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The approximate Loebl–Komlós–Sós Conjecture II:

The rough structure of LKS graphs
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Miklós Simonovits§ Maya Stein¶ Endre Szemerédi‖

Abstract

This is the second of a series of four papers in which we prove the following relaxation of
the Loebl–Komlós–Sós Conjecture: For every α > 0 there exists a number k0 such that for
every k > k0 every n-vertex graph G with at least (1

2
+ α)n vertices of degree at least (1 + α)k

contains each tree T of order k as a subgraph.
In the first paper of the series, we gave a decomposition of the graph G into several parts

of different characteristics; this decomposition might be viewed as an analogue of a regular
partition for sparse graphs. In the present paper, we find a combinatorial structure inside this
decomposition. In the last two papers, we refine the structure and use it for embedding the
tree T .
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1 Introduction

This is the second of a series of four papers [HKP+a, HKP+b, HKP+c, HKP+d] in which we provide
an approximate solution of the Loebl–Komlós–Sós Conjecture. The conjecture reads as follows.

Conjecture 1.1 (Loebl–Komlós–Sós Conjecture 1995 [EFLS95]). Suppose that G is an n-vertex
graph with at least n/2 vertices of degree more than k − 2. Then G contains each tree of order k.

We discuss the history and state of the art in detail in the first paper [HKP+a] of our series. The
main result, which will be proved in [HKP+d], is the approximate solution of the Loebl–Komlós–Sós
Conjecture.

Theorem 1.2 (Main result [HKP+d]). For every α > 0 there exists a number k0 such that for any
k > k0 we have the following. Each n-vertex graph G with at least (12 + α)n vertices of degree at
least (1 + α)k contains each tree T of order k.

In the first paper [HKP+a] we exposed the techniques we use to decompose the host graph. In
particular, we saw in [HKP+a, Lemma 3.14] that any graph satisfying the assumptions of Theo-
rem 1.2 may be decomposed into a set of huge degree vertices, regular pairs, an expanding subgraph,
and another set with certain expansion properties, which we call the avoiding set. We call this a
sparse decomposition of a graph. We will recall the necessary notions from [HKP+a] in Section 3.

Many embedding problems for dense host graphs are attacked using the following three-step
approach: (a) the regularity lemma is applied to the host graph, (b) a suitable combinatorial
structure is found in the cluster graph, and (c) the target graph is embedded into the combinatorial
structure using properties of regular pairs. If we consider the sparse decomposition as a sparse
counterpart to (a) then the main result of the present paper, Lemma 5.4, should be regarded as
a counterpart to (b). More precisely, for each graph satisfying the assertions of Theorem 1.2 that
is given together with its sparse decomposition, Lemma 5.4 gives a combinatorial structure whose
building blocks are the elements of the sparse decomposition. As in tree embedding problems in the
dense setting (e.g. in [AKS95, PS12]), the core of this combinatorial structure is a well-connected
matching consisting of regular pairs. We call such matchings regularized.

With the structure given by Lemma 5.4, one can convince oneself that the tree T from Theo-
rem 1.2 can be embedded into the host graph, and indeed we provide such motivation in Section 5.1.
However, the rigorous argument is far from trivial. One needs to refine the structure found here,
which is done in [HKP+c]. For this reason, we call the output of Lemma 5.4 the rough structure.
In the last paper [HKP+d] of our series we will develop embedding techniques for trees, and finally
prove Theorem 1.2.

2 Notation and preliminaries

2.1 General notation

The set {1, 2, . . . , n} of the first n positive integers is denoted by [n]. We frequently employ
indexing by many indices. We write superscript indices in parentheses (such as a(3)), as opposed to
notation of powers (such as a3). We use sometimes subscripts to refer to parameters appearing in
a fact/lemma/theorem. For example αT1.2 refers to the parameter α from Theorem 1.2. We omit
rounding symbols when this does not affect the correctness of the arguments.
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2.2 Regular pairs

Table 2.1: Specific notation used in the series.

lower case Greek letters small positive constants (≪ 1)
φ reserved for embedding; φ : V (T ) → V (G)

upper case Greek letters large positive constants (≫ 1)

one-letter bold sets of clusters

bold (e.g., trees(k),LKS(n, k, η)) classes of graphs

blackboard bold (e.g., H,E,Sη,k(G),XA) distinguished vertex sets except for
N which denotes the set {1, 2, . . .}

script (e.g., A,D,N ) families (of vertex sets, “dense spots”, and regular pairs)

∇(=nabla) sparse decomposition (see Definition 3.5)

Table 2.1 shows the system of notation we use in the series.
We write V (G) and E(G) for the vertex set and edge set of a graph G, respectively. Further,

v(G) = |V (G)| is the order of G, and e(G) = |E(G)| is its number of edges. If X,Y ⊆ V (G) are
two, not necessarily disjoint, sets of vertices we write e(X) for the number of edges induced by X,
and e(X,Y ) for the number of ordered pairs (x, y) ∈ X × Y such that xy ∈ E(G). In particular,
note that 2e(X) = e(X,X).

For a graph G, a vertex v ∈ V (G) and a set U ⊆ V (G), we write deg(v) and deg(v, U) for the
degree of v, and for the number of neighbours of v in U , respectively. We write mindeg(G) for the
minimum degree of G, mindeg(U) := min{deg(u) : u ∈ U}, and mindeg(V1, V2) = min{deg(u, V2) :
u ∈ V1} for two sets V1, V2 ⊆ V (G). Similar notation is used for the maximum degree, denoted by
maxdeg(G). The neighbourhood of a vertex v is denoted by N(v). We set N(U) :=

⋃
u∈U N(u).

The symbol − is used for two graph operations: if U ⊆ V (G) is a vertex set then G − U is the
subgraph of G induced by the set V (G) \U . If H ⊆ G is a subgraph of G then the graph G−H is
defined on the vertex set V (G) and corresponds to deletion of edges of H from G. Any graph with
zero edges is called empty. A family A of pairwise disjoint subsets of V (G) is an ℓ-ensemble in G
if |A| > ℓ for each A ∈ A.

Finally, trees(k) denotes the class of all trees of order k.

2.2 Regular pairs

Given a graph H and a pair (U,W ) of disjoint sets U,W ⊆ V (H) the density of the pair (U,W ) is
defined as

d(U,W ) :=
e(U,W )

|U ||W |
.

For a given ε > 0, a pair (U,W ) of disjoint sets U,W ⊆ V (H) is called an ε-regular pair if
|d(U,W ) − d(U ′,W ′)| < ε for every U ′ ⊆ U , W ′ ⊆ W with |U ′| > ε|U |, |W ′| > ε|W |. If the pair
(U,W ) is not ε-regular, then we call it ε-irregular.

We shall need a useful and well-known property of regular pairs.

Fact 2.1. Suppose that (U,W ) is an ε-regular pair of density d. Let U ′ ⊆ W,W ′ ⊆ W be sets of
vertices with |U ′| > α|U |, |W ′| > α|W |, where α > ε. Then the pair (U ′,W ′) is a 2ε/α-regular pair
of density at least d− ε.

The regularity lemma [Sze78] has proved to be a powerful tool for attacking graph embedding
problems; see [KO09] for a survey.
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2.3 LKS graphs

Lemma 2.2 (Regularity lemma). For all ε > 0 and ℓ ∈ N there exist n0,M ∈ N such that for
every n > n0 the following holds. Let G be an n-vertex graph whose vertex set is pre-partitioned
into sets V1, . . . , Vℓ′ , ℓ

′ 6 ℓ. Then there exists a partition U0, U1, . . . , Up of V (G), ℓ < p < M , with
the following properties.

(1) For every i, j ∈ [p] we have |Ui| = |Uj |, and |U0| < εn.

(2) For every i ∈ [p] and every j ∈ [ℓ′] either Ui ∩ Vj = ∅ or Ui ⊆ Vj .

(3) All but at most εp2 pairs (Ui, Uj), i, j ∈ [p], i 6= j, are ε-regular.

We shall use Lemma 2.2 for auxiliary purposes only as it is helpful only in the setting of dense
graphs (i.e., graphs which have ℓ vertices and Ω(ℓ2) edges).

2.3 LKS graphs

It will be convenient to restrict our attention to a class of graphs which is in a way minimal
for Theorem 1.2. Write LKS(n, k, α) for the class of all n-vertex graphs with at least (12 + α)n
vertices of degrees at least (1 + α)k. With this notation Conjecture 1.1 states that every graph in
LKS(n, k, 0) contains every tree from trees(k + 1).

Given a graph G, denote by Sη,k(G) the set of those vertices of G that have degree less than
(1 + η)k and by Lη,k(G) the set of those vertices of G that have degree at least (1 + η)k. When
proving Theorem 1.2, we may of course restrict our attention to LKS-minimal graphs, that is, to
graphs that are edge-minimal with respect to belonging to LKS(n, k, α). It is easy to show that in
each such graph the set Sη,k(G) is independent, all the neighbours of every vertex v ∈ V (G) with
deg(v) > ⌈(1 + η)k⌉ have degree exactly ⌈(1 + η)k⌉, and |Lη,k(G)| 6 ⌈(1/2 + η)n⌉+1. It turns out
that our main decomposition result [HKP+a, Lemma 3.14] outputs a graph with slightly weaker
properties than being LKS-minimal. Let us therefore introduce the following class of graphs.

Definition 2.3. Suppose that n, k ∈ N, and η > 0. Let LKSsmall(n, k, η) be the class of those
graphs G ∈ LKS(n, k, η) for which we have the following three properties:

(i) All the neighbours of every vertex v ∈ V (G) with deg(v) > ⌈(1 + 2η)k⌉ have degrees at most
⌈(1 + 2η)k⌉.

(ii) All the neighbours of every vertex of Sη,k(G) have degree exactly ⌈(1 + η)k⌉.

(iii) We have e(G) 6 kn.

3 Decomposing sparse graphs

In [HKP+a] we introduced the notion of sparse decomposition, and proved that every graph can
be (almost perfectly) decomposed. We define the sparse decomposition after introducing its basic
building blocks: dense spots and avoiding sets. For motivation and more details we refer the reader
to [HKP+a, Section 3.2], of which this section is a condensed version.

We start by defining dense spots. These are bipartite graphs having positive density, and will
(among other things) serve as a basis for regularization.

3



Definition 3.1 ((m,γ)-dense spot, (m,γ)-nowhere-dense). Suppose that m ∈ N and γ > 0.
An (m,γ)-dense spot in a graph G is a non-empty bipartite subgraph D = (U,W ;F ) of G with
d(D) > γ and mindeg(D) > m. We call a graph G (m,γ)-nowhere-dense if it does not contain any
(m,γ)-dense spot.

When the parameters m and γ are irrelevant, we refer to D simply as a dense spot.

Note that dense spots do not have any specified orientation. That is, we view (U,W ;F ) and
(W,U ;F ) as the same object.

Definition 3.2 ((m,γ)-dense cover). Suppose that m ∈ N and γ > 0. An (m,γ)-dense cover of
a given graph G is a family D of edge-disjoint (m,γ)-dense spots such that E(G) =

⋃
D∈D E(D).

We now define the avoiding set. Informally, a set E of vertices is avoiding if for each set U of size
up to Λk (where Λ ≫ 1 is a large constant) and each vertex v ∈ E there is a dense spot containing
v and almost disjoint from U . Favourable properties of avoiding sets for embedding trees are shown
in [HKP+a, Section 3.5].

Definition 3.3 ((Λ, ε, γ, k)-avoiding set). Suppose that k ∈ N, ε, γ > 0 and Λ > 0. Suppose
that G is a graph and D is a family of dense spots in G. A set E ⊆

⋃
D∈D V (D) is (Λ, ε, γ, k)-

avoiding with respect to D if for every U ⊆ V (G) with |U | 6 Λk the following holds for all but at
most εk vertices v ∈ E. There is a dense spot D ∈ D with |U ∩ V (D)| 6 γ2k that contains v.

We can now introduce an auxiliary notion of bounded decomposition on which we can build the
key concept of sparse decomposition (see below). The main result in [HKP+a] tells us that every
graph has an almost perfect sparse decomposition. This sparse decomposition (and the bounded
decomposition included in it) will provide us with control on the behaviour of the different edge
and vertex sets involved, and thus be helpful to embed the tree.

