
Noname manuscript No.
(will be inserted by the editor)

Enforcing Fine-grained Access Control for Secure Collaborative
Modeling using Bidirectional Transformations

Csaba Debreceni · Gábor Bergmann · István Ráth · Dániel Varró

Received: date / Accepted: date

Abstract Large-scale model-driven system engineer-

ing projects are carried out collaboratively. Engineer-

ing artifacts stored in model repositories are devel-

oped in either offline (checkout-modify-commit) or on-

line (GoogleDoc-style) scenarios. Complex systems fre-

quently integrate models and components developed by

different teams, vendors and suppliers. Thus confiden-

tiality and integrity of design artifacts need to be pro-

tected in accordance with access control policies.

We propose a secure collaborative modeling ap-

proach where fine-grained access control for models

is strictly enforced by bidirectional model transforma-

tions. Collaborators obtain filtered local copies of the

model containing only those model elements which they

are allowed to read; write access control policies are

checked on the server upon submitting model changes.

We present a formal collaboration schema which

provenly guarantees certain correctness constraints,

and its adaption to online scenarios with on-the-fly

change propagation and the integration into existing

version control systems to support offline scenarios. The

approach is illustrated and its scalability is evaluated

using a case study of the MONDO EU project.

Keywords collaborative modeling · secured views ·
access control · online collaboration · offline collabora-

tion · bidirectional model transformation

Csaba Debreceni1,2 · Gábor Bergmann1,2 · István Ráth1 ·
Dániel Varró1,2,3
1Budapest University of Technology and Economics,
Department of Measurement and Information Systems,
H-1117 Magyar tudósok krt. 2, Budapest, Hungary;
2MTA-BME Lendület Research Group on Cyber-Physical
Systems;
3McGill University, Dept. of Electrical and Computer Engi-
neering
E-mail: {debreceni, bergmann, rath, varro}@mit.bme.hu

1 Introduction

1.1 Collaborative modeling in MDE

The adoption of model driven engineering (MDE) by

system integrators (like airframers or car manufactur-

ers) has been steadily increasing in the recent years [55],

since it enables to detect design flaws early and gener-

ate various artifacts (source code, documentation, con-

figuration tables, etc.) automatically from high-quality

system models.

The use of models also intensifies collaboration

between distributed teams of different stakeholders

(system integrators, software engineers of component

providers/suppliers, hardware engineers, certification

authorities, etc.) via model repositories, which signif-

icantly enhances productivity and reduces time to mar-

ket. An emerging industrial practice of system integra-

tors is to outsource the development of various design

artifacts to subcontractors in an architecture-driven

supply chain.

Collaboration scenarios include traditional offline

collaborations with asynchronous long transactions (i.e.

to check out an artifact from a version control system

and commit local changes afterwards) as well as on-

line collaborations with short and synchronous transac-

tions (e.g. when a group of collaborators simultaneously

edit a model, similarly to well-known on-line document

/ spreadsheet editors). Several collaborative modeling

frameworks (like CDO [49], EMFStore [50], etc.) exist

to support such scenarios.

However, such collaborative scenarios introduce sig-

nificant challenges for security management in order to

protect the Intellectual Property Rights (IPR) of dif-

ferent parties. For instance, the detailed internal design

of a specific component needs to be hidden to com-

2 Csaba Debreceni et al.

petitors who might supply a different component in the

overall system, but needs to be revealed to certification

authorities in order to obtain airworthiness. Large re-

search projects in the avionics domain (like CESAR [1]

or SAVI [4]) address certain collaborative aspects of the

design process (e.g. by assuming multiple subcontrac-

tors), but security aspects are restricted to that of the

system under design.

An increased level of collaboration in a model-driven

development process introduces additional confidential-

ity challenges to sufficiently protect the IPR of the col-

laborating parties, which are either overlooked or sig-

nificantly underestimated by existing initiatives. Even

within a single company, there are often teams with

differentiated responsibilities, areas of competence and

clearances. Such processes likewise demand confiden-

tiality and integrity of certain modeling artifacts.

1.2 Problems of coarse-grained access control

Existing practices for managing access control of mod-

els rely primarily upon the access control features of the

back-end repository. Coarse-grained access control poli-

cies aim to restrict access to the files that store models.

For instance, EMF models can be persisted as standard

XMI documents, which can be stored in repositories

providing file-based access and change management (as

in SVN [5], CVS [26]). Fine-grained access control poli-

cies, on the other hand, may restrict access to the model

on the row level (as in relational databases) or triple

level (as in RDF repositories). Unfortunately, coarse-

grained security policies are captured directly on the

storage (file) level often result in inflexible fragmenta-

tion of models in collaborative scenarios.

To illustrate the problem of coarse-grained permis-

sions, let us consider two collaborators, SW Provider1
and HW Supplier1 having full control over their model

(fragment). Now if HW Supplier1 intends to share part

of their model with SW Provider1, then either they need

to grant access to the entire model (which would mean

losing the confidentiality of certain intellectual proper-

ties), or split their model into two files, and give access

to only one fragment. For each additional actor SW

Provider2, the same argument applies; in the end, a

collaboratively developed system model would end up

being split into several fragments.

Even in the simple case depicted in Fig. 1, the model

needs to be split into two files (Model Fragment1 and

Model Fragment2) and access needs to be granted sep-

arately for each file when a SW Provider1 and a HW

Supplier1 collaborates. When a new collaborator, SW

Provider2 joins in the future who is allowed to par-

tially read all two existing fragments, each model frag-

Fig. 1: Problem with File-level Access Control

ment needs to be divided at least in two. In this exam-

ple, 5 fragments are required: one that can be read by

both SW Provider1 ⇔ SW Provider2, one accessible to

HW Supplier2 ⇔ SW Provider2, and three more private

model fragments for the three collaborators. If addi-

tional collaborators join the collaboration, the number

of fragments has to be increased further.

The example is updated in accordance with Fig. 1

As a result, coarse-grained access control can lead to

significant model fragmentation, which greatly increases

the complexity of storage and access control manage-

ment. In industrial practice, automotive models may

be split into more than 1000 fragments, which poses

a significant challenge for tool developers. Some model

persistence technologies (such as EMF’s default XMI
serialization) do not allow model fragments to cyclically

refer to each other, putting a stricter limit to fragmen-

tation. Hence, MDE use cases often demand the ability

to define access for each object (or even each property

of each object) independently.

Furthermore, coarse-grained access control lacks

flexibility, especially when accessing models from het-

erogeneous information sources in different collabora-

tion scenarios. For instance, they disallow type-specific

access control, i.e., to grant or restrict access to model

elements of a specific type (e.g., to all classes in a UML

model), which are stored in multiple files.

On the other hand, fine-grained access control ne-

cessitates to assign access rights to each model element.

As the size of the model grows, these permissions or

restrictions cannot be set and maintained manually for

each individual model element, but a systematic assign-

ment technique is needed.

Enforcing Fine-grained Access Control for Secure Collaborative Modeling using Bidirectional Transformations 3

1.3 Goals

The main objective of the paper is to achieve secure col-

laborative modeling with fine-grained access control, by

using advanced model transformation techniques, while

relying upon existing storage back-ends to follow cur-

rent industrial best practices. In particular, we aim to

address the following high-level goals (refined later into

technical goals in Sec. 2):

G1 Fine-grained Access Control Management

to enforce read and write permissions of users sepa-

rately to each model object, attribute or reference.

G2 Secure and Versatile Offline Collaboration

where each collaborator can work with a model frag-

ment filtered in accordance with read permissions,

and processed using off-the-shelf MDE tools (e.g.

editor, verifier). A user may be disconnected from

any server or access control mechanism, and then

submit (commit) his updated version in the end.

G3 Secure and Efficient Online Collaboration

where multiple users can view and edit a model

hosted on a server repository in real-time while im-

posing different read and write permissions. Small

changes performed by one collaborator are quickly

and efficiently propagated to the views visible to

other users, without reinterpreting the entire model.

G4 General Collaboration Schema

that is adaptable for online and offline scenario

defining workflows of a server and multiple clients

to handle fine-grained access control management.

1.4 Contributions

In this paper, we define an approach for secure collab-

orative modeling using bidirectional model transforma-

tions to derive filtered secure views for each collaborator

and to propagate changes introduced into these views

back to a server. Our approach is uniformly applicable

to support both online and offline collaboration scenar-

ios, and it enforces fine-grained access control policies

for each collaborator during the derivation of views and

the back-propagation of changes.

We formalize the collaboration schema using com-

municating state machines and provide formal proofs

for certain correctness criteria using the FDR4 tool

[32]. The schema is integrated into existing version con-

trol systems using hook programs triggered by repos-

itory events to support offline collaborative scenarios

whereas a prototype tool of online collaboration is also

realized on the top of Eclipse RAP [51].

Finally, a detailed scalability evaluation is carried

out using models from the Wind Turbine Case Study

of the MONDO European FP7 project, which serves as

a motivating example for the paper.

This paper is an extension of [11, 20] by providing

(1) an in-depth precise specification of the bidirectional

transformation as well as the collaboration scheme, (2)

further technical details on its realization for both of-

fline and online collaborative scenarios, and (3) an ex-

tended scalability evaluation of our approach now also

covering the offline scenario.

1.5 Structure

Rest of the paper is organized as follows. Our moti-

vating example is detailed and the challenges are in-

troduced in Sec. 2. Sec. 3 defines how models can be

decomposed into individual assests, and introduces the

rules that assign read and write permissions to assets.

In Sec. 4, we overview our bidirectional model trans-

formation for access control, while Sec. 5 describes our

secure collaboration schema and proves its correctness.

In Sec. 6, we give a brief overview on how to adapt this

collaborative modeling schema to online and offline sce-

narios. Sec. 7 describes the evaluation of our approach

and related work is overviewed in Sec. 8. Finally, Sec. 9

concludes our paper.

2 Case Study

2.1 Modeling Language

Our approach will be illustrated using a simplified ver-

sion of a modeling language for system integrators of
offshore wind turbine controllers, which served as one

of the case studies of the MONDO EU FP7 project [7].

The metamodel, defined in Ecore [52] and depicted in

Fig. 2, describes how the system builds up from modules

(Module) providing and consuming signals (Signal) that
send messages after a specific amount of time defined by

the frequency attribute. Modules are organized in a con-

tainment hierarchy of composite modules (Composite)
shipped by external vendors (vendor attribute), and

ultimately containing control unit modules (Control)
responsible for a given type of physical device (such

as pumps, heaters or fans: FanControl, HeaterControl,
PumpControl, respectively) with specific cycle priorities

(cycle attribute). A documentation is attached to each

signal (documentation attribute) to clarify its responsi-

bilities. Some of the signals are treated as confidential

intellectual property (ConfidentialSignal).
The design of wind turbine control units requires

specialized knowledge. There are three kinds of control

units, and each kind can only be modified by specialist

4 Csaba Debreceni et al.

Fig. 2: Simplified Metamodel of Wind Turbine Con-

trollers

Fig. 3: Sample Wind Turbine Instance Model

users with the appropriate qualification: fan, heater and

pump control engineers.

A sample instance model containing a hierarchy of

3 Composite modules with 4 Control units as sub-

modules, providing 6 Signals altogether where two of

them are Confidential Signals, is shown on Fig. 3.

Boxes represent objects (with attribute values as en-

tries within the box and their types shown as labels

on the tops). Arrows with diamonds represent contain-

ment edges, while arrows without diamonds represent

cross-references.

2.2 Security Requirements

Specialists are not allowed to modify (and in some cases,

read) parts of the model. For this purpose, the following

security requirements are stated for control unit special-

ists:

R1 Each group of specialists shall be responsible for a

specific kind of control unit (owned control units).

R2 Specialists shall see only those signals that are

within the scope for their owned control units, i.e.

signals provided by a module that is either (a) a

composite that directly contains an owned control

unit, or (b) any submodule (including the owned

control unit) contained transitively in such a com-

posite.

R3 Specialists shall be able to modify signals provided

by their owned control units.

R4 Specialists shall observe which modules consume

signals provided by their owned control units.

R5 Specialists shall see the vendor attributes in an ob-

fuscated form.

R6 Specialists must not see confidential signals.

2.3 Usage Scenarios

The system integrator company is hosting the wind tur-

bine control model on their collaboration server, where

it is stored, versioned, etc. There are two ways for users

to interact with it.

Online collaboration. A group of users may participate

in online collaboration, when they are continuously con-

nected to the central repository via an appropriate

client (e.g. web browser). Each user sees a live view of

those parts of the model, that he is allowed to access.

Changes need to be propagated on-the-fly between the

views of users in short transactions. These transactions

contain each modification such as create, update, delete

or move. Finally, the collaboration tool has to reject a

modification immediately when it violates a security re-

quirement.

The users can modify the model through their client,

which will directly forward the change to the collabora-

tion server. The server will decide whether the change

is permitted under write access restrictions. If it is al-

lowed, then the views of all connected users will be

updated transparently and immediately, though the

change may be filtered for them according to their read

privileges.

Offline collaboration. In case of offline collaboration,

when connecting to the server, each user can download a

model file containing those model elements that he is al-

lowed to see. The user can then view, process, and mod-

ify his downloaded model file locally. The model can be

developed with unmodified off-the-shelf tool, that need

not be aware of collaboration and access control. After

the modification, the changes will be uploaded to the

server in a long transaction.

Enforcing Fine-grained Access Control for Secure Collaborative Modeling using Bidirectional Transformations 5

2.4 Challenges

Deriving from the goals stated in Sec. 1.3, we identify

the following challenges.

C1 Fine-grained Access Control of Model Artifacts.

To meet G1, the approach must enforce to allow or

deny model access separately for individual model

elements.

C2.1 Model Compatibility.

To meet G2 in off-line collaboration scenario, the

approach must be able to present the information

available to a given user as a self-contained model,

in a format that can be stored, processed, displayed

and edited by off-the-shelf modeling tools.

C2.2 Offline Models.

To meet G2 in an off-line collaboration scenario,

the approach must be able to present only the avail-

able information to a given user without maintain-

ing connectivity with any central server or authority

responsible for access control.

C3.1 Incrementality.

To meet G3 in an on-line collaboration scenario,

the approach must be able to process model mod-

ifications initiated by a user and apply the conse-

quences to the views available to other users without

re-processing the unchanged parts of the model.

C4.1 Correctness Criteria.

To meet G4, the approach must define the correct-

ness criteria of the collaboration schema and prove

their fulfillment.

C4.2 Adaptability.

To meet G4, the approach must realize the collab-

oration schema both in offline and online scenarios.

3 Access Control of Models

3.1 Modeling Preliminaries

In order to tackle challenges C1.1 and C2.1, we first

analyze how models can be decomposed into individual

assets for which access can be permitted and denied,

and under what conditions a filtered set of such assets

can be represented as a model that can be processed by

standard tools.

For the purposes of access control, a model is con-

ceived as a set of elementary model assets. An Asset

is an entity that the access control policy will protect.

Generally, models can be decomposed into object, ref-

erence and attribute assets.

Definition 1. Object assets are pairs formed of a

model element with its exact class for each model

element object;

ObjectAsset = ⟨object, type⟩

Definition 2. Reference assets are triples formed

of a source object, a reference and the referenced

target object, for each containment link and cross-

link between objects;

ReferenceAsset = ⟨objects, reference, objectt⟩

Definition 3. Attribute assets are triples formed of

a source object, an attribute and a data value, for

each (non-default) attribute value assignment;

AttributeAsset = ⟨object, attribute, value⟩

Definition 4. Models are triples formed of a set of

object, reference and attribute assets.

