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We show that an unstable scalar dynamical system with time-delayed feedback can be stabilized

by quantizing the feedback. The discrete time model corresponds to a previously unrecognized

case of the microchaotic map in which the fixed point is both locally and globally repelling. In the

continuous-time model, stabilization by quantization is possible when the fixed point in the absence

of feedback is an unstable node, and in the presence of feedback, it is an unstable focus (spiral).

The results are illustrated with numerical simulation of the unstable Hayes equation. The solutions

of the quantized Hayes equation take the form of oscillations in which the amplitude is a function

of the size of the quantization step. If the quantization step is sufficiently small, the amplitude of

the oscillations can be small enough to practically approximate the dynamics around a stable fixed

point. Published by AIP Publishing. https://doi.org/10.1063/1.5006777

Digital feedback controllers are having an increasing

impact on human activities. Examples range from the

control of single-atom trajectories1 to the development of

brain-device interfaces,2 from the treatment of human

diseases using closed-loop drug delivery systems,3 to the

design of driverless automobiles.
4

An important compo-

nent of these controllers is an analog-to-digital (A/D) con-

version by which a continuous (or analog) signal is

converted into a series of numbers proportional to the

signal. This A/D conversion is essential to enable the digi-

tal microprocessors to track the controlled variable: the

reverse D/A conversion makes it possible for the micro-

processor to affect control. The effect of A/D and D/A

conversion is to introduce a quantization into both the

time domain (“sampling”) and the controlling force

(“round off”). Although it is well known that these quan-

tizations can introduce spurious oscillations5,6 and small

amplitude micro-chaotic fluctuations into the control

dynamics,7,8 less is known about the possible benefits of

feedback quantization for control. Here, we analyze a

generic scalar model for feedback control and show that

a “coarse-grained” signal quantization can contribute to

the stabilization of unstable dynamical systems in the

presence of feedback delays.

I. INTRODUCTION

The advantages of digital feedback control over continu-

ous, or analog, control are well documented.9,10 Digital con-

trollers are cheaper, easier to configure, more adaptable, and

less prone to the effects of environmental fluctuations.

However, the dynamics which arise in the setting of digital

control can sometimes be counter-intuitive. Examples include

the appearance of an oscillation whose frequency is within a

range far smaller than the sampling frequency and the appear-

ance of low amplitude stochastic-like fluctuations in the

desired motion, referred to as microchaos.7,8 Even more para-

doxical is the prediction that transiently stable solutions can

occur for parameter ranges that for analog feedback would be

unstable.11,12 These quantization effects may not be unique to

man-made devices. The conversion of sensory inputs into a

train of discrete action potentials underlies sensory-motor

encoding in the nervous system. Quantization of voluntary

movements is manifested in the visually guided movements in

infants13 and in patients with brain injury.14 Moreover, sen-

sory dead zones, namely, a range of inputs which give the

same output, arise both in neural control15 and in A/D conver-

sion5,6 and result in the appearance of limit cycle oscillations.

This communication focuses on the observation that cer-

tain unstable time-delayed dynamical systems can be practi-

cally stabilized by round off. Our discussion is organized as

follows. In Sec. II, we review the effects of feedback digiti-

zation on the dynamics of time delayed feedback control

from the perspective of a discrete time map referred to as the

microchaos map. Our focus is on the stable dynamics which

arise when the fixed-point is locally unstable (repelling).

Section III demonstrates that the stable dynamics that arise

when this fixed point is globally attracting include limit

cycle oscillations and microchaos. Surprisingly, stable and

metastable oscillatory dynamics can also arise if this fixed

point in the presence of continuous feedback is, in addition,

globally repelling. Section IV shows an application of these

observations for stabilizing the Hayes equation16 for delayed

feedback control using quantization. Since the amplitude of

the fluctuations is proportional to the size of the quantization

step, it becomes possible to replace the dynamics around an

unstable fixed point with stable, low amplitude fluctuations.

