Ru]
p
[A]

q
[H]

r
 ; where 

“Ru” stands for [(η
6
-p-cym)Ru]

2+
 and “A” represents the deprotonated forms of the 

aminohydroxamic acids) of the complexes using the titration curves was attempted by the 

PSEQUAD or SUPERQUAD computer programs.
[49-50]

 During the calculations hydrolysis of 

[(η
6
-p-cym)Ru(H2O)3]

2+
 and its interaction with chloride ion were taken into consideration 

and the following species was assumed: [{(
6
-p-cym)Ru}2(

2
-OH)2]

2+
 (log = –7.12), 

[{(
6
-p-cym)Ru}2(

2
-OH)3]

+ 
(log = –11.88).

[18]
 

1
H NMR titrations were carried out on a Bruker Avance 360 or 400 NMR instrument at 278 K 

in the presence of 0.20 M KNO3. Chemical shifts are reported in ppm (δH) from sodium 3-

(trimethylsilyl)-propionate (TSP) as internal reference. Titrations were carried out in D2O 

(99.8 %) at cRu = 0.01 M in order to register the pH dependence of the chemical shifts of the 

nuclei of hexahapto bonded p-cymene. pH was set up with NaOD or DNO3 in D2O. Individual 

samples were equilibrated at least for 1 h prior measurements. pH* values (direct pH-meter 

readings in a D2O solution of a pH-meter calibrated in H2O according to Irving et al.
[48]

) were 

converted to pH values measureable at an ionic strength of 0.20 M using the following 

equation: pH = pH* + 0.40. The interaction of 2 with 9-methylguanine was monitored in D2O 

using 1:1 and 1:2 molar ratios at 298 K adopting the method in Ref. [51]. 

For the ESI-MS analysis of the solutions the measurements were performed in water at 0.4 

mM [(η
6
-p-cym)Ru(H2O)3]

2+
 concentration at different pH values and at 1:1 metal ion to 

ligand ratio. Temperature of drying gas (N2) was 180C. The pressure of the nebulizing gas 

(N2) was 0.3 bar. The flow rate was 3 μl/min. The spectra were accumulated and recorded by 

a digitalizer at a sampling rate of 2 GHz. DataAnalysis (version 3.4) was used for the 

calculations.  

 

Cytotoxicity tests 

 

The human ovarian carcinoma A2780, the human breast cancer MCF-7 and human ovarian 

adenocarcinoma SKOV-3 cells were kindly supplied by Professor B. Keppler, University of 

Vienna (Austria). The human colon carcinoma HCT116 cells were a kind gift of Dr. M. 

Brazdova, Institute of Biophysics, Brno (Czech Republic), the human cervix adenocarcinoma 

HeLa cells were obatined from ATCC (Manassas, Virginia, U.S.). The A2780 cells were 

grown in RPMI 1640 medium (PAA; Pasching, Austria) supplemented with streptomycin 
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(100 µg mL
−1

), penicillin (100 U mL
−1

) (both Sigma, Prague, Czech Republic) and 10% heat 

inactivated fetal bovine serum (PAA; Pasching, Austria). The MCF-7, HeLa, SKOV-3 and 

HCT-116 cells were grown in DMEM medium (PAA; Pasching, Austria) supplemented with 

gentamycin (50 μg mL
−1

, Serva, Heidelberg, Germany) and 10% heat inactivated fetal bovine 

serum (PAA; Pasching, Austria). The cells were cultured in a humidified incubator at 37 °C in 

a 5% CO2 atmosphere and subcultured 2-3 times a week with an appropriate plating density. 

Cytotoxic effect of compounds 1 and 2 were evaluated by using assays based on the neutral 

red (NR) uptake. The adherent cells were plated out 20 h prior to testing in 96-well tissue 

culture plates at a density of 10
4
 cells/well (A2780) or 4 x 10

3
 cells/well (MCF-7, HeLa, 

SKOV-3 and HCT-116 ) in 100 μL of medium. The cells were treated for 72 h with the 

compounds at the final concentrations in the range of 0 to 0.5 mM in a final volume of 200 

μL/well. Concentrations of the compounds in the medium during the treatment were verified 

by flameless atomic absorption spectrometry. Thereafter, a viability of the cells was tested by 

NR assay as described previously.
[52]