M = ⟨{ObjectAssset}, {ReferenceAsset}, {AttributeAsset}⟩

Note that there can be multi-valued attributes and

references in certain modeling platforms (e.g. EMF),

where an object is allowed to host multiple attribute

values (or reference endpoints) for that property. For

such properties, each entry at a source object will be

represented by separate attribute (or reference) assets.

Example 1. ObjectAsset(o1,Composite) is an

object asset, AttributeAsset(o10, cycle, low)

is an attribute asset and

ReferenceAsset(o2, consumes, o12) is a refer-

ence asset in our running example (depicted in

Fig. 3).

3.2 Consistency of Models

An arbitrary set of model assets does not necessarily

constitute a valid model; there may be consistency rules

imposed on the assets by the modeling platform to en-

sure the integrity of the model representation and the

ability to persist, read, and traverse models. Challenge

C2.1 requires that filtered models must be synthesized

as a set of model assets compatible with all consistency

rules of the underlying modeling platform.

Object Existence. Attributes and references imply that

the objects involved exist, having a type compatible

with the type of the attribute or reference.

Containment Hierarchy. In modeling languages that

have a notion of containment, certain references are

denoted as containment types realizing a contain-

ment hierarchy of objects. This hierarchy implies

a containment forest of all objects. Therefore, ob-

jects must either be root objects of the model, or be

6 Csaba Debreceni et al.

transitively contained by a root object via a chain

of objects that are all existing. (Modeling languages

that do not have containment are of course also sup-

ported, with all objects considered root objects.)

Opposite Features. There are opposite references de-

fined as a pair of references where the existence of

a relation depends on its pair. For reference types

having an opposite, reference assets of the two types

exist in symmetric pairs.

Multiplicity Constraints. The number of reference as-

sets for a given reference of an object needs to satisfy

the multiplicity constraints.

The following paragraph (along with a clarification

to containment hierarchies) are added to answer the

reviewers questions related to containment hierarchy

and OCL Constraints.

We distinguish these low-level internal consistency

rules from high-level, language-specific well-formedness

constraints. Well-formedness constraints (also known as

design rules or consistency rules) define additional re-

strictions to the metamodel that the instance models

need to satisfy. These type of constraints are often de-

scribed using OCL [2]. The difference between the two

concepts is that violating the latter kind does not pre-

vent a model from being processed and stored in a given

modeling technology. Thus only internal consistency is

required for access control.

3.3 Model Obfuscation

Obfuscation is defined as the process of ”making some-
thing less clear and harder to understand, especially in-

tentionally” [3]. The first purpose of obfuscation in pro-

gramming was to distribute C sources in an encrypted

way to prevent access to confidential intellectual prop-

erty in the code [35].

A model obfuscation takes a model as input and

yields another model as output where the structure

of the model remains the same but data values (such

as names, identifiers or other strings) are altered. Two

data values that were identical before the obfuscation

will also be identical after it, but the obfuscated value

computed based on a different input string will be com-

pletely different. Moreover, all the altered values can be

reverted by the original owner of the model using a pri-

vate key.

In the context of access control, obfuscation can be

applied to data values of attribute assets. An obfus-

cated data describes its presence in the model (e.g. the

value of an object’s attribute is not empty), but the real

content of that asset remains hidden.

Definition 5. The obf function takes a data Value

and a Seed as inputs and maps the value to

(V̂alue). The Obf−1 function is the inverse of obf

which returns the original data if the same Seed is

used.

obf :: (Value,Seed) → V̂alue

obf−1 :: (V̂alue,Seed) → Value

Example 2. In our example, the security re-

quirement R5 prescribes to obfuscate the ven-

dor attribute A of object root that may become

”oA3DD43CF5” in the views.

3.4 Access Control Rules and Permissions

Our fine-grained access control policy has to assign per-

missions separately for each model asset. In case of a

large model, there can be thousands of assets where it

is tedious to manually assign permissions one-by-one.

Therefore the policies are constructed from a list of ac-

cess control rules, each of which controls the access to a

selected set of model assets by certain users or groups,

and may either allow or deny the read and/or write

operation.

Definition 6. An access control rule (ac-rule) de-

fines a partial function that applies judgments (al-

low, obfuscate, deny) to specify the privileges of

a certain user ∈Users for an operation type (read

or write) on a given subset of assets.

let Op = [read,write]

let Judgement = [allow, obfuscate, deny]

ac-rule :: Assets×Op×Users → Judgment

Definition 7. An access control policy defines an

effective permission function (permissionEff) de-

rived from a list of access control rules that ap-

plies judgments (allow, obfuscate, deny) for both

operation types (read and write) of each assets in

the context of a certain user ∈Users

permissionEff :: Asset×Op×Users → Judgement

To manage the challenge C2.1, it is necessary to

eliminate inconsistencies introduced by access control

rules. In addition, these access control rules can be con-

tradictory as one access control rule might grant a per-

mission for a given part of the model while another rule

may deny it at the same time.

Enforcing Fine-grained Access Control for Secure Collaborative Modeling using Bidirectional Transformations 7

Added: ”... as one access control rule might grant a

permission for a given part of the model while an-

other rule may deny it at the same time” to describe

how two access control rules can be contradictory

Hence, the effective permission function

(permissionEff) needs to derive a consistent and

conflict-free set of judgments. Our previous work [12,20]

describes the effective permission calculation in more

detail, but here we give a brief overview on conflict

resolution, permission dependencies, and outline some

reconciliation strategies as well.

Conflicts. Conflicting policy rules can be resolved by

assigning priorities to each rule. Hence, the rules with

higher priority overrides the other rules.

Sanity. The sanity of the policy implies that a user

should not be allowed to write values and model as-

sets that are not readable to them. Therefore without

effective read permission, write permission is automat-

ically denied as well, even if there are no rules to deny

the write permissions.

Read dependencies. Read permissions may depend on

permissions on other model assets.

If a model element is unreadable, its incoming and

outgoing references and its attributes shall not be read-

able either, otherwise the set of readable assets would

not form a self-consistent model.

In modeling platforms (such as EMF) with a notion

of containment between objects, readable objects can-

not be contained in unreadable objects (as the latter do

not exist in the front model); this needs to introduce a

new container for the orphan object (e.g. promoting it

to a top-level object of the model). Alternatively, this

implies that an object hidden from the front model will

hide the entire containment subtree rooted there (this

latter choice is used in the case study).

Write dependencies. Write permissions likewise have

dependencies on other model assets.

In general, creating/modifying/removing references

between objects requires a writable source object and

a readable target object; but some modeling platforms

including EMF have bidirectional references (or oppo-

sites), for which internal consistency dictates that the

target object must be writable as well.

A metamodel may constrain a reference (or at-

tribute) to be single-valued; assigning a new target to

the reference would automatically remove the old one,

so a user can only be allowed the former write operation

if they are allowed the latter.

Similarly, removing an object from the model im-

plies removing all references pointing to it, and all ob-

jects contained within it.

Example 3. An access control policy is set up to

meet the security needs of the running example

introduced in Sec. 2.2. A possible permission func-

tion (permissionEff) is visualized in Fig. 4. For in-

stance, Pump Control Engineers have full access

to PumpControl objects and their provided Signals
(squares marked with bold borders and blue head-

ers); however they cannot access ConfidentialSignal
objects (squares with dashed borders). The rest of

the objects are readable, but not writable by this

group of users (squares with thick borders and or-

ange headers). If an object is only required to pre-

serve read dependencies, its identifier is obfuscated

(marked with ”O” letter in a square next to the

attribute) and all other attributes remain hidden

(”H” letter in the square). Finally, bold edges are

writable by the engineers, i.e. the writable signals

(s2, s5) can be removed from their container, or

new signals can be created under the writable con-

trols (ctrl2, ctrl4); thick edges represent read-

able references (in this example, these are required

mostly to preserve containment hierarchy); and

the rest of the dashed edges are hidden from the

engineers.

4 Bidirectional Model Transformation for

Access Control Management

4.1 The Access Control Lens

Due to read access control, some users are not allowed

to learn certain model assets. This means that the com-

plete model (which we will refer to as the gold model)

differs from the view of the complete model that is ex-

posed to a particular user (the front model).

In theory, access control could be implemented with-

out manifesting the front model, by hiding the entire

gold model behind a model access layer that is aware

of the security policy and enforces access control rules

upon each read and write operation performed by the

user. However, challenge C2.1 requires users to access

their front models using standard modeling tools; more-

over, while challenge C2.2 requires that in the offline

collaboration scenario, they can“take home” their front

model files without being directly connected to the gold

model. In order to meet these goals, we propose to man-

ifest the front models of users as regular stand-alone

models, derived from a corresponding gold model by

applying a bidirectional model transformation.

8 Csaba Debreceni et al.

(a) Fan Control Engineer

(b) Heater Control Engineer

(c) Pump Control Engineer

Fig. 4: Effective Permissions of the Example

Fig. 5: Secure Access Control by Bidirectional Lenses

In the literature of bidirectional transforma-

tions [23], a lens (or view-update) is defined as an

asymmetric bidirectional transformation relation where

a source knowledge base (KB) completely determines a

derived (view) KB, while the latter may not contain all

information contained in the former, but it can still be

updated directly. The two operations of crucial impor-

tance in realizing a lens relationship are the following:

– Get obtains the derived KB from the source KB

that completely determines it, and

– PutBack updates the source KB, based on the

derived view and the previous version of the source

(the latter is required as the derived view may not

contain all information).

The bidirectional transformation relations between

a gold model (containing all assets) and a front model

(containing a filtered view) satisfies the definition of a

lens. The Get process applies the access control pol-

icy for filtering the gold model into the front model.

The PutBack process takes a front model updated by

the user, and transfers the changes back into the gold

model.

Definition 8. The Get process derives the front

model from the gold model in accordance with the

read permissions.

Get :: (MG, permissionEff) → MF

Definition 9. The PutBack process enforces the

write permissions and derives the updated gold

model from the modified front model and the orig-

inal version of the gold model.

PutBack :: (M′
F ,MG, permissionEff) → M′

G

The lens concept is illustrated by Fig. 5. Initially,

the Get operation is carried out to obtain the front

model for a given user from the gold model. Due to

Enforcing Fine-grained Access Control for Secure Collaborative Modeling using Bidirectional Transformations 9

the read access control rules, some objects in the model

may be hidden (along with their connections to other

objects); additionally, some connections between oth-

erwise readable objects may be hidden as well; finally,

some attribute values of readable objects may be omit-

ted, obfuscated, or hidden altogether. If the user subse-

quently updates the front model, the PutBack oper-

ation checks whether these modifications were allowed

by the write access control rules. If yes, the changes

are propagated back to the gold model, keeping those

model elements that were hidden from the user intact

(preserved from the previous version of the gold model).

Write access control checks are performed by the

PutBack operation as they (a) may prevent a user

from writing to the model, and (b) access control rules

needs to be evaluated on the gold model.

Access control rules cannot be evaluated directly on

the front model since only the gold model contains all

information. Thus write access control can only be en-

forced by taking into account the gold model as well.

Therefore, write access control must be combined with

the lens transformation. In particular, PutBack must

check write permissions; and fail (by rolling back any

effects of the commit or operation) if a certain modifi-

cation cannot be applied to the gold model.

Example 4. In our running example, the original

model (Fig. 3) acts as the gold model containing

all the information. The Get transformation ap-

plies the permissions and produces a front model

for each specialist. In Fig. 4, each front model con-

sists of

– the objects with bold or solid borders;

– the references with solid lines;

but the objects and references with dashed borders

and lines are removed. Whereas, the attributes

marked with

– an ”O” in a square are obfuscated;

– an ”H” in a square are removed.

When a PumpControlEngineer tries to modify the

frequency of the signal s3 from 6 to 10, the Put-

Back operation is responsible for declining this

change as the access control rules deny the modifi-

cation (the signal s3 is readable but not writable).

On the other hand, if a PumpControlEngineer

tries to modify the frequency of the signal s2 from

29 to 17 the PutBack operation propagates the

change back to the gold model (the signal s2 is

writable) by identifying the signal s2 in the gold

model and setting its frequency attribute.

s3 is replaced with s2 in accordance with the

example

4.2 Transformation Design

Both Get and PutBack are designed as rule-based

model transformations [18]. In the terminology of model

transformation, gold and front models act as the source

and target models, respectively.

To address challenge C3.1, the transformations

need to be reactive and incremental computations in

the online collaboration scenario.

Reactive transformations [10] follow an event-driven

behavior where the events are triggered by model ma-

nipulations such as creation/modification/deletion of

model assets. The transformation observes these events

and reacts to them.

Incrementality [18] means that there is no need

to re-execute the whole transformation upon a small

change introduced into the model. Source incremental-

ity is the property of a transformation that only re-

evaluates the modified parts of the source model. Tar-

get incrementality, means that only the necessary parts

of the target model are modified by the transformation,

there is no need to recreate the new target model from

scratch.

Definition 10. A transformation rule rule is associ-

ated with a precondition ∈ Preconditions, an ac-

tion ∈ Actions (parametrized by a match of the

precondition),and a numerical priority ∈ P value.

rule = (precondition, action,P)

Definition 11. A transformation T consists of a set

of transformation rules ({rule1, rule2 . . . rulen}) that
a transformation engine T E executes to incremen-

tally derive an updated target model M ′
T from a

source and target model MS ,MT .

T = {rule1, rule2 . . . rulen}

T E :: (MS , T ,MT) → M ′
T

Transformation execution repeatedly fires the rules

as follows:

1. finds all the matches of rule preconditions of all rules

(this set of matches is efficiently and incrementally

maintained during the transformation),

2. selects a match from the rule with the highest pri-

ority,

3. executes the action of the rule along that match;

The loop terminates when there are no more precondi-

tion matches.

10 Csaba Debreceni et al.

According to the process Get and PutBack of the

lens, we define TGet and TPutBack transformations, re-

spectively.

These transformations consist of four groups of

transformation rules based on its direction (Get, Put-

Back) and whether it adds or removes assets from the

model (additive, subtractive):

In case of Get process:

Additive adds assets to MF if no corresponding as-

sets are present in MG

Subtractive removes assets from MF if no corre-

sponding assets are present in MG

In case of PutBack process:

Additive adds assets to MG if no corresponding as-

sets are present in MF

Subtractive removes assets from MG if no corre-

sponding assets are present in MF

All four groups consist of one rule for each kind of model

asset; in the context of this paper, we distinguish 3

kinds of model assets (see Sec. 3.1); this makes twelve

transformation rules altogether, described in the tables

of Appendices A and B.

The preconditions require to initialize correspon-

dence between front and gold models. For that purpose,

we introduce a trace function.

Definition 12. The trace function is responsible for

associating two object assets with each other:

trace :: (ObjectAsset(oG, t)) → ObjectAsset(oF , t
′)

We select three example transformation rules listed

in Table 1 to describe the key concept of how the access

control is managed.

Additive Get Object rule

(ruleAdditive Get Object)

The additive rule of TGet related to object assets is

responsible for propagating object addition from the

gold model MG to the front model MF . A change is

recognized in the precondition which selects pairs of

ObjectAsset(oG, t) and ObjectAsset(oF , t) as follows: an

ObjectAsset(oG, t) in the gold model that has no cor-

responding ObjectAsset(oF , t) in the front model, but

it should be readable according to the permissionEff.