This result may be sufficient for many practical applications.
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II. DIGITAL FEEDBACK

Consider the dynamics of an over-damped unstable sys-

tem described by

_xðtÞ ¼ qxðtÞ � f ðxðtÞÞ ; (1)

where x is a state variable, q> 0 is a constant, and f describes

the feedback. There are two effects of a digital implementa-

tion of (1). First, the fact that f is determined from the sam-

pled values of x introduces a temporal piecewise smooth

dynamics7,8 governed by

_xðtÞ ¼ qxðtÞ � f ðxðtjÞÞ ; t 2 tj; tjþ1Þ ;
�

(2)

where tj ¼ jDt; j ¼ 0; 1; 2;… are the sampling instants and

Dt is the constant sampling time. Temporal sampling intro-

duces a delay in the system, hence Eq. (2) can also be writ-

ten as

_xðtÞ ¼ qxðtÞ � f ðxðt� qðtÞÞÞ ; (3)

where

qðtÞ ¼ t� Dt Int
t

Dt

� �
(4)

is a time-periodic delay, and the function Int() rounds

towards zero. The average delay, �q, is

�q ¼ 1

Dt

ðDt

0

qðtÞ dt ¼ Dt

2
: (5)

Second, the quantization round off of f means that the

feedback forces are computed using integer multiples of the

quantization step, h, and hence

f ðxðtjÞÞ ¼ ph Int
xðtjÞ

h

� �
; (6)

where we have assumed linear state feedback with control

gain p. In making the above approximations, we assume a

zero-order hold, namely, the force is kept constant over the

interval D t. A consequence of this assumption is that despite

the periodically varying delay, the delayed feedback

becomes a piecewise constant function.

III. DISCRETE TIME: MICROCHAOTIC MAP

Equation (3) with (4) and (6) leads to the governing

equation

_xðtÞ ¼ qxðtÞ � ph Int
1

h
x t� Dt Int

1

Dt
t

� �� �� �
(7)

in continuous-time representation. The internal Int function

refers to discretization in time and the external Int function

represents quantization in space. Discretization in time is a

linear effect that increases the dimension of the state space

due to the inherent delay; quantization in space makes the

problem strongly nonlinear.

Equation (2) with (6) gives an equivalent semi-discrete

form

_xðtÞ ¼ qxðtÞ � ph Int
xðtjÞ

h

� �
; t 2 tj; tjþ1Þ :

�
(8)

This equation can be solved over the interval ½tj; tjþ1Þ to give

the discrete governing equation in the form of the micro-
chaos map7

xðtjþ1Þ ¼ axðtjÞ � bh Int
xðtjÞ

h

� �
; (9)

where

a ¼ exp ðqDtÞ > 1; b ¼ p

q
ð1� exp ðqDtÞÞ : (10)

The dynamics of (9) arise from the interplay between

behaviors close to the trivial fixed point x � 0 and those

global to it. The local dynamics, when jxj < h, is governed by

xðtjþ1Þ ¼ axðtjÞ : (11)

Since a> 1, the trivial fixed point is always locally “cyclic

fold” unstable. The phrase “cyclic fold” means that the changes

in x occur monotonically. When jxj � h, then bh IntðxðtjÞh Þ
� bxðtjÞ and hence the global dynamics are governed by

xðtjþ1Þ ¼ ða� bÞxðtjÞ : (12)

With respect to the global dynamics, four different cases

(labeled, respectively, A, B, C, and D) can be distinguished

depending on the relation between a and b. Local and global

behaviors of the different cases are illustrated in Fig. 1. Different

regions in the parameter plane (a, b) are shown in Fig. 2.

In what follows, we show that three out of the four

cases, namely, cases B, C, and D, present microchaos. The

three conditions for chaos we use here are:17 (1) sensitive

dependence on the initial conditions; (2) existence of closed

invariant attractive sets; and (3) topological transitivity (mix-

ing). First, the sensitive dependence on the initial conditions

follows directly from the positiveness of the Lyapunov expo-

nent K ¼ lnðaÞ > 0 for all of the cases. Second, closed

invariant attractive sets, which confine chaotic motions, are

obtained. Third, the mixing property is not proven here, but

we conjecture that existing methods based on the construc-

tion of an appropriate symbolic dynamics7,11 can be

extended to establish topological transitivity of these maps.