Definition 3.4 ((k,Λ, γ, ε, ν, ρ)-bounded decomposition). Suppose that k ∈ N and ε, γ, ν, ρ > 0
and Λ > 0. Let V = {V1, V2, . . . , Vs} be a partition of the vertex set of a graph G. We say
that (V,D, Greg, Gexp,E) is a (k,Λ, γ, ε, ν, ρ)-bounded decomposition of G with respect to V if the
following properties are satisfied:

1. Gexp is a (γk, γ)-nowhere-dense subgraph of G with mindeg(Gexp) > ρk.

2. V is a family of disjoint subsets of V (G).

3. Greg is a subgraph of G−Gexp on the vertex set
⋃

V. For each edge xy ∈ E(Greg) there are
distinct Cx ∋ x and Cy ∋ y from V, and G[Cx, Cy] = Greg[Cx, Cy]. Furthermore, G[Cx, Cy]
forms an ε-regular pair of density at least γ2.

4. We have νk 6 |C| = |C ′| 6 εk for all C,C ′ ∈ V.

5. D is a family of edge-disjoint (γk, γ)-dense spots in G−Gexp. For each D = (U,W ;F ) ∈ D
all the edges of G[U,W ] are covered by D (but not necessarily by D).

6. If Greg contains at least one edge between C1, C2 ∈ V then there exists a dense spot D =
(U,W ;F ) ∈ D such that C1 ⊆ U and C2 ⊆ W .

7. For all C ∈ V there is a set V ∈ V so that either C ⊆ V ∩V (Gexp) or C ⊆ V \V (Gexp). For
all C ∈ V and D = (U,W ;F ) ∈ D we have C ∩ U,C ∩W ∈ {∅, C}.
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8. E is a (Λ, ε, γ, k)-avoiding subset of V (G) \
⋃

V with respect to the family of dense spots D.

We say that the bounded decomposition (V,D, Greg, Gexp,E) respects the avoiding threshold b
if for each C ∈ V we either have maxdegG(C,E) 6 b, or mindegG(C,E) > b.

The members of V are called clusters. Define the cluster graph Greg as the graph on the vertex
set V that has an edge C1C2 for each pair (C1, C2) which has density at least γ2 in the graph
Greg. Further, we define the graph GD as the union (both edge-wise, and vertex-wise) of all dense
spots D.

We now enhance the structure of bounded decomposition by adding one new feature: vertices
of very large degree.

Definition 3.5 ((k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-sparse decomposition). Suppose that k ∈ N and ε, γ, ν, ρ >
0 and Λ,Ω∗,Ω∗∗ > 2. Let V = {V1, V2, . . . , Vs} be a partition of the vertex set of a graph G. We
say that ∇ = (H,V,D, Greg, Gexp,E) is a (k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-sparse decomposition of G with
respect to V1, V2, . . . , Vs if the following hold.

1. H ⊆ V (G), mindegG(H) > Ω∗∗k, maxdegH(V (G) \ H) 6 Ω∗k, where H is spanned by the
edges of

⋃
D, Gexp, and edges incident with H,

2. (V,D, Greg, Gexp,E) is a (k,Λ, γ, ε, ν, ρ)-bounded decomposition of G−H with respect to V1 \
H, V2 \H, . . . , Vs \H.

If the parameters do not matter, we call ∇ simply a sparse decomposition, and similarly we
speak about a bounded decomposition.

Definition 3.6 (captured edges). In the situation of Definition 3.5, we refer to the edges in
E(Greg) ∪ E(Gexp) ∪ EG(H, V (G)) ∪ EG(E,E ∪

⋃
V) as captured by the sparse decomposition.

We write G∇ for the subgraph of G on the vertex set V (G) which consists of the captured edges.
Likewise, the captured edges of a bounded decomposition (V,D, Greg, Gexp,E) of a graph G are those
in E(Greg) ∪E(Gexp) ∪ EGD

(E,E ∪
⋃

V).

It will be useful to have the following shorthand notation at hand.

Definition 3.7 (G(n, k,Ω, ρ, ν, τ) and Ḡ(n, k,Ω, ρ, ν)). Suppose that k, n ∈ N and ν, ρ, τ > 0 and
Ω > 0. We define G(n, k,Ω, ρ, ν, τ) to be the class of all quadruple (G,D,H,A) with the following
properties:

(i) G is a graph of order n with maxdeg(G) 6 Ωk,

(ii) H is a bipartite subgraph of G with colour classes AH and BH and with e(H) > τkn,

(iii) D is a (ρk, ρ)-dense cover of G,

(iv) A is a (νk)-ensemble in G, and AH ⊆
⋃

A,

(v) A ∩ U,A ∩W ∈ {∅, A} for each A ∈ A and for each D = (U,W ;F ) ∈ D.

Those G, D and A satisfying all conditions but (ii) and the last part of (iv) will make up the triples
(G,D,A) of the class Ḡ(n, k,Ω, ρ, ν).

5



4 Augmenting a matching

In previous papers [AKS95, Zha11, PS12, Coo09, HP15] concerning the LKS Conjecture in the dense
setting the crucial turn was to find a matching in the cluster graph of the host graph possessing
certain properties. We will prove a similar “structural result” in Section 5. In the present section,
we prove the main tool for Section 5, namely Lemma 4.8. All statements preceding Lemma 4.8 are
only preparatory. The only exception is (the easy) Lemma 4.4 which is recycled later, in [HKP+c].

4.1 Regularized matchings

We prove our first auxiliary lemma on our way towards Lemma 4.8.

Lemma 4.1. For every Ω ∈ N and ε, ρ, τ > 0 there is a number α > 0 such that for every ν ∈ (0, 1)
there exists a number k0 ∈ N such that for each k > k0 the following holds.

For every (G,D,H,A) ∈ G(n, k,Ω, ρ, ν, τ) there are (U,W ;F ) ∈ D, A ∈ A and X,Y ⊆ V (G)
such that

(1) |X| = |Y | > ανk,

(2) X ⊆ A ∩ U ∩AH and Y ⊆ W ∩BH , where AH and BH are the colour classes of H, and

(3) (X,Y ) is an ε-regular pair in G of density d(X,Y ) > τρ
4Ω .

Proof. Let Ω, ε, ρ and τ be given. Applying Lemma 2.2 to εL2.2 := min{ε, ρ2

8Ω} and ℓL2.2 := 2, we
obtain numbers n0 and M . We set

α :=
τρ

Ω2M
, (4.1)

and given ν ∈ (0, 1), we set

k0 :=
2n0

ανM
.

Now suppose we are given k > k0 and (G,D,H,A) ∈ G(n, k,Ω, ρ, ν, τ).
Property (i) of Definition 3.7 gives that e(G) 6 Ωkn/2, and Property (ii) says that e(H) > τkn.

So e(H)/e(G) > 2τ/Ω. Averaging over all dense spots D in the dense cover of G we find a dense
spot D = (U,W ;F ) ∈ D such that

eD(AH , BH) = |F ∩E(H)| >
e(H)

e(G)
|F | >

2τ |F |

Ω
. (4.2)

Without loss of generality, we assume that

eD(U ∩AH ,W ∩BH) >
1

2
· eD(AH , BH) > eD(U ∩BH ,W ∩AH) , (4.3)

as otherwise one can just interchange the roles of U and W . Then,

eG(U ∩AH ,W ∩BH)
(4.3)

>
1

2
· eD(AH , BH)

(4.2)

>
τ

Ω
· |F |. (4.4)

Let A′ ⊆ A denote the family of those A ∈ A with 0 < eG(A∩U ∩AH ,W ∩BH) < τ
Ω · |F | · |A|

|U | .

Note that for each A ∈ A′ we have A ⊆ U by Definition 3.7 (v). Therefore,

eG

(⋃
A′ ∩ U ∩AH ,W ∩BH

)
<

τ

Ω
· |F | ·

|A′|

|U |
6

τ

Ω
· |F |

(4.4)

6 eG(U ∩AH ,W ∩BH) .
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4.1 Regularized matchings

As A covers AH , G has an edge xy with x ∈ U ∩AH ∩A for some A ∈ A\A′ and y ∈ W ∩BH .
Set X ′ := A ∩ U ∩AH = A ∩ AH and Y ′ := W ∩BH . Then directly from the definition of A′ and
since D is a (ρk, ρ)-dense spot, we obtain that

dG(X
′, Y ′) =

eG(X
′, Y ′)

|X ′||Y ′|
>

τ
Ω · |F | · |A|

|U |

|A||W |
>

τρ

Ω
. (4.5)

Also, since (U,W ;F ) ∈ D, we have

|F | > ρk|U | . (4.6)

This enables us to bound the size of X ′ as follows.

|X ′| >
eG(X

′, Y ′)

maxdeg(G)

(as A 6∈ A′ and by D3.7(i)) >

τ
Ω · |F |

|U | · |A|

Ωk

(by (4.6)) >
τ · ρk · |A|

Ω2k

>
τρνk

Ω2

(4.1)
= ανkM .

(4.7)

Similarly,

|Y ′| > ανkM . (4.8)

Applying Lemma 2.2 to G[X ′, Y ′] with prepartition {X ′, Y ′} we obtain a collection of sets
C = {Ci}

p
i=0, with p < M . By (4.7), and (4.8), we have that |Ci| > ανk for every i ∈ [p]. It is

easy to deduce from (4.5) that there is at least one εL2.2-regular (and thus ε-regular) pair (X,Y ),
X,Y ∈ C \ {C0}, X ⊆ X ′, Y ⊆ Y ′ with d(X,Y ) > τρ

4Ω . Indeed, it suffices to count the number of
edges incident with C0, lying in εL2.2-irregular pairs or belonging to too sparse pairs. The number
of these “bad” edges is strictly smaller than

(εL2.2 + εL2.2 +
ρ2

4Ω
)|X ′||Y ′| 6

ρ2

2Ω
|X ′||Y ′|

(4.5)

6 e(X ′, Y ′).

Thus not all edges between X ′ and Y ′ are bad in the sense above. This finishes the proof of
Lemma 4.1.

Instead of just one pair (X,Y ), as it is given by Lemma 4.1, we shall later need several disjoint
pairs for embedding larger trees. For this purpose we introduce the following definition, generalizing
the notion of a matching in the cluster graph in the traditional regularity setting.

Definition 4.2 ((ε, d, ℓ)-regularized matching). Suppose that ℓ ∈ N and d, ε > 0. A collection N
of ordered pairs (A,B) with A,B ⊆ V (H) is called an (ε, d, ℓ)-regularized matching of a graph H
if

7



4.1 Regularized matchings

(i) |A| = |B| > ℓ for each (A,B) ∈ N ,

(ii) (A,B) induces in H an ε-regular pair of density at least d, for each (A,B) ∈ N , and

(iii) all involved sets A and B are pairwise disjoint.

Sometimes, when the parameters do not matter (as for instance in Definition 4.5 below) we simply
call it a regularized matching.

For a regularized matching N , we shall write V1(N ) := {A : (A,B) ∈ N}, V2(N ) := {B :
(A,B) ∈ N} and V(N ) := V1(N ) ∪ V2(N ). Furthermore, we set V1(N ) :=

⋃
V1(N ), V2(N ) :=⋃

V2(N ) and V (N ) := V1(N )∪ V2(N ) =
⋃

V(N ). As these definitions suggest, the orientations of
the pairs (A,B) ∈ N are important. The sets A and B are called N -vertices and the pair (A,B)
is an N -edge.

We say that a regularized matching N absorbs a regularized matchingM if for every (S, T ) ∈ M
there exists (X,Y ) ∈ N such that S ⊆ X and T ⊆ Y . In the same way, we say that a family of
dense spots D absorbs a regularized matching M if for every (S, T ) ∈ M there exists (U,W ;F ) ∈ D
such that S ⊆ U and T ⊆ W .

We later need the following easy bound on the size of the elements of V(M).

Fact 4.3. Suppose that M is an (ε, d, ℓ)-regularized matching in a graph H. Then |C| 6 maxdeg(H)
d

for each C ∈ V(M).

Proof. Let for example (C,D) ∈ M. The maximum degree of H is at least as large as the average
degree of the vertices in D, which is at least d|C|.

The second step towards Lemma 4.8 is Lemma 4.4. Whereas Lemma 4.1 gives one dense regular
pair, in the same setting Lemma 4.4 provides us with a dense regularized matching.

Lemma 4.4. For every Ω ∈ N and ρ, ε, τ ∈ (0, 1) there exists α > 0 such that for every ν ∈ (0, 1)
there is a number k0 ∈ N such that the following holds for every k > k0.