The action part will create a new ObjectAsset(oF , t)

and establish a correspondence relation between these

two objects.

”... which selects pairs of ObjectAsset(oG, t) and

ObjectAsset(oF , t)” is added to explain the number 2

in the superscript

Example 5. A system administrator who has access

to the original gold model (depicted in Fig. 3) adds

a new signal object sNG under the heater control

unit ctrl3. This change needs to be propagated

to the front models as the new signal should be

at least readable (also writable for Heater Control

Engineers).

TGet transformation will be executed between

MG and the front model of Pump Control En-

gineer Mpump
F (depicted in Fig. 4c). The pre-

condition of the ruleAdditive Get Object selects the

ObjectAsset(sNG,Signal) as it has no correspond-

ing ObjectAsset(sNF ,Signal) in the front model.

The action part creates ObjectAsset(sNF ,Signal)
and traces it back to ObjectAsset(sNG,Signal).
Exactly the same sequence happens in case of the

front model of Fan Control Engineer M fanF (de-

picted in Fig. 4a)a.

a ruleAdditive Get Reference takes care of the contain-
ment reference between sNG and ctrl3.

Additive Get Attribute rule

(ruleAdditive Get Attribute)

The additive rule of TGet related to attribute as-

sets is responsible for propagating data value inser-

tion on the gold model MG to the front model MF .

The precondition of the ruleAdditive Get Attribute selects

AttributeAsset(oG, attr, v) in the gold model that has no

corresponding AttributeAsset(oF , attr, v
′) in the front

model, but it should be readable according to the

permissionEff. The value of v′ is calculated in accor-

dance with its read permission (potentially in an obfus-
cated form).

Example 6. The system administrator modifies the

frequency attribute of s1G from 30 to 15. This

change needs to be propagated to the front mod-

els.

1) TGet will be executed between MG and the

front model of Pump Control Engineer Mpump
F

(depicted in Fig. 4c). The precondition of the

ruleAdditive Get Attribute selects the s1F object

from the front model attribute frequency and

value 15 as AttributeAsset(s1F , frequency, 15)

does not exist, but it should be read-

able in Fpump. The action part adds the

AttributeAsset(s1F , frequency, 15) to Mpump
F .a

2) TGet will be executed between MG and the

front model of Fan Control Engineer Mfan
F (de-

Enforcing Fine-grained Access Control for Secure Collaborative Modeling using Bidirectional Transformations 11

rule Additive Get Object Priority 4
Precondition :: (MG(OAG,RAG,AAG),MF (OAF ,RAF ,AAF), permissionEff) → {ObjectAsset}2
{ObjectAsset(oG, t),ObjectAsset(oF , t′)|ObjectAsset(oG, t) ∈ OAG, permissionEff(ObjectAsset(oG, t), read) ̸= deny,

̸ ∃ObjectAsset(oF , t′) ∈ OAF : trace(ObjectAsset(oG, t)) = ObjectAsset(oF , t′), t = t′}
Action
OAF := OAF ∪ {ObjectAsset(oF , t′)}, trace(ObjectAsset(oG, t)) := ObjectAsset(oF , t′)

rule Additive Get Attribute Priority 5
Precondition :: (MG(OAG,RAG,AAG),MF (OAF ,RAF ,AAF), permissionEff) → {AttributeAsset}
{AttributeAsset(oF , attr, v′)|AttributeAsset(oG, attr, v) ∈ AAG, permissionEff(AttributeAsset(oG, attr, v), read) ̸= deny,

∃ObjectAsset(oF , t) : ObjectAsset(oF , t) ∈ AAF , trace(ObjectAsset(oG, t)) = ObjectAsset(oF , t), ̸ ∃AttributeAsset(oF , attr, v′) :

v′ =

{
v, permissionEff(AttributeAsset(oG, attr, v), read) = allow

obf(v), permissionEff(AttributeAsset(oG, attr, v), read) = obfuscate
,AttributeAsset(oF , attr, v′) ∈ AAF }

Action
AAF := AAF ∪ {AttributeAsset(oF , attr, v′)}

rule Subtractive PutBack Object Priority 3
Precondition :: (MG(OAG,RAG,AAG),MF (OAF ,RAF ,AAF), permissionEff) → {ObjectAsset}
{ObjectAsset(oG, t)|ObjectAsset(oG, t) ∈ OAG, permissionEff(ObjectAsset(oG, t), read) ̸= deny,

̸ ∃ObjectAsset(oF , t′) : trace(ObjectAsset(oG, t)) = ObjectAsset(oF , t′), t = t′}
Action
If permissionEff(ObjectAsset(oG, type), write) ̸= deny then
OAG := OAG \ ObjectAsset(oG, t), trace \ ObjectAsset(oG, t)|trace(ObjectAsset(oG, t)) = ObjectAsset(oF , t) else ↘↙

Table 1: Additive Get and Subtractive PutBack rules

picted in Fig. 4a). But now, the precondition has

no match as s1 is not readable inMfan
F

a Similarly, ruleSubtractive Get Attribute will han-
dle the removal of the previous attribute asset
AttributeAsset(s1F , frequency, 30) before the addi-
tion.

Subtractive PutBack Object

(ruleSubtractive PutBack object)

The subtractive rule of TPutBack related to object as-

sets is responsible for propagating object asset removals

from the front model MF to the gold model MG. A

deletion is recognized in the precondition as follows:

there is an ObjectAsset(oG, t) in the gold model that

has no corresponding ObjectAsset(oF , t) in the front

model. The action part checks the write permissions

of ObjectAsset(oG, t). If the removal of the asset is de-

nied, TPutBack terminates after a rollback. Otherwise,

it removes the selected object asset.

Example 7. A Pump Control Engineer removes

ctrl1F object from his front model Mpump
F (de-

picted in Fig. 4c). This change needs to be

propagated be to the gold model, thus Put-

Back transformation will be executed between

Mpump
F and the gold model MG (depicted in

Fig. 4c). The precondition of the rule selects

ObjectAsset(ctrl1G, FanControl). In the action

part, the rule realizes that the permissions do not

allow to delete ctrl1 object, thus the transforma-

tion terminates and rejects the change.

To sum up, Get is responsible for enforcing read

permissions in front models, while PutBack takes care

of write permissions. If any write permission is violated,

the transformation terminates and the front model (tar-

get) is reverted to its original state.

4.3 Discussion and Analysis

At the request of reviewers, we have added this sec-

tion with almost entirely new content to discuss

properties of the bidirectional transformation, along

with Appendix C to contain the proofs of these

properties.

In the following paragraphs, we analyze and discuss

properties of the lens transformations.

First, in Sec. 4.3.1, we state the properties that

the lens transformations are expected to exhibit. In

Sec. 4.3.2, we state and discuss an important assump-

tion that will be vital to proving the aforementioned

properties in Appendix C. Finally, in Sec. 4.3.3 we will

turn our attention to deviations of the technical real-

ization from the ideal formulation.

4.3.1 Desirable Properties of the Transformation

In the following, we present a number of properties that

the lens transformations would be desirable to exhibit.

12 Csaba Debreceni et al.

We first state these desirable properties, and then dis-

cuss them individually in subsequent sections to find

which ones are met under which conditions by the pre-

sented transformations.

Transformation Property 1 (Termination)

Given a pair of starting models, Get and PutBack

shall both terminate after a finite number of rule

executions.

Transformation Property 2 (Confluence) Given

a pair of starting models and running the transfor-

mation to completion, the terminal state of both Get

and PutBack shall be independent from the chosen

execution order of rule application, i.e. both Get and

PutBack define a deterministic function.

Transformation Property 3 (Confidentiality)

Get shall yield a front model that contains exactly

those assets that are visible according to effective read

permissions.

Transformation Property 4 (Integrity)

PutBack shall successfully accept a modified front

model if and only if its differences from the original

front model do not violate effective write permissions.

Transformation Property 5 (GetPut) PutBack

shall be a no-op when applied on the front model

directly returned by Get, i.e. if the user makes no

changes, the gold model shall not be updated.

Transformation Property 6 (PutGet) Get shall

be a no-op when applied on the gold model previously

updated by a successful PutBack (from the same

front), i.e. if the gold model has not changed, the front

model shall not be updated.

Transformation Property 7 (PutPut) A user ap-

plying a sequence of successful PutBack operations

(and changing the front model inbetween) should have

the same ultimate effect on the gold model as applying

only the last one.

The first few properties (Prop. 1, Prop. 2) are gen-

erally expected of most rule-based model transforma-

tions, in order to define an actual deterministic trans-

formation function. Then Prop. 3 and Prop. 4 state the

security-specific requirements.

Next, Prop. 5 and Prop. 6 pertain specifically to

bidirectional transformations, and are widely promoted

(see e.g. [23,47], also [27] specifically for security views)

as very important “well-behavedness” properties that

users of bidirectional transformations would most cer-

tainly expect. They enable the lens transformations to

truly realize an updateable view.

Finally, Prop. 7 provides even stronger predictabil-

ity guarantees, but is often considered very restrictive

and therefore optional in the literature. A benefit of

this law is that user modifications are undoable, i.e. the

original state of the system (incl. gold model) can be re-

stored when a change to the from model is reverted. On

the other hand, it might unfortunately disallow certain

sensible extensions, an example for which we include

below.

As introduced in [12], a possible sample refine-

ment of the write permission levels could be {deny <

dangle < allow}. Cross-references with write permis-

sion level dangle can not be normally modified by the

user, but they can be removed as the side effect of delet-

ing the source or target object of the reference (if that

deletion is permitted). Unlike the usual allowed write

permission, dangle does not imply the readability of

the asset, so this kind of deletion is possible even if the

cross-link is not visible to the user. Imagine a traceabil-

ity link that points from a hidden part of the model to a

visible object; the difference between assigning deny or

dangle is that the target object can not be deleted by

the user in the former case, while its deletion would be

allowed (with an invisible side-effect of removing the

traceability link) in the latter case. These dangle se-

mantics can be similarly extended to attributes or con-

tained objects that might be attached as (invisible or

read-only) tags to objects; they must not be modified

by the user, but will be removed along with the object

they are attached to if the object is deleted. It is easy

to see that (a) such a feature would be quite useful in

many practical applications of the approach presented

in the paper, yet (b) Prop. 7 will not hold, as undoa-

bility is lost when dangling links/attributes/objects are

removed.

4.3.2 Regularity of Policy

Constant complement [8], a common strategy for prov-

ing desirable properties of secure views, involves parti-

tioning the data into a readable part and the so-called

complement. This partitioning can be used e.g. to ver-

ify whether PutBack (translator in the terminology

of [8]) may possibly change the complement (which

would violate Prop. 7). Similarly, correctness proofs can

benefit from applying a second kind of partitioning [27]

into a writable and endorsed part of the model.

Unfortunately, these partitioning schemes do not

apply perfectly to our approach for the simple reason

that a single asset might move from one partition to

another as the model evolves - in fact even during the

execution of PutBack. This is due to the fact that our

approach is more powerful: we do not consider explicit

Enforcing Fine-grained Access Control for Secure Collaborative Modeling using Bidirectional Transformations 13

access control attributes of assets, but rather derive ef-

fective permissions from policy rules based on arbitrary

model queries (over the gold model) that can take into

account the wider context of assets; thus it is possible to

change the effective permissions for a given asset (even

without directly changing the asset itself). Therefore we

first make the following assumption, and then discuss

violating cases separately:

Assumption 1 (Regularity) For any transforma-

tion run, there exists a constant permission set for all

assets (i.e. a constant partitioning of assets based on

permission levels) so that effective permissions will al-

ways evaluate to results consistent with this fixed per-

mission set when they are evaluated during the run (i)

as a condition excluding activations of higher-priority

rules, or (ii) as a precondition to an individual rule

to be executed, when higher-priority rules have already

been found to have no matches, (iii) as a condition for

rejecting disallowed write attempts, or (iv) to determine

termination.

Note that Asm. 1 does not require that the actual

effective permissions (as evaluated following the policy

by the appropriate algorithms [12, 20]) remain entirely

constant, that would not be feasible. For example, if

a user creates a new model element, the correspond-

ing asset propagated to the gold model by PutBack

would only evaluate as writeable once it exists in the

first place. What is actually required is that permissions

are not allowed to flip-flop; i.e. a transformation should

never observe a particular asset change its effective per-

missions if the transformation has already acted upon

the old value of the effective permissions. This condi-

tion is met in the previous example, as we can include

the newly created asset in the constant permission set

as writeable: the asset did not exists in the gold model

before its creation, so no rules would have ever observed

it as an existing but non-writeable asset; as far as the

rules are concerned, the asset could have always been

listed as writeable in the permission set.

Get leaves the gold model and thus the effective

permissions unchanged, so Asm. 1 holds trivially. For

PutBack, however, it is possible to come up with sce-

narios where Asm. 1 is violated. One of these cases is

privilege escalation, where a user can make a change

somewhere in the model that would grant them addi-

tional read or write privileges somewhere else that they

did not previously have (even though those assets ex-

isted before). The other case is lockout, where a user can

make a change that will have the side-effect of losing

their read or write access on some assets (even though

those assets continue to exist). We believe both of these

cases are likely symptoms of defective policy definition,

and a system can only be considered secure and reliable

if it does not exhibit these behaviours (or only in a very

controlled manner).

Therefore, in the proofs for the properties of

Sec. 4.3.1, we consider Asm. 1 to hold, and apply

partitioning-based arguments partly similar to those

in [8,27]. This limitation to the case with regularity is,

on one hand, necessary to prove the properties stated

earlier (the exception is Prop. 1; the transformations

will be shown to terminate regardless whether regular-

ity holds). On the other hand, the limitation is pru-

dent for the above listed reasons of security. Finally, the

limitation is also feasible, as it is fairly easy to screen

changes during PutBack and reject them if they lead

to either privilege escalation or lockout. Static analy-

sis of policy definitions regarding their susceptibility to

these problems is left as future work.

Now we are ready to sketch conditional proofs for

each of the listed properties to hold for the transfor-

mations induced by rule sets in Appendix A and Ap-

pendix B; the proof sketches are found in Appendix C.

4.3.3 Realization in EMF

We realized the presented lens transformation in the

Eclipse Modeling Platform (EMF) [52]. Instead of ap-

proaches specifically designed for easy specification of

bidirectional transformations, the unidirectional and re-

active VIATRA framework [54] has been chosen for its

(a) target-incremental transformations and (b) source-

incremental model queries to define rule preconditions.

The presented transformation rules, as well as

the proof sketches, are formulated on technology-

independent models defined as a set of model assets. Ac-

tual model representations - EMF in our case - expose

an object-oriented API instead. Therefore, we have im-

plemented a relational model wrapper layer that exposes

the contents of the model through a writeable API as a

set of model assets (essentially tuples). This abstrac-

tion, however, is incomplete: the underlying object-

oriented model structure (i) may not be compatible

with all set operations, and (ii) may allow a given set

of operations only in certain sequences. The transfor-

mation must enforce these constraints.

The first problem occurs if adding or removing a

model asset would violate the internal consistency (see

Sec. 3.1) of the model; this is avoided by the consistency

property of effective permission function in such a way

that bothGet and PutBack would only attempt valid

changes to the front and gold models, respectively.

