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Abstract

Given two graphs F and G, an F -WORM coloring of G is an as-
signment of colors to its vertices in such a way that no F -subgraph
of G is monochromatic or rainbow. If G has at least one such col-
oring, then it is called F -WORM colorable and W−(G,F ) denotes
the minimum possible number of colors. Here, we consider F -WORM
colorings with a fixed 2-connected graph F and prove the following
three main results: (1) For every natural number k, there exists a
graph G which is F -WORM colorable and W−(G,F ) = k; (2) It is
NP-complete to decide whether a graph is F -WORM colorable; (3) For
each k ≥ |V (F )| − 1, it is NP-complete to decide whether a graph G

satisfies W−(G,F ) ≤ k. This remains valid on the class of F -WORM
colorable graphs of bounded maximum degree. For complete graphs
F = Kn with n ≥ 3 we also prove: (4) For each n ≥ 3 there exists a
graph G and integers r and s such that s ≥ r + 2, G has Kn-WORM
colorings with exactly r and also with s colors, but it admits no Kn-
WORM colorings with exactly r + 1, . . . , s − 1 colors. Moreover, the
difference s− r can be arbitrarily large.
2010 Mathematics Subject Classification: 05C15
Keywords and Phrases: WORM coloring, 2-connected graphs,
lower chromatic number, feasible set, gap in chromatic spectrum

∗Research supported in part by the Hungarian Scientific Research Fund NKFIH/OTKA
grant SNN 116095.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/154883062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1512.00478v1


1 Introduction

Given a graph G and a color assignment to its vertices, a subgraph is
monochromatic if its vertices have the same color; and it is rainbow if the
vertices have pairwise different colors. For graphs F and G, an F -WORM

coloring of G is an assignment of colors to the vertices of G such that no
subgraph isomorphic to F is monochromatic or rainbow. This concept was
introduced recently by Goddard, Wash, and Xu [8].

If G has at least one F -WORM coloring, we say that it is F -WORM

colorable. In this case, W−(G,F ) denotes the minimum number of colors
and W+(G,F ) denotes the maximum number of colors used in an F -WORM
coloring of G; they are called the F -WORM lower and upper chromatic

number, respectively. The F -WORM feasible set Φ
W
(G,F ) of G is the set

of those integers s for which G admits an F -WORM coloring with exactly s
colors. Moreover, we say that G has a gap at k in its F -WORM chromatic
spectrum, if W−(G,F ) < k < W+(G,F ) but G has no F -WORM coloring
with precisely k colors. The size of a gap is the number of consecutive integers
missing from Φ

W
(G,F ). If Φ

W
(G,F ) has no gap—that is, if it contains all

integers from the interval [W−(G,F ),W+(G,F )]—we say that the F -WORM
feasible set (or the F -WORM chromatic spectrum) of G is gap-free.

The invariants W−(G,F ) and W+(G,F ) are not defined if G is not F -
WORM colorable. Hence, wherever W− or W+ appears in this paper, we
assume without further mention that the graph under consideration is F -
WORM colorable.

In the earlier works [7, 8, 4], F -WORM colorings were considered for par-
ticular graphs F — cycles, complete graphs, and complete bipartite graphs;
but mainly the cases of F = P3 and F = K3 were studied. In this paper
we make the first attempt towards a general theory; we study F -WORM
colorings for all 2-connected graphs F . Our results presented here concern
colorability, lower chromatic number, and gaps in the chromatic spectrum.

1.1 Related coloring concepts

A general structure class within which F -worm colorings can naturally be
represented is called mixed hypergraphs. In our context its subclass called
bi-hypergraphs is most relevant. It means a pair H = (X, E), where E is a set
system (the ‘edge set’) over the underlying set X (the ‘vertex set’), whose
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feasible colorings are those mappings ϕ : X → N in which the set ϕ(e) of
colors in every e ∈ E satisfies 1 < |ϕ(e)| < |e|; in other words, the hyperedges
are neither monochromatic nor rainbow. In case of F -WORM colorings of a
graph G = (V,E) we have X = V , and a subset e ⊂ V is a member of E if
and only if the subgraph induced by e in G contains a subgraph isomorphic
to F . For more information on mixed (and bi-) hypergraphs we recommend
the monograph [12], the book chapter [5], and the regularly updated list of
references [13].