For each (G,D,H,A) ∈ G(n, k,Ω, ρ, ν, τ) there exists an (ε, τρ
8Ω , ανk)-regularized matching M

of G such that

(P1) for each (X,Y ) ∈ M there are A ∈ A, and D = (U,W ;F ) ∈ D such that X ⊆ U ∩ A ∩ AH

and Y ⊆ W ∩BH , and

(P2) |V (M)| > τ
2Ωn.

Proof. Let α := αL4.1 > 0 be given by Lemma 4.1 for the input parameters ΩL4.1 := Ω, εL4.1 := ε,
τL4.1 := τ/2 and ρL4.1 := ρ. For νL4.1 := ν, Lemma 4.1 yields a number k0 ∈ N.

Now let (G,D,H,A) ∈ G(n, k,Ω, ρ, ν, τ). LetM be an inclusion-maximal (ε, τρ
8Ω , ανk)-regularized

matching with property (P1). We claim that

eG(AH \ V1(M), BH \ V2(M)) <
τ

2
kn. (4.9)

Indeed, suppose the contrary. Then the bipartite subgraph H ′ of G induced by the sets AH \
V1(M) = AH \ V (M) and BH \ V2(M) = BH \ V (M) satisfies Property (ii) of Definition 3.7, with
τD3.7 := τ/2. So, we have that (G,D,H ′,A) ∈ G(n, k,Ω, ρ, ν, τ/2).
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4.2 Augmenting paths for matchings

Thus Lemma 4.1 for (G,D,H ′,A) yields a dense spot D = (U,W ;F ) ∈ D and a set A ∈ A,
together with two sets X ⊆ U ∩A ∩ (AH \ V (M)), Y ⊆ W ∩ (BH \ V (M)) such that |X| = |Y | >
αL4.1νk = ανk, and such that (X,Y ) is εL4.1-regular and has density at least

τL4.1ρL4.1
4ΩL4.1

=
τρ

8Ω
.

This contradicts the maximality of M, proving (4.9).
In order to see (P2), it suffices to observe that by (4.9) and by Property (ii) of Definition 3.7,

the set V (M) is incident with at least τkn − τ
2kn = τ

2kn edges. By Definition 3.7 (i), it follows
that |V (M)| > τ

2kn · 1
Ωk

> τ
2Ωn, as desired.

4.2 Augmenting paths for matchings

We now prove the main lemma of Section 4, namely Lemma 4.8. We will use an augmenting
path technique for our regularized matchings, similar to the augmenting paths commonly used for
traditional matching theorems. For this, we need the following definitions.

Definition 4.5 (Alternating path, augmenting path). Suppose that n, s ∈ N and δ > 0. Given
an n-vertex graph G, and a regularized matching M, we call a sequence S = (Y0,A1, Y1,A2, Y2, . . . ,Ah, Yh)
(where h > 0 is arbitrary) a (δ, s)-alternating path for M from Y0 if for all i ∈ [h] we have

(i) Ai ⊆ V1(M) and the sets Ai are pairwise disjoint,

(ii) Y0 ⊆ V (G) \ V (M) and Yi =
⋃

(A,B)∈M,A∈Ai
B,

(iii) |Yi−1| > δn, and

(iv) e(A,Yi−1) > s · |A|, for each A ∈ Ai.

If in addition there is a set C of disjoint subsets of V (G) \ (Y0 ∪ V (M)) such that

(v) e(
⋃

C, Yh) > t · n,

then we say that S ′ = (Y0,A1, Y1,A2, Y2, . . . ,Ah, Yh, C) is a (δ, s, t)-augmenting path for M from Y0

to C.
The number h is called the length of S (or of S ′).

Next, we show that a regularized matching either has an augmenting path or admits a partition
into two parts so that only few edges cross these parts in a certain way.

Lemma 4.6. Given an n-vertex graph G with maxdeg(G) 6 Ωk, a number τ ∈ (0, 1), a regularized
matching M, a set Y0 ⊆ V (G) \V (M), and a set C of disjoint subsets of V (G) \ (V (M)∪Y0), one
of the following holds:

(M1) There is a regularized matching M′′ ⊆ M with

e
(⋃

C ∪ V1(M\M′′), Y0 ∪ V2(M
′′)
)
< τnk,

(M2) M has a ( τ
2Ω ,

τ2

8Ωk,
τ2

16Ωk)-augmenting path of length at most 2Ω/τ from Y0 to C.
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4.2 Augmenting paths for matchings

Proof. If |Y0| 6
τ
2Ωn then (M1) is satisfied for M′′ := ∅. Let us therefore assume the contrary.

Choose a ( τ
2Ω ,

τ2

8Ωk)-alternating path S = (Y0,A1, Y1,A2, Y2, . . . ,Ah, Yh) for M with |
⋃h

ℓ=1Aℓ|
maximal.

Now, let ℓ∗ ∈ {0, 1, . . . , h} be maximal with |Yℓ∗ | >
τ
2Ωn. Then ℓ∗ ∈ {h, h − 1}. Moreover, as

|Yℓ| >
τ
2Ωn for all ℓ 6 ℓ∗, we have that (ℓ∗ + 1) · τ

2Ωn 6 |
⋃

ℓ6ℓ∗ Yℓ| 6 n and thus

ℓ∗ + 1 6
2Ω

τ
. (4.10)

Let M′′ ⊆ M consist of all M-edges (A,B) ∈ M with A ∈
⋃

ℓ∈[h]Aℓ. Then, by the choice of S,

e

(
V1(M\M′′),

ℓ∗⋃

ℓ=0

Yℓ

)
=

ℓ∗∑

ℓ=0

e
(
V1(M\M′′), Yℓ

)

< (ℓ∗ + 1) ·
τ2

8Ω
k · |V1(M\M′′)|

(4.10)

6
τ

4
kn. (4.11)

Furthermore, if ℓ∗ = h− 1 (that is, if |Yh| <
τ
2Ωn) then

e
(
V1(M\M′′) ∪

⋃
C, Yh

)
<

τ

2Ω
n ·maxdeg(G) 6

τ

2Ω
Ωkn =

τ

2
kn. (4.12)

So, regardless of whether h = ℓ∗ or h = ℓ∗ + 1, we get from (4.11) and (4.12) that

e
(
V1(M\M′′) ∪

⋃
C, Y0 ∪ V2(M

′′)
)
<

3

4
τkn+ e

(⋃
C,

ℓ∗⋃

ℓ=0

Yℓ

)
.

Thus, if e(
⋃

C,
⋃ℓ∗

ℓ=0 Yℓ) 6
τ
4kn, we see that (M1) is satisfied for M′′. So, assume the contrary.

Then, by (4.10), there is an index j ∈ {0, 1, . . . , ℓ∗} for which

e
(⋃

C, Yj

)
>

τ2

16Ω
kn,

and thus, (Y0,A1, Y1,A2, Y2, . . . ,Aj, Yj , C) is a ( τ
2Ω ,

τ2

8Ωk,
τ2

16Ωk)-augmenting path for M. This
proves (M2).

The aim of this section is to find a regularized matching covering as many vertices from the
graph as possible. This is done by iteratively improving a matching. Below, Lemma 4.7 provides
with such an iterative step: given a regularized matching M we either find (II) a better regularized
matchingM′, or there is (I) a natural barrier to finding such a matching. This barrier is a separation
of the previous regularized matching into two blocks (M′′ and M\M′′) such that very few edges
“cross” this separation. The absence of such a separation guarantees the existence of an augmenting
path for M, which can be used to find a better regularized matching. This matching M′ has (C1)
to improve M substantially and (C2) respect the structure of the graph and of M.

Lemma 4.7. For every Ω ∈ N and τ ∈ (0, 1
2Ω) there is a number τ ′ ∈ (0, τ) such that for every

ρ ∈ (0, 1) there is a number α ∈ (0, τ ′/2) such that for every ε ∈ (0, α) there is a number π > 0
such that for every γ > 0 there is k0 ∈ N such that the following holds for every k > k0 and every
h ∈ (γk, k/2).

10



4.2 Augmenting paths for matchings

Let G be a graph of order n with maxdeg(G) 6 Ωk, with an (ε3, ρ, h)-regularized matching M
and with a (ρk, ρ)-dense cover D that absorbs M. Let Y ⊆ V (G) \ V (M), and let C be an h-
ensemble in G with C ∩ (V (M)∪Y ) = ∅. Assume that U ∩C ∈ {∅, C} for each D = (U,W ;F ) ∈ D
and each C ∈ C ∪ V1(M).

Then one of the following holds.

(I) There is a regularized matching M′′ ⊆ M such that

e
(⋃

C ∪ V1(M\M′′), Y ∪ V2(M
′′)
)
< τnk.

(II) There is an (ε, α, πh)-regularized matching M′ such that

(C1) |V (M) \ V (M′)| 6 εn, and |V (M′)| > |V (M)|+ τ ′

2 n, and

(C2) for each (T,Q) ∈ M′ there are sets C1 ∈ V1(M) ∪ C, C2 ∈ V2(M) ∪ {Y } and a dense
spot D = (U,W ;F ) ∈ D such that T ⊆ C1 ∩ U and Q ⊆ C2 ∩W .

Proof. We divide the proof into five steps.

Step 1: Setting up the parameters. Suppose that Ω and τ are given. For ℓ = 0, 1, . . . , ⌈2Ω/τ⌉,
we define the auxiliary parameters

τ (ℓ) :=

(
τ2

32Ω

)⌈ 2Ω
τ
⌉−ℓ+2

, (4.13)

and set

τ ′ :=
τ (0)

2Ω
.

Given ρ, we define

α :=
τ ′ρ

16Ω
.

Then, given ε, for ℓ = 0, 1, . . . , ⌈2Ω/τ⌉, we define the further auxiliary parameters

µ(ℓ) := αL4.4

(
Ω, ρ, ε3, τ (ℓ)

)

which are given by Lemma 4.4 for input parameters ΩL4.4 := Ω, ρL4.4 := ρ, εL4.4 := ε3, and
τL4.4 := τ (ℓ). Set

π :=
ε

2
·min

{
µ(ℓ) : ℓ = 0, . . . , ⌈2Ω/τ⌉

}
.

Given the next1 input parameter γ, Lemma 4.4 for parameters as above and the final input

νL4.4 := γ yields k0L4.4
=: k

(ℓ)
0 , set

k0 := max
{
k
(ℓ)
0 : ℓ = 0, . . . , ⌈2Ω/τ⌉

}
.

1in the order of quantification from the statement of the lemma
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4.2 Augmenting paths for matchings

Step 2: Finding an augmenting path. We apply Lemma 4.6 to G, τ , M, Y and C. Since (M1)
corresponds to (I), let us assume that the outcome of the lemma is (M2). Then there is a

( τ
2Ω ,

τ2

8Ωk,
τ2

16Ωk)-augmenting path S ′ = (Y0,A1, Y1,A2, Y2, . . . , Aj∗ , Yj∗, C) for M starting from
Y0 := Y such that j∗ 6 2Ω/τ .

Our aim is now to show that (II) holds.

Step 3: Creating parallel matchings. Inductively, for ℓ = j∗, j∗ − 1, . . . , 0 we shall define
auxiliary bipartite induced subgraphs H(ℓ) ⊆ G with colour classes P (ℓ) and Yℓ that satisfy

(a) e(H(ℓ)) > τ (ℓ)kn,

and (ε3, 2α, µ(ℓ)h)-regularized matchings M(ℓ) that satisfy

(b) V1(M
(ℓ)) ⊆ P (ℓ),

(c) for each (A′, B′) ∈ M(ℓ) there are a dense spot (U,W ;F ) ∈ D and a set A ∈ V1(M) (or a set
A ∈ C if ℓ = j∗) such that A′ ⊆ U ∩A and B′ ⊆ W ∩ Yℓ,

(d) |V (M(ℓ))| > τ (ℓ)

2Ω n, and

(e) |B ∩ V2(M
(ℓ))| = |A ∩ P (ℓ−1)| for each edge (A,B) ∈ M, if ℓ > 0.

We take H(j∗) as the induced bipartite subgraph of G with colour classes P (j∗) :=
⋃
C and Yj∗ .

Definition 4.5 (v) together with (4.13) ensures (a) for ℓ = j∗. Now, for ℓ 6 j∗, suppose H(ℓ) is
already defined. Further, if ℓ < j∗ suppose also that M(ℓ+1) is already defined. We shall define
M(ℓ), and, if ℓ > 0, we shall also define H(ℓ−1).