A. Case A: a–b > 1

The trivial fixed point is globally cyclic fold repelling

[see Fig. 1(a)]. Since this case admits no sustained solution,

we do not consider it further.

B. Case B: 0 < a–b < 1

This case has been analyzed previously by Haller and

Stepan.7 The neighborhood of the trivial fixed point is globally

cyclic fold attracting [Fig. 1(c)]. Note that for sufficiently large

xj (“large scale”) the values of the iterates decrease [Fig. 1(c)].
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However, since the fixed point x � 0 is unstable, the dynamics

increase for small xj (“small scale”) [Fig. 1(d)]. For certain

parameter combinations, it can be proved that the dynamics

are microchaotic.7 However, the numerical results in Fig. 2

suggest that microchaotic solutions exist at each point of the

parameter region 0< a–b< 1. The closed invariant attractive

set confining microchaotic solutions is

ABþ ¼ nða� bÞh; ðmða� bÞ þ aÞh½ �; (13)

for positive initial conditions7 and

AB� ¼ �ðmða� bÞ þ aÞh;�nða� bÞh½ �; (14)

for negative initial conditions, where

n¼ floor
b

ðbþ 1� aÞa

� �
; m¼ ceil

ða� 1Þa� b

ðbþ 1� aÞa

� �
: (15)

Note that the size of the invariant attractive set is scaled to

the quantization step h. That is, for small quantization step,

the amplitude of the chaotic motions is small. The fact that

the chaotic dynamics are confined to a small region near the

trivial fixed point justifies the term microchaos. The domain

of attraction of ABþ is DBþ ¼ ð0;1Þ, while the domain of

attraction of AB� is DB� ¼ ð�1; 0Þ.7

C. Case C: –1 < a–b < 0

The neighborhood of the trivial fixed point is globally

period doubling attracting [Fig. 1(e)]. The phrase “period

doubling” means that the changes in x occur with alternating

sign. Although this particular case has not been analyzed

previously, numerical simulations indicate that these solu-

tions are microchaotic. The closed invariant attractive set for

case C is

AC1 ¼ �ah; ah½ �n ða2 � bÞh; ðb� a2Þh
� �

; (16)

when b > a2 (see region C1 in Fig. 2) and

AC2 ¼ �ah; ah½ �; (17)

FIG. 1. Cobweb diagrams for (9) with h¼ 1 when a¼ 1.8 and [(a) and (b)]

b¼ 0.4, [(c) and (d)] b¼ 1.4, [(e) and (f)] b¼ 2.4, [(g) and (h)] b¼ 3.4. The red

and blue lines show different solutions associated with two different choices of

the initial conditions denoted by red and blue dots, respectively. The thick black

lines represent the right-hand side of (9). Left panels represent global dynamics,

while right panels illustrate the dynamics closer to the trivial fixed point.

FIG. 2. Steady state behavior of (9). Yellow-red color code indicates the

expected survival time (ST) determined via a series of numerical simula-

tions. Parameter regions for cases A, B, C, and D are separated by thick

lines, while individual sub regions associated with different sizes of domains

of attractions are indicated by thin lines. The dashed line is b ¼ 3a (see text

for discussion).
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when b � a2 (see region C2 in Fig. 2). For details on the cal-

culation of AC1 and AC2, see Appendix A. Similarly to case

B, the size of the invariant attractive set has been scaled to

the quantization step h. The domain of attraction of AC1 and

AC2 is DC ¼ ð�1;1Þ.

D. Case D: a–b < –1

The neighborhood of the trivial fixed point is globally

period doubling repelling [Fig. 1(g)]. This case has not

been studied previously. Despite the fact that the fixed

point is both locally and globally repelling, it is possible

that a stable microchaotic solution exists [Fig. 1(h)].