The exclusion of monochromatic or rainbow subgraphs has extensively
been studied also separately. Monochromatic subgraphs are the major issue
of Ramsey theory, moreover minimal colorings fit naturally in the context
of generalized chromatic number with respect to hereditary graph properties
[1], since the property of not containing any subgraph isomorphic to F is
hereditary.

Also, forbidden polychromatic subgraphs arise in various contexts, most
notably in a branch of Ramsey theory. Namely, the maximum number of
colors in an edge coloring of G without a rainbow copy of F is termed anti-
Ramsey number, and the number one larger — which is the minimum number
of colors guaranteeing a rainbow copy of F in G in every coloring with that
many colors — is the rainbow number ofG with respect to F . We recommend
[6] for a survey of results and numerous references. In particular, vertex
colorings of graphs without rainbow star K1,s subgraphs were studied in
[3, 2].

1.2 Results

Goddard, Wash, and Xu proved in [8] that if G is P3-WORM colorable, then
W−(G,P3) ≤ 2. Motivated by this, in [7] they conjectured thatW−(G,K3) ≤
2 holds for every K3-WORM colorable graph G. Moreover, they asked
whether there is a constant c(F ) for every graph F such that W−(G,F ) ≤
c(F ) for every F -WORM colorable G. It is proved in [4] that the conjecture
is false for F = K3, and a finite c(K3) does not exist. Now, we extend this
result from K3 to every 2-connected graph.

Theorem 1 For every 2-connected graph F and positive integer k, there

exists a graph G with W−(G,F ) = k.

What is more, the structure of those graphs is rich enough to imply that
they are hard to recognize. We proved in [4] that for every k ≥ 2 it is NP-
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complete to decide whether the K3-WORM lower chromatic number is at
most k; moreover it remains hard on the graphs whose maximum degree is
at most a suitably chosen constant dk, whenever k ≥ 3. It is left open whether
the same is true for k = 2. The following general result is stronger also in
the sense that for 2-connected graphs F of order n ≥ 4 the bounded-degree
version is available starting already from k = n− 1 instead of k = n.

Theorem 2 For every 2-connected graph F of order n ≥ 4 and for every

integer k ≥ n − 1, it is NP-complete to decide whether W−(G,F ) ≤ k.
This is true already on the class of F -WORM colorable graphs with bounded

maximum degree ∆(G) < 2n2.

The decision problem of F -WORM colorability is proved to be NP-complete
for F = P3 and F = K3 in [8] and [7], respectively. We prove the same com-
plexity for every 2-connected F .

Theorem 3 For every 2-connected graph F , the decision problem F -WORM

colorability is NP-complete.

Finally, we deal with the case where F is a complete graph. We have
proved in [4] that there exist graphs with large gaps in their K3-WORM
chromatic spectrum. Here we show that this remains valid for theKn-WORM
spectrum with each n ≥ 4. For the sake of completeness we also include the
previously known case of n = 3 in the formulation.

Theorem 4 For every n ≥ 3 and ℓ ≥ 1 there exist Kn-WORM colorable

graphs whose Kn-WORM chromatic spectrum contains a gap of size ℓ.

In Section 2 we present some preliminary results and define a basic con-
struction. Using those lemmas, we prove Theorems 1, 2, and 3 in Section 3.
In Section 4, we consider the case F ∼= Kn and prove Theorem 4.

1.3 Standard notation

As usual, for any graph G we use the notation ω(G) for clique number, χ(G)
for chromatic number, δ(G) for minimum degree, and ∆(G) for maximum
degree.
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2 Preliminaries

Here we prove a proposition on the F -WORM colorability and lower chro-
matic number of complete graphs; for some extremal cases we also consider
the possible sizes of color classes. Then, we give a basic construction which
will be referred to in proofs of Section 3.

Proposition 5 For every graph F of order n, with n ≥ 2, the following

hold:

(i) For every integer s > (n−1)2, the complete graph Ks is not F -WORM

colorable.

(ii) For every integer s satisfying 1 ≤ s ≤ (n − 1)2, Ks is F -WORM

colorable and W−(Ks, F ) =
⌈

s
n−1

⌉

.

(iii) In every F -WORM coloring of the complete graph K(n−1)2, there are

exactly n− 1 color classes each of size n− 1.