The second problem occurs if valid changes are at-

tempted in the wrong order, e.g. if a reference asset is

only deleted after deleting the object asset for one of

14 Csaba Debreceni et al.

the endpoints. By choosing the transformation rule pri-

orities accordingly, the object, attribute and reference

rules are ordered in a way that avoids violating these

kinds of constraints in all but one cases. The remaining

case is object containment, e.g. a child object cannot be

added to the model before its container object is cre-

ated. This depends on the ordering of two instances of

the object rule, and thus cannot simply be expressed

using rule-level fixed priorities. To solve this problem,

the relational model wrapper temporarily allows “un-

rooted” model objects detached from the model. Note

that the EMF API itself allows the existence of such

detached model objects, they are just not treated as

part of the model (resource set) by default, which our

model wrapper needs to circumvent.

As a further effect of this abstraction layer, there is a

genuine loss of information: the ordering of multi-valued

collections is not preserved in the relational representa-

tion. See Sec. 6.3.2 for discussion.

As a slight technical hurdle, the EMF-based query

engine of VIATRA, in charge of interpreting the query-

based security policy, is not actually capable of evalu-

ating permission queries on assets that are non-existent

in the gold model. A workaround is applied in practice

to the additive PutBack attribute rule (the only rule

where this is relevant, due to obfuscation), which we

omit here.

Finally, we note that in order to simplify the lan-

guage of the discussion, we have informally described

assets as potentially being contained in both the gold

and front models. Since a single EMF object is con-

tained in at most one model, it would be more pre-

cise to say that the two models contain disjoint assets,

that are related by the equivalence induced by the trace

function (see Sec. 4.2).

5 Collaboration Scheme

To satisfy our goal G4, a general collaboration scheme

is required including the bidirectional lens transforma-

tion between a server and several clients to enforce ac-

cess control policies correctly.

The server stores the gold models and clients can

download their specific front models. Modifications, ex-

ecuted by a client, can be submitted to the server and

downloaded by the other clients. These are the basic

actions that nowadays, a version control system (VCS)

should provide to a user. In case of various implementa-

tions, these actions may be called differently (e.g. check-

out, update, commit in SVN or clone, pull, push in Git).

According to the basic actions supported by any

VCS, we define the basic operations of the collabora-

tion scheme as follows:

Checkout downloads the model from the server-side

to the workspace of a specific client who initiated

the operation.

Update retrieves the model changes from the server-

side to the workspace of a specific client who initi-

ated the operation.

Commit propagates the changes of a specific client to

the server-side.

5.1 Formalization of the Collaboration

Fig. 6 and Fig. 7 describes the behavior of collaboration

scheme as state machines for the server and the client.

A state machine consists of states (represented by

boxes) and transitions (denoted by directed edges) be-

tween states. Each state-machine has an initial state

(denoted by arrow from a black circle) and a current

state that specifies the system at a certain time.

The system can accept input events and send out-

put events during its process (denoted by labels on the

edges where ”?” and ”!” mean receiving and sending a

certain event, respectively, following process-algebraic

notation). In the concept of collaboration, each event

is assigned to a collaborator using ”.” symbol after the

name of event e.g. input.x/output.y means, that the col-

laborator x initiates an input and the transition pro-

duces an output to the collaborator y. A transition will

be executed immediately when its input event arrives

and during the execution it produces its output event.

Compound state (visualized as boxes containing

other states) refines the behavior of a given state by

defining its own state-machine where only one state can

be active.

Orthogonal regions (divided by dashed borders) sep-

arate the behavior of independent states and they are

processed concurrently. In each region, only one state

can be active at a time.

Two state-machines can synchronize on events send-

ing by one and received by the other one.

Server (Fig. 6). Its state machine has three orthogo-

nal regions to handle the commit,update and checkout

requests concurrently.

Checkout and Update. In case of receiving check-

out and update requests, our approach rejects them

when a user has no access to the model itself1 by

sending an accessDenied event followed by a failure

event. Otherwise, a success event is sent.

1 Note that we make a distinction between a user having
no access to a model at all, and a user having access to the
model, but nothing is readable in it.

Enforcing Fine-grained Access Control for Secure Collaborative Modeling using Bidirectional Transformations 15

Upon an update request, it is also checked, whether

the client’s model is up-to-date and then an upTo-

Date event is produced followed by a success event.

Commit. The process of receiving commit requests

consists of Idle, Locked, Synchronization and Unlock
hierarchical states:

Idle state accepts commit requests from any collab-

orator. It produces an accessDenied event when

the user has no access to the model; or a need-

ToUpdate event when the user needs to update

his/her model locally to be able to commit the

modifications. Both events are followed by a fail-

ure event. Otherwise, the system locks the model

to prevent concurrent processing any other com-

mit requests and activates the Locked state.

Locked state executes the TPutBack in the name of

the commit owner (x) and rejects the commit re-

quests from any collaborator (y) by sending an

otherCommitUnderExecution event with a fail-

ure event. After the execution of the transforma-

tion, a policyViolated event is sent to x, if the

changes violated the access control policy and

the system steps to Unlock state. Otherwise, a

putback event leads the system to the Synchro-
nization state.

Synchronization state is responsible for sending the

success event to the owner of the commit and

executing TGet to propagate the changes to other

collaborators (denoted by output event get for

all collaborator except the owner of the commit

in the state Sync). Then systems moves forward

to the Unlock state.

Unlock state is responsible for unlocking the model

in all cases (unlock event). If the system is led to

this state after a policy violation, the state pro-

duces a failure event before the unlock. It also

rejects any other commit request by sending an

otherCommitUnderExecution event with a fail-

ure event.

Client (Fig. 7). Its state machine cooperates with the

server using the sending and receiving events that (i)

trigger an operation (commit,update,checkout); (ii) in-

dicate failures (needToUpdate); and (iii) indicate server

responses (success, failure). It consists of Checkout, Idle
and Update hierarchical states:

Checkout State. First, the clients need to check-

out their models represented by sending a checkout

event in the Checkout state. Based on the received

server response, the clients can move to Idle state.

Idle State. In Idle state, clients can commit or update

their changes by sending commit or update events.

All the events produced by the server can be re-

ceived, but only the needToUpdate event restricts

the behavior of the client by moving to Update state.
Update State. The clients need to initiate an up-

date request by sending a update event to be able

to commit their changes again.

5.2 Correctness Criteria

To address the challenge C4.1 we describe the correct-

ness criteria that the collaboration scheme needs to

satisfy:

Criterion 1. The scheme needs to be deadlock free

(i.e. all the locks need to be unlocked during a com-

mit operation).

Criterion 2. The scheme needs to be livelock free

(i.e. all the operations need to finish at some point

and lead the scheme to an idle state).

Criterion 3. Commit operation shall be rejected

while another commit is under execution.

Criterion 4. Commit operation shall propagate the

changes to all collaborators.

Criterion 5. Clients need to initiate an update op-

eration when it is required by the server.

Note that Criterion 1. and Criterion 2. are re-

quired to ensure that the collaboration can run without

any manual intervention. Criterion 3. declines over-

writing changes without notification of a commit hap-

pened previously. Criterion 5. enforces the clients to

avoid conflicting commits.

5.3 Proof of Correctness

In accordance with challenge 4.1, we formalized our

collaboration scheme as communicating sequential pro-

cesses (CSP) [45, 46] described in the appendix D to

prove its correctness. CSP is a formal specification lan-

guage of concurrent programs or systems where the

communications and interactions are presented in an

algebraic style.

The Server and Clients processes define the be-

havior of exactly 1 server and n clients, respectively.

The collaboration is specified as a concurrent execu-

tion (denoted by ||) of the server and clients where

the processes synchronize on a given set of events

SyncEvents: {commit, update, checkout, accessDenied,

policyViolated, needToUpdate, failure, success}.

Collaboration = Server||SyncEventsClients[1..n]

16 Csaba Debreceni et al.

Fig. 6: State-machine of the Collaboration Server

For the analysis, we used the FDR4 tool [32] to eval-

uate assertions over certain properties of the processes.

Criteria 1. and 2. requires the entire collaboration

process (Collaboration) to be deadlock and livelock

free. To check these properties, the : [deadlock free]

and : [divergence free] built-in structures are used, re-

spectively.

assert Collaboration : [deadlock free] (1)

assert Collaboration : [divergence free] (2)

The rest of the criteria requires to evaluate whether

the process formally refines a certain event sequence

according to the CSP models, namely the traces and

failures models. For that purpose, we use the T : and

F : structures, respectively, where

P T : < a, b, c > means that process P must be able

to perform the ordered sequence of the events a, b,

c and only these events.

P F : < a, b, c > means that process P must not be

able to refuse to perform the ordered sequence of

events a, b, c without performing any other event.

To check the remaining criteria, we introduce the ¬
symbol to negate assertions; the \ symbol that hides

events from the process and E denotes the events pro-

vided by all processes. The combination of these sym-

bols allows us to evaluate the processes in the context

of certain event, e.g. P \(E ∩ {a, b, c}) means that all

events are hidden from the process P except a, b and c.

Criterion 3. includes that after executing a

TPutBack, another T ′
PutBack cannot be executed with-

out unlocking the model.

assert Server \(E ∩ {unlock, putback}) (3)

¬T : < putback.x, putback.y >

x, y ∈ Int, x ̸= y

Criterion 4. requires to execute TGet for all col-

laborators other than the owner of the commit after

a successfully executed TPutBack but before unlocking

the model. As we start the synchronization with col-

laborator 1, and then 2, it implies that the collabora-

tion scheme needs to execute it to the last collaborator,

namely n.

assert Server \(E ∩ {get.n, putback, unlock}) (4)

T : < putback.x, get.n, unlock.x >

x,N ∈ Int, x ̸= n

Enforcing Fine-grained Access Control for Secure Collaborative Modeling using Bidirectional Transformations 17

Table 2: Results of the assertion in FDR4 tool

States Transitions time (s)

A
ss
er
ti
o
n
s

1 89233 227591 0.44
2 89233 227591 0.51
3 452 1121 0.13
4 417 1071 0.42
5 10 11 0.12
6 10 11 0.12

To satisfy Criterion 5., after a commit operation

rejected by the server with a need to update message,

the client (i) cannot commit again and (ii) must be able

to initiate update operation:

assert Clients \(E ∩ {commit, update, needToUpdate}) (5)

¬T : < commit.x, needToUpdate.x, commit.x >

assert Clients \(E ∩ {commit, update, needToUpdate}) (6)

F : < commit.x, needToUpdate.x, update.x >

x ∈ Int

As in the assertions we hide several events, the

FDR4 tool was able reduce the state space and the tran-

sitions that needs to be traversed.

We evaluated the assertions2 for n = 5 users. The

results are presented in Table 2. To check deadlock

and livelock properties, all the events and states are

required. Hence the tool traversed almost 90000 states

and 230000 transitions to prove these properties. To

verify the rest of the assertions, at most 500 states and

1100 transitions were enough to traverse. All the asser-

tions are evaluated within less than 0.51 seconds and

none of them failed.

According to the results, we state that our collab-

oration scheme for access control management satisfies

the correctness criteria.

6 Realization of Collaboration Scheme3

In accordance with challenge 4.2, our goal is to pro-

vide tool support for enforcing fine-grained model ac-

cess control rules in offline and online scenario realizing

the introduced collaboration scheme (see Sec. 5).

6.1 Offline Collaboration

In the offline scenario, models are serialized (e.g. in an

XMI format) and stored in a Version Control System

2 The complete formal specification is available at: goo.gl/
pJzIX1
3 Source codes and more details are at https://tinyurl.

com/sosym-access-control-source

(VCS). Users work on local working copies of the mod-

els in long transactions called commits. The goal of our

approach is to manage fine-grained access control on

the top of existing security layers available in the VCS.

6.1.1 Realization

The concept of gold and front models is extended to the

repository level where the two types of repositories are

called gold and front repositories as depicted in Fig. 8.

”The concept of gold and front models is extended

to the repository level ...” is added to introduce the

difference between the model and repository level

concepts

The gold repository contains complete information

about the gold models, but it is not accessible to collab-

orators. Each user has a front repository, containing a

full version history of front models. New model versions

are first added to the front repository; then changes in-

troduced in these revisions will be interleaved into the

gold models using PutBack transformation. Finally,

the new gold revision will be propagated to the front

repositories of other users using Get transformation.

As a result, each collaborator continues to work with a

dedicated VCS as before, thus they are unaware that

this front repository may contain filtered and obfus-

cated information only.

Existing access control mechanisms (such as fire-

walls) are used to ensure that the gold model is ac-

cessible to superusers only, and each regular user can

only access their own front repository. These regular

users can use any compatible VCS client to communi-

cate with their front repository, being unaware of col-

laboration mechanisms in the background.

This scheme enforces the access control rules even if

users access their personal front repositories using stan-

dard VCS clients and off-the-shelf modeling tools. Nev-

ertheless, optional client-side collaboration tools may

still be used to improve user experience, e.g. for smart

model merging [21], user-friendly lock management [15],

or preemptive warning about potential write access vi-

olations that greatly enhances the usability and appli-

cability of the offline scenario.

6.1.2 Realization of the Collaboration Scheme

In the current prototype, our collaboration scheme is re-

alized by extending an off-the-shelf VCS server, namely

Subversion [5]. Subversion provides features of the col-

laboration scheme by default:

File-level access control

is responsible for sending accessDenied event to the

goo.gl/pJzIX1
goo.gl/pJzIX1
https://tinyurl.com/sosym-access-control-source
https://tinyurl.com/sosym-access-control-source

18 Csaba Debreceni et al.

Fig. 7: State-machine of the Collaboration Client

Fig. 8: The MONDO Offline Collaboration Server: Ar-

chitecture

collaborators whenever their access is denied for a

certain file (which contains models).

Version-control

allows to the users to download the files by sending

a checkout event, submit their changes by sending

a commit event and update the files by sending an

update event.

Version check

checks the version of the files and sends upToDate

the collaborators whether the files are already up-to-

date upon an update or sends needToUpdate event

they need to update upon a rejected commit.

File-level locking

allows users to lock files by sending a lock event and

reject commits initiated by other users. They can

also remove their locks by sending an unlock event.

Handling Multiple Requests

allows users to initiate multiple requests simultane-

ously that the server can accept.

Final Notification

notifies the users about the result of their requested

operations by sending a success or a failure event.

As checkout and update operations of the collabo-

ration scheme are fully handled by Subversion, we need

to integrate the TPutBack and TGet into the commit op-

eration to enforce fine-grained access control and prop-

agate the changes.

Hooks are programs triggered by repository events

such as lock, unlock or commit. The hook may be set

up to be triggered before such an event (with the possi-

bility of influencing its outcome, e.g. cancelling it upon

failure) or directly afterwards (when the event is guar-

anteed to have happened).The following hook programs

will be executed upon a commit operation.

Pre-Commit Hook. TPutBack is invoked by pre-

commit hook executing when a user attempts to com-

mit a new revision of a model Mr′

F (new revision r′ of a

model MF). This hook performs the following steps to

enforce access control policies corresponding to Fig. 9:

1. Parent revision Mr
F of Mr′

F is identified.

2. Revision Mr
F is traced to the corresponding revision

MR
G in the gold repository.

3. The hook attempts to put a file-level lock to MG in

the gold repository.