 Briefly, after the treatment period, 20 µL of a 0.33% 

solution of NR in phosphate buffered saline (PBS) was added to each well with adherent cells 

and the plate was incubated at 37 °C in a humidified 5% CO2 atmosphere for 2 h. Afterwards, 

the dye containing medium was carefully removed and the cells were quickly rinsed with 

PBS. The incorporated dye was then solubilized in 200 µL of 1% acetic acid in 50% ethanol, 

allowed to stand for 10 min at room temperature and the absorbance was measured at λ = 540 

nm with absorbance reader Synergy MX (Biotek,VT, USA). The background absorbance of 

the plates at 690 nm was also measured and subtracted from 540 nm measurement. The 

reading values were converted to the percentage of the control (percentage cell survival). All 

experiments were repeated at least three times, each repetition made in triplicate. 

 

3. Results and discussion 

 

3.1. Synthesis and characterization of the ligands 

alahaH and alahaH∙HCl were synthesized according to published procedures
 [41]

 

while in the case of -abhaH∙HCl a slightly modified synthetic route was used. For the  and 

derivative the ligands were obtained from the appropriate methylesters and hydroxylamine 

followed by conversion to alahaH∙HCl in the latter case. Pure products were obtained by 

recrystallization from ethanol and checked by NMR exhibiting the expected resonances. For 

abhaH the Z-protected aminobutyric acid was activated with ethylchloroformate and the 
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mixed acid anhydride was reacted with O-benzyl-hydroxylamine. The doubly protected 

intermediate was subjected to hydrogenolysis affording the pure product as colourless oil. 

     

3.2. Potentiometric results 

To check the purity and the exact concentration of the aqueous solutions of the 

aminohydroxamate ligands pH-potentiometric measurements were carried out. As a 

representative example titration curve of alahaH is shown in Fig. 2a. The redetermined 

stepwise protonation constants of the ligands  are summarized in Table 2 and are in excellent 

agreement (within 0.05 log units) with the previous data estimated under identical 

experimental conditions.
[53-55]

 

Representative titration curves for the [(
6
-p-cym)Ru(H2O)3]

2+
 – ligand systems are 

shown in Fig. 2. For - and -alahaH slow complex formation processes were observed in the 

range 3.0 < pH < 7.0 and 4.5 < pH < 7.0, respectively, the usual waiting time (see 

Experimental) was not enough to reach complete pH equilibrium. This is also reflected in the 

shape of the titration curves. At the same time, for the [(
6
-p-cym)Ru(H2O)3]

2+
-abhaH 

system fast processes were detected resulting in reliable and reproducible titration curves (Fig. 

2c). Despite the above facts, analysis and comparison of the sets of titration curves may 

provide with valuable information. For the -alahaH system at 2:1 metal ion to ligand ratio 

the three equivalents of base consumption is consistent with the formation of [Ru2AH–1]
2+

 (Ru 

= [(
6
-p-cym)Ru]) in which the second metal ion is coordinated via the [N,N] donor set of the 

ligand. This is also supported by the half amount of extra base consumption at 1:1 ratio by pH 

5.5. For the -alahaH system similar trend is observed, however, the formation of [Ru2AH–

1]
2+

 is accompanied by a separate step on the curve above pH ~ 4.5 suggesting smaller 

stability of this complex than that formed with -alahaH. For abhaH the titration curve at 

2:1 ratio is more complex but still indicates the formation of a [Ru2A] type species. 

The titration curves for all the systems can be fitted well with the models and 

complexes summarized in Table 2 while the calculated concentration distribution curves 

appear in Fig. 3. During model selection [RuAH–1] could be replaced by its dimeric form, 

[Ru2A2H–2]. It is important to emphasize that for the [(
6
-p-cym)Ru(H2O)3]

2+
-abhaH 

system, where stable pH-metric readings were available, reliable stability constants could be 

calculated for the complexes while in the case of the andalahaH the log values 

(shown by italic numbers in Table 2) should be treated as tentative only. Nevertheless, 

comparison of the stability constants in Table 2 allows to draw some useful conclusions too. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

10 

 

In all the three systems the complex formation starts with [RuAH]
2+

 in which the 

ligands coordinate via a hydroxamate [O,O] chelate to the metal ion while the amino groups 

are protonated (see I in Fig. 4 (where, as representative examples, the suggested binding 

modes with -abhaH are shown)). [N,N] coordination mode with protonated hydroxamic 

function would mean [RuA]
+
 stoichiometry. Furthermore the logK* values of the three 

complexes with the various ligands (Table 2) referring to the (1) equilibrium process are well 

comparable with each other indicating identical strengths of the coordinating donor atom sets 

supporting thus the hydroxamate coordination mode.  