(iv) In every F -WORM coloring of the complete graph K(n−1)2−1, there are

exactly n−1 color classes such that one of them contains n−2 vertices

while the other n− 2 color classes are of size n− 1 each.

Proof. First, observe that if s < n, Ks contains no subgraphs isomorphic to
F and therefore, W−(Ks, F ) = 1 =

⌈

s
n−1

⌉

. If s ≥ n, a subgraph isomorphic
to F occurs on any n vertices of Ks. Hence, in an F -WORM coloring of Ks,
no n vertices have the same color and no n vertices are polychromatic; on the
other hand, this is also a sufficient condition for F -WORM colorability. By
the pigeonhole principle, if s > (n−1)2, the complete graph Ks does not have
such a color partition, while K(n−1)2 and K(n−1)2−1 can be F -WORM colored
only with color classes of sizes as stated in (iii) and (iv), respectively. It also
follows that for each s ≤ (n − 1)2, a vertex coloring of Ks with ⌈s/(n − 1)⌉
color classes of size at most n − 1 each determines an F -WORM coloring
with the smallest possible number of colors. �

Construction of the gadget G1(F). For a given graph F whose order
is n and has minimum degree δ ≥ 2, let G1(F ) be the following graph. The
vertex set is V (G1(F )) = S ∪ S ′ ∪ {x, y} where the three sets are vertex-
disjoint and |S ′| = n−δ−1, |S ′∪S| = (n−1)2−1. Moreover, S ′∪S induces
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S

S ′

x y

Figure 1: Gadget G1(F )

a complete graph and the vertices x and y are adjacent to all vertices of S,
but not to each other, neither to any vertex in S ′. The vertices x and y will
be called outer vertices, while the elements of S∪S ′ are called inner vertices.
For illustration see Fig. 1.

Lemma 6 For every graph F of order n and with minimum degree δ ≥
2, the graph G1(F ) is F -WORM colorable. Moreover, in any F -WORM

coloring of G1(F ), the outer vertices x and y get the same color which is

repeated on exactly (n− 2) inner vertices.

Proof. Assume that ϕ is an F -WORM coloring of G1(F ). By Proposi-
tion 5(iv), S ′ ∪S is partitioned into n− 1 color classes and one of them is of
size n− 2, while each further class contains exactly n− 1 vertices. The color
of the (n− 2)-element color class will be denoted by c∗.

First assume that F ∼= Kn. Then, S
′ = ∅ and both S ∪ {x} and S ∪ {y}

induce a complete subgraph on (n − 1)2 vertices. By Proposition 5(iii),
ϕ(x) = ϕ(y) = c∗ follows.

If F ≇ Kn, then δ ≤ n− 2 and we can take the following observations on
ϕ.

• Since S contains at least n − 2 − |S ′| = δ − 1 ≥ 1 vertices from each
color class, we can choose an (n− 1)-element polychromatic subset S ′′

of S. Then, on the vertex set S ′′ ∪ {x}, which induces a complete
graph, we consider a subgraph isomorphic to F . This subgraph cannot
be polychromatic, hence the color ϕ(x) (and similarly, ϕ(y)) must be
assigned to at least one vertex of S.

• Now assume that ϕ(x) 6= c∗. Then, we have n − 1 vertices in S ′ ∪ S
colored with ϕ(x), and at least (n−1)−|S ′| = δ of them are adjacent to
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x. Hence, we can identify a copy of F monochromatic in c∗, in which
x is a vertex of degree δ. This cannot be the case in an F -WORM
coloring. Thus, ϕ(x) = c∗ and similarly ϕ(y) = c∗ that proves the
second part of the lemma.