(a) If the locking attempt fails, the hook terminates

sending an otherCommitUnderExecution event.

(b) Otherwise, the lock on MG is activated by send-

ing a lock and the hook continues its process.

4. TPutBack is executed between Mr′q
F and MR

G in the

gold repository, in order to reflect the changes per-

formed in the new commit.

(a) If the TPutBack detects any attempts to per-

form model modifications violating write per-

missions, then the commit process to the

front repository terminates by sending a

policyViolated event.

(b) Otherwise, the commit is deemed successful,

and MR”
G is committed to the gold repository

(with metadata such as committer name and

commit message copied over from the original

front repository commit).

Enforcing Fine-grained Access Control for Secure Collaborative Modeling using Bidirectional Transformations 19

Fig. 9: Pre-commit hook at the front repository

5. Finally, the hook finishes successfully and let the

VCS server to handle the request.

Post-Commit Hook. TGet is invoked by post-commit

hook synchronizing all front models Mr
F with the new

revision of gold model MR′

G . This hook is triggered af-

ter a commit of MR′

G finished successfully at the gold

repository and performs the following steps correspond

to Fig. 10 to propagate the new changes.

1. Parent revision MR
G of MR′

G is identified.

2. The hook iterates over each front repository and ex-

ecute the following steps. If the commit to the gold

repository is initiated by a front repository then the

originating front repository will be skipped.

(a) Revision MR
G is traced to the corresponding

front revision Mr
F in the front repository.

(b) TGet is executed between MR′

G and Mr
F in order

to reflect the changes performed in the commit.

If Mr
F does not exist, it is handled as an empty

model.

(c) New revision of the model Mr′

F is commited

to the front repository (with metadata such as

committer name and commit message copied

over from the original front repository commit).

3. The hook removes the lock from MR′

G by sending an

unlock event.

4. Finally, it finishes successfully and lets the VCS

server to handle the request.

6.1.3 Discussion

It is worth discussing the following properties of the

offline collaboration framework.

Generality. Our solution is general and adaptable

to any VCS that supports checkout, update, commit op-

erations (maybe they are named differently).

Fig. 10: Post-commit hook at the gold repository

Server Response. Users get response to their com-

mit right after the collaboration server attempts to

propagate back the changes to the gold repository. If

any access control rule is violated the pre-commit hook

fails. At the last phase of pre-commit, the VCS declines

the commit action to the gold repository, if any modi-

fied files are locked on the gold repository. Hence, the

hook fails again and prevent the VCS specific file level

locks. In contrast, if everything goes well the users do

not need to wait for synchronizing with the remaining

front repositories.

Multiple Models in a Commit. A single commit

may update several models at once. In this case, the

hooks are invoked for each model in the commit.

Non-blocking Commit. Commit operation does

not block update and checkout operations as previous

versions still readable in the front repositories.

Models stored among other project files. Our

solution supports storing models along with non-model

files in the repositories. The hooks can be parameterized

with file extensions to determine whether a file needs

to be handled as a model. When a file is not a model,

it is simply copied from the gold repository to the front

repositories.

Correspondence Relation. It is a challenging

task to identify the correspondences between model as-

sets of the front and gold models, where the models are

stored independently as it is addressed in C2.2.

Our approach currently uses specific attributes to

provide permanent identifiers. Such a permanent iden-

tifier is preserved across model revisions and lens map-

pings, and can therefore be used to pre-populate the

object correspondence relation. In our running exam-

ple, each object has a unique id attribute. Note that

unlike EMF, some modeling platforms (e.g. IFC [34])

automatically provide such permanent identifiers.

20 Csaba Debreceni et al.

While requiring permanent identifiers is a limita-

tion of the approach, it is only relevant for modeling

platforms that do not themselves provide this kind of

traceability, and only in the offline collaboration sce-

nario. Being able to identify model objects is a rela-

tively low barrier for modeling languages; e.g. the orig-

inal wind turbine language includes a unique identifier

for all model objects.

Authorization Files We have taken the design de-

cision that the authorization files are stored and ver-

sioned in the same VCS as the models. Thus policy

files may evolve naturally along with the evolution of

the contents of the repository.

Policy files are writable by superusers only, but read-

able by every user; this means that offline clients may

evaluate security rules on their offline copies themselves.

Note that we do not believe that this openness of the

security policy causes major security concerns, as secu-

rity by obscurity is not good security principal. In any

way, names and parameters of security rules should not

themselves contain sensitive design information.

6.2 Online Collaboration

In the online scenario, several users can simultaneously

display and edit the same model with short transac-

tions by using a web-based modeling tool where changes

are propagated immediately to other users during col-

laborative modeling sessions. In contrast to the offline

scenario, where users manipulated local copies of the

models, models are kept in a server memory and users

access the model directly on the server. The goal of

our approach in accordance with C3.1 is to incremen-

tally enforce fine-grained model access control rules and

on-the-fly change propagation between view models of

different users.

6.2.1 Technical Realization

During a collaborative modeling session, a model kept

in server memory for remote access may also be called a

whiteboard depicted in Fig. 11. The collaboration server

hosts a number of whiteboard sessions, each equipped

with a gold model. Each user connected to a whiteboard

is presented with their own front model, connected to

the gold model via a lens relationship. The front mod-

els are initially created using Get. If a user modifies

their front model, the changes are propagated to the

gold model using PutBack, and propagated further

to the other front models using Get again. In case

of online collaboration, these lens operations are con-

tinuously and efficiently executed as a live transforma-

Fig. 11: Overview of Online Collaboration

tion [18], thus users always see an up-to-date view of

the model during the editing session.

Similarly to modern collaborative editing tools

(such as Google Sheets [17]), whiteboards can be oper-

ated transparently: whenever the first user attempts to

open a given model, a new whiteboard is started; sub-

sequent users opening the model will join the existing

whiteboard. When all users have left, the whiteboard

can be disposed. The model may be persisted periodi-

cally, or on demand (“save button”). The session man-

ager component enables collaborators to start, join or

leave whiteboard sessions and persist models to disk.

6.2.2 Realization of the Collaboration Scheme

To achieve challenge 4.2, we need to discuss how the

online collaboration realizes the collaboration scheme.

1. The checkout operation is equivalent to joining the

whiteboard session for the first time, except it re-

quires to execute TGet that achieves the front model

on which the new user can work.

2. The update operation is equivalent to refresh the

browser on client side. Via web-based technologies,

the collaboration framework notifies and forces the

clients’ browsers to refresh when new changes are in-

troduced into their front models. However, manual

refresh usually results in an upToDate event, except

when the notification and the manual refresh initi-

ated at the same moment.

3. The commit operations are initiated right af-

ter users apply modifications on their front

models. Other clients need to wait (receiving

otherCommitUnderExecution event) until the com-

mit finishes, including the execution of PutBack

and all Get processes to propagate the changes.

Enforcing Fine-grained Access Control for Secure Collaborative Modeling using Bidirectional Transformations 21

After a successful commit, clients receive notifica-

tion to force them to initiate and update. When a

policyViolated event occurs, the change is immedi-

ately rolled back at the initiator’s front model.

6.2.3 Discussion

It is worth discussing the following properties of the

online collaboration framework.

Conflicts Handling. As the online collaboration

operates with short transactions, it has only a small

chance that conflict occurs during the session (e.g. a

collaborator modifies an object that is deleted by an-

other collaborator and the propagation of the deletion

is under execution). However, if a conflict araises, it is

resolved by accepting the remote changes. It also im-

plies that the latter changes will be lost.

Blocking Checkout and Update. Version num-

bers are not considered in online collaboration and only

one gold model exists during a session. Hence, checkout

and update operations need to wait until the commit

operation finishes if these operations were initiated dur-

ing the execution of a commit.

Prototype User Interface. An initial user in-

terface is implemented as a proof-of-concept, depicted

in Fig. 12, that uses the editors automatically gener-

ated from EMF metamodels4 which also provides sim-

ilar modeling environment as the desktop Eclipse IDE.

This prototype tool is to demonstrate how to adapt

rule-based access control with bidirectional lenses to

the online collaboration scenario. We strongly believe

that several other existing tools such as GenMyModel

[6, 49,50] can easily adapt our solution.

Correspondence Relation. In the online case, the

gold and its front models are initiated for a collabora-

tion session. During a session, these models are stored

in the memory and there is no need to reload any of

them. Correspondences established during TGet can be

used through the online collaboration. Hence, there is

no limitation about the models (unlike in the offline

case, where unique identifiers are required).

Integration with Offline Collaboration. Mod-

els and authorization files can be persisted to an under-

lying gold repository provided by a VCS. The online

collaboration tool can access them using checkout/up-

date/commit commands. However, if file-level conflicts

occur in the underlying VCS, they will need specific user

interfaces to resolve them. Instead, we decided that new

whiteboard sessions put file-level locks on the resources

related to the models to prevent conflicts in the VCS

upon persisting.

4 EMF and RAP integration: https://wiki.eclipse.org/
RAP/EMF_Integration

Fig. 12: User Interface for Online Collaboration Proto-

type

6.3 Assumptions and Limitations

6.3.1 Feedback on Write Access Control

As discussed before, the means of write access control is

the following. In the offline case, the server rejects unau-

thorized modifications only when the user finally sub-

mits them. In the online case, PutBack is a live trans-

formation, and it can immediately reject non-compliant

changes. (Note that rejected write attempts offer a side

channel through which some information on the hidden

parts of the gold model may be gained. While it is be-

side the point here, policy designers are advised to take

such unintended effects into account.)

It can be frustrating and unproductive for users to

learn about their insufficient permissions by trial and

error. This is especially true in the offline case, where

the feedback only arrives when modifications are actu-

ally committed. In a better system, write restrictions

would be readily available to the user; advanced mod-

eling tools may even incorporate this information into

their model notation, e.g. to visually show read-only

parts of the model as frozen.

However, such a tight feedback loop in the offline

case would either require nonstandard communication

channels (with their own security risks) to disclose the

evaluated permission sets with the client; or alterna-

tively, additional computations such as client-side ap-

proximation of the policy queries based on the incom-

plete information in the front model. Proposing a sat-

isfactory solution is left as future work, e.g. by elabo-

rating initial ideas of [15].

https://wiki.eclipse.org/RAP/EMF_Integration
https://wiki.eclipse.org/RAP/EMF_Integration

22 Csaba Debreceni et al.

Motivated by the review, we have rephrased this

entire subsection to better emphasise what the ac-

tual claims are, what limitations we see, and how we

hope to address them in the future.

6.3.2 Ordered Lists

In EMF, some multi-valued references and attributes

are ordered lists. Model assets introduced in Sec. 3.1 col-

lectively represent all knowledge contained in an EMF

model except for ordering information. Thus the lack

of ordered lists is a limitation of the proposed solution.

The core reason is that there is no unique way to pro-

vide PutBack for ordered lists that have been filtered;

therefore such a lens would necessarily violate at least

Prop. 7 and undoability. Finding an acceptable resolu-

tion of the problem (e.g. imposing a limitation that,

for each user, ordered lists must be read-only unless

entirely visible) is left as future work. For now, the pro-

posed solution works properly for unordered collections.

6.3.3 Central Authority

Note that both G2 and G3 assume a central reposi-

tory (owned by e.g. a system integrator) where the en-

tire model is available. In a more general case, no single

entity would be in possession of complete knowledge.

There is an algebra [23] for combining lens transfor-

mations in various ways, suggesting a promising path

for addressing this issue in future research. However,

such a distributed scenario is out of scope for this pa-

per; we address the centralized case, which is by far

the most common in access control approaches used in

model repositories.

7 Evaluation

We have carried out a scalability measurement in both

offline and online scenario over the Wind Turbine case

study [7] of the MONDO FP7 project. We state the

following research questions in the evaluation:

Online Collaboration

Q1 Is the change propagation is incremental as it is

requested in challenge C3.1?

Q1.1 How scalable is our approach to increasing

model size?

Q1.2 How scalable is our approach to increasing

number of active users?

Offline Collaboration

Q2 What is the overhead of using query-based access

control over an existing VCS?

Q2.1 How scalable is our approach to increasing

model size?

Q2.2 How scalable is our approach to increasing

number of front repositories?

Q2.3 How scalable is our approach to increasing size

of committed changes?

Finally, Sec. 6.3 will discuss limitations of our solution.

7.1 Scalability Evaluation

7.1.1 Measurement Setup

For the measurement, we used the simplified metamodel

of Fig. 2 depicted in Fig. 13 which has slight modi-

fications. The control unit types were abstracted to

a string attribute, with K different permitted values

to provide K different specialist, and the attributes of

signals are removed. The corresponding access control

rules are similar to our motivating example Sec. 2, with

one specialist engineer for each control unit type (each

having five access control rules dedicated to them) and

an additional system administrator user who has read

and write permission for the entire model. This means

altogether K + 1 users and 5K + 5 access control rules

as it is shown in Fig. 14.

Measurements were performed with gold instance

models of various size. The model of size M contains a

root Composite object, which contains M copies of the

structure depicted in Fig. 15. This means 1+M compos-

ite modules, 2M control units, 8M signals where 3M

of them are confidential and 14M+M references where

4M of them are consumes cross-references. The copies

are not completely identical: the vendor attributes are

set to a different value in each copy; and type as well as

cycle attributes of control units were chosen randomly

from their respective ranges with uniform distribution.

However, special care was taken to ensure that all con-

trol unit types must occur at least once; this also implies

2M ≥ K.

The measurement was performed with U ≤ K spe-

cialist users and the system administrator being present

(thus in total U + 1 front models).

Online case. To test the incremental behavior of

the lens transformation addressed by Q1, we measured

the time it took the system administrator to perform

a complex model manipulation operation on his front

model, and to propagate the changes to the front mod-

els of all users who can see it. The measured com-

plex operation is a signal reversal (depicted in Fig. 16),

which reverts the direction of a communication channels

by changing the provides and consumes to the opposite.

We have selected this representative operation since

(a) it involves adding and removing cross-references and

Enforcing Fine-grained Access Control for Secure Collaborative Modeling using Bidirectional Transformations 23

Fig. 13: Modified Metamodel of Wind Turbine

Fig. 14: Users and active user in the measurement setup

Fig. 15: Core structure of synthesized models

a rearrangement of the containment hierarchy; (b) it

does not change the size of the model, thus introduces

no bias of this kind; (c) the change is noticeable by all

users that can see at least one of the involved modules

in their front models; and (d) every access control rule

in the policy (except for hiding the vendor attribute)

plays a role in determining the impact of the change.

Offline case. The measurement focuses on the over-

head of the collaboration framework required for prop-

agating a change in the front model addressed by Q2.

We measured the time it took a specific specialist to

(1) propagate several number of complex model ma-

nipulation operation on her front model to the gold

model and (2) from the gold model to the remaining

front models of all users who can see the effect of the

Fig. 16: Signal Reversal Operation

changes. The former describes the response time that a

user has to wait for receiving the result (success/failure)

of her commit while the latter is the propogation time to

propogate changes to the other front repositories. The

measured complex operation is a signal addition (de-

picted in Fig. 17), which adds a new signal under the

root object.

We have selected this representative operation since

(a) it demonstrates that any number of new changes

can be introduced into the model; (b) it increases the

model size but always with constant-size addition; (c)

all the users can see the change in their front model; and

(d) every access control rule in the policy (except for

hiding the vendor attribute) plays a role in determining

the impact of the change.