Numerical simulations show that the regions D11, D12,

D13, D21, D22, etc., in Fig. 2 are associated with perma-

nent chaos. The boundaries of these parameter domains

and the corresponding closed invariant attractive sets can

be given as

D11 : 1<a<2 and 2a<b<aþ2;

AD11¼ ða�bÞh;ðb�aÞh½ �
n ðaðb�aÞ�bÞh;ðb�aðb�aÞÞh½ �; (18)

D12 : 1 < a < 2 and a2 < b < 2a and aþ 1 < b;

AD12 ¼ �ah; ah½ �n ða2 � bÞh; ðb� a2Þh
� �

; (19)

D13 : 1 < a < 2 and aþ 1 < b < a2;

AD13 ¼ �ah; ah½ �; (20)

D21 : 2 < a < 3 and
3

2
a < b < aþ 3

2
;

AD21 ¼ 2ða� bÞh; 2ðb� aÞh½ �; (21)

D22 : 2 < a < 3 and aþ 1 < b <
3

2
a;

AD22 ¼ �ah; ah½ �; (22)

D31 : 3 < a < 4 and
4

3
a < b < aþ 4

3
;

AD31 ¼ 3ða� bÞh; 3ðb� aÞh½ �; (23)

D32 : 3 < a < 4 and aþ 1 < b <
4

3
a;

AD32 ¼ �ah; ah½ �;
… (24)

(see Appendix A for details). Similar to cases B and C, the

size of the invariant attractive set is scaled to the quantiza-

tion step h. As opposed to cases B and C, the domain of

attraction of the above attractive sets is not infinite, since

the global dynamics (for large jxj) in case D is repelling.

This means that for small quantization step, the solution

may easily escape from the invariant attractive set due

to large enough disturbances or do not even get inside

this set if the initial condition is large enough [see the solu-

tions in Figs. 1(c), 1(e), and 1(g) for cases B, C, and D,

respectively].

E. Transient microchaos

In contrast to cases B and C, transient microchaotic

dynamics can also arise in case D. The term “transient

microchaos” refers to metastable solutions that transiently

survive close to the trivial equilibrium before diverging

towards infinity.18,19 These transient solutions exist just

above the regions D11, D21, D31, etc., and below the line

b¼ 3a indicated by dashed line in Fig. 2. Transient micro-

chaotic dynamics can be characterized by the first passage or

survival time (ST), namely, the time at which jxj first

exceeds a certain value, xlim. An added complexity is the fact

that the ST is sensitive to the choice of initial condition (see

Fig. 3). In general, the expected value of the ST cannot be

determined analytically except for special cases (see

Appendix B for the determination of the ST for point Q in

Fig. 2).

In view of the above considerations, the ST in Fig. 2

was determined numerically as follows. Time history for a

series of pairs (a, b) was determined numerically for 20 dif-

ferent initial conditions distributed uniformly in the interval

½�h; h� with h¼ 1 for tmax ¼ 100 iteration steps and the

time instant where jxj first exceeded xlim ¼ 100 was

recorded and averaged. The color code indicates the aver-

aged ST: yellow indicates ST¼ 0 and red indicates

ST¼ tmax.

It is observed that the ST in the region associated with

case A is close to zero as expected, since both the open-

loop and the closed loop systems are unstable. The regions

of case B and case C are both associated with red color.

The ST in these regions is tmax¼ 100, which reflects the

existence of long-lived bounded motions, namely, a perma-

nent microchaos as shown in Figs. 1(d) and 1(f), respec-

tively. For case D, there are choices of (a, b) which are

FIG. 3. Cobweb diagrams for case D with h¼ 1 associated with point P

(a¼ 2.5 and b¼ 4.5) in Fig. 2 with different initial conditions xðt0Þ.
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associated with long-lived bounded microchaos (red) as

well as parameter choices with transient solutions (red-yel-

low scale).

IV. QUANTIZATION: HAYES EQUATION

We anticipate that the behaviors exhibited by case D

will have their counterpart in continuous time-delayed feed-

back control systems. Of particular interest is the possibility

of stabilization through quantization of the feedback. To

explore this possibility, we consider the Hayes equation16

_xðtÞ ¼ qxðtÞ � pxðt� TÞ; (25)

where q> 0 is the system parameter, p is the control gain,

and T is the feedback delay. By rescaling time as ~t :¼ qt and

dropping the tilde immediately, we get

_xðtÞ ¼ xðtÞ � Cxðt� sÞ; (26)