• Consider the following coloring φ of G1(F ). The color c∗ is assigned to
x, y, to all vertices in S ′, and to exactly δ − 1 vertices from S. The
remaining (n−2)(n−1) vertices in S are partitioned equally among n−2
further colors. As we used only n − 1 colors, no subgraph isomorphic
to F can be polychromatic. Further, each color different from c∗ is
assigned to only n− 1 vertices, so no copy of F can be monochromatic
in those colors. The only color occurring on n vertices is c∗. But x (and
also y) shares this color with only δ − 1 of its neighbors. Therefore,
we cannot have a subgraph isomorphic to F and monochromatic in c∗.
These facts prove that φ is an F -WORM coloring. �

Construction of C1(G,F,N0) Given an integer N0, a 2-connected graph
F of order n, and a graph G, construct the following graph C1(G,F,N0). If
V (G) = {v1, v2, . . . , vℓ}, take N0 + 1 copies for each vertex vi; these vertices
are denoted by v0i , v

1
i , . . . , v

N0

i . For each 1 ≤ i ≤ ℓ and 0 ≤ j ≤ N0 − 1 take a
copy of the gadget G1(F ) such that its two outer vertices are identified with
vji and vj+1

i , respectively. The edges contained in these copies of G1(F ) are
referred to as gadget-edges.

When we define the further edges of the construction, only the copy
vertices of the form v

k⌈n/2⌉
i (k ∈ N0) will be used, each of them at most

once. The sequence

v0i , v
⌈n

2
⌉

i , v
2⌈n

2
⌉

i , . . . , v

⌊

N0

⌈n
2
⌉

⌋

⌈n

2
⌉

i

is called Vi-sequence.
To finalize the construction of C1(G,F,N0), assume N0 ≥ (n+1)2∆(G)/4

and consider the edges of G one by one in an arbitrarily fixed order. When
an edge vivj (with i < j) is treated, take the next ⌈n/2⌉ vertices from the
Vi-sequence and the next ⌊n/2⌋ ones from the Vj-sequence, and connect them
with edges to obtain an induced subgraph isomorphic to F . These edges are
called supplementary edges. For an illustration with F = C4 see Fig. 2.
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Figure 2: The graph C1(P4, C4, 7). Supplementary edges are drawn with
dashed lines.

Lemma 7 Assume that F is a 2-connected graph of order n, G is a graph,

and N0 ≥ (n+1)2 ∆(G)
4

. Then the graph C1(G,F,N0) satisfies the following

properties.

(i) In each F -WORM coloring ϕ of C1(G,F,N0), the vertices v
0
i , v

1
i , . . . , v

N0

i

are monochromatic for each i with 1 ≤ i ≤ |V (G)|. Moreover, if vivj
is an edge in G then ϕ(v0i ) 6= ϕ(v0j ).

(ii) For every integer k with n− 1 ≤ k ≤ |V (G)| the graph C1(G,F,N0) is
F -WORM colorable with exactly k colors if and only if G is k-colorable.

(iii) For every integer k ≤ |V (G)|, there exists an F -WORM coloring ϕ of

C1(G,F,N0) which uses exactly k different colors on the set of outer

vertices of gadgets, if and only if G is k-colorable.

Proof. To simplify notation, let us write G∗ = C1(G,F,N0). First, con-
sider an F -WORM coloring ϕ of G∗. By Lemma 6, in each gadget G1(F )
the two outer vertices have the same color. Thus, for each i, the vertices
v0i , v

1
i , . . . , v

N0

i , and particularly the vertices contained in the Vi-sequence,
share their color. We denote this color by ϕ(Vi). By construction, if vivj is
an edge in G, we have an F -subgraph in G∗ such that every vertex of the
subgraph belongs to the Vi- or Vj-sequence. Since F is not monochromatic
in ϕ, we infer that ϕ(Vi) 6= ϕ(Vj). These prove (i).

Now, assume again that ϕ is an F -WORM coloring of G∗. Then, the
coloring φ which assigns the color ϕ(Vi) to every vertex vi ∈ V (G) is a
proper vertex coloring of G and it uses precisely |{ϕ(Vi) : 1 ≤ i ≤ |V (G)|}|
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colors. This proves the ”only if” direction of (iii). Further, we infer that
W−(G∗, F ) ≥ χ(G), and if W−(G∗, F ) ≤ k ≤ |V (G)| then G has a proper
coloring with exactly k colors. Since n − 1 ≤ W−(G∗, F ), this proves the
”only if” direction of the statement (ii).