Fig. 17: Signal Addition Operation

Hardware Configuration

All the measurements5 executed on a personal com-

puter6. with maximum a 7GB of Java heap size.

7.1.2 Measurements of Online case

In the model size scalability series, we used

– fixed number of K = 50 control unit types and U =

10 present collaborators

– with increasing size of the model ranging from M =

50 to M = 700 (7701 objects, 10500 references)

In the active users scalability series, we used

– fixed number of K = 100 control unit types and

model of size M = 200 (2301 objects, 3100 refer-

ences),

5 Raw data and reproduction instructions at https://

tinyurl.com/sosym-access-control
6 CPU: Intel Core i7-4700MQ@2.40GHz, MEM: 8GB

https://tinyurl.com/sosym-access-control
https://tinyurl.com/sosym-access-control

24 Csaba Debreceni et al.

0

2

4

6

8

10

12

14

50 76 100 126 150 176 200 300 400 500 600 700

R
u

n
ti

m
e

 (
m

s)

Model Size (M)

Fig. 18: Average execution time of an online signal re-

versal (increasing model size)

– with the increasing number of specialist collaborators

joining the session ranging from U = 2 to U = 100.

For accuracy, 100 reversal operations were carried

out and their execution times averaged in a single run;

we have plotted the median execution time of 10 runs,

excluding 2 warm-up runs, with 1 standard deviation

error bars.

The results of the model size scalability series are shown

in Fig. 18 addressing Q1.1. The cost of performing a sin-

gle reversal model manipulation is low, and seems to be

independent from the model size. This confirms that we

have achieved incrementality where computation cost is

dependent on the size of the change, but not on the size

of the entire model.

The results of the active users scalability series are

shown in Fig. 19 addressing Q1.2. It is apparent that

when very few users join the session, most signal rever-

sals are not visible to any user other than the principal

engineer; but as more and more specialist users join

the session, the number of active users starts to dom-

inate the cost of model manipulation. Asymptotically,

the cost of model manipulation is proportional to the

average number of front models it is propagated to.

Note that it has only a small chance that users con-

currently modify their front model as we mentioned in

Sec. 6.2.3, but in that case the operations which arrive

later to the server will be rejected. Hence, concurrent

modifications have no additional effect on the perfor-

mance.
Concurrent users are replaced with active users and

a reason is introduced why concurrent users does

not cause performance issues.

7.1.3 Measurements of Offline case

In the model size scalability series, we used

– fixed number of K = 100 control unit types, Fr = 20

front repositories and Ch = 10 changes,

– where the model is increased from M = 100 to M =

6000 (34001 objects, 45000 references).

0

50

100

150

200

250

300

2 5 10 25 50 75 100

R
u

n
ti

m
e

(m
s)

of active users

Fig. 19: Average execution time of an online signal re-

versal (increasing the number of active users)

In the number of front repository scalability series, we

used

– fixed number of K = 100 control unit types, model

of size M = 800 (8801 objects, 12000 references) and

Ch = 10 changes,

– where the number of front repositories is increased

from Fr = 5 to Fr = 100.

In the change size scalability series, we used

– fixed number of K = 100 control unit types, model

of size M = 400 and Fr = 20 front repositories,

– where the number of introduced changes is increased

from Ch = 10 to Ch = 1000.

The measurements were executed 10 times with 2

warm-up execution in separate JVM and the results

show the median of the measured values.

The charts represent the entire transformation time in-

cluding the following tasks: (1) loading the EMF mod-

els, (2)initializing the lens by building the correspon-

dence tables, (3) loading the additional files such as

rules and queries, (4) executing the transformation and

(5) finally serializing the results as a committable new

version of the models.

The lower part of the bars (denoted by checkered

blue background) represents response time including

the PutBack phase of the transformation. This is the

delay experienced by committing users before they re-

ceive their response from the server so that they can

continue their work. The upper part of the bars (in solid

blue color) visualizes propagation time of the changes to

synchronize with the rest of the front repositories (this

happens asynchronously from the point of view of the

committing user).

The results of model size scalability series are shown

in Fig. 20 addressing Q2.1. In case of the largest model,

users should wait at most 10 seconds to commit their

changes in addition to the default execution time of a

commit in the version control system. Response time

Enforcing Fine-grained Access Control for Secure Collaborative Modeling using Bidirectional Transformations 25

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 2000 4000 6000

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
)

Model Size (M)

Increasing Model Size (Ch: 10, Fr: 20)

Response Time Propagation Time

Fig. 20: Average execution time of an offline signal ad-

dition (increasing model size)

0

20

40

60

80

100

5 10 20 30 40 50 60 70 80 90 100

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
)

No. of Front Repositories (Fr)

Increasing Front Repositories (M: 800, Ch: 10)

Response Time Propogation Time

Fig. 21: Average execution time of an offline signal ad-

dition (increasing number of front repositories)

grows linearly with the size of the model while synchro-

nization is non-linear to the model size.

The results of number of front repository scalability
series are shown in Fig. 21 addressing Q2.2. In case of

our special signal addition change, all front repositories

had to be updated to propagate the changes and the

same number of modification had to be executed on

those front models. The results clearly show that the

execution time grows linearly to the number of front

repositories to which the change has to be propagated.

The results of the third series are shown in Fig. 22

addressing Q2.3. It shows that loading the models and

building the correspondence table dominate the execu-

tion time in case of small changes. However, the execu-

tion time grows linearly with the size of changes in case

of large commits (e.g. from 1000), for the sole reason

that the resulting model size itself is increased due to

the addition of so many new signals.

7.1.4 Discussion on Performance Findings

As seen from the measurements, the overhead on the

commit time experienced by a committer in the offline

0

5

10

15

20

25

10 20 50 100 150 200 400 1000

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
)

No. of Changes (Ch)

Increasing Change Size (M: 800, Fr: 20)

Response Time Propogation Time

Fig. 22: Average execution time of an offline signal ad-

dition (increasing number of changes)

scenario is manageable, but can easily reach several sec-

onds for larger models with tens of thousands of ele-

ments. This time is still significantly shorter than typi-

cal build and test execution times in continuous integra-

tion solutions, so our access control service is unlikely

to form the bottleneck of developer productivity. Note

that while the implementation of our prototype could

certainly be improved, it will always have an overhead

that is at least proportional to the model size, since the

entire new model file has to be read and processed upon

each commit (no matter how small the change within

that model). This is a characteristic of file-based offline

collaboration (required to meet goal G2).

One way to get around this limitation is to use on-

line collaboration instead, where the execution time

overhead on model modification is very low, even for

a few dozen simultaneous collaborators. This can be

seen as a space-time tradeoff, as online collaboration

uses in-memory models, putting a limit on the amount

of online sessions and participants that a given server

can support. We therefore recommend the adaptation of

online collaboration whenever possible for models that

are currently under very active development, and us-

ing the file-based offline interface for other cases, such

as accessing rarely updated models, old revisions, side

branches, and of course for working on a disconnected

computer.

8 Related Work

In this section, we collect the state-of-the-art ap-

proaches for specifying and enforcing fine-grained ac-

cess control over various technological domains, and

compare it to our solution.

26 Csaba Debreceni et al.

8.1 Fine-grained Policies in Various Domains

8.1.1 File-based Access Control.

Traditional version control systems (like CVS, SVN)

and file sharing technologies adopt file-level access poli-

cies, which are clearly insufficient for fine-grained access

control specifications.

Off-the-shelf file systems typically require resources

(files and folders) to be explicitly labeled with per-

missions that take the form of an Access Control List

(ACL), or the simplified form user/group/other flags.

An ACL consists of entries regarding which user/sub-

ject is granted or denied permission for a given opera-

tion.

File-based solutions can be directly applied to MDE,

but cannot provide fine-grained access control, where

different parts of a model file have different permis-

sions. Our policies are fine-grained, use implicit rules

(so that model elements do not have to be explicitly

annotated with permission flags, which is difficult to

manually maintain as the model evolves), and respect

internal consistency (such as permission dependencies

of cross-references); all the while being more flexible [20]

in the conflict resolution method.

8.1.2 Access Control in RDF Triple/Quad stores.

Graph-based access control is a popular strategy for

many triple and quad stores (4store [31], Virtuoso , IBM

DB2) developed for storing large RDF data. User priv-

ileges can be granted to for each named graph while ac-

cess control is actually checked when issuing a SPARQL

query. Denial of access for a graph filters the query re-

sults obtained from this specific graph. Data access in

AllegroGraph [28] can be controlled on the database or

catalog level (coarse-grained) as well as on the graph

and triple level (fine-grained) while Stardog only allows

database-level access control.

Similarly to our approach, fine-grained access con-

trol is discussed in [22] using graph queries as precon-

ditions of rules to select certain assets on which the

permissions need to be enforced. The major difference

is that we apply queries in an MDE environment (this

has very important implications relative to RDF, see

Sec. 3.1), and we also provide offline collaboration.

In the Oracle Database Semantic Technologies [42],

access control is carried out by default on the model

(graph) level. Furthermore, it can be configured on

the triple (row) level, which is implemented by query

rewriting. In this case, the definition of access control

policies is based on so-called match and apply (graph)

patterns, where the former identifies the type of access

restriction while the latter injects access-control specific

constraints to the query.

Another access control technique is called label based

security, which offers (1) triple-level control using (a

hierarchy of) sensitivity labels attached to each triple,

and (2) RDF resource-level access control for subjec-

t/predicate/object. Explicit data access labels are im-

plemented in [42] and are generalized into abstract to-

kens and operators in [43].

8.1.3 Access Control for XML Documents.

A number of standards such as XACML [33] (OASIS

standard) provide fine-grained access control for XML

documents. These type of documents are similar to

models in a way, that they consists of nodes with at-

tributes that may contain other nodes. XACML pro-

vides several combining algorithms to select from con-

tradicting policies. In [29], fine-grained access control

is formalized using XPath for XML documents, which

claims that the visibility of a node depends on its ances-

tors, thus when a node is granted access, then access is

also granted to its descendants. However, other depen-

dencies are not discussed related to XML Documents.

Similarly to our approach, a dedicated policy lan-

guage is used by [40], from which a lens is automatically

generated to enforce access control for XML documents.

In addition to the attributes and context of the assets

(XML nodes), the XQuery-based policy can take into

account external (subject or context) attributes as well.

As it is not an MDE approach, there is no treatment

of cross-references. There is no discussion of internal

consistency either (see Sec. 3.2), except for the con-

tainment hierarchy, which is relevant for XML as well.

Finally, there is no discussion of the challenges of online

and offline collaboration.

8.1.4 Access control in Collaborative Modeling

Environments.

Currently, fine-grained access control is not considered

in the state of the art tools of MDE such as MetaEdit+

[53], VirtualEMF [16], WebGME [38], EMFStore [50],

GenMyModel [6], Obeo Designer Team [41], MDE-

Forge [9] or the tools developed according to [30]. See

also the broader survey in [44].

The generic framework CDO [49] (used e.g. in [41])

provides both online collaboration and role-based access

control with type-specific (class, package and resource-

level) permissions, but no facility for instance level ac-

cess control policy specifications. However, there is a

pluggable access control mechanism that can specify

Enforcing Fine-grained Access Control for Secure Collaborative Modeling using Bidirectional Transformations 27

access on the object level; it should be possible to inte-

grate fine-grained solutions such as the currently pro-

posed system.

The collaborative hardware design platform Vehi-

cleFORGE stores their model in graph-based databases

and has an access control scheme TrustForge [19] that

uses an implementation of KeyNote [13] trust manage-

ment system. This system is responsible for evaluating

the request addressed to the database, which can be

configured in various ways. It supports unlimited per-

mission levels and it is also able to handle consistency

constraints by adding them as assertions. Conflict reso-

lution strategies are not discussed. AToMPM [48] pro-

vides fine-grained role-based access control for online

collaboration; no offline scenario or query-based secu-

rity is supported, though. Access control is provided

at elementary manipulation level (RESTful services) in

the online collaboration solution of [25].

8.2 Access Control Enforcement

8.2.1 Access control using Model Transformation.

Closest to our approach, [39] uses model transforma-

tions to build infrastructures that can manage access

control policies written in any policy language. It means

that their approach takes a policy model as input and

derives transformation rules to enforce read and write

permissions. To compare it to our solution, we use el-

ementary model transformation rules that take the ef-

fective permissions as input, instead of integrating the

permissions into our rules.

8.2.2 Model-driven Security.

Model-based techniques have also been used for access

control purposes. In [36], similarly to our solution, ac-

cess control is enforced at runtime by program code

that has been automatically generated from a model-

based specification, which captures both system and

security policy descriptions. This technique can pro-

vide runtime checks only on single entities by using the

guarded object design pattern. A similar approach is

suggested by [14], which specifies access control policies

by OCL. Although this idea enables the formulation of

queries that involve several objects, the efficient check-

ing of these complex structural queries highly depends

on the algorithmic experience of the system designer

due to the fact that OCL handles model navigation in

an imperative style, in contrast to declarative graph

patterns, where several sophisticated pattern matching

algorithms are readily available.

The book chapter [37] about Model-driven Security

provides a detailed survey of a wide range of MDE

approaches for designing secure systems, but does not

cover the security of the MDE process itself.

8.2.3 Access Control using Bidirectional Programming.

Bidirectional Programming (BP) is an approach for

defining lenses concisely, e.g. by only specifying one of

Get and PutBack, and deriving the other. Such lenses

can be directly applied for read filtering. However, [27]

demonstrates that conventional BP is not sufficient for

write access control. It also proposes such an integrity-

preserving BP extension, focusing on string transfor-

mations (and therefore not directly applicable in MDE).

There is no notion of access control policy either, so the

security engineer has to develop their own lens trans-

formation to implement access control.

9 Conclusion and Future Work

In this paper, we aimed to uniformly enhance secure

collaborative modeling by using fine-grained access con-

trol policies uniformly for online and offline collabora-

tion scenarios. Each collaborator can access a dedicated

copy of the model in accordance with read permissions

of the policy. Moreover, bidirectional transformations

are used to synchronize changes between different col-

laborators and check that write permissions are also

respected.

We illustrated our techniques in the context of a

Wind Turbine case study from the MONDO European

Project, which was also used to assess scalability with

models of increasing size, increasing change introduced

by collaborators and increasing number of collabora-

tors. In case of online collaboration, the results were

promising with close to instant propagation of changes

and checking of write permissions. In case of offline col-

laboration, the results show that the response time is

acceptable and the overhead is less than 10 additional

seconds for the largest model).

As future work, we would like to (i) address the lim-

itations presented in Sec. 6.3, (ii) investigate the pos-

sibilities of building correspondence relations between

the original model and filtered copy of it dedicated to a

certain collaborator, and (iii) realize our collaboration

scheme with other frameworks (e.g. Git, GenMyModel)

and with support for continuous integration and review

/ change request management systems.

28 Csaba Debreceni et al.

10 Acknowledgment

This paper is partially supported by the EU Com-

mission with project MONDO (FP7-ICT-2013-10), no.

611125., the MTA-BME Lendület 2015 Research Group

on Cyber-Physical Systems and NSERC RGPIN-04573-

16. The second author was supported by the János

Bolyai Research Scholarship of the Hungarian Academy

of Sciences.