Ru
2+

 + H2A
+
 = [RuAH]

2+
 + H

+
    (1) 

With increasing pH slow complex formation processes were detected in the systems 

containing the - and -alahaH, but not with abhaH ligand. Speciation curves (Fig. 3 A-C) 

indicate the binding of a second metal ion in each system resulting in the formation of 

[Ru2AH–1]
2+

 in agreement with the three equivalents of base consumptions in the titration 

curves of each ligand at 2:1 metal ion to ligand ratio. This complex stoichiometry can be 

rationalized with the deprotonation of the hydroxamate-NH and the ammonium group as it is 

illustrated by II in Fig. 4. Although the logRu2AH-1 values can only be considered as tentative 

for the - and -alahaH ligand, the decreasing trend in the →  direction clearly supports 

the decreased stability of the [N,N] chelated species due to the increasing chelate size. Parallel 

with the formation of [Ru2AH–1]
2+

, further increase in pH results in the displacement of the 

hydroxamate [O,O] coordinated metal ion with the formation of [RuA]
+
. In principle, in the 

[RuA]
+
 species the ligands can coordinate by [O,O] fashion with deprotonation of the water 

molecule at the third coordination site, however, the rather low pKRuAH values, especially for 

the  and  derivative (Table 2), seem not to support this binding mode. It is more likely that 

these values belong to the metal ion assisted deprotonation and coordination of the 

ammonium group, resulting in the formation of III (Fig. 4) as the most plausible solution 

structure, but the formation of [Ru2A2]
2+

 with [(O,O)(NH2)] coordination mode of the ligands 

can not be ruled out either. In all systems further deprotonation yields [RuAH–1]x (x = 1-2) 

species that are indistinguishable by pH-potentiometry from each other. [RuAH–1] may be a 

mixed hydroxido complex (IV, Fig. 4), but ESI MS results also support the formation of the 

appropriate dinuclear complexes, [Ru2A2H–2] (vide infra). These species may consist of two 

[N,N] coordinated entities bridged by the hydroxamate oxygens of the ligands (V, Fig. 4). 

 

3.2. ESI-TOF-MS results 
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ESI-TOF-MS measurements also provided valuable information in the identification 

of the species present in solution. As a representative example MS spectrum acquired in the 

[(
6
-p-cym)Ru(H2O)3]

2+
–abhaH system at 1:1 ratio is shown in Fig. 5. Fig. 5 reveals that 

[RuA]
+
 and [Ru2(AH–1)Cl]

+
 are the major complexes at pH = 6.07 supporting thus the pH-

potentiometric results. The identified species existing at various ratios and pH values are 

summarized in Table 3 while, as a representative example, the estimated and observed isotope 

pattern for [Ru2A2H–2] + K
+
 in the abhaH system can be seen in Fig. S2. For all the species 

in Table 3 the correct isotopic pattern was found proving in this way the identity of the 

complexes. 

 

 

3.3. NMR results 

 Complex formation was also monitored by 
1
H NMR spectroscopy. As a representative 

example, pH-dependence of the aromatic part of the spectra recorded in the [(
6
-p-

cym)Ru(H2O)3]
2+

– abhaH system at 1:1 metal ion to ligand ratio are shown in Fig. 6. At pH 

= 2.78 beside the doublets of the p-cymene ring hydrogens belonging to [(
6
-p-

cym)Ru(H2O)3]
2+

 (5.73 and 5.98 ppm) and [(
6
-p-cym)Ru(H2O)2Cl]

+
 (5.63 and 5.85 ppm) 

species
[20]

, a new pair of doublets also appears corresponding most likely to [RuAH]
2+

. In 

accordance with the speciation in Fig. 3c at pH ~ 5 this becomes the predominant complex. 

On increasing the pH, small upfield shift of the resonances of [RuAH]
2+

 is consistent with a 

slight change in the coordination environment of the metal ion, e.g. deprotonation of the 

coordinating water, resulting in the partial formation of [RuA]
+
 (= [RuAH(OH)]

+
). This is 

plausible for the -abhaH system as the pKRuAH is rather high here compared to the other two 

ligands.
 