To prove the other direction, we consider an integer k in the range χ(G) ≤
k ≤ |V (G)|. Let φ be a proper coloring of G which uses the colors 1, . . . , k.
We define a vertex coloring ϕ of G∗ as follows. For every i and s, with
1 ≤ i ≤ |V (G)| and 0 ≤ s ≤ N0, let ϕ(v

s
i ) := φ(vi). Moreover, for each copy

of gadget G1(F ) whose outer vertices are vsi and vs+1
i , let its inner vertices

be assigned with n − 1 different colors from 1, . . . ,max{k, n − 1} without
creating rainbow or monochromatic copies of F inside the gadget. We can
specify this assignment corresponding to Lemma 6. That is, ϕ(vsi ) is repeated
on all inner vertices nonadjacent to vsi and on further δ − 1 inner vertices;
each of the further n− 2 colors is assigned to exactly n− 1 inner vertices.

It is clear from the definition that any F -subgraph which is contained en-
tirely in one gadget or contains only supplementary edges is neither monochro-
matic nor rainbow under φ. Next, we prove that there are no further F -
subgraphs in G∗. First, assume that a subgraph isomorphic to F contains
only gadget edges but from at least two different gadgets. Then, this sub-
graph meets two consecutive gadgets and contains their common outer vertex
vsi . As s 6= 0 and s 6= N0, this outer vertex is a cut vertex in the subgraph
determined by the gadget edges. Thus, vsi would also be a cut vertex in the
F -subgraph, what contradicts the 2-connectivity of F . Therefore, such an F -
subgraph does not occur in G∗. The only case that remains to be excluded is
an F -subgraph which contains both gadget edges and supplementary edges.
In such a subgraph F ∗, we would have a vertex which is incident to gadget
edges and supplementary edges as well. This vertex, say vri , belongs to the
Vi-sequence. If only the gadget edges are considered, any further vertex of
Vi is at distance at least n apart from vri , while F ∗ has only n vertices and
at least one of them belongs to a different Vj-sequence. Hence, by deleting
vri from F ∗ we obtain a disconnected graph, one component of which is con-

tained entirely in the sequence of gadgets between vri and v
r+⌈n/2⌉
i , or between

vri and v
r−⌈n/2⌉
i . Again, this contradicts the 2-connectivity of F . Therefore,

we have only non-monochromatic and non-rainbow F -subgraphs, and ϕ is
an F -WORM coloring of G∗ with exactly k colors. This completes the proof
of the lemma. �
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3 Lower chromatic number and

WORM-colorability

Having Lemma 7 in hand, we are now in a position to prove Theorems 1, 2,
and 3. Before the proofs, we will recall the statements of the theorems.

Theorem 1. For every 2-connected graph F and positive integer k, there
exists a graph G with W−(G,F ) = k.

Proof. Let F be a 2-connected graph of order n ≥ 3. By Proposition 5(ii),
if 1 ≤ k ≤ n−1 and (k−1)(n−1) < s ≤ k(n−1), then W−(Ks) = k. Hence,
we may assume k ≥ n. We consider the graph G∗ = C1(G,F,N0) where G

is a graph of chromatic number k, and N0 =
⌈

(n+1)2 ∆(G)
4

⌉

. By Lemma 7,

for every integer k′ ∈ [n − 1, |V (G)|], G∗ has an F -WORM coloring using
exactly k′ colors if and only if k′ ≥ χ(G). Since χ(G) = k by assumption,
this implies W−(G∗, F ) = χ(G) = k, as desired. �

Theorem 2. For every 2-connected graph F of order n ≥ 4 and for every

integer k ≥ n − 1, it is NP-complete to decide whether W−(G,F ) ≤ k.
This is true already on the class of F -WORM colorable graphs with bounded

maximum degree ∆(G) < 2n2.

Proof. Let a 2-connected graph F of order n ≥ 4 and an integer k ≥ n− 1
be given. Clearly, the decision problem ‘ Is W−(G,F ) ≤ k? ’ belongs to
NP. To prove that it is NP-hard (also under the assumption of bounded
maximum degree), we apply reduction from the classical problem of graph
k-colorability, which is NP-complete for every k ≥ 3.

For a generic instance G of the graph k-colorability problem, construct

G∗ = C1(G,F,N0) with N0 =
⌈

(n+1)2 ∆(G)
4

⌉

. By Lemma 7, W−(G∗, F ) ≤ k if

and only if χ(G) ≤ k. Concerning the order and maximum degree of G∗, we
observe that

|V (G∗)| =
(

(n− 1)2N0 + 1
)

|V (G)|

and

∆(G∗) ≤ max{(n− 1)2, 2
(

(n− 1)2 − 1− (n− δ − 1)
)

+∆(F )} < 2n2.