References

1. CAESAR Research Project. http://store.sae.org/

caesar/.
2. OMGObject Constraint Language, February 2014. http:

//www.omg.org/spec/OCL/.
3. The Cambridge Dictionary, 2017. http://dictionary.

cambridge.org/dictionary/english/obfuscate.
4. Aerospace vehicle systems institute. SAVI Research

Project. http://http://savi.avsi.aero/.
5. Apache. Subversion. 07 2017.
6. Axellience. GenMyModel. http://www.genmymodel.com.
7. A. Bagnato, E. Brosse, A. Sadovykh, P. Maló, S. Trujillo,

X. Mendialdua, and X. De Carlos. Flexible and scalable
modelling in the mondo project: Industrial case studies.
In XM@ MoDELS, pages 42–51, 2014.

8. F. Bancilhon and N. Spyratos. Update semantics of rela-
tional views. ACM Trans. Database Syst., 6(4):557–575,
Dec. 1981.

9. F. Basciani, J. D. Rocco, D. D. Ruscio, A. D. Salle,
L. Iovino, and A. Pierantonio. MDEForge: an extensible
web-based modeling platform. In CloudMDE@MoDELS,
2014.

10. G. Bergmann, I. Dávid, Á. Hegedüs, Á. Horváth, I. Ráth,
Z. Ujhelyi, and D. Varró. VIATRA 3: a reactive model
transformation platform. In International Conference on
Theory and Practice of Model Transformations, pages
101–110. Springer, 2015.

11. G. Bergmann, C. Debreceni, I. Ráth, and D. Varró.
Query-based Access Control for Secure Collaborative
Modeling using Bidirectional Transformations. In
ACM/IEEE 19th Int. Conf. on MODELS, 2016.

12. G. Bergmann, C. Debreceni, I. Ráth, and D. Varró. To-
wards efficient evaluation of rule-based permissions for
fine-grained access control in collaborative modeling. In
2st International Workshop on Collaborative Modelling
in MDE, Austin Texas, USA, In Press. ACM.

13. M. Blaze and A. D. Keromytis. The keynote trust-
management system version 2. 1999.

14. R. Breu, G. Popp, and M. Alam. Model based develop-
ment of access policies. International Journal on Soft-
ware Tools for Technology Transfer, 9(5):457–470, 2007.

15. M. Chechik, F. Dalpiaz, C. Debreceni, J. Horkoff, I. Ráth,
R. Salay, and D. Varró. Property-based methods for col-
laborative model development. In Joint Proc. of the 3rd
Int. Workshop on the Glob. Of Modeling Lang. and the
9th Int. Workshop on Multi-Paradigm Modeling, pages
1–7. Citeseer, 2015.

16. C. Clasen, F. Jouault, and J. Cabot. VirtualEMF:
A model virtualization tool. In Advances in Concep-
tual Modeling. Recent Developments and New Directions,
pages 332–335, 2011.

17. N. Conner. Google Apps: The Missing Manual: The
Missing Manual. ” O’Reilly Media, Inc.”, 2008.

18. K. Czarnecki and S. Helsen. Feature-based survey of
model transformation approaches. IBM Systems Jour-
nal, 45(3):621–645, 2006.

19. P. U. DARPA VehicleFORGE. TrustForge: Flexible Ac-
cess Control for VehicleForge.mil Collaborative Environ-
ment, 2012.

20. C. Debreceni, G. Bergmann, I. Ráth, and D. Varró. De-
riving effective permissions for modeling artifacts from
fine-grained access control rules. In 1st International
Workshop on Collaborative Modelling in MDE, Saint
Malo, France, 06 2016. ACM.

21. C. Debreceni, I. Ráth, D. Varró, X. De Carlos, X. Men-
dialdua, and S. Trujillo. Automated model merge by de-
sign space exploration. In International Conference on
Fundamental Approaches to Software Engineering, pages
104–121. Springer, 2016.

22. S. Dietzold and S. Auer. S.: Access control on RDF triple
stores from a semantic wiki perspective. In In: Scripting
for the Semantic Web Workshop at 3rd European Se-
mantic Web Conference (ESWC, 2006.

23. Z. Diskin. Algebraic models for bidirectional model syn-
chronization. In MoDELS, pages 21–36, 2008.

24. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fun-
damentals of Algebraic Graph Transformation (Mono-
graphs in Theoretical Computer Science. An EATCS Se-
ries). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

25. M. Farwick, B. Agreiter, J. White, S. Forster, N. Lan-
zanasto, and R. Breu. A web-based collaborative meta-
modeling environment with secure remote model ac-
cess. In Web Engineering, 10th International Confer-
ence, ICWE 2010, Vienna, Austria, July 5-9, 2010. Pro-
ceedings, volume 6189 of LNCS, pages 278–291. Springer,
2010.

26. K. F. Fogel and M. Bar. Open source development with
CVS. Coriolis Group Books, 2001.

27. J. N. Foster, B. C. Pierce, and S. Zdancewic. Updatable
security views. In Proceedings of the 2009 22Nd IEEE
Computer Security Foundations Symposium, CSF ’09,
pages 60–74, Washington, DC, USA, 2009. IEEE Com-
puter Society.

28. I. Franz. AllegroGraph. http://franz.com/agraph/

allegrograph/doc/security.html.
29. I. Fundulaki and M. Marx. Specifying access control

policies for XML documents with XPath. In 9th ACM
Symposium on Access Control Models and Technologies,
pages 61–69, 2004.

30. J. Gallardo, C. Bravo, and M. A. Redondo. A model-
driven development method for collaborative model-
ing tools. J. Network and Computer Applications,
35(3):1086–1105, 2012.

31. Garlik. 4store. http://4store.org/trac/wiki/

GraphAccessControl.
32. T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and

A. Roscoe. FDR3 — A Modern Refinement Checker for
CSP. In E. Ábrahám and K. Havelund, editors, Tools and
Algorithms for the Construction and Analysis of Sys-
tems, volume 8413 of Lecture Notes in Computer Science,
pages 187–201, 2014.

33. S. Godik and T. M. (eds). eXtensible access control
markup language (XACML) version 1.0. 02 2003.

34. Int. Organization for Standardization. ISO 16739:2013:
Industry Foundation Classes (IFC) for data sharing in
the construction and facility management industries, 04
2013.

http://store.sae.org/caesar/
http://store.sae.org/caesar/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/
http://dictionary.cambridge.org/dictionary/english/obfuscate
http://dictionary.cambridge.org/dictionary/english/obfuscate
http://http://savi.avsi.aero/
http://www.genmymodel.com
http://franz.com/agraph/allegrograph/doc/security.html
http://franz.com/agraph/allegrograph/doc/security.html
http://4store.org/trac/wiki/GraphAccessControl
http://4store.org/trac/wiki/GraphAccessControl

Enforcing Fine-grained Access Control for Secure Collaborative Modeling using Bidirectional Transformations 29

35. R. Jaeschke. Encrypting c source for distribution. Jour-
nal of C Language Translation, 2(1):71–80, 1990.

36. J. Jürjens. Model-based run-time checking of security
permissions using guarded objects. In M. Leucker, ed-
itor, Proc. of the 8th International Workshop on Run-
time Verification, volume 5289 of LNCS, pages 36–50,
Budapest, Hungary, 2008. Springer.

37. L. Lucio, Q. Zhang, P. H. Nguyen, M. Amrani, J. Klein,
H. Vangheluwe, and Y. L. Traon. Advances in model-
driven security. Advances in Computers, 93:103–152,
2014.

38. M. Maroti et al. Next Generation (Meta)Modeling:
Web- and Cloud-based Collaborative Tool Infrastructure.
In 8th Multi-Paradigm Modeling Workshop, Valencia,
Spain, 09/2014 2014.

39. S. Mart́ınez, J. Garćıa, and J. Cabot. Runtime support
for rule-based access-control evaluation through model-
transformation. In Proceedings of the 2016 ACM SIG-
PLAN International Conference on Software Language
Engineering, pages 57–69. ACM, 2016.

40. L. Montrieux and Z. Hu. Towards attribute-based autho-
risation for bidirectional programming. In Proceedings of
the 20th ACM Symposium on Access Control Models and
Technologies, SACMAT ’15, pages 185–196, New York,
NY, USA, 2015. ACM.

41. Obeo. Obeo designer team. https://www.obeodesigner.
com/en/collaborative-features.

42. Oracle. Database Semantic Technologies. http:

//docs.oracle.com/cd/E11882_01/appdev.112/e11828/

fine_grained_acc.htm.
43. V. Papakonstantinou, M. Michou, I. Fundulaki,

G. Flouris, and G. Antoniou. Access control for
RDF graphs using abstract models. In 17th ACM
Symposium on Access Control Models and Technologies,
SACMAT ’12, Newark, NJ, USA - June 20 - 22, 2012,
pages 103–112. ACM, 2012.

44. J. D. Rocco, D. D. Ruscio, L. Iovino, and A. Pieranto-
nio. Collaborative repositories in model-driven engineer-
ing [software technology]. IEEE Software, 32(3):28–34,
May 2015.

45. A. W. Roscoe. Understanding concurrent systems.
Springer Science & Business Media, 2010.

46. B. Roscoe. The theory and practice of concurrency. 1998.
47. P. Stevens. Bidirectional model transformations in QVT:

semantic issues and open questions. Software & Systems
Modeling, 9(1):7–20, 2008.

48. E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen,
V. Mierlo, and H. Ergin. AToMPM: A Web-based Model-
ing Environment. MODELS 2013 Demonstrations Track,
2013.

49. The Eclipse Foundation. CDO. http://www.eclipse.

org/cdo.
50. The Eclipse Foundation. EMFStore. http://www.

eclipse.org/emfstore.
51. The Eclipse Foundation. RAP. http://www.eclipse.

org/rap/.
52. The Eclipse Project. Eclipse Modeling Framework. http:

//www.eclipse.org/emf/.
53. J. Tolvanen. MetaEdit+: Domain-specific modeling and

product generation environment. In Software Product
Lines, 11th Int. Conf. SPLC 2007, Kyoto, Japan, pages
145–146, 2007.

54. D. Varró, G. Bergmann, Á. Hegedüs, Á. Horváth, I. Ráth,
and Z. Ujhelyi. Road to a reactive and incremen-
tal model transformation platform: three generations of
the viatra framework. Software & Systems Modeling,
15(3):609–629, 05/2016 2016.

55. J. Whittle, J. E. Hutchinson, and M. Rouncefield. The
state of practice in model-driven engineering. IEEE Soft-
ware, 31(3):79–85, 2014.

https://www.obeodesigner.com/en/collaborative-features
https://www.obeodesigner.com/en/collaborative-features
http://docs.oracle.com/cd/E11882_01/appdev.112/e11828/fine_grained_acc.htm
http://docs.oracle.com/cd/E11882_01/appdev.112/e11828/fine_grained_acc.htm
http://docs.oracle.com/cd/E11882_01/appdev.112/e11828/fine_grained_acc.htm
http://www.eclipse.org/cdo
http://www.eclipse.org/cdo
http://www.eclipse.org/emfstore
http://www.eclipse.org/emfstore
http://www.eclipse.org/rap/
http://www.eclipse.org/rap/
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/

30 Csaba Debreceni et al.

A Get Transformation Rules

rule Subtractive Get Reference Priority 1
Precondition :: (MG(OAG,RAG,AAG),MF (OAF ,RAF ,AAF), permissionEff) → {ReferenceAsset}
{ReferenceAsset(sF , ref, tF)|ReferenceAsset(sF , ref, tF) ∈ RAF ,

∃ObjectAsset(sF , ts) ∈ OAF ,ObjectAsset(tF , tT) ∈ OAF : trace(ObjectAsset(sG, ts)) = ObjectAsset(sF , ts),

trace(ObjectAsset(tG, tt)) = ObjectAsset(tF , tt), ̸ ∃ReferenceAsset(sG, ref, tG) : ReferenceAsset(sG, ref, tG) ∈ RAG

permissionEff(ReferenceAsset(sG, ref, tG), read) ̸= deny}
Action
RAF := RAF \ {ReferenceAsset(sF , ref, tF)}

rule Subtractive Get Attribute Priority 2
Precondition :: (MG(OAG,RAG,AAG),MF (OAF ,RAF ,AAF), permissionEff) → {AttributeAsset}
{AttributeAsset(oF , attr, v′)|AttributeAsset(oF , attr, v′) ∈ AAF , ∃ObjectAsset(oF , t) : ObjectAsset(oF , t) ∈ OAF

∃ObjectAsset(oG, t) : ObjectAsset(oG, t) ∈ OAG, trace(ObjectAsset(oG, t)) = ObjectAsset(oF , t), ̸ ∃AttributeAsset(oG, attr, v) :

v′ =

{
v, permissionEff(AttributeAsset(oG, attr, v), read) = allow

obf(v), permissionEff(AttributeAsset(oG, attr, v), read) = obfuscate
,AttributeAsset(oG, attr, v) ∈ AAG}

Action
AAF := AAF \ {AttributeAsset(oF , attr, v′)}

rule Subtractive Get Object Priority 3
Precondition :: (MG(OAG,RAG,AAG),MF (OAF ,RAF ,AAF), permissionEff) → {ObjectAsset}
{ObjectAsset(oF , t)|ObjectAsset(oF , t) ∈ OAF , ̸ ∃ObjectAsset(oG, t′) : trace(ObjectAsset(oG, t′)) = ObjectAsset(oF , t), t = t′

permissionEff(ObjectAsset(oG, t′), read) ̸= deny}
Action
OAF := OAF \ {ObjectAsset(oF , t)}, trace \ ObjectAsset(oG, t′)|trace(ObjectAsset(oG, t′)) = ObjectAsset(oF , t)

rule Additive Get Object Priority 4
Precondition :: (MG(OAG,RAG,AAG),MF (OAF ,RAF ,AAF), permissionEff) → {ObjectAsset}2
{ObjectAsset(oG, t),ObjectAsset(oF , t′)|ObjectAsset(oG, t) ∈ OAG, permissionEff(ObjectAsset(oG, t), read) ̸= deny,

̸ ∃ObjectAsset(oF , t′) ∈ OAF : trace(ObjectAsset(oG, t)) = ObjectAsset(oF , t′), t = t′}
Action
OAF := OAF ∪ {ObjectAsset(oF , t′)}, trace(ObjectAsset(oG, t)) := ObjectAsset(oF , t′)

rule Additive Get Attribute Priority 5
Precondition :: (MG(OAG,RAG,AAG),MF (OAF ,RAF ,AAF), permissionEff) → {AttributeAsset}
{AttributeAsset(oF , attr, v′)|AttributeAsset(oG, attr, v) ∈ AAG, permissionEff(AttributeAsset(oG, attr, v), read) ̸= deny,

∃ObjectAsset(oF , t) : ObjectAsset(oF , t) ∈ AAF , trace(ObjectAsset(oG, t)) = ObjectAsset(oF , t), ̸ ∃AttributeAsset(oF , attr, v′) :

v′ =

{
v, permissionEff(AttributeAsset(oG, attr, v), read) = allow

obf(v), permissionEff(AttributeAsset(oG, attr, v), read) = obfuscate
,AttributeAsset(oF , attr, v′) ∈ AAF }

Action
AAF := AAF ∪ {AttributeAsset(oF , attr, v′)}

rule Additive Get Reference Priority 6
Precondition :: (MG(OAG,RAG,AAG),MF (OAF ,RAF ,AAF), permissionEff) → {ReferenceAsset}
{ReferenceAsset(sF , ref, tF)|ReferenceAsset(sG, ref, tG) ∈ RAG, permissionEff(ReferenceAsset(sG, ref, tG), read) ̸= deny,