Due to the fast exchange processes on the NMR time scale, the resonances of these 

two species appear as an averaged signal in the spectrum. The additional two sets of new 

doublets at pH = 6.23 may belong to two p-cym units being in different chemical 

environments in [Ru2AH–1]
2+

. Above pH ~ 7 the spectra become rather complex. It is clear, 

however, that significant hydrolysis of the metal ion resulting in the formation of [{Ru(
6
-p-

cym)}2(
2
-OH)3]

+
 (5.18 and 5.38 ppm)

[20]
 does not occur up to pH = 11 in agreement with the 

speciation (Fig. 3c). Homonuclear 2D NMR experiments were also performed to gain 

additional information from the complex formation above pH ~ 7. While in the aromatic 

region of 
1
H-

1
H COSY spectrum (Fig. 7, red contour plot) cross-peaks can only be seen 

between ortho protons, in the same part of 
1
H-

1
H TOCSY spectrum (Fig. 7, black contour 
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plot) with long mixing time (120 ms) cross-peaks can also be seen between protons in meta 

and para position to each other. The careful evaluation of the TOCSY spectrum together with 

the COSY spectrum on the sample of pH = 8.52 (Fig. 7) has revealed that three main, 

individual [(
6
-p-cym)Ru]

2+
-containing spin systems existed in which all the p-cymene ring 

hydrogens became magnetically non-equivalent. This strongly suggests that both [RuA]
+
 and 

[RuAH–1]x (x = 1–2) in the form of binding isomers or dimers, as it is proposed in Fig. 4, may 

be present. 

 In order to model the interaction with DNA the binding capability of 2 with 9-

methylguanine in aqueous solution was studied. As a representative example time dependence 

of the 
1
H NMR spectra obtained is presented in Fig. 8. Since compound 2 does not have any 

resonances above 6 ppm, all signals shown in Figure 8 must be due to different guanine 

adducts (represented by the H8 resonances of 9-methylguanine). For the free ligand the H8 

resonance is observed at 7.74 ppm (not shown here) at pH 7.0 in accordance with previous 

results.
[51]

 At this resonance in Fig. 8 a broad signal of the free ligand is present (probably due 

to paramagnetic impurities in the NMR solvent). The other major resonances in the range 

7.60–8.50 ppm clearly support that the guanine derivative interacts with 2. The number of 

new signals indicate that, as a result of the binding of 9-methylguanine to the half-sandwich 

type metal core, diastereomers can be formed. Furthermore, the dissociation of the dinuclear 

metal complex and the formation of various adducts with the ligand can not be ruled out 

either. The binding is also supported by literature data where downfield shift of the H8 

resonances was found for [Ru(
6
-bip)(en)]

2+
 (bip = biphenyl, en = ethylenediamine) 

containing an (N,N) chelator
[56]

 while a slight upfield shift was detected for [Ru(
6
-p-

cym)(acac)Cl] (acac = acetylacetonate) containing an (O,O) chelating set
[57]

 upon reacting 

with 9-ethylguanine. Regarding the rate of the interaction the spectra suggest that this is fast 

(in accordance with earlier findings
[56,57]

) as no significant change in the ratio of the major 

signals in the function of time can be seen, however, two additional minor species also seem 

to be formed at a much slower rate.       

 

3.4 Solid state structures 

 To obtain further proof for the existence and binding mode of the dinuclear complex 

suggested by pH-potentiometry and detected by ESI MS, solid state studies were also carried 

out. Treatment of the aqueous solutions containing the metal ion and -alahaH with bromide 

or BF4
–
 anions afforded dinuclear complexes as red crystalline solids in modest yield. The 
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compounds were characterized by elemental analysis, NMR, IR and ESI-MS methods (see 2.4 

part for details). NMR showed the expected resonances of the methine and methyl protons of 

the ligand. IR spectra of the novel aminohydroxamate complexes exhibited a new sharp band 

at 1578 cm
–1

 compared to those of [(η
6
-p-cym)RuCl2]2 precursor which was assigned to the 

CO of the coordinating hydroxamates. The BF4
–
 anion in 2 was indicated by the chatacteristic 

streching at 1060 cm
–1

. 