where s ¼ T=q is the scaled feedback delay and C ¼ p=q > 0

is the scaled feedback gain. Biological applications of the

Hayes equation arise in the description of the control of

blood cell dynamics20,21 and the pupil light reflex.22 When

C¼ 0, the fixed point x � 0 is an unstable node. When s and

C are sufficiently large, stability is lost and we have an unsta-

ble spiral point. The stability boundaries of (26) in the plane

ðC; sÞ are given by the line C¼ 1 and the parametric curve

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
; s ¼ 1

x
atanðxÞ; (27)

with x 2 ½0;1Þ. Quantization of (26) yields

_xðtÞ ¼ xðtÞ � ChInt
xðt� sÞ

h

� �
; (28)

where h is the quantization step. When jxj � h, then

Ch Intðxðt�sÞ
h Þ � Cxðt� sÞ and hence the global dynamics are

still governed by (26). Alternatively, one can write (28) in

the form

_xðtÞ ¼

…

xðtÞ � 2Ch if 2h � xðt� sÞ < 3h;

xðtÞ � Ch if h � xðt� sÞ < 2h;

xðtÞ if � h < xðt� sÞ < h;

xðtÞ þ Ch if � 2h < xðt� sÞ � �h;

xðtÞ þ 2Ch if � 3h < xðt� sÞ � �2h;

…

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(29)

Figure 4 summarizes the behavior of (28) as a function

of C and s when h¼ 1. The semi-discretization numerical

method was used to get the time history of the systems for

different pairs of ðC; sÞ over the period ½0; tmax� with

tmax ¼ 100. The initial condition for the simulations was

xðhÞ � xIC; h 2 ½�s; 0�, where xIC is a constant chosen such

that xIC � h. Solutions were declared to diverge if jxðtÞj
� xlim ¼ 100 was satisfied. Yellow-red color code indicates

the ST, i.e., the time when jxðtÞj exceeded xlim. It can be seen

that bounded motions exists in the region where the Hayes

equation (26) is unstable.

Figure 5 shows the effects of changing h on the solutions

of (28) when the parameters C; s are chosen so that the fixed

point of (26) is unstable (see • in Fig. 4). As can be seen, the

amplitude of the oscillations can be reduced by decreasing h.

However, for cases when h < xIC, the solution gets out of the

domain of attraction and its amplitude grows exponentially.

Thus, there is a trade-off between h and xIC (or between h
and the noise in the system). Decreasing h may provide a

solution which is a useful approximation for a stabilized

fixed point for practical purposes (see the case h¼ 0.05 in

FIG. 4. Regions of steady state behaviors of Eqs. (26) and (28) when h¼ 1.

Solid lines indicate the stability boundaries for the Hayes equation (26).

Yellow-red color code indicates the expected survival time (ST) for the

quantized Hayes equation (26). The • indicates the point C¼ 3, s ¼ 0:5 dis-

cussed in Fig. 5.

FIG. 5. Effect of quantization step size, h, on the solutions of (28) when

xIC ¼ 0:01, C¼ 3, and s ¼ 0:5.
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Fig. 5); however, further decrease of h may destabilize the

system.

V. DISCUSSION

Here, we have investigated the potential for “coarse

grained” quantized feedback to stabilize an unstable feed-

back control system. We have shown that even when the

fixed point is both locally and globally unstable feedback

quantization can produce a long-lived bounded solution.

This stabilized solution takes the form of an oscillatory fluc-

tuation whose amplitude is proportional to the quantization

step h. We did not directly address whether the combination

of feedback quantization and time discretization could gener-

ate microchaotic solutions as proven for the closely related

Eurich-Milton equation.11,37

One way that quantization can enter into the dynamics

of time delayed feedback control is because of the presence

of the sensory dead zones. For example, for stick balancing

on the fingertip, there is a sensory dead zone of 1� 3	 for

the detection of vertical displacement angle in the anterior-

posterior direction.15 Our observations suggests that the pres-

ence of this dead zone may not simply be a limitation for

control but could be beneficial.