Therefore, the order of G∗ is polynomially bounded in terms of |V (G)| and its
maximum degree satisfies the condition given in the theorem. This completes
the proof. �

10



Theorem 3. For every 2-connected graph F , the decision problem F -WORM

colorability is NP-complete.

Proof. Let us consider a 2-connected graph F and denote its order by n.
The problem is clearly in NP. It is proved in [7] that the decision problem
of K3-WORM colorability is NP-complete. Hence, we may assume that n ≥
4. The algorithmic hardness will be reduced from the decision problem of
χ(G) ≤ n− 1 that is NP-complete for each n ≥ 4.

For a general instance G of the decision problem ‘χ(G) ≤ n−1 ’ we again
begin with constructing a graph C1(G,F,N0), but now with a much larger
N0, namely

N0 =

⌈

(n+ 1)2∆(G)

4

⌉

+

(

|V (G)| − 1

n− 1

)

⌈n

2

⌉

.

It will be extended with further supplementary edges, as follows.
We consider those n-element subsets {i1, . . . , in} of the index set {1, . . . , |V (G)|}

for which the subgraph induced by {vi1 , . . . , vin} contains at least one edge.
For each such {i1, . . . , in} we choose one vertex (the first one which has not
been used so far) from each Vi-sequence with indices i = i1, . . . , in, and take
|E(F )| new supplementary edges in such a way that these n vertices in-
duce a subgraph isomorphic to F . These edges will be called supplementary
edges of the second type. As F is 2-connected and the vertices in the Vi-
sequences are far enough, this supplementation does not create any further
new F -subgraphs different from the ones inserted for the selected n-element
subsets.

Let us denote by C2(G,F ) the graph obtained in this way. It has fewer
than |V (G)| ·N0 ·n

2 vertices, which is smaller than |V (G)|n+3 if |V (G)| > n.
Therefore, once the graph F is fixed, the size of C2(G,F ) is bounded above
by a polynomial in the size of G. Thus, the proof will be done if we show
that C2(G,F ) is F -WORM colorable if and only if G has a proper vertex
coloring with at most n− 1 colors.

Suppose first that G admits a proper (n − 1)-coloring ϕ. This yields an
F -WORM coloring of C1(G,F,N0) by Lemma 7, in which each Vi-sequence
is monochromatic, they altogether contain precisely n− 1 colors, and if vivj
is an edge in G then the colors of Vi and Vj are different. Then the F -
subgraphs formed by the supplementary edges of the second type cannot
be monochromatic, because each selected n-set {vi1 , . . . , vin} is supposed to
induce at least one edge in G; and they cannot be rainbow F -subgraphs
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either, because only n− 1 colors occur on the Vi-sequences. Thus, C
2(G,F )

is F -WORM colorable in this case.
Next, assume that χ(G) ≥ n, and suppose for a contradiction that

C2(G,F ) admits an F -WORM coloring φ. Since C1(G,F,N0) is a subgraph
of C2(G,F ), Lemma 7 implies also for the latter graph that each Vi-sequence
is monochromatic in every F -WORM coloring, and any k-coloring of the
Vi-sequences induced by an F -WORM coloring of C2(G,F ) is a proper k-
coloring of G. Such a coloring necessarily uses at least n colors. Select-
ing an arbitrary edge vivj of G, we can extend {vi, vj} to an n-element set
{vi1 , . . . , vin} such that all those vertices have mutually distinct colors. It
follows that the F -subgraph formed by the supplementary edges of the sec-
ond type inserted for {vi1 , . . . , vin} is a rainbow copy of F , contradicting the
assumption that φ is an F -WORM coloring,

Therefore, once F is fixed according to the conditions in the theorem and
n ≥ 4, the decision problem of χ(G) ≤ n− 1 can be polynomially reduced to
the F -WORM colorability problem, and it follows that the latter problem is
NP-complete. �

We close this section with a positive result, implying that important graph
classes admit efficiently solvable instances of WORM colorability.

Proposition 8 Let n ≥ 3 be an integer, and G a graph with χ(G) = ω(G).
Then G is Kn-WORM colorable if and only if ω(G) ≤ (n− 1)2.