Observe that (G,D,H(ℓ),Aℓ) ∈ G(n, k,Ω, ρ, h
k
, τ (ℓ)), because of (a) and the assumptions of the

lemma. So, applying Lemma 4.4 to (G,D,H(ℓ),Aℓ) and noting that τ (ℓ)ρ
8Ω > 2α, we obtain an

(ε3, 2α, µ(ℓ)h)-regularized matching M(ℓ) that satisfies conditions (b)–(d).
If ℓ > 0, we define H(ℓ−1) as follows. For each (A,B) ∈ M take a set Ã ⊆ A of cardinality

|Ã| = |B ∩ V (M(ℓ))| so that

e(Ã, Yℓ−1) >
τ2

8Ω
k · |Ã| . (4.14)

This is possible by Definition 4.5 (iv): just choose those vertices from A for Ã that send most edges
to Yℓ−1. Let P

(ℓ−1) be the union of all the sets Ã. Then, (e) is satisfied. Furthermore,

|P (ℓ−1)| = |V2(M
(ℓ))|

(d)

>
τ (ℓ)

4Ω
n.

So, by (4.14),

e(P (ℓ−1), Yℓ−1) >
τ2

8Ω
k · |P (ℓ−1)| >

τ2 · τ (ℓ)

32Ω2
kn

(4.13)
= τ (ℓ−1)kn . (4.15)

We let H(ℓ−1) be the bipartite subgraph of G induced by the colour classes P (ℓ−1) and Yℓ−1.
Then (4.15) establishes (a) for H(ℓ−1). This finishes step ℓ.2

2Recall that the matching M
(ℓ−1) is only to be defined in step ℓ− 1.
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4.2 Augmenting paths for matchings

Step 4: Harmonising the matchings. Our regularized matchings M(0), . . . ,M(j∗) will be a
good base for constructing the regularized matching M′ we are after. However, we do not know
anything about |B ∩ V2(M

(ℓ))| − |A ∩ V1(M
(ℓ−1))| for the M-edges (A,B) ∈ M. But this term

will be crucial in determining how much of V (M) gets lost when we replace some of its M-edges
with

⋃
M(ℓ)-edges. For this reason, we refine M(ℓ) in a way that its M(ℓ)-edges become almost

equal-sized.
Formally, we shall inductively construct regularized matchings N (0), . . . ,N (j∗) such that for

ℓ = 0, . . . , j∗ we have

(A) N (ℓ) is an (ε, α, πh)-regularized matching,

(B) M(ℓ) absorbs N (ℓ),

(C) if ℓ > 0 and (A,B) ∈ M with A ∈ Aℓ then |A ∩ V (N (ℓ−1))| > |B ∩ V (N (ℓ))|, and

(D) |V2(N
(ℓ))| > |V1(N

(ℓ−1))| − ε
2 · |V2(M

(ℓ))| if ℓ > 0 and |V2(N
(0))| > τ (0)

2Ω n = τ ′n.

Set N (0) := M(0). Clearly (B) holds for ℓ = 0, (A) is easy to check, and (C) is void. Finally,
Property (D) holds because of (d). Suppose now ℓ > 0 and that we already constructed matchings
N (0), . . . ,N (ℓ−1) satisfying Properties (A)–(D).

Observe that for any (A,B) ∈ M we have that

|B ∩ V2(M
(ℓ))|

(b),(e)

> |A ∩ V1(M
(ℓ−1))| > |A ∩ V1(N

(ℓ−1))|, (4.16)

where the last inequality holds because of (B) for ℓ− 1.
So, we can choose a subset X(ℓ) ⊆ V2(M

(ℓ)) such that |B ∩ X(ℓ)| = |A ∩ V (N (ℓ−1))| for each
(A,B) ∈ M. Now, for each (S, T ) ∈ M(ℓ) write T̂ := T ∩X(ℓ), and choose a subset Ŝ of S of size
|T̂ |. Set

N (ℓ) :=
{
(Ŝ, T̂ ) : (S, T ) ∈ M(ℓ), |T̂ | >

ε

2
· |T |

}
. (4.17)

Then (B) and (C) hold for ℓ.
For (A), note that Fact 2.1 implies that N (ℓ) is an

(
ε, 2α− ε3, ε2µ

(ℓ)h
)
-regularized matching.

In order to verify (D), it suffices to observe that

|V2(N
(ℓ))| =

∑

(Ŝ,T̂ )∈N (ℓ)

|T̂ | > |X(ℓ)| −
∑

(S,T )∈M(ℓ)

ε

2
· |T |

>
∑

(A,B)∈M

|A ∩ V1(N
(ℓ−1))| −

ε

2
· |V2(M

(ℓ))| = |V1(N
(ℓ−1))| −

ε

2
· |V2(M

(ℓ))|.

Step 5: The final matching. Suppose that (A,B) ∈ M with A ∈ Aℓ for some ℓ ∈ {1, 2, . . . , j∗}.
Then, set A′ := A \ V1(N

(ℓ−1)). Also, choose a set B′ ⊆ B \ V2(N
(ℓ)) of cardinality |A′|. This is

possible by (C). By (4.17) we deduce that

|B \ V2(N
(ℓ))| − |B′| 6

ε

2
|B| . (4.18)

We consider the set L ⊆ M consisting of all M-edges (A,B) ∈ M with |A′| > ε
2 · |A|.
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4.2 Augmenting paths for matchings

Set
K := {(A′, B′) : (A,B) ∈ L}.

By the assumption of the lemma, for every (A′, B′) ∈ K there are an edge (A,B) ∈ M and a dense
spot D = (U,W ;F ) ∈ D such that

A′ ⊆ A ⊆ U and B′ ⊆ B ⊆ W . (4.19)

Since M is (ε3, ρ, h)-regularized, Fact 2.1 implies that K is an (ε, ρ− ε3, ε2h)-regularized matching.
Set

M′ := K ∪

j∗⋃

ℓ=0

N (ℓ).

It is easy to check that M′ is an (ε, α, πh)-regularized matching. Using (4.19) together with (B)
and (c), we see that (C2) holds for M′.

In order to see (C1), we calculate

|V (M) \ V (M′)| =
∑

(A,B)∈M

(
|A \ V1(∪

j∗

ℓ=0N
(ℓ) ∪ K)| + |B \ V2(∪

j∗

ℓ=0N
(ℓ) ∪ K)|

)

(4.18)

6
∑

(A,B)∈M\L

(
|A′ ∪B′|+

ε

2
|B|
)

︸ ︷︷ ︸
(sum1)

+
∑

(A,B)∈L

(
|A \ V1(∪

j∗

ℓ=1N
(ℓ−1) ∪ K))|+ |B \ V2(∪

j∗

ℓ=1N
(ℓ) ∪K)|

)

︸ ︷︷ ︸
(sum2)

.

In (sum2), consider an arbitrary term corresponding to (A,B). By the definition of K, the term

|A\V1(∪
j∗

ℓ=1N
(ℓ−1)∪K)| is zero. To treat the term |B\V2(∪

j∗

ℓ=1N
(ℓ)∪K)|, we recall that |A| = |B| and

|A′| = |B′| (in the definition of K). This gives that |B \V2(∪
j∗

ℓ=1N
(ℓ)∪K)| = |A∩V1(∪

j∗

ℓ=1N
(ℓ−1))|−

|B ∩ V2(∪
j∗

ℓ=1N
(ℓ))|. This leads to

|V (M) \ V (M′)| 6
∑

(A,B)∈M\L

(
|A′ ∪B′|+

ε

2
|B|
)

+
∑

(A,B)∈L

j∗∑

ℓ=1

(
|A ∩ V1(N

(ℓ−1))| − |B ∩ V2(N
(ℓ))|

)

6
∑

(A,B)∈M\L

(ε
2
|A|+ ε|B|

)
+

j∗∑

ℓ=1

(
|V1(N

(ℓ−1))| − |V2(N
(ℓ))|

)

(D)

6
3ε

4
n +

j∗∑

ℓ=1

ε

2
· |V2(M

(ℓ))| 6 εn .

Using the fact that V2(N
(0)) ⊆ V (M′) \ V (M) the last calculation also implies that

|V (M′)| − |V (M)| > |V2(N
(0))| − |V (M) \ V (M′)|

(D)

> τ ′n− εn >
τ ′

2
n ,

since ε < α 6 τ ′/2 by assumption.
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Iterating Lemma 4.7 we prove the main result of the section.

Lemma 4.8. For every Ω ∈ N and ρ ∈ (0, 1/Ω) there exists a number β > 0 such that for every
ε ∈ (0, β), there are ε′, π > 0 such that for each γ > 0 there exists a number k0 ∈ N such that the
following holds for every k > k0 and c ∈ (γk, k/2).

Let G be a graph of order n, with maxdeg(G) 6 Ωk. Let D be a (ρk, ρ)-dense cover of G, and
let M be an (ε′, ρ, c)-regularized matching that is absorbed by D. Let C be a c-ensemble in G with
C ∩ (V (M)) = ∅. Let Y ⊆ V (G) \ (V (M) ∪

⋃
C). Assume that for each (U,W ;F ) ∈ D, and for

each C ∈ V1(M) ∪ C we have that
U ∩ C ∈ {∅, C} . (4.20)

Then there exists an (ε, β, πc)-regularized matching M′ such that

(i) |V (M) \ V (M′)| 6 εn,

(ii) for each (T,Q) ∈ M′ there are sets C1 ∈ V1(M) ∪ C, C2 ∈ V2(M) ∪ {Y } and a dense spot
D = (U,W ;F ) ∈ D such that T ⊆ C1 ∩ U and Q ⊆ C2 ∩W , and

(iii) M′ can be partitioned into M1 and M2 so that

e
(
(
⋃

C ∪ V1(M)) \ V1(M1) , (Y ∪ V2(M)) \ V2(M2)
)

< ρkn .

Proof. Let Ω and ρ be given. Let τ ′ := τ ′L4.7 be the output given by Lemma 4.7 for input parameters
ΩL4.7 := Ω and τL4.7 := ρ/2.

Set ρ(0) := ρ, set L := ⌈2/τ ′⌉ + 1, and for ℓ ∈ [L], inductively define ρ(ℓ) to be the output
αL4.7 given by Lemma 4.7 for the further input parameter ρL4.7 := ρ(ℓ−1) (keeping ΩL4.7 = Ω and
τL4.7 = ρ/2 fixed). Then ρ(ℓ+1) 6 ρ(ℓ) for all ℓ. Set β := ρ(L).

Given ε < β we set ε(ℓ) := (ε/2)3
L−ℓ

for ℓ ∈ [L] ∪ {0}, and set ε′ := ε(0). Clearly,

L∑

ℓ=0

ε(ℓ) 6 ε. (4.21)

Now, for ℓ+ 1 ∈ [L], let π(ℓ) := πL4.7 be given by Lemma 4.7 for input parameters ΩL4.7 := Ω,
τL4.7 := ρ/2, ρL4.7 := ρ(ℓ) and εL4.7 := ε(ℓ+1). For ℓ ∈ [L] ∪ {0}, set Π(ℓ) := ρ

2Ω

∏ℓ−1
j=0 π

(j). Let

π := Π(L).
Given γ, let k0 be the maximum of the lower bounds k0L4.7

given by Lemma 4.7 for input
parameters ΩL4.7 := Ω, τL4.7 := ρ/2, ρL4.7 := ρ(ℓ−1), εL4.7 := ε(ℓ), γL4.7 := γΠ(ℓ), for ℓ ∈ [L].

Suppose now we are given G, D, C, Y and M. Suppose further that c > γk > γk0. Let
ℓ ∈ {0, 1, . . . , L} be maximal subject to the condition that there is a matching M(ℓ) with the
following properties:

(a) M(ℓ) is an (ε(ℓ), ρ(ℓ),Π(ℓ)c)-regularized matching,

(b) |V (M(ℓ))| > ℓ · τ ′

2 n,

(c) |V (M) \ V (M(ℓ))| 6
∑ℓ

i=0 ε
(i)n, and
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4.2 Augmenting paths for matchings

(d) for each (T,Q) ∈ M(ℓ) there are sets C1 ∈ V1(M) ∪ C, C2 ∈ V2(M) ∪ {Y } and a dense spot
D = (U,W ;F ) ∈ D such that T ⊆ C1 ∩ U and Q ⊆ C2 ∩W .