For the discrete-time system (9), the regions near the

trivial fixed point where bounded solutions exist is located

at higher gain values when b > aþ 1, while the system is

unstable when b < a� 1 (see Fig. 2). Similarly, for the

quantized Hayes equation (28), bounded solutions exist at

higher gain values when C is larger than the stability

boundary of the Hayes equation (26), while the system is

unstable when C< 1 (see Fig. 4). This shows that the bene-

ficial effect of quantization can be utilized when the con-

troller is tuned to “overreact” to the changes in the state

variable.

Time discretization necessarily introduces a time

delay into the dynamical system. This is because the state

of the dynamical system at time t 2 ½tj; tjþ1�; tj ¼ jDt
depends on its state at time tj, where Dt is the discretization

step. Practical experience suggests that since the time dis-

cretization step can be made very small, it can be ignored;

however, this is not always true.23 A major exception

occurs when the feedback itself is time-delayed and quan-

tized.7,11 Historically, the effect of piecewise constant,

time-delayed feedback was extensively studied in early

investigations into the dynamics of time-delayed feedback

control.24–30 Since experimental paradigms could be read-

ily developed, it was possible to directly compare predic-

tion with observation.30–33 It is important to note that in

these models the feedback switching times could be pre-

cisely computed analytically and thus the solutions were

obtained by piecing together exponential segments or spi-

ral arcs. The use of numerical algorithms, such as the

Euler-discretization, semi-discretization, or Runga-Kutta

method introduces a low amplitude, microchaotic element

to the dynamics.11 A related situation likely occurs in the

use of computer algorithms to simulate the dynamics of

integrate-and-fire neurons,34–36 although in this case, a

formal demonstration that the dynamics are microchaotic

has not yet been made.

Quantizing feedback is expected to be an effective stabi-

lization strategy provided that (1) the fixed point of the

uncontrolled dynamical system is exponentially unstable, (2)

the fixed point in the presence of continuous delayed feed-

back is an unstable spiral point, and (3) the noise intensity is

not too high. A consequence of time-delayed, quantized

feedback is that both open-loop and closed-loop unstable

fixed points are replaced by a stable oscillation. If, in addi-

tion, there is time discretization, then the oscillations will be

replaced by a microchaotic fluctuation. If the amplitude of

the generated oscillation is not too large, then the solution

may be acceptable for certain applications. Indeed, the long

lived balanced state obtained by experts who balance a stick

on their fingertip is a transient microchaotic solution.15

Another application of these results is that the control gain

can be increased by increasing the size of the quantization

step, which can be a useful feature, for instance, in position

control in the presence of dry friction.

ACKNOWLEDGMENTS

The research has received funding from the European

Research Council under the European Union’s Seventh

Framework Programme (FP7/2007–2013)/ERC Advanced

Grant Agreement No. 340889 (SG,IT) and from the William

R. Kenan, Jr., Charitable trust (JM).

APPENDIX A: CLOSED INVARIANT SETS FOR CASES
B, C AND D

The closed invariant attractive sets are the sets of mini-

mum size, where the solutions never escape from. These sets

are determined by the parameters a and b and the quantiza-

tion step h.

The closed invariant attractive sets for case B, when

0 < a� b < 1, were given by Haller and Stepan.7

For case C, when �1 < a� b < 0, there are two differ-

ent cases. If a2 � b > 0, then it is easy to see that the solu-

tions never leaves the set AC2 given in (17), see panel C2 in

Fig. 6. However, when a2 � b < 0, then the solutions never

return to the set ½ða2 � bÞh; ðb� a2Þh� once they leaved it,

hence the invariant attractive set is AC1 given in (16), see

panel C1 in Fig. 6.

For case D, when a� b < �1, there are several sub-

cases. Consider first the case when 1 < a < 2. If a > b� a
and a2 � b > 0, then the invariant set is AD13 given by (20),

see panel D13 in Fig. 6. If a > b� a but a2 � b < 0, then

the solutions never return to the set ½ða2 � bÞh; ðb� a2Þh�
once they leave it, hence the invariant set is AD12 given by

(19). If a < b� a, then upper bound of the invariant set

becomes b – a, the solutions never return to the set ½ðaðb
�aÞ � bÞh; ðb� ðaðb� aÞÞÞh� once they leave it, hence the

invariant set is AD11 given by (18).