∃ObjectAsset(sG, ts),ObjectAsset(tG, tt) : trace(ObjectAsset(sG, ts)) = ObjectAsset(sF , ts),

trace(ObjectAsset(tG, tt)) = ObjectAsset(tF , tt), ̸ ∃ReferenceAsset(sF , ref, tF) : ReferenceAsset(sF , ref, tF) ∈ RAF }
Action
RAF := RAF ∪ {ReferenceAsset(sF , ref, tF)}

Enforcing Fine-grained Access Control for Secure Collaborative Modeling using Bidirectional Transformations 31

B PutBack Transformation Rules

rule Subtractive PutBack Reference Priority 1
Precondition :: (MG(OAG,RAG,AAG),MF (OAF ,RAF ,AAF), permissionEff) → {ReferenceAsset}
{ReferenceAsset(sG, ref, tG)|ReferenceAsset(sG, ref, tG) ∈ RAG, permissionEff(ReferenceAsset(sG, ref, tG), read) ̸= deny,

∃ObjectAsset(sG, ts),ObjectAsset(tG, tt) : trace(ObjectAsset(sG, ts)) = ObjectAsset(sF , ts),

trace(ObjectAsset(tG, tt)) = ObjectAsset(tF , tt), ̸ ∃ReferenceAsset(sF , ref, tF) : ReferenceAsset(sF , ref, tF) ∈ RAF }
Action
If permissionEff(ReferenceAsset(sG, ref, tG), write) ̸= deny then RAG := RAG \ ReferenceAsset(sG, ref, tG) else ↘↙

rule Subtractive PutBack Attribute Priority 2
Precondition :: (MG(OAG,RAG,AAG),MF (OAF ,RAF ,AAF), permissionEff) → {AttributeAsset}
{AttributeAsset(oG, attr, v)| ̸ ∃AttributeAsset(oF , attr, v′) :

∃ObjectAsset(oF , t) : ObjectAsset(oF , t) ∈ OAF , trace(ObjectAsset(oG, t)) = ObjectAsset(oF , t),

v =

{
v′, permissionEff(AttributeAsset(oG, attr, v), read) = allow

obf−1(v′), permissionEff(AttributeAsset(oG, attr, v), read) = obfuscate
,AttributeAsset(oG, attr, v) ∈ AAG}

Action
If permissionEff(AttributeAsset(oG, attr, v), write) ̸= deny then AAG := AAG \ AttributeAsset(oG, attr, v) else ↘↙

rule Subtractive PutBack Object Priority 3
Precondition :: (MG(OAG,RAG,AAG),MF (OAF ,RAF ,AAF), permissionEff) → {ObjectAsset}
{ObjectAsset(oG, t)|ObjectAsset(oG, t) ∈ OAG, permissionEff(ObjectAsset(oG, t), read) ̸= deny,

̸ ∃ObjectAsset(oF , t′) : trace(ObjectAsset(oG, t)) = ObjectAsset(oF , t′), t = t′}
Action
If permissionEff(ObjectAsset(oG, type), write) ̸= deny then
OAG := OAG \ ObjectAsset(oG, t), trace \ ObjectAsset(oG, t)|trace(ObjectAsset(oG, t)) = ObjectAsset(oF , t) else ↘↙

rule Additive PutBack Object Priority 4
Precondition :: (MG(OAG,RAG,AAG),MF (OAF ,RAF ,AAF), permissionEff) → {ObjectAsset}2
{ObjectAsset(oF , t),ObjectAsset(oG, t)|ObjectAsset(oF , t) ∈ OAF , ̸ ∃ObjectAsset(oG, t) : trace(ObjectAsset(oG, t)) = ObjectAsset(oF , t)}
Action
OAG := OAG ∪ {ObjectAsset(oG, t)}
If permissionEff(ObjectAsset(oG, t), write) ̸= deny then trace(ObjectAsset(oG, t)) := ObjectAsset(oF , t) else ↘↙

rule Additive PutBack Attribute Priority 5
Precondition :: (MG(OAG,RAG,AAG),MF (OAF ,RAF ,AAF), permissionEff) → {AttributeAsset}
{AttributeAsset(oG, attr, v)|AttributeAsset(oF , attr, v′) ∈ AAF , ∃ObjectAsset(oF , t) : ObjectAsset(oF , t) ∈ AAF

∃ObjectAsset(oG, t) : ObjectAsset(oG, t) ∈ OAG, trace(ObjectAsset(oG, t)) = ObjectAsset(oF , t), ̸ ∃AttributeAsset(oG, attr, v) :

v =

{
v′, permissionEff(AttributeAsset(oG, attr, v), read) = allow

obf−1(v′), permissionEff(AttributeAsset(oG, attr, v), read) = obfuscate
,AttributeAsset(oG, attr, v) ∈ AAG}

Action
AAG := AAG ∪ {AttributeAsset(oG, att, v)}
If (permissionEff(AttributeAsset(oG, att, v), write) = deny) then ↘↙

rule Additive PutBack Reference Priority 6
Precondition :: (MG(OAG,RAG,AAG),MF (OAF ,RAF ,AAF), permissionEff) → {ReferenceAsset}
{ReferenceAsset(sG, ref, tG)|ReferenceAsset(sF , ref, tF) ∈ RAF ,

∃ObjectAsset(sF , ts),ObjectAsset(tF , tt) ∈ OAF : trace(ObjectAsset(sG, ts)) = ObjectAsset(sF , ts),

trace(ObjectAsset(tG, tt)) = ObjectAsset(tF , tt), ̸ ∃ReferenceAsset(sG, ref, tG) : ReferenceAsset(sG, ref, tG) ∈ RAG}
Action
RAG := RAG ∪ {ReferenceAsset(sG, ref, tG)}
If permissionEff(ReferenceAsset(sG, ref, tG), write) = deny then ↘↙

32 Csaba Debreceni et al.

C Proof sketches for the transformation properties listed in Sec. 4.3.1

Proof for Prop. 1: Termination
In the following, by source model we will mean the front model in case of PutBack, and the readable part of the gold model

in case of Get. Note that in both cases, the set of assets contained in the source model, defined this way, is not modified during a
transformation run.

Then we prove that for any given asset, either the additive or the subtractive rule may fire during a transformation run, but not
both. This follows from the fact that the precondition of the additive rule requires the presence of the asset in the source model, while
the subtractive rule requires its absence, and the source model does not change.

Note that the main action of each rule directly invalidates its precondition: additive rules always check for the non-existence of the
asset to be created in the target model, while subtractive rules always check for the existence of the asset to be removed in the target
model. Also, this main effect could only be possibly undone by the opposite rule (additive for subtractive and vice versa), which was
shown above not to fire during the same transformation run. Therefore a rule, once fired for a given precondition match, will not fire
again for the same match in the same transformation run.

Finally, on a source model of finite size, the preconditions of the rules have a finite number of matches, thus all the rule executions
during a transformation run may be characterized by a finite number of distinct matches. As each precondition match is fired at
most once, the transformation run must consist of a finite number of rule firings. It is trivial to see that individual rule actions are
terminating.

Note that this proof, unlike the following ones, does not rely on Asm. 1; so the transformations can at least be known to terminate
even when the conditions of regularity are not met.

Proof for Prop. 2: Confluence
Here we follow a proof strategy and terminology common in rewriting systems (see e.g. [24] for graph transformations). The proof

will rely on both the above result for termination as well as Asm. 1.
First of all, our rules are sequentially independent, meaning that if there are two valid transformation runs that differ only by

swapping two subsequent rule executions, then the end result of the two runs are the same. This is easily seen by examining the
actions of the rules. Note in our case, because of the priority-based total ordering of rules, it is sufficient to check different precondition
matches of the same rule, as no other rules are on the same priority level, making them unswappable.

Next, we also establish that the rules are parallel independent, meaning that if there are two distinct preconditions matches of
the same priority (i.e. the same rule in our case), then firing the rule for one will never disable the other. For Get, this is also easily
checked by inspecting the rules. For PutBack, however, we must take into account that with changes to the gold model, the effective
permissions may also change. This is indeed a point where confluence could fail; but Asm. 1 guarantees that this does not happen. A
further violation of parallel independence is caused by PutBack failing and stopping execution when a write permission check fails; in
this case if we can pretend that this failure is registered, the transformation continues, and then only rejects the modification (rolling
back all effects) once it has terminated.

Parallel independence guarantees that if a rule application is enabled at some point, it will stay enabled until it is fired, and
therefore it will eventually be fired in a comlpete transformation run. The two kinds of independence together prove that any two
complete transformation runs (from the same starting model) terminate with equivalent results, as in [24].

We have shown that the transformations are terminating and confluent rule systems; from here on, we rely on this observation,
and treat the transformations induced by the rules as deterministic Get and PutBack functions.

Proof for Prop. 3: Confidentiality
The rule-based formalisation and the partitioning of assets based on permissions (made possible due to Asm. 1) makes it very

straightforward to prove security properties.
It is easy to check that Get rules create assets in the front model only if they are readable, and will definitely remove them if

they exist but are unreadable. A slight clarification needs to be made for obfuscated assets, that are not copied verbatim, but rather
undergo an obfuscating transformation in the appropriate rules.

PutBack does not modify the front model.

Proof for Prop. 4: Integrity
A successful PutBack run only creates or removes assets in the gold model if they are writeable. Get does not modify the gold

model, neither does a failed PutBack.

Proof for Prop. 5: GetPut
At the point where Get terminates, there are no matches for any of its preconditions. The goal is to prove that at this state,

PutBack has no matches either.
As shown for Prop. 3, the front model at this point contains exactly those gold assets that are readable by the user (modulo

obfuscation). It is easy to check that subtractive PutBack preconditions will only match if there is a readable asset that is in the gold
model but not in the front model, while (almost, but not perfectly symmetrically) additive PutBack preconditions will only match if
there is an asset in the front model that is not in the gold model; none of which can be satisfied in such a state.

Proof for Prop. 6: PutGet
At the point where a successful PutBackterminates, there are no matches for any of its preconditions. The goal is to prove that

at this state, Get has no matches either.
A quick review of PutBack rules reveal that the front and gold models must agree (at least) on all readable assets at this point

(modulo obfuscation), otherwise there would be precondition matches. It then follows trivially that Get preconditions cannot be
satisfied in such a state.

Enforcing Fine-grained Access Control for Secure Collaborative Modeling using Bidirectional Transformations 33

Proof for Prop. 7: PutPut
As discussed before, this law is very restrictive, and it might have to be given up in order to allow for certain sensible extensions.

Nevertheless, here we will prove that this property holds for the system as presented in this paper.
Thanks to Asm. 1, assets can be partitioned into a writeable part and its complement, in line with the constant complement [8]

approach. It can be easily checked that all PutBack rules ensure that the changed asset is writeable; none of them affects the
complement (this is the part that no longer holds once dangle permissions are introduced).

We have also established above that after a successful PutBack, the front and gold models must agree (at least) on all readable
assets; consequently they also agree on all writeable assets, which is a subset of the former.

Since PutBack leaves the complement constant and overwrites the writeable part of the gold model with the front model, it
follows that in a sequence of successful PutBack runs, only the final one matters.

34 Csaba Debreceni et al.

D Collaboration Scheme Formalized as Communicating Sequential Processes

Algorithm 1 Collaboration Scheme Formalized as Communicating Sequential Processes
Range = 1..N
channel commit, update, checkout, needToUpdate, accessDenied, otherCommitUnderExecution, policyViolated, upToDate, failure,
success, lock, unlock, putback, get: Range

Checkout(x) = checkout.x → (success.x → SKIP □ accessDenied.x → failure.x → SKIP)
Update(x) = update.x → (success.x → SKIP □ accessDenied.x → failure.x → SKIP □ upToDate.x → failure.x → SKIP)
Pre-commitsucc(x) = commit.x → lock.x → SKIP
Pre-commitfail(x) = commit.x → (accessDenied.x → failure.x → SKIP □ needToUpdate.x → failure.x → SKIP)
Pre-commitreject(x) = commit.x → otherCommitUnderExecution.x → SKIP
Commitsucc(x) = putback.x → success.x SKIP
Commitfail(x) = policyViolated.x → failure.x → SKIP
Post-commitsync(x, z) = if x ̸= z get.x → SKIP else SKIP
Post-commitsucc(x) = unlock.x → SKIP
Post-commitfail(x) = unlock.x → SKIP

Serveridle() = □ y:Range @ Checkout(y); Serveridle()
□ Update(y); Serveridle()
□ Pre-commitsucc(y); Serverlocked(y)
□ Pre-commitfail(y) ; Serveridle()

Serverlocked(x) = □ y:Range @ Checkout(y); Serverlocked(x)
□ Update(y); Serverlocked(x)
□ Pre-commitreject(y); Serverlocked(x)
□ Commitsucc(x); Server

sync
unlocked(x, 1)

□ Commitfail(x) ; Serverlocked(x)

Serversyncunlocked(x, z) = □ y:Range @ Checkout(y); Serversyncunlocked(x)

□ Update(y); Serversyncunlocked(x)

□ Pre-commitreject(y); Server
sync
unlocked(x)

□ Post-commitsync(x, z); if z ̸= N then Serversyncunlocked(x, z + 1) else Serversuccunlocked(x)

Serversuccunlocked(x) = □ y:Range @ Checkout(y); Serversuccunlocked(x)
□ Update(y); Serversuccunlocked(x)
□ Pre-commitreject(y); Server

succ
unlocked(x)

□ Post-commitsucc(x); Serveridle()

Serverfailunlocked(x) = □ y:Range @ Checkout(y); Serverfailunlocked(x)

□ Update(y); Serverfailunlocked(x)

□ Pre-commitreject(y); Server
fail
unlocked(x)

□ Post-commitfail(x) ; Serveridle(x)

Clientcheckout(x) = checkout.x → (success.x → Clientidle(x)□accessDenied.x → failure.x → Clientcheckout(x))
Clientupdate(x) = update.x → (success.x → Clientidle(x)

□AccessDenied(x);Clientupdate(x))
□upToDate.x → success.x → Clientidle(x))

Clientcommit(x) = commit.x → (success.x → Clientidle(x)
□accessDenied.x → failure.x → Clientidle(x))
□needToUpdate.x → failure.x → Clientupdate(x))
□policyViolated.x → failure.x → Clientupdate(x))
□otherCommitUnderExecution.x → failure.x → Clientupdate(x))

Clientidle(x) = Clientcommit(x)□Clientupdate(x)

SyncEvents = {|commit,update,checkout,accessDenied,policyViolated,needToUpdate,failure,success|}

Server = Serveridle()

Clients = ||| y : Range @ Clientcheckout(y)
Collaboration = Server ||SyncEvents Clients

	Introduction
	Case Study
	Access Control of Models
	Bidirectional Model Transformation for Access Control Management
	Collaboration Scheme
	Tool support for Collaborative Modeling
	Evaluation
	Related Work
	Conclusion and Future Work
	Acknowledgment
	Get Transformation Rules
	PutBack Transformation Rules
	Proof sketches for the transformation properties listed in Sec. 4.3.1
	Collaboration Scheme Formalized as Communicating Sequential Processes