Single crystal X-ray diffraction studies also revealed that 1 and 2 are indeed dinuclear 

ruthenium complexes in the solid state, too (Figs. 9 and 10). The structures of 1 and 2 are 

highly similar ones (Fig. S1) with some difference at the p-cym moiety only. Regarding other 

platium group metals search in the Cambridge Structural Database (Ver. 5.36 Update May, 

2015.)
[58]

 revealed no similar binding mode with bridging hydroxamate ligand among Ru, Rh, 

Ir, Os, Pd complexes. Only the platinum complex of pyridine-2-hydroxamate in 
2
-pyridine-

2-hydroximato-N,N',O,O')-bis(cis-diammine-platinum(II)) had analogous [N,N][O,O] 

coordination geometry
[59]

 but due to the pyridine moiety the structures are less comparable. 

Although this coordination fashion is quite abundant among copper and nickel hydroxamato 

compounds they are multinuclear rather than dinuclear complexes. In 1 and 2 the Ru–N and 

Ru–O distances for the hydroxamato ligands are in the expected range of 2.04–2.15 Å. The 

distance of the oxygen atom of the coordinated water molecule to the ruthenium center 

(Ru(1)–O(1)) is 2.204(5) Å and 2.191(5) Å for complex 1 and 2, respectively. Due to steric 

requirements of the bulky p-cym ligand the angle of the mean planes of C-C-N-N-Ru and C-

N-O-O-Ru is 17
o 

for 1 and 16
o
 for 2. These are quite high values considering all the similarly 

[N,N][O,O] coordinated bridging hydroxamato complexes. Search of the CSD gave 106 hits 

for 2-aminohydroxamato or pyridine-2-hydroxamato complexes with [N,N] and [O,O] 

coordination in multinuclear metal complexes but only 25 hits remained when the angle of the 

coordination planes was limited into the range of 14
o 

– 25
o
. These hits are pentameric copper, 

nickel or zinc hydroximato metallacrown complexes in which the cavity is occupied by a 

lanthanide ion resulting in similarly high steric constrains on the C-C-N-N and C-N-O-O 

planes of the bridging hydroximate-derivative ligand. Further bond distance and bond angle 

data can be found in the caption of Figs. 9 and 10. As alahaH in this study was racemic and 

two new stereogenic centers were formed on the Ru atoms upon coordination of the ligands 

we have a diastereomeric pair in the lattice forming a centrosymmetric space group. In this 

case the relative configuration of the stereogenic centers can be determined. Similar chiral-at-

metal complexes have paramount importance in homogeneous catalytic processes.
[60]

 

However, there is no IUPAC recommendation for the nomenclature of the chirality of metal-
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arene sandwich or half-sandwich complexes. Using an analogy
[61]

 to the Cahn-Ingold-Prelog 

nomenclature suggests to use the pseudoatom convention by replacing the p-cym ligand with 

a pseudoatom with an atomic weight of 6 x 12 = 72 amu. Although the complexes 1 and 2 are 

homochiral ones (Fig. S1) this convention results in change in the priority rules causing 

opposite assignment for Ru(2). Hence the relative configuration of complex 1 is 

S*C(1),R*Ru(1),R*Ru(2) while that of complex 2 is S*C(1),R*Ru(1),S*Ru(2). 

 

Cytotoxicity in cancer cells 

 

The in vitro anti-cancer chemotherapeutic potential of complexes 1 and 2 towards a set of 

various human cancer cell lines (A2780, MCF-7, HeLa, SKOV-3 and HCT-116) was also 

tested. To determine cytotoxic effect of the compounds NR assay have been employed. This 

assay is based on the ability of viable cells to incorporate and bind the dye in lysosomes by an 

active metabolic process. The results clearly showed that the complexes tested in this work 

caused very low or insignificant cytotoxic effect (Fig. 11) even in the highest concentration 

tested in this work (0.5 mM). In contrast, cisplatin displayed a significant reduction in 

viability of the cells under the same conditions with the mean IC50 values of 1.8 ± 0.2 μM, 8.2 

± 1.0 μM, 1.9 ± 0.1 μM, 12.1± 2.1 μM and 7.4 ± 0.7 μM for A2780, MCF-7, HeLa, Skov-3, 

and HCT-116 cells, respectively. Thus, compounds 1 and 2 expressed cytotoxic activity more 

than two order of magnitude lower than cisplatin, even in those cancer cells inherently 

resistant to cisplatin. 