Consider now the case when 2 < a < 3. If

a > 2ðb� aÞ, then the invariant set is AD22 given by (22),

see panel D22 in Fig. 6. If a < 2ðb� aÞ, then the invariant

set is AD21 given by (21), see panel D21 in Fig. 6.
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The invariant sets for the cases when a> 3 can be

obtained similarly

APPENDIX B: SURVIVAL TIME CALCULATION

The survival time (ST) for (9) with a¼ 2 and b¼ 5 is

calculated. This parameter combination corresponds to point

Q in Fig. 2. Without loss of generality, the quantization step

can be set to h¼ 1.

First, we determine the expected ST for the interval

I0 ¼ ½�2; 2�, i.e., the average time duration until the solu-

tions initiated from the interval I0 stay in I0. For this calcula-

tion, I0 is divided into subintervals, where the ST is

invariant. It is easy to see, for instance, that a solution

escapes from the interval I0 after one step of iteration if

xðt0Þ 2 I1, where

I1 ¼ �1:5;�1Þ [ ð1; 1:5½ �: (B1)

The solutions escape after two iterations if xðt0Þ 2 I2, where

I2 ¼ �2;�1:75Þ [ �1;�0:5Þ [ ð0:5; 1½ � [ ð1:75; 2½ � (B2)

is the pre-image of I1. The solution escapes after three itera-

tions if xðt0Þ 2 I3, where

I3 ¼ �1:625;�1:5Þ [ �1;�0:875Þ [ �0:375;�0:25Þ½½½
[ð0:25;�0:375� [ ð0:875; 1� [ ð1:5; 1:625�

(B3)

is the pre-image of I2. By continuing the pre-image mapping,

an infinite series of subintervals Ik, k ¼ 1; 2;… is obtained,

each associated with a ST equal to k (see Fig. 7). The length

of the subintervals is

‘ðIkÞ ¼
2k

2k
k ¼ 1; 2;…: (B4)

The length of the union of these subintervals is

X1
k¼1

‘ Ikð Þ ¼
X1
k¼1

2k

2k
¼
X1
k¼1

k
1

2

� �k�1

; (B5)

which can be calculated as follows. Introduce the function

f ðqÞ :¼
X1
k¼1

qk ¼ q

1� q
; (B6)

where 0 < q < 1. The derivative of f with respect to q is

FIG. 6. Illustration of the invariant sets

for different cases.

114306-7 Stepan, Milton, and Insperger Chaos 27, 114306 (2017)



f 0ðqÞ ¼
X1
k¼1

kqk�1 ¼ ð1� qÞ þ q

ð1� qÞ2
¼ 1

ð1� qÞ2
: (B7)

The infinite sum in (B5) can be given by setting q¼ 1/2 in

(B7) as

X1
k¼1

‘ Ikð Þ ¼ f 0 1
2

� �
¼ 1

1� 1

2

� �2
¼ 4: (B8)

Thus, the union of the subintervals I1, I2, … covers the whole

interval I0.

The average ST for I0 can be given as

STI0
¼ 1

‘ðI0Þ
X1
k¼1

k
2k

2k
¼ 1

‘ðI0Þ
X1
k¼1

k2 1

2

� �k�1

: (B9)

Now introduce the function

gðqÞ :¼
X1
k¼1

kqk ¼ q
X1
k¼1

kqk�1 ¼ qf 0ðqÞ ¼ q

ð1� qÞ2
; (B10)

where 0 < q < 1. The derivative of g with respect to q is

g0ðqÞ¼
X1
k¼1

k2qk�1¼ð1�qÞ2þ2qð1�qÞ
ð1�qÞ4

¼ 1�q2

ð1�qÞ4
: (B11)

The infinite sum in (B9) can be given by setting q¼ 1/2 in

(B11) as

STI0
¼ 1

‘ðI0Þ
g0 1

2

� �
¼ 1

4

1� 1

2

� �2

1� 1

2

� �4
¼ 12

4
¼ 3: (B12)

This is the average ST for the solutions initiated from the

interval I0. Figure 7 shows a sample solution for a particular

initial condition xðt0Þ ¼ 0:00651 with ST ¼ 22.
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