Proof. We know from Proposition 5(i) that K(n−1)2+1 is not Kn-WORM
colorable, therefore the condition ω(G) ≤ (n− 1)2 is necessary. Conversely,
suppose that χ(G) ≤ (n− 1)2. Take any proper coloring of G with at most
(n − 1)2 colors. It is possible to group the color classes into exactly n − 1
disjoint non-empty parts, say C1, . . . , Cn−1, each of them consisting of at
most n − 1 colors. (We may assume ω(G) ≥ n, otherwise G trivially is Kn-
WORM colorable.) Assign color i to the vertices in C i, for i = 1, . . . , n− 1.
Then no rainbow Kn can occur because there are at most n − 1 colors are
used, and no monochromatic Kn can occur because each Kn-subgraph meets
exactly n color classes in the original proper coloring of G, at most n− 1 of
which belong to the same C i. Thus, G is Kn-WORM colorable. �

Since a proper coloring of a perfect graph with the minimum number of
colors can be determined in polynomial time [9], we obtain:
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Corollary 9 For every fixed n ≥ 3, the problem of Kn-WORM colorability

can be solved in polynomial time on perfect graphs.

4 Gaps in the chromatic spectrum

The following kind of graph product will play an important role in the proof
below. Given two graphs G1 and G2, the strong product denoted by G1⊠G2

has vertex set V (G1)× V (G2), and any two edges u1v1 ∈ E(G1) and u2v2 ∈
E(G2) give rise to a copy of K4 in G1 ⊠G2 with the following six edges:

{(u1, u2), (u1, v2)}, {(u1, u2), (v1, v2)}, {(u1, u2), (v1, u2)},

{(u1, v2), (v1, u2)}, {(u1, v2), (v1, v2)}, {(v1, u2), (v1, v2)}.

Moreover, we denote by G1 ∨ G2 the join of G1 and G2, that is the graph
whose vertex set is the disjoint union V (G1) ∪ V (G2), and has the edge set

E(G1 ∨G2) = E(G1) ∪ E(G2) ∪ {v1v2 : v1 ∈ V (G1), v2 ∈ V (G2)}.

Applying these operations, here we prove Theorem 4; let us recall its
assertion.

Theorem 4. For every n ≥ 3 and ℓ ≥ 1 there exist Kn-WORM colorable

graphs whose Kn-WORM chromatic spectrum contains a gap of size ℓ.

Proof. As we mentioned in the Introduction, forK3 the theorem was proved
in [4]. Hence, from now on we assume n ≥ 4.

Consider a triangle-free, connected graph G with χ(G) = k ≥ 3, and
construct the graph G∗ = (G ⊠ Kn−1) ∨ K(n−3)(n−1). When G∗ is obtained
from G, each vertex vi ∈ V (G) is replaced with a complete graph on n − 1
vertices — this vertex set will be denoted by Vi — and each edge vivj ∈ E(G)
is replaced with a complete bipartite graph between Vi and Vj. To complete
the construction, we extend the graph with (n− 3)(n− 1) universal vertices
whose set is denoted by V ∗. Note that the vertex sets V1, . . . , V|V (G)|, V

∗ are
pairwise disjoint.

If a Kn subgraph of G∗ meets both sets Vi and Vj (with i 6= j), then there
exist some edges between these sets and hence vi and vj must be adjacent in
G. Moreover, as G is triangle-free, a complete subgraph of G∗ cannot meet
three different vertex sets Vs. This implies that for each Kn subgraph K of G∗
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there exists an edge vivj ∈ E(G) such that V (K) ⊂ Vi ∪ Vj ∪ V ∗. Therefore,
a vertex coloring ϕ of G∗ is Kn-WORM if and only if the complete subgraph
of order (n − 1)2 induced by Vi ∪ Vj ∪ V ∗ in G∗ is Kn-WORM colored for
each edge vivj of G. By Proposition 5, this gives the following necessary and
sufficient condition for ϕ to be a Kn-WORM coloring:

(⋆) For each vivj ∈ E(G), ϕ uses exactly n− 1 colors on Vi ∪ Vj ∪ V ∗, and
each color occurs on exactly n− 1 vertices of this complete subgraph.

Now, we assume that ϕ is a Kn-WORM coloring of G∗. We make the
following observations.