Observe that such a number ℓ exists, as for ℓ = 0 we may take M(0) = M. Also note that
ℓ 6 2/τ ′ < L because of (b).

We now apply Lemma 4.7 with input parameters ΩL4.7 := Ω, τL4.7 := ρ/2, ρL4.7 := ρ(ℓ),
εL4.7 := ε(ℓ+1) < β 6 ρ(ℓ+1) = αL4.7, γL4.7 := γΠ(ℓ) to the graph G with the (ρ(ℓ)k, ρ(ℓ))-dense
cover D, the (ε(ℓ), ρ(ℓ),Π(ℓ)c)-regularized matching M(ℓ), the set

Ỹ := (Y ∪ V2(M)) \ V2(M
(ℓ)),

and the (Π(ℓ)c)-ensemble

C̃ :=
{
C \ V (M(ℓ)) : C ∈ V1(M) ∪ C, |C \ V1(M

(ℓ))| > Π(ℓ)c
}
.

Lemma 4.7 yields a regularized matching which either corresponds toM′′
L4.7 as in Assertion (I) or

to M′
L4.7 as in Assertion (II). Note that in the latter case, the matching M′

L4.7 actually constitutes
an (ε(ℓ+1), ρ(ℓ+1),Π(ℓ+1)c)-regularized matching M(ℓ+1) fulfilling all the above properties for ℓ+1 6

L. In fact, (b) and (c) hold for M(ℓ+1) because of (C1), and it is not difficult to deduce (d) from
(C2) and from (d) for ℓ. But this contradicts the choice of ℓ. We conclude that we obtained a
regularized matching M′′

L4.7 ⊆ M(ℓ) as in Assertion (I) of Lemma 4.7.
Thus, in other words, M(ℓ) can be partitioned into M1 and M2 so that

e
(⋃

C̃ ∪ V1(M2) , Ỹ ∪ V2(M1)
)

< τL4.7kn = ρkn/2. (4.22)

Set M′ := M(ℓ). Then M′ is (ε, β, πc)-regularized by (a). Note that Assertion (i) of the lemma
holds by (4.21) and by (c). Assertion (ii) holds because of (d).

Since
(Y ∪ V2(M)) \ V2(M2) ⊆ Ỹ ∪ V2(M1),

and because of (4.22) we know that in order to prove Assertion (iii) it suffices to show that

X :=
(
(
⋃

C ∪ V1(M)) \ V1(M1)
)
\
(⋃

C̃ ∪ V1(M2)
)

=
(⋃

C ∪ V1(M)
)
\
(⋃

C̃ ∪ V1(M
(ℓ))
)

sends at most ρkn/2 edges to the rest of the graph. For this, it would be enough to see that
|X| 6 ρ

2Ωn, since by assumption, G has maximum degree Ωk.

To this end, note that by assumption, |V1(M) ∪ C| 6 n
c
. Further, the definition of C̃ implies

that for each A ∈ C ∪ V1(M) we have that |A \
(⋃

C̃ ∪ V1(M
(ℓ)
)
| 6 Π(ℓ)c. Combining these two

observations, we obtain that

|X| < Π(ℓ)n 6
ρ

2Ω
n ,

as desired.
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5 Rough structure of LKS graphs

In this section we give a structural result for graphs G ∈ LKSsmall(n, k, η), stated in Lemma 5.4.
Similar structural results were essential also for proving Conjecture 1.1 in the dense setting in [AKS95,
PS12]. There, a certain matching structure was proved to exist in the cluster graph of the host
graph. This matching structure then allowed us to embed a given tree into the host graph. We
motivate the structure asserted by Lemma 5.4 in more detail in Section 5.1.

Naturally, in our possibly sparse setting the sparse decomposition ∇ of G will enter the picture
(instead of just the cluster graph of G. For more on sparse decomposition, see [HKP+a]). There
is an important subtlety though: we may need to “re-regularize” the cluster graph Greg of ∇. In
this case, we have to find another regularization of parts of G, partially based on Greg. Lemma 4.8
is the main tool to this end. The re-regularization is captured by the regularized matchings MA

and MB .
Let us note that this step is one of the biggest differences between our approach and the

announced solution of the Erdős–Sós Conjecture by Ajtai, Komlós, Simonovits and Szemerédi. In
other words, the nature of the graphs arising in the Erdős–Sós Conjecture allows a less careful
approach with respect to regularization, still yielding a structure suitable for embedding trees. We
discuss the necessity of this step in further detail in Section 5.2. The main result of this paper
Lemma 5.4, is given in Section 5.3.

5.1 Motivation for and intuition behind Lemma 5.4

Recall that [HKP+a, Lemma 3.14] asserts that each graph G = GT1.2 satisfying the conditions
of Theorem 1.2 has a sparse decomposition which captures almost all its edges. With this pre-
processing at hand, we want Lemma 5.4 to provide specific structural properties of G under which
we could make the embedding of the tree T = TT1.2 work. The complexity of these assertions (which
span more than half a page) stems from the complicated nature of the sparse decomposition, and
from the delicate features of the embedding techniques (worked out in [HKP+d, Section 6]). In
this section we try to explain and motivate the key assertions of Lemma 5.4. The reader may skip
the section at his or her convenience. The only bit from this section needed for the main result is
Definition 5.3.

At this stage, let us introduce informally the notion of fine partition which we use to cut up
the tree T . Let τ ≪ 1. We find a constant number of cut vertices of T so that the components
(which we refer to as shrubs) in the remainder of T are of order at most τk. The cut vertices will
decompose into two sets WA and WB so that the distance from any vertex of WA to any vertex in
WB is odd. It can be shown that we can do the cutting so that each shrub either neighbours only
one cut vertex from WA ∪WB, or it neighbours two, in which case both these cut vertices are in
WA. Thus, the set of all shrubs can be decomposed as SA∪̇SB depending on the cut vertices that
surround individual shrubs. The last property of the fine partition we shall use is that

∑

t∈SA

v(t) >
∑

t∈SB

v(t) . (5.1)

The quadruple (WA,WB ,SA,SB) is then called a (τk)-fine partition of T . The full definition which
includes several additional properties is given in [HKP+d, Section 3].

As said earlier, Lemma 5.4 is an extensive generalization of previous structural results on the
LKS Conjecture in the dense setting. So, as a starting point for our motivation, let us explain the
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5.1 Motivation for and intuition behind Lemma 5.4

structural result Piguet and Stein [PS12] use to prove the dense approximate version of the LKS
Conjecture.

Theorem 5.1 ([PS12]). For every η > 0 and q > 0 there exists a number n0 such that for every
n > n0 and k > qn we have the following. For every graph G ∈ LKS(n, k, η) contains each tree
from trees(k).

Here, of course, the structure we work with is encoded in the cluster graph (in the sense of the
original regularity lemma) Greg of the graph GT5.1. Note that Greg ∈ LKS(N,K, η/2), where N is
the number of clusters and K = k · N

n
. The main structural result of Piguet and Stein then reads

as follows.

Informal Lemma 5.2 ([PS12, Lemma 8], simplified). Suppose that Greg ∈ LKS(N,K,α) and let
us write L = LK,α(Greg). Then we have at least one of the following two cases.

(H1) There exists a matching M ⊆ Greg and an edge A1A2 so that degGreg
(Ai,L ∪ V (M)) > K,

for i = 1, 2.

(H2) There exists a matching M ⊆ Greg and an edge AB with degGreg
(A,L ∪ V (M)) > K, and

degGreg
(B,L ∪ V (M)) > K

2 . Further,

for every e ∈ M , |NGreg(A) ∩ e| 6 1 . (5.2)

Piguet and Stein use structures (H1) and (H2) to embed any given tree T ∈ trees(k) into G
using the regularity method. A comprehensive description of the embedding procedure is given in
Sections 3.6 and 3.7 in [PS12]. The embedding itself is quite technical but it follows a relatively
pedestrian strategy which we present next. The regularity method tells us that a regular pair can be
filled up by an arbitrary family of shrubs, provided that the colour classes of these shrubs (viewed
as one bipartite graph) do not overfill the end-clusters of that regular pair. The degree conditions
in Informal Lemma 5.2 suggest that we will utilize the clusters of M and of L. More precisely,
some of the shrubs will be accommodated in the edges of the matching M . Suppose next that we
would like to proceed with embedding some shrubs using a cluster X ∈ L. This can be done as
follows. Using the high-degree property of X we can find a cluster Y adjacent to X that is not filled
up completely by the image of T . We then use the pair XY to accommodate further shrubs. We
keep embedding T by mapping WA to A1 (in (H1)) or to A (in (H2)), WB to A2 or to B, and the
shrubs pendent from these cut-vertices either into the regular edges of M , or to edges incident to
clusters L as described above. Thus, the degree conditions in Informal Lemma 5.2 guarantee that
we can accommodate shrubs of total order up to k from A1, A2, and A. The degree bound for B
guarantees that we can embed shrubs of total order up to k/2 from B, recall that this is sufficient,
thanks to (5.1). The fact that A1A2 or AB forms an edge allows us to make connections between
images of WA and WB.

So far, we have not explained the role of condition (5.2). We include a relatively detailed
explanation in Figure 5.1. However, this condition is independent of the rest of the argument, and
it may be sufficient for the reader to take granted that (5.2) is crucial for the embedding to work.

We now try to give an analogue to Informal Lemma 5.2 in the sparse setting when the structure
of G is encoded in the sparse decomposition rather than in the cluster graph. Recall that in the
dense setting sets suitable for embedding shrubs were clusters of a regular matching (that is, M),
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5.1 Motivation for and intuition behind Lemma 5.4

Figure 5.1: The reason for requiring (5.2) in the setting of (H2). Consider two edges
C1D1, C2D2 ∈ M such that only C2D2 satisfies (5.2). At some point during the embedding
of T , we may need to use the high-degree property of clusters in L. When doing so we cannot
guarantee that we will fill the edges of M in an efficient way. That is, we may end up filling D1

and D2 completely and leaving C1 and C2 untouched. If this happens, both regular pairs C1D1

and C2D2 are useless for embedding further shrubs. The used space in C2D2 equals the degree
from A to C2D2. That is, we do not expect to embed anything more in the edge C2D2. The
condition degGreg

(A,L ∪ V (M)) > K ensures that we find free space somewhere else in the
cluster graph to complete our embedding. Clearly, the pair C1D1 does not have this favourable
feature: the number of vertices used by the embedding is only half the degree of A to C1D1. In
this case, the condition degGreg

(A,L ∪ V (M)) > K is not strong enough.
We do not need a counterpart of (5.2) for NGreg

(B). The reason is that we can schedule our
embedding process in such a way that when we use the high-degree property of L we have already
exhausted the degree from B to M .

and clusters of large degree (that is, L). In the sparse setting, in addition to using a suitable
matching of regular pairs M and large degree vertices Lk,η(G) we can make use of two further sets
for embedding shrubs: V (Gexp) (as explained in [HKP+a, Section 3.6]) and the set E (as explained
in [HKP+a, Section 3.5]). Thus, the counterpart of clusters A1, A2 and A from Informal Lemma 5.2
is the set XA of vertices, which have degree at least k into the set Lk,α(G)∪V (M)∪V (Gexp)∪E.3

Likewise, the counterpart of cluster B in Informal Lemma 5.2 are vertices of XB, which have degree
at least k/2 into Lk,α(G)∪V (M)∪V (Gexp)∪E.4 We see that a sparse counterpart to (H1) would
be two disjoint well-connected sets XA1,XA2 ⊆ XA. In Lemma 5.4 we achieve this in one of two
possible ways. One way is finding a large regularized matching Mgood inside XA; one can then
take XA1 = V1(Mgood) and XA2 = V2(Mgood). This corresponds to (K2) in Lemma 5.4(h). Next,
suppose that XA induces sufficiently many edges. Then we take XA1 and XA2 to be a bipartition
of XA corresponding to a maximum cut. Hence, the sets XA1 and XA2 are again well-connected.
This corresponds to the case e(XA) > ηkn/12 in (K1) in Lemma 5.4(h). Similarly, if the sets XA
and XB are well-connected, we are on a good track to getting a sparse version of (H2).

It remains to translate condition (5.2). The right counterpart to this condition is

for every XY ∈ M, NG∇
(XA) ∩X = ∅ or NG∇

(XA) ∩ Y = ∅ . (5.3)

The actual statement of Lemma 5.4 deviates quite substantially from the informal account given

3The rather different looking formal definition of XA is given in (5.4). Below, we give an explanation for this
difference.