 

4. Conclusions 

Previously simple hydroxamates were proven to be effective binders for half-sandwich 

type Ru(II) at pH = 7.4
[18]

, but high thermodynamic stability of the complexes was 

accompanied by labile kinetic behaviour. These fast ligand exchange processes seemed to 

count for ineffective anticancer activity found on human-derived A2780 and A2780R cell 

lines.  

Our results in this study indicate that the presence of an amino group in chelatable 

position to the primary hydroxamate function in aminohydroxamates provides effective 

ligands for binding a half-sandwich type Ru(II). These molecules were shown to be capable of 

preventing the metal ion from hydrolysis up to pH ~ 11 and can also bind a second metal ion. 

Partially slow complex formation processes under weakly acidic conditions for the  and  

but not for the  derivative seem to be correlated with the size of the (N,N) chelate that can 
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also be found with these ligands beside the (O,O) hydroxamate one. This more inert kinetic 

behaviour made especially -alaha a promising candidate for biological tests. Moreover, 2 

was shown to react with 9-methylguanine (as a DNA model) in a fast reaction. However, the 

results of the cell line studies indicated that 1 and 2 both sharing very similar binding 

architecture are not effective in the micromolar concentration range against the A2780, MCF-

7, HeLa, Skov-3, and HCT-116 cell lines. 
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Figure 1. Structure of the neutral form and abbreviation of the ligands studied. 
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Figure 2. Titration curves for the H
+ ‒  ligand (pK) and the [(η

6
-p-cym)Ru(H2O)3]

2+ ‒  ligand 

systems at various (1:1, 1:2 and 2:1) ratios with -alahaH (A), -alahaH (B) and -abhaH (C). 

Negative base equivalent refers to an excess of acid in the sample. 
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Figure 3. Calculated concentration distribution curves for the [(
6
-p-cym)Ru(H2O)3]

2+
–-

alaha (A), –-alaha (B) and –-alaha (C) systems at 1:1 metal ion to ligand ratio. cRu = 4.0 

mM. „Ru” refers to [(
6
-p-cym)Ru]

2+
. 
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Figure 4. Plausible solution structures of the aminohydroxamate complexes (in this case with 

the γ-abha).  
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Figure 5. ESI-MS spectrum of the [(η

6
-p-cym)Ru(H2O)3]

2+
 - -abha system at 1:1 metal ion to 

ligand ratio (pH = 6.07). 
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Figure 6. Dependence on pH of the aromatic region of the 
1
H NMR spectra of [(η

6
-p-

cym)Ru(H2O)3]
2+

–-abhaH system at 278 K in D2O, 1:1 metal ion to ligand ratio, cRu = 10 

mM). „Ru” stands for [(η
6
-p-cym)Ru]

2+
.  
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Figure 7. The aromatic region of 

1
H-

1
H COSY (red), TOCSY (black) and 

1
H NMR spectrum 

(above the 2D contour plots) of the [(η
6
-p-cym)Ru(H2O)3]

2+
 - -abhaH system, 1:1 metal ion 

to ligand ratio, pH = 8.52. Assignment is shown above the 
1
H NMR spectrum and indicates 

three distinct spin systems (1A, 1A', 1B, 1B' / 2A, 2A', 2B, 2B' / 3A, 3A', 3B, 3B'). 
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Figure 8. Low field region of the 

1
H NMR spectra for the reaction between complex 2 and 9-

methylguanine (9-MeG) (1:2 mol ratio; pH = 7) after 10 min, 40 min, 15 h and 23 h in D2O. 

Concentration of 2 was 2 mM.  
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Figure 9. ORTEP view of [{(
6
-p-cym)Ru}2(

2
--alahaH–1)(H2O)Br]Br∙H2O (1) at 50% 

probability level. Selected bond lengths [Å] and angles [
o
]: Br(2)–Ru(2) 2.5324(11), C(1)–

N(1) 1.496(9), C(1)–C(2) 1.515(11), C(2)–O(3) 1.301(9), C(2)–N(2) 1.308(10), O(3)–Ru(1) 

2.071(5), N(1)–Ru(2) 2.142(6), N(2)–O(2) 1.408(7), N(2)–Ru(2) 2.048(6), O(1)–Ru(1) 

2.204(5), O(2)–Ru(1) 2.034(5), O2-Ru1-O3 79.6(2), O2-Ru1-O1  80.8(2), O3-Ru1-O1  

81.3(2), N2-Ru2-Br2 83.53(18), N1-Ru2-Br2 83.24(18), N2-Ru2-N1 77.0(2). 
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Figure 10. ORTEP view of [{(
6
-p-cym)Ru}2(