• Since there exist K(n−1)2-subgraphs, ϕ uses at least n − 1 colors. On
the other hand, by (⋆) a Kn-WORM coloring is obtained if each of the
colors 1, 2, . . . , n− 1 occurs on exactly n− 3 vertices from V ∗, and on
exactly one vertex from each Vi. This proves W

−(G∗, Kn) = n− 1.

• If ϕ uses exactly n− 1 colors on V ∗, it follows from (⋆) that no further
colors appear on the sets Vi.

• If |ϕ(V ∗)| = n−2, then for each vivj ∈ E(G) the set ϕ(Vi∪Vj) contains
exactly one color different from those in ϕ(V ∗). We have two cases. If
there exists a monochromatic Vs, its color c

∗ appears on n− 1 vertices
in Vs. By (⋆), c∗ /∈ ϕ(V ∗) follows, and also that for every neighbor vp
of vs, c

∗ /∈ ϕ(Vp). Then, |ϕ(V ∗ ∪ Vp)| = n − 2 and for each neighbor
vq of vp, the vertex set Vq in G∗ must be monochromatic in a color not
included in ϕ(V ∗). As G is connected, this property propagates along
the edges and for every adjacent vertex pair vi, vj , one of the sets Vi and
Vj is monochromatic and the other is not. This gives a bipartition of G,
which contradicts our assumption χ(G) ≥ 3. In the other case, there is
no monochromatic Vi, therefore the n−1 vertices of the (n−1)st color
of Vi ∪ Vj ∪ V ∗ have to be distributed between Vi and Vj . This implies

ϕ(Vi ∪ V ∗) = ϕ(Vi ∪ Vj ∪ V ∗) = ϕ(Vj ∪ V ∗)

for every pair i, j with vivj ∈ E(G). By the connectivity of G, we
conclude that |ϕ(G∗)| = n− 1.

• Assume that |ϕ(V ∗)| = n− 3. Then, each of these n− 3 colors occurs
on exactly n − 1 vertices of V ∗ and occurs on no further vertices of
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G∗. Moreover, for each vivj ∈ E(G), the vertices in Vi ∪ Vj are colored
with exactly two colors such that each color is assigned to exactly
n− 1 vertices. If there is a non-monochromatic Vs, then ϕ(Vs) = ϕ(Vp)
for every p satisfying vsvp ∈ E(G). Then, since G is connected, this
equality will be also valid if vsvp /∈ E(G). Therefore, we have only
n − 1 different colors on the vertices of V (G∗), again. On the other
hand, if every Vi is made monochromatic by ϕ, the condition (⋆) is
satisfied if and only if (i) the color of Vi is not in ϕ(V ∗); and (ii)
for every adjacent vertex pair vi, vj of G, the colors ϕ(Vi) and ϕ(Vj)
are disjoint. Conditions (i) and (ii) imply that the color assignment
φ defined as φ(vi) = ϕ(Vi) gives a proper vertex coloring of G with
|ϕ(V (G∗))| − n + 3 colors. Hence, this type of Kn-WORM coloring of
G∗ can be constructed such that the number of used colors is one from
the range χ(G) + n− 3, . . . , |V (G)|+ n− 3.

We have proved that the Kn-WORM feasible set of G∗ is

{n− 1} ∪ {k + n− 3, . . . , |V (G)|+ n− 3}.

If we choose a triangle-free connected graph G with χ(G) = k = ℓ + 3, the
gap in the feasible set ΦW (G∗, Kn) is of size ℓ. �
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[11] M. Kamiński and V.V. Lozin, Coloring edges and vertices of graphs
without short or long cycles. Contrib. Discrete. Math. 2 (2007), 61–66.

[12] V. I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and

Applications, Fields Institute Monographs 17, Amer. Math. Soc., 2002.

[13] V. I. Voloshin, Mixed Hypergraph Coloring Web Site,
http://spectrum.troy.edu/voloshin/mh.html.

16

http://digitalcommons.georgiasouthern.edu/tag/vol0/iss1/1

	1 Introduction
	1.1 Related coloring concepts
	1.2 Results
	1.3 Standard notation

	2 Preliminaries
	3 Lower chromatic number and WORM-colorability
	4 Gaps in the chromatic spectrum