4The formal definition of XB is given again in (5.4).
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5.1 Motivation for and intuition behind Lemma 5.4

above. So, let us now state an informal version of Lemma 5.4. After that, we explain how it relates
to the description above. Also, we mark the correspondence between this informal version and the
actual lemma by using the same numbering. In particular, assertions (d), (f), (g) in Lemma 5.4
are needed for reasons that cannot be explained in this high-level overview and are not reflected
in the informal version. Further, statement of (c’) of our informal lemma carries only half of the
information compared to the full version in Lemma 5.4.

Let us now give the actual definitions of the sets XA, XB. Later, we explain how these definitions
imply the features described above.

Definition 5.3. Suppose that k ∈ N, γ, η, ε, ε′, ν, ρ > 0 and Λ,Ω∗,Ω∗∗ > 0. Suppose that G is a
graph with a (k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-sparse decomposition

∇ = (H,V,D, Greg, Gexp,E)

with respect to Lη,k(G) and Sη,k(G). Suppose further that MA,MB are regularized matchings in G.
We then define the triple (XA,XB,XC) = (XA,XB,XC)(η,∇,MA,MB) by setting

XA := Lη,k(G) \ V (MB) ,

XB :=

{
v ∈ V (MB) ∩ Lη,k(G) : d̂eg(v) < (1 + η)

k

2

}
,

XC := Lη,k(G) \ (XA ∪ XB) ,

(5.4)

where d̂eg(v) on the second line is defined by

d̂eg(v) := degG
(
v,Sη,k(G) \ (V (Gexp) ∪ E ∪ V (MA ∪MB)

)
. (5.5)

It is enough to restrict ourselves for the proof to the class LKSsmall(n, k, η) ⊆ LKS(n, k, η).
We intentionally leave out (or simplify) almost all numerical parameters in this informal statement.

Informal version of Lemma 5.4. Suppose ∇ = (H,V,D, Greg, Gexp,E) is a sparse decomposition
of a graph G ∈ LKSsmall(n, k, η). We write S0 := Sη,k(G) \ (V (Gexp) ∪ E). Then there exist
regularized matchings MA and MB, such that for the sets XA and XB defined as in Definition 5.3
we have

(a) V (MA) ∩ V (MB) = ∅,

(b) V1(MB) ⊆ S0,

(c′) for each X ∈ V(MA) ∪ V(MB) we have that X ⊆ Sη,k(G) or X ⊆ Lη,k(G),

(e) e
(
XA, S0 \ V (MA)

)
= 0,

(h) if XA induces almost no edges and does not contain a substantial regularized matching5 then
there is a substantial amount of edges between XA and XB.

5The exact quantification of “almost no edges” and “substantial regularized matching” does not in guarantee the
former property to imply the latter. See also Remark 5.5

20



5.2 The role of Lemma 4.8 in the proof of Lemma 5.4

The regularized matching MA ∪ MB from the lemma plays the role of M in the motivation
above. It remains to justify the dissimilarities between the statement of the lemma and the text
above. The first discrepancy is that the definitions of the sets XA and XB in (5.4) are quite different
from the ones in the motivation above. The other discrepancy is a seeming absence of (5.3) in the
statement. As for the first issue, consider an arbitrary vertex v ∈ XA. Property (e) tells us that
v sends no edges to S0 \ V (MA) ⊇ S0 \ (V (MA) ∪ V (MB)). As v ∈ Lη,k(G), we have that
deg(v,Lη,k(G) ∪ V (MA) ∪ V (MB) ∪ V (Gexp) ∪ E) > (1 + η)k, as needed. Next, consider a vertex

v ∈ XB. The fact that v ∈ Lη,k(G) together with the definition of d̂eg immediately gives that
deg(v,Lη,k(G) ∪ V (MA) ∪ V (MB) ∪ V (Gexp) ∪ E) > (1 + η)k2 , again as needed.

Let us now turn to deriving (5.3). This property is required only for the counterpart of (H2).
So, we can assume that we do not have the counterpart of (H1), that is, the set XA induces (almost)
no edges. Let us now consider an arbitrary regular pair (X,Y ) in MA ∪MB . First assume that
(X,Y ) ∈ MB. Then (b) tells us that X ⊆ S0. We then have N(XA) ∩X = ∅ by Property (e), as
needed for (5.3). Next, assume that (X,Y ) ∈ MA. Then Definition 2.3(ii) (together with (c’) of
our informal lemma) tells us that at least one of X and Y is contained in Lη,k(G). Say this is X.
We then have X ⊆ XA. But the absence of edges inside XA tells us that e(X,XA) = 0, again as
needed for (5.3).

5.1.1 Rough versus fine structure

In the dense case [PS12] we can proceed with embedding T using the regularity method immediately
after having established a statement like Informal Lemma 5.2. That is, we can zigzag-embed
consecutive cut vertices WA ∪WB of T in AB, or A1A2. When we arrive at a shrub t ∈ SA ∪ SB

stemming from cut vertex u ∈ WA∪WB embedded to a cluster D (that is, D = A, D = B, D = A1,
or D = A2) we can use (H1) or (H2) to find an edge XY ∈ E(Greg) such that DX ∈ E(Greg) and
the pair (X,Y ) has not been filled-up. Then, (i) using that DX ∈ E(Greg) we traverse from D to
XY , (ii) we embed t in (X,Y ), and (iii) if t is an internal shrub, we again use that XD ∈ E(Greg)
to traverse back6 to D and continue embedding cut vertices in AB or A1A2.

In the current setting of the sparse decomposition, the structure given by Lemma 5.4 would
allow us to carry out counterparts to (i) and (ii) (even though there is a number of technical
obstacles). That is, we would be able to embed consecutive cut vertices, to traverse to locations
suitable for shrubs and to embed these shrubs. However, carrying a counterpart to (iii) is a major
problem. The symmetry-based argument from the dense case “if DX is an edge then XD is an edge
and thus we can traverse in both directions” does not work when the shrub is not to be embedded
in a cluster, but in a subset of E or Gexp. This is going to be addressed in [HKP+c], where we clean
the rough structure in such a way that it will allow a counterpart to (iii).

5.2 The role of Lemma 4.8 in the proof of Lemma 5.4

In this section, we explain the role of Lemma 4.8 in our proof of Lemma 5.4. That is, we want to
explain why it is not possible in general to find regular matchings MA and MB from the informal
version of Lemma 5.4 inside the cluster graph Greg. Because of this we will have to find a suitable
“re-regularization” which turns out to be provided by Lemma 4.8.

6As said at the beginning of Section 5.1, if t is internal, then both of its neighboring cut vertices are in WA. In
particular, the distance between these two cut vertices is even. That means that to traverse back to D, we really use
the pair XD ∈ E(Greg).
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5.2 The role of Lemma 4.8 in the proof of Lemma 5.4

Recall the motivation from Section 5.1. We wish to find two sets XA and XB (or two sets
within XA) which are suitable for embedding the cut vertices WA and WB of a (τk)-fine partition
(WA,WB ,SA,SB) of T . In this sketch we just focus on finding XA; the ideas behind finding a
suitable set XB are similar. To accommodate all the shrubs from SA — which might contain up
to k − 2 vertices in total — we need XA to have total degree at least k into the sets Lη,k(G),
V (Gexp), E, together with vertices of any fixed matching M consisting of regular pairs. This
motivates us to look for a regularized matching M which covers as much as possible of the set
S0 := Sη,k(G)\ (V (Gexp) ∪ E). as these are the vertices that are not utilizable otherwise. As a next
step one would prove that there is a set XA with

mindeg
(
XA, V (G) \ (S0 \ V (M))

)
& k .

(By & k we mean larger than k by a suitable small additional approximation factor.)
In the dense setting [PS12], where the structure of G is determined by Greg, and where

S0 = Sη,k(G), such a matching M can be found inside Greg using the Gallai–Edmonds Match-
ing Theorem. But here, just working with Greg is not enough for finding a suitable regularized
matching as the following example shows.

Figure 5.2: An example of a graph G ∈ LKS(n, k, η := 1
10
) in which Greg is empty, yet there

is no candidate set for XA of vertices which have degrees at least k outside the set S0. Sample
dense spots are shown in grey.

Figure 5.2 shows a graph G with Lη,k(G) = E. Let us describe the construction of such a
graph G. We partition the vertex sets into to-be sets Sη,k(G) and Lη,k(G). We further gather
vertices of Sη,k(G) into clusters. We now insert edges into G. All the edges inserted will be in
the form of dense spots. These dense spots have either both parts in Lη,k(G), or one part Lη,k(G)
and the other in Sη,k(G). We do this so that each inserted dense spot in the Sη,k(G)-part respects
the cluster structure, while it behaves in a random-like way in the Lη,k(G)-part. Further, we
require that each Lη,k(G)-vertex sends 0.7k edges to Lη,k(G) and 0.4k edges to Sη,k(G), and each
Sη,k(G)-vertex receives 0.5k edges from Lη,k(G). Clearly, such a construction is possible.

The point of the construction is that E = Lη,k(G), and that S0 = Sη,k(G) form clusters which
do not induce any dense regular pairs. No vertex has degree & k outside S0, and the cluster
graph Greg contains no matching.

However, in this situation we can still find a large regularized matching M between Lη,k(G) and
Sη,k(G), by regularizing the crossing dense spots D (which we can assume to be the original dense
spots inserted in our construction). In general, obtaining a regularized matching is, of course, more
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5.3 Finding the structure

complicated. Given the above example, one may ask whether the graph Greg has any role at all.
The answer is that for constructing M, we can either use directly the edges of Greg, or, if we do
not have these edges the information about their lack helps us to find M elsewhere.

5.3 Finding the structure

We can now state the main result of this paper.

Lemma 5.4. For every η ∈ (0, 1), Ω > 0, γ ∈ (0, η/3) there is a number β > 0 so that for every

ε ∈ (0, γ
2η
12 ) there exist ε′, π > 0 such that for every ν > 0 there exists a number k0 ∈ N such that

for every Ω∗ with Ω∗ < Ω, every Ω∗∗ with Ω∗∗ > max{2,Ω∗} and every k with k > k0 the following
holds.

Suppose ∇ = (H,V,D, Greg, Gexp,E) is a (k,Ω∗∗,Ω∗,Λ, γ, ε′, ν, ρ)-sparse decomposition of a
graph G ∈ LKSsmall(n, k, η) with respect to S := Sη,k(G) and L := Lη,k(G) which captures all but
at most ηkn/6 edges of G. Let c be the size of the clusters V.7 Write

S0 := S \ (V (Gexp) ∪ E) . (5.6)

Then GD contains two (ε, β, πc)-regularized matchings MA and MB such that for the triple
(XA,XB,XC) := (XA,XB,XC)(η,∇,MA,MB) we have

(a) V (MA) ∩ V (MB) = ∅,

(b) V1(MB) ⊆ S0,

(c) for each (X1,X2) ∈ MA∪MB, there is a dense spot (D1,D2;ED) ∈ D with X1 ⊆ D1, X2 ⊆ D2,
and furthermore, either X1 ⊆ S or X1 ⊆ L, and X2 ⊆ S or X2 ⊆ L,

(d) for each X1 ∈ V1(MA ∪MB) there exists a cluster C1 ∈ V such that X1 ⊆ C1, and for each
X2 ∈ V2(MA ∪MB) we have X2 ⊆ L ∩ E or there exists C2 ∈ V such that X2 ⊆ C2,

(e) eG∇

(
XA, S0 \ V (MA)

)
6 γkn,

(f) eGreg(V (G) \ V (MA ∪MB)) 6 εΩ∗kn,

(g) for the regularized matching NE := {(X1,X2) ∈ MA ∪ MB : (X1 ∪ X2) ∩ E 6= ∅} we have
eGreg

(
V (G) \ V (MA ∪MB), V (NE)

)
6 εΩ∗kn,

(h) for Mgood := {(X1,X2) ∈ MA : X1 ∪X2 ⊆ XA} we have that each Mgood-edge is an edge of
Greg, and at least one of the following conditions holds

(K1) 2eG(XA) + eG(XA,XB) > ηkn/3,

(K2) |V (Mgood)| > ηn/3.