2
--alahaH–1)(H2O)Cl]BF4∙H2O (2) at 40% 

probability level, BF4
–
 counter ion was omitted for clarity. For the disordered i-Pr moiety of 

the cymene ligand only the major isomer is shown. Selected bond lengths [Å] and angles [
o
]: 

C(1)–C(3) 1.257(17), Cl(1)–Ru(2) 2.431(2), C(1)–N(1) 1.483(11), N(1)–Ru(2) 2.147(8), 

C(1)–C(2) 1.528(13), N(2)–O(4) 1.402(8), C(2)–N(2) 1.296(13), N(2)–Ru(2) 2.048(6), C(2)–

O(3) 1.304(10), O(1)–Ru(1) 2.191(5), O(3)–Ru(1) 2.075(5), O(4)–Ru(1) 2.042(5), O4-Ru1-

O3 79.7(2), O4-Ru1-O1 80.6(2), O3-Ru1-O1 80.0(3), N2-Ru2-N1 76.3(3), N2-Ru2-Cl1 

83.3(2), N1-Ru2-Cl1 83.2(3).   
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Figure 11. Bar graph representation of cell viability data as determined by NR assay 

performed with indicated cell lines following their exposure to 0.5 mM concentrations of 

compounds 1 (open bars) and 2 (full bars). Values are represented in percentage with control 

(untreated cells) taken as 100%. The error bars represent the standard deviation of the mean 

(±  SD).  
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Table 1. Crystallographic data and structure refinement results for [{(
6
-p-cym)Ru}2(

2
--

alahaH–1)(H2O)Br]Br∙H2O (1) and [{(
6
-p-cym)Ru}2(

2
--alahaH–1)(H2O)Cl]BF4∙H2O (2). 

 

Compound 1 2 
Formula C23H38Br2N2O4Ru2 C23H38ClN2O4Ru2BF4 

Formula weight 768.51 730.95 

Crystal system Triclinic Triclinic 

Space group (No.) P-1 (2) P-1 (2) 

a / Å 9.6941(6) 10.2430(7) 

b / Å 10.4848(7) 10.3294(9) 

c / Å 14.2904(9) 14.3419(13) 

/ ˚ 72.046(6) 75.204(8) 

/ ˚ 75.966(6) 72.031(7) 

γ ˚ 76.755(6) 77.540(7) 

V / Å
3
 1321.63(16) 1380.0(2) 

Z 2 2 

Dc / g cm
–3

 1.931 1.759 

F(000) 760 736 

/ mm
–1

 13.05 10.28 

Reflections collected 9843 10506 

Unique reflections  5085 5308 

Reflections with I > 2(I) 4278 4163 

Parameters refined 323 409 

GOF
a
 on F

2
 1.04 1.02 

R
b
 [F

2
 > 2(F

2
)] 0.057 0.063 

Rint 0.045 0.058 

wR(F
2
)
b 

0.164 0.170 

max, min / e Å
–3

 2.69, -2.22 1.66, -0.89 

a
 GOF = [Fo

2 -Fo
2
)
2
/(n-p)]

1/2 

b
 R1 =Fo-Fc/ Fo, R2 = [Fo

2 -Fo
2
)
2/Fo

2
]

1/2 
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Table 2. Stepwise protonation constants (logK) of the aminohydroxamates and stability 

constants (logβ) of their [(η
6
-p-cym)Ru]

2+
 complexes at 25.0 ˚C and I = 0.20 M KCl.

†
 

 
†
3σ standard deviations are in parantheses; „Ru” stands for the [(η

6
-p-cym)Ru]

2+
 entity. 

# 
Fitting parameter is the average difference between the calculated and experimental titration 

curves expressed in mL of the titrant. 
a
 Refers to the following proton displacement equilibrium: Ru

2+
 + H2A

+
 = [RuAH]

2+
 + H

+
. 

b
 Refers to the following proton displacement equilibrium: Ru

2+
 + H2A

+
 = [RuA]

 +
 + 2H

+
. 