Remark 5.5. As explained in Section 5.1, property (h) is the most important part of Lemma 5.4.
Note that the assertion (K2) implies a quantitatively weaker version of (K1). Indeed, consider
(X1,X2) ∈ MA. An average vertex v ∈ X1 sends at least β · πc > β · πνk edges to X2. Thus,
if |V (Mgood)| > ηn/3 then Mgood induces at least (ηn/6) · β · πνk = Θ(kn) edges in XA. Such

7The number c is irrelevant when V = ∅. In particular, note that in that case we necessarily have MA = MB = ∅

for the regularized matchings given by the lemma.
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5.3 Finding the structure

a bound, however, would be insufficient for our purposes as later η ≫ π, ν. So, the deficit in the
number of edges asserted in (K2) (compared to the eG(XA) > ηkn/12 part of (K1)) is compensated
by the fact that these edges are already regularized.

For the proof we need the well-known Gallai–Edmonds Matching Theorem, which we state next.
A graph H is called factor-critical if H − v has a perfect matching for each v ∈ V (H).

Theorem 5.6 (Gallai–Edmonds matching theorem (see for instance [Die05, Theorem 2.2.3])). Let
H be a graph. Then there exist a set Q ⊆ V (H) and a matching M of size |Q| in H such that

(1) every component of H −Q is factor-critical, and

(2) M matches every vertex in Q to a different component of H −Q.

The set Q in Theorem 5.6 is often referred to as a separator.

Proof of Lemma 5.4. The idea of the proof is to first obtain some information about the structure
of the graph Greg with the help of Theorem 5.6. Then the structure given by Theorem 5.6 is refined
by Lemma 4.8 to yield the assertions of the lemma.

Let us begin with setting the parameters. Let β := βL4.8 be given by Lemma 4.8 for input
parameters ΩL4.8 := Ω, ρL4.8 := γ2, and let ε′ and π be given by Lemma 4.8 for further input
parameter εL4.8 := ε. Last, let k0 be given by Lemma 4.8 with the above parameters and γL4.8 := ν.

Without loss of generality we assume that ε′ 6 ε and β < γ2. We write S := {C ∈ V : C ⊆ S}
and L := {C ∈ V : C ⊆ L}. Further, let S0 := {C ∈ S : C ⊆ S0}.

Let Q be a separator and let N0 be a matching given by Theorem 5.6 applied to the graph
Greg. We will presume that the pair (Q, N0) is chosen among all the possible choices so that the
number of vertices of S0 that are isolated in Greg − Q and are not covered by N0 is minimized.
Let SI denote the set of vertices in S0 that are isolated in Greg −Q. Recall that the components
of Greg −Q are factor-critical.

Define SR ⊆ V (Greg) as a minimal set such that

• SI \ V (N0) ⊆ SR, and

• if C ∈ S and there is an edge DZ ∈ E(Greg) with Z ∈ SR, D ∈ Q, CD ∈ N0 then C ∈ SR.

Then each vertex from SR is reachable from SI\V (N0) by a path inGreg that alternates between
SR and Q, and has every second edge in N0. Also note that for all CD ∈ N0 with C ∈ Q and
D ∈ S0 \ SR we have

degGreg
(C,SR) = 0 . (5.7)

Let us prove another property of SR.

Claim 5.5.1. SR ⊆ SI ⊆ SR ∪ V (N0). In particular, SR ⊆ S0.

Proof of Claim 5.5.1. By the definition of SR, we only need to show that SR ⊆ SI. So suppose
there is a vertex C ∈ SR \ SI. By the definition of SR there is a non-trivial path R going from
SI \ V (N0) to C that alternates between SR and Q, and has every second edge in N0. Then, the
matching N ′

0 := N0△E(R) covers more vertices of SI than N0 does. Further, it is straightforward to
check that the separator Q together with the matching N ′

0 satisfies the assertions of Theorem 5.6.
This is a contradiction, as desired.
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5.3 Finding the structure

Using a very similar alternating path argument we see the following.

Claim 5.5.2. If CD ∈ N0 with C ∈ Q and D /∈ SI then degGreg
(C,SR) = 0.

Using the factor-criticality of the components of Greg − Q we extend N0 to a matching N1

as follows. For each component K of Greg − Q which meets V (N0), we add a perfect matching
of K − V (N0). Furthermore, for each non-singleton component K of Greg − Q which does not
meet V (N0), we add a matching which meets all but exactly one vertex of L ∩ V (K). This is
possible as by the definition of the class LKSsmall(n, k, η) we have that Greg −L is edgeless, and
so L ∩ V (K) 6= ∅. This choice of N1 guarantees that

eGreg(V \ V (N1)) = 0 . (5.8)

We set

M :=
{
C1C2 ∈ N0 : C1 ∈ SR, C2 ∈ Q

}
.

We have that
eGreg

(
V \ V (N1), V (M) ∩ SR

)
= 0 . (5.9)

As S is an independent set in Greg, we have that

QM := V (M) ∩Q ⊆ L . (5.10)

The matching M in Greg corresponds to an (ε′, γ2, c)-regularized matching M in the underlying
graph Greg, with V2(M) ⊆

⋃
Q (recall that regularized matchings have orientations on their edges).

Likewise, we define N1 as the (ε′, γ2, c)-regularized matching corresponding to N1. The N1-edges
are oriented so that V1(N1) ∩

⋃
Q = ∅; this condition does not specify orientations of all the

N1-edges and we orient the remaining ones in an arbitrary fashion. We write SR :=
⋃

SR.

Claim 5.5.3. eG∇

(
L \ (E ∪ V (M)), SR

)
= 0.

Proof of Claim 5.5.3. We start by showing that for every cluster C ∈ L \ V (M) we have

degGreg
(C,SR) = 0 . (5.11)

First, if C 6∈ Q, then (5.11) is true since SR ⊆ SI by Claim 5.5.1. So suppose that C ∈ Q, and let
D ∈ V (Greg) be such that DC ∈ N0. Now if D /∈ SI then (5.11) follows from Claim 5.5.2. On the
other hand, suppose D ∈ SI ⊆ S0. As C /∈ V (M), we know that D /∈ SR, and thus, (5.11) follows
from (5.7).

Now, by (5.11), Greg has no edges between L \ (E ∪ V (M)) and SR. Also, no such edges can
be in Gexp or incident with E, since SR ⊆ S0 by Claim 5.5.1. Finally, since G ∈ LKSsmall(n, k, η)
and Ω∗∗ > 2 > (1 + η), there are no edges between H and S. This proves the claim.

We prepare ourselves for an application of Lemma 4.8. The numerical parameters of the lemma
are ΩL4.8, ρL4.8, εL4.8 and γL4.8 as above. The input objects for the lemma are the graph GD

of order n′ 6 n, the collection of (γk, γ)-dense spots D, the matching M, the (νk)-ensemble
CL4.8 := SR \ V (N1), and the set YL4.8 := L ∩ E. Note that Definition 3.4, item 6, implies that D
absorbs M. Further, (4.20) is satisfied by Definition 3.4, item 7.

The output of Lemma 4.8 is an (ε, β, πc)-regularized matching M′ with the following properties.
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5.3 Finding the structure

Figure 5.3: The situation in G after applying Lemma 4.8. The dotted line illustrates the
separation as in (III).

(I) |V (M) \ V (M′)| < εn′ 6 εn.

(II) For each (X1,X2) ∈ M′ there are sets C ∈ SR and (D1,D2;ED) ∈ D such that X1 ⊆ C ∩D1

and either X2 ⊆ L ∩ E ∩D2 or there exists C ′ ∈ QM such that X2 ⊆ L ∩ E ∩ C ′.

(Indeed, to see this we use that V1(M) ⊆ SR and that V2(M) ⊆
⋃

QM by the definition
of M.)

(III) There is a partition of M′ into M1 and MB such that

eGD

( ((
SR \ V (N1)

)
∪ V1(M)

)
\ V1(M1) , ((L ∩ E) ∪ V2(M)) \ V2(MB)

)
< γkn′ .

We claim that also

(IV) V (M′) ∩ V (N1 \M) = ∅.

Indeed, let (X1,X2) ∈ M′ be arbitrary. Then by (II) there is C ∈ SR such that X1 ⊆ C.
By Claim 5.5.1, C is a singleton component of Greg − Q. In particular, if C is covered by N1

then C ∈ V (M). It follows that X1 ∩ V (N1 \ M) = ∅. In a similar spirit, the easy fact that
(Y ∪

⋃
QM)∩ V (N1 \M) = ∅ together with (II) gives X2 ∩ V (N1 \M) = ∅. This establishes (IV).

Observe that (II) implies that V1(M
′) ⊆ SR, and so, by Claim 5.5.1 we know that

V1(MB) ⊆ SR ⊆
⋃

SI ⊆ S0. (5.12)

Set
MA := (N1 \M) ∪M1 . (5.13)

Then MA is an (ε, β, πc)-regularized matching. Note that from now on, the sets XA,XB and
XC are defined. The situtation is illustrated in Figure 5.3. By (IV), we have V (MA)∩V (MB) = ∅,
as required for Lemma 5.4(a). Lemma 5.4(b) follows from (5.12). The claim below asserts that the
next two properties are satisfied as well.
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5.3 Finding the structure

Claim 5.5.4. Lemma 5.4(c) and Lemma 5.4(d) are satisfied.

Proof of Claim 5.5.4. Consider an arbitrary pair (X1,X2) ∈ MA ∪ MB. Either we have that
(X1,X2) ∈ N1 or (X1,X2) ∈ M′. In the former case, X1X2 is an edge in Greg. Then the properties
for (X1,X2) asserted in Lemma 5.4(c) and Lemma 5.4(d) follow from the fact that the cluster graph
is prepartitioned with respect to S and L, and from Definition 3.4(6).

In the case (X1,X2) ∈ M′, the asserted properties are given by (II).

We now turn to Lemma 5.4(e). First we prove some auxiliary statements.

Claim 5.5.5. We have S0 \ V (N1 \M) ⊆ SR.

Proof of Claim 5.5.5. Let C ∈ S0 \ V (N1 \ M). Note that if C /∈ SI, then C ∈ V (N1). On the
other hand, if C ∈ SI, then we use Claim 5.5.1 to see that C ∈ SR ∪ V (N1). We deduce that in
either case C ∈ SR ∪ V (N1). The choice of C implies that C ∈ SR ∪ V (M). Now, if C ∈ V (M),
then C ∈ SR, by (5.10) and by the definition of M . Thus C ∈ SR, as desired.

It will be convenient to work with a set S̄0 ⊆ S0, S̄0 := (S ∩
⋃

V) \ V (Gexp) =
⋃

S0. The next
two easy claims assert absence of edges of certain types incident to S0 and S̄0.

Claim 5.5.6. The vertices in S0 \ S̄0 are isolated in G∇.

Proof of Claim 5.5.6. Indeed, let us check Definition 3.6. Clearly, S0 \ S̄0 is disjoint from V (Greg)
and V (Gexp). Further, S

0 \ S̄0 sends no edges to H, by Definition 2.3(ii). Lastly, the set S0 \ S̄0 is
disjoint from the “avoiding edges” spanned by the vertex sets E and E ∪

⋃
V.

Claim 5.5.7. We have G∇[L ∩ E, S̄0] = GD[L ∩ E, S̄0].

Proof of Claim 5.5.7. The ⊇-inclusion of the edge-sets is clear.
Next, recall that Definition 3.6 tells us that each edge in G∇ between E and

⋃
V is either in

Gexp or in GD. As S̄
0 ∩ V (Gexp) = ∅, the ⊆-inclusion follows.

By Claim 5.5.5, we have

S̄0 \ V (MA) ⊆
(⋃

S0 \ V (N1 \M)
)
\ V (MA) ⊆ SR \ V (MA). (5.14)

As every edge incident to S0 \ S̄0 is uncaptured, we see that

EG∇

(
XA ∩ E, S0 \ V (MA)

)
= EG∇

(
XA ∩ E, S̄0 \ V (MA)

)

(XA ∩ E = (L ∩ E) \ V (MB), C5.5.7) = EGD

(
(L ∩ E) \ V (MB), S̄

0 \ V (MA)
)

(by (5.14)) ⊆ EGD

(
(L ∩ E) \ V (MB) , S

R \ V (MA)
)
. (5.15)

Claim 5.5.8. We have

EGreg

(
XA ∩

⋃
V, S0 \ V (MA)

)
⊆ EGD

(
((L ∩ E) ∪ V2(M)) \ V2(MB), S

R \ V (MA)
)
.

Before proving Claim 5.5.8, let us see that it implies Lemma 5.4(e). As G ∈ LKSsmall(n, k, η),
there are no edges between H and S. That means that any captured edge from XA to S0 \
V (MA) must start in E or in

⋃
V, and must be contained in GD. Thus Lemma 5.4(e) follows by

plugging (III) into (5.15) and into Claim 5.5.8.
Let us now turn to proving Claim 5.5.8.
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Proof of Claim 5.5.8. First, observe that by the definition of XA and by the definition of M (and
M) we have

XA ∩
⋃

V ⊆ (V2(M) \ V2(MB)) ∪ (L \ (E ∪ V (M))) . (5.16)

Further, by applying (5.14) and Claim 5.5.3 we get

EGreg

(
L \ (E ∪ V (M)), S̄0 \ V (MA)

)
= ∅ . (5.17)

Therefore, we obtain

EGreg

(
XA ∩

⋃
V, S0 \ V (MA)

) C5.5.6
= EGreg

(
XA ∩

⋃
V, S̄0 \ V (MA)

)

(by (5.16)) ⊆ EGreg

(
V2(M) \ V2(MB), S̄

0 \ V (MA)
)

∪ EGreg

(
L \ (E ∪ V (M)), S̄0 \ V (MA)

)

(by (5.14), (5.17)) ⊆ EGreg

(
V2(M) \ V2(MB), S

R \ V (MA)
)
,

as needed.

In order to prove (f) we first observe that

V (N1) \ V (MA ∪MB)
(5.13)
= V (N1) \ V

(
(N1 \M) ∪M1 ∪MB

)

= (V (N1) ∩ V (M)) \ V (MB ∪M1)
(III)
= (V (N1) ∩ V (M)) \ V (M′) = V (M) \ V (M′) . (5.18)

Now, we have

eGreg(V (G) \ V (MA ∪MB)) 6 eGreg(V (G) \ V (N1)) +
∑

v∈V (N1)\V (MA∪MB)

degG∇
(v)

(by (5.8) and (5.18)) 6
∑

v∈V (M)\V (M′)

degG∇
(v) 6 |V (M) \ V (M′)|Ω∗k

(by (I)) < εΩ∗kn ,

which proves (f).

Let us turn to proving (g). First, recall that we have V (NE) ⊆ V (M′)∪V (N1) (cf. 5.13). Since
V (N1) ∩ E = ∅ we actually have

V (NE) = V (NE) ∩ V (M′) . (5.19)

Using (5.19) and (II) we get

eGreg (V (G) \ V (N1), V (NE)) 6 eGreg

(
V (G) \ V (N1), V (M′) ∩ SR

)

(by (5.9)) 6 eGreg

(
V (G) \ V (N1), (V (M′) \ V (M)) ∩ SR

)

(by (IV)) 6 eGreg

(
V (G) \ V (N1), (V (M′) \ V (N1)) ∩ SR

)

6 2eGreg (V (G) \ V (N1))
(5.8)
= 0 . (5.20)
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We have

eGreg (V (G) \ V (MA ∪MB), V (NE)) 6 eGreg (V (G) \ V (N1), V (NE))

+ eGreg (V (N1) \ V (MA ∪MB), V (G))

(by (5.20)) 6 0 + |V (N1) \ V (MA ∪MB)|Ω
∗k

(by (5.18), (I)) 6 εΩ∗kn ,

as needed.

We have thus shown Lemma 5.4(a)–(g). It only remains to prove Lemma 5.4(h), which we will
do in the remainder of this section.

We first collect several properties of XA and XC. The definitions of XC and S0 give

|XC|(1 + η)
k

2
6 eG

(
XC, S0 \ V (MA ∪MB)

)
6 |S0 \ V (MA ∪MB)|(1 + η)k . (5.21)

Each vertex of XC has degree at least (1 + η)k2 into S, and so,

eG(S,XC) > |XC|

⌈
(1 + η)

k

2

⌉
. (5.22)

Also, for each vertex v ∈ XC, Definition 2.3(ii) gives that

degG(v) = ⌈(1 + η)k⌉ (5.23)

Consequently (using ⌈a⌉ − ⌈a2⌉ 6
a
2 ),

eG
(
XA,XC

) (5.23)

6 |XC|⌈(1 + η)k⌉ − eG(S,XC)

(5.22)

6 |XC|(1 + η)
k

2
(5.24)

(5.21)

6 |S0 \ V (MA ∪MB)|(1 + η)k . (5.25)

Let Mgood be defined as in Lemma 5.4(h), that is, Mgood := {(X1,X2) ∈ MA : X1∪X2 ⊆ XA}.
Note that (5.12) implies that X1 ⊆ S for every (X1,X2) ∈ MB . Thus by the definition of XA,

if (X1,X2) ∈ MA ∪MB with X1 ∪X2 ⊆ L, then (X1,X2) ∈ Mgood. (5.26)

We will now prove the first part of Lemma 5.4(h), that is, we show that each Mgood-edge is
an edge of Greg. Indeed, by (II), we have that V1(M1) ⊆ S, so as XA ∩ S = ∅, it follows that
M1 ∩Mgood = ∅. Thus Mgood ⊆ N1. As N1 corresponds to a matching in Greg, all is as desired.

Finally, let us assume that neither (K1) nor (K2) is fulfilled. After five preliminary observations
(Claim 5.5.9–Claim 5.5.13), we will derive a contradiction from this assumption.

Claim 5.5.9. We have |S ∩ V (MA)| 6 |XA ∩ V (MA)|.

Proof of Claim 5.5.9. To see this, recall that each MA-vertex X ∈ V(MA) is either contained in
S, or in L. Further, if X ⊆ S then its partner in MA must be in L, as S is independent. Now, the
claim follows after noticing that L ∩ V (MA) = XA ∩ V (MA).
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Claim 5.5.10. We have |S \ V (MA ∪MB)|+ 2ηn < |XA \ V (MA)|+ ηn/3.

Proof of Claim 5.5.10. As G ∈ LKS(n, k, η), we have |S|+ 2ηn 6 |L|. Therefore,

|S \ V (MA ∪MB)|+ 2ηn 6 |L \ V (MA ∪MB)|+
∑

(X1,X2)∈MA∪MB

X1∪X2⊆L

|X1 ∪X2|

(5.26)
= |XA \ V (MA)|+ |V (Mgood)|

¬(K2)

< |XA \ V (MA)|+ ηn/3 .

Claim 5.5.11. We have eG∇

(
XA ∩ (E ∪ V (M)), SR \ V (MA)

)
< ηkn/2.

Proof of Claim 5.5.11. As

XA ∩ (E ∪ V (M)) ⊆ ((L ∩ E) ∪ V2(M)) \ V2(MB) and

SR \ V (MA) ⊆
((
SR \ V (N1)

)
∪ V1(M)

)
\ V1(M1) ,

we get from (III) that

eGD

(
XA ∩ (E ∪ V (M)), SR \ V (MA)

)
6 γkn . (5.27)

Observe now that both sets XA∩(E∪V (M)) and SR \V (MA) avoid H. Further, no edges between
them belong to Gexp, because Claim 5.5.1 implies that SR \ V (MA) ⊆ S0 ⊆ V (G) \ V (Gexp).
Therefore, we can pass from GD to G∇ in (5.27) to get

eG∇

(
XA ∩ (E ∪ V (M)), SR \ V (MA)

)
6 γkn < ηkn/2 .

Claim 5.5.12. We have S \ (SR ∪ V (MA)) ⊆ S \ (S̄0 ∪ V (MA ∪MB)).

Proof of Claim 5.5.12. The claim follows directly from the following two inclusions.

SR ∪ V (MA) ⊇ S ∩ V (MA ∪MB) , and (5.28)

SR ∪ V (MA) ⊇ S̄0 . (5.29)

Now, (5.28) is trivial, as by (II) we have that SR ⊇ S ∩ V (MB). To see (5.29), it suffices by (5.13)
to prove that V (N1 \M) ∪ SR ⊇ S0. This is however the assertion of Claim 5.5.5.

Next, we bound eG∇

(
XA, S

)
.

Claim 5.5.13. We have

eG∇

(
XA, S

)
6 |S ∩ V (MA)|(1 + η)k + |S \ (S0 ∪ V (MA ∪MB))|(1 + η)k +

1

2
ηkn .
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Figure 5.4: A simplified computation showing that ¬(K1), ¬(K2) leads to a contradiction.
Denoting by x the size of S0\V (MA∪MB) we get ① |XC| 6 2x. On the other hand, each vertex
of XA emanates & k edges which are absorbed by the sets V1(MA), S \ (V (MA ∪MB) ∪ S0),
and XC. The vertices of V1(MA) and S \ (V (MA ∪ MB) ∪ S0) can absorb . k edges. The
vertices of XC receive . k

2
edges of XA by (5.24). This leads to ② |XC| > 2x, doubling the size

of the “excess” vertices of XA.

Proof of Claim 5.5.13. We have

eG∇

(
XA, S

)
= eG∇

(
XA, S ∩ V (MA)

)
+ eG∇

(
XA, S \ (SR ∪ V (MA))

)

+ eG∇

(
XA \ (E ∪ V (M)), SR \ V (MA)

)
+ eG∇

(
XA ∩ (E ∪ V (M)), SR \ V (MA)

)
.

To bound the first term we use that each vertex in S ∩ V (MA) has degree at most (1 + η)k, and
thus obtain eG∇

(XA, S ∩ V (MA)) 6 |S ∩ V (MA)|(1 + η)k. To bound the second term, we again
use a bound on degree of vertices of S \

(
(SR ∪ V (MA)) ∪ (S0 \ S̄0)), together with Claim 5.5.12.

The third term is zero by Claim 5.5.3. The fourth term can be bounded by Claim 5.5.11.

A relatively short double counting below will lead to the final contradiction. The idea behind
this computation is given in Figure 5.4.

31



|XA|(1 + η)k 6
∑

v∈XA

degG(v) 6
∑

v∈XA

degG∇
(v) + 2

(
e(G) − e(G∇)

)

6 2eG∇
(XA) + eG∇

(XA,XB) + eG∇

(
XA,XC

)
+ eG∇

(
XA, S

)
+

ηkn

3

(by ¬(K1), (5.25), C5.5.13) 6
7

6
ηkn +

∣∣S0 \ V (MA ∪MB)
∣∣(1 + η)k

+ |S ∩ V (MA)|(1 + η)k

+ |S \ (S0 ∪ V (MA ∪MB))|(1 + η)k

(by C5.5.9) 6
7

6
ηkn + |S \ V (MA ∪MB)|(1 + η)k

+ |XA ∩ V (MA)|(1 + η)k

(by C5.5.10) 6
7

6
ηkn +

(
|XA \ V (MA)| −

5

3
ηn
)
(1 + η)k

+ |XA ∩ V (MA)|(1 + η)k

< |XA|(1 + η)k −
1

2
ηkn ,

(5.30)

a contradiction. This completes the proof of Lemma 5.4.
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SYMBOL INDEX

Symbol index

[n], 1
d(U,W ), 2
deg, 2
maxdeg, 2
mindeg, 2
M-edge, 8
E(G), 2
e(G), 2
ℓ-ensemble, 2
e(X), 2
e(X,Y ), 2
Ḡ(n, k,Ω, ρ, ν), 5
G(n, k,Ω, ρ, ν, τ), 5
GD, 5
Greg, 5
G∇, 5
Lη,k(G), 3
LKS(n, k, η), 3
LKSsmall(n, k, η), 3
N(v), 2
Sη,k(G), 3
V1(M), V2(M), V (M), 8
V1(M), V2(M), V(M), 8
M-vertex, 8
V (G), 2
v(G), 2
XA(η,∇,MA,MB), 20
XB(η,∇,MA,MB), 20
XC(η,∇,MA,MB), 20
trees(k), 2
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GENERAL INDEX

General index

absorb, 8
alternating path, 9
augmenting path, 9
avoiding, 4
avoiding threshold, 5

bounded decomposition, 4

captured edges, 5
cluster, 5

dense cover, 4
dense spot, 4
density, 2

M-edge, 8
empty graph, 2
ensemble, 2

factor-critical, 24

irregular, 2

length of alternating path, 9

nowhere-dense, 4

regular pair, 2
regularized matching, 7

separator, 24
sparse decomposition, 5

M-vertex, 8
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