 

species α-alahaH β-alahaH -abhaH 

HA 9.18 (1) 9.75 (1) 10.19 (1) 

H2A
+ 

7.36 (1) 8.48 (1) 8.77 (1) 

 model A model B model A model B model A model B 

[RuAH]
2+ 

15.86(7) 15.85(7) 17.99(3) 17.99(3) 18.71(1) 18.71(1) 

[RuA]
+ 

11.83(10) 11.78(10) 12.75(8) 12.74(9) 12.34(4) 12.34(4) 

[RuAH-1]   2.42(8)    –   2.54(10)    –   3.74(4)    – 

[Ru2A2H-2]    –   7.7(2)    –   7.9(2)    – 10.51(8) 

[Ru2AH-1]
2+

 12.38(3) 12.38(3) 11.83(7) 11.82(7) 11.45(5) 11.46(5) 

[Ru2AH-2]
+ 

  3.1(1)   3.31(10) – –   3.50(12)   3.92(8) 

pKRuAH   4.03  4.07   5.24   5.25 6.37 

pKRuA   9.41   – 10.21    –   8.60     – 

logK*RuAH
a 

–0.68 –0.24 –0.25 

logK*RuA
b 

–4.73 –5.48 –6.62 

fitting parameter
#
 (ml)  0.0154 0.0163  0.0173  0.0188  0.0058  0.0063 

number of data points 203 245 215 
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Table 3. Observed species with their calculated m/z values in the [(η
6
-p-

cym)Ru(H2O)3]
2+‒aminohydroxamic acid 1:1 systems using ESI-TOF-MS.

#
 

 

 

#
„ α-alaha”, „β-alaha” and „γ-abha” stand for the fully deprotonated ligands. 

a
 measured at pH 

= 2.56. 
b
 measured at pH = 9.50 

 

Species m/z (observed) m/z (calculated) 

[(η
6
-p-cym)RuCl]

+
 270.980 270.982 

[(η
6
-p-cym)Ru(α-alaha)]

+
 339.069

a 
339.064 

[((η
6
-p-cym)Ru)2(α-alahaH‒1)]

2+
 286.535 286.536 

[(η
6
-p-cym)Ru(α-alaha)]

+
 339.069

b
 339.064 

[((η
6
-p-cym)Ru)2(α-alahaH‒1)2]

 
+ H

+
 677.150 677.123 

[((η
6
-p-cym)Ru)2(α-alahaH‒1)2]

 
+ K

+
 715.109 715.078 

[(η
6
-p-cym)Ru(β-alaha)]

+
 339.059 339.064 

[(η
6
-p-cym)Ru(β-alahaH‒1)] + K

+ 377.014 377.020 

[((η
6
-p-cym)Ru)2(β-alahaH‒1)2]

 
+ H

+ 677.117 677.123 

[((η
6
-p-cym)Ru)2(β-alahaH‒1)2]

 
+ K

+
 715.071 715.078 

[(η
6
-p-cym)Ru(γ-abha)]

+
 353.075 353.080 

[((η
6
-p-cym)Ru)2( γ-abhaH‒1)(Cl)]

+
 623.051 623.056 

[((η
6
-p-cym)Ru)2( γ-abhaH‒1)2] + H

+
  705.149 705.154 

[((η
6
-p-cym)Ru)2( γ-abhaH‒1)2] + K

+
 743.104 743.110 
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Graphical abstract synopsis 

The interaction between [Ru(
6
-p-cymene)(H2O)3]

2+
 and various aminohydroxamates was 

studied with the aid of combined pH-potentiometric, 
1
H-NMR and ESI-TOF-MS methods in 

aqueous solution, furthermore, the crystal and molecular structure of [{Ru(
6
-p-

cymene)}2(
2
--alahaH–1)(H2O)Br]Br∙H2O and [{Ru(

6
-p-cymene)}2(

2
--alahaH–

1)(H2O)Cl]BF4∙H2O (-alaha = 2-amino-N-hydroxyacetamide) was determined by X-ray 

diffraction method. 
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Highlights 

 Solution study of [Ru(
6
-p-cymene)(H2O)3]

2+
–-, - and -aminohydroxamate (alaha) 

systems  

 Demonstration of the formation of highly stable, partly dinuclear  complexes 

 Lack of hydrolysis of the metal ion under biologically relevant conditions 

 X-ray characterization of [{Ru(
6
-p-cymene)}2(

2
--alahaH–1)(H2O)Br]Br∙H2O 

 X-ray characterization of [{Ru(
6
-p-cymene)}2(

2
--alahaH–1)(H2O)Cl]BF4∙H2O 


