# EXACT ADDITIVE COMPLEMENTS 

IMRE Z. RUZSA


#### Abstract

Let $A, B$ be sets of positive integers such that $A+B$ contains all but finitely many positive integers. Sárközy and Szemerédi proved that if $A(x) B(x) / x \rightarrow$ 1, then $A(x) B(x)-x \rightarrow \infty$. Chen and Fang considerably improved Sárközy and Szemerédi's bound. We further improve their estimate and show by an example that our result is nearly best possible.


## 1. Introduction

Two sets $A, B$ of positive integers are called additive complements if their sumset $A+B$ contains all but finitely many positive integers. The counting functions of additive complements clearly satisfy

$$
\begin{equation*}
A(x) B(x) \geq x-r, \tag{1.1}
\end{equation*}
$$

where $r$ is the number of positive integers not represented as a sum. It is easy to construct sets, separating odd and even places in a digital representation, for which equality holds for infinitely many values of $x$. These sets have the property that

$$
\lim \sup A(x) B(x) / x>1
$$

Hanani asked whether this is always the case for infinite additive complements. This was answered by Danzer[2], who first constructed infinite additive complements such that

$$
\begin{equation*}
A(x) B(x) / x \rightarrow 1 . \tag{1.2}
\end{equation*}
$$

We shall call such additive complements exact. This property is less exotic than it seems; powers of a fixed integer do have an exact complement, as do all sufficiently thin sets [5, 7].

Narkiewicz[4 proved an important property of exact complements. He considered a wider class.

Theorem 1.1 (Narkiewicz's dichotomy). Let $A, B$ be infitite sets of positive integers such that the number $r(x)$ of integers up to $x$ not contained in their sumset $A+B$ satisfies $r(x)=o(x)$. Under condition (1.2) we have

$$
\begin{equation*}
A(2 x) / A(x) \rightarrow 1, B(2 x) / B(x) \rightarrow 2, \tag{1.3}
\end{equation*}
$$

or this holds with the roles of $A, B$ exchanged. If (1.3) holds, then for $\varepsilon>0$ and $x>x_{0}(\varepsilon)$ we have

$$
\begin{equation*}
A(x)<x^{\varepsilon}, B(x)>x^{1-\varepsilon} \tag{1.4}
\end{equation*}
$$

[^0]This shows that polynomial sequences do not have an exact complement. The set of primes does not have either, for less obvious reasons [6].

For the sequel we will assume that (1.3) holds, that is, $A$ is small and $B$ is large.
For exact complements Sárközy and Szemerédi[1] proved that if (1.2) holds, then $A(x) B(x)-x \rightarrow \infty$. (While this paper actually appeared in 1994, the result was already announced in the 1966 edition of Halberstam and Roth's book Sequences [3].) They remark that their proof shows that

$$
A(x) B(x)-x=o(A(x))
$$

cannot hold, and they conjecture that

$$
A(x) B(x)-x=O(A(x))
$$

may be possible.
Chen and Fang [8] disproved this conjecture and considerably improved Sárközy and Szemerédi's bound. Their result shows that even

$$
\begin{equation*}
A(x) B(x)-x=O\left(A(x)^{c}\right) \tag{1.5}
\end{equation*}
$$

cannot hold for any constant $c$.
The aim of this paper is to improve Chen and Fang's result and to show by means of an example that there is precious little room for further improvement.

Write

$$
a^{*}(x)=\max \{a \in A, a \leq x .\}
$$

Theorem 1.2. Let $A, B$ be infinite sets of positive integers such that the number $r(x)$ of integers up to $x$ not contained in their sumset $A+B$ satisfies $r(x)=o(x)$. Suppose they satisfy (1.2) and the notation corresponds to (1.3). If $r(x)=o\left(a^{*}(x)\right)$, then we have

$$
\begin{equation*}
A(x) B(x)-x>(1-o(1)) \frac{a^{*}(x)}{A(x)} \tag{1.6}
\end{equation*}
$$

The reason that this excludes (1.5) is that Narkiewicz's dichotomy (1.4) implies that

$$
A(x)=A\left(a^{*}(x)\right)<a^{*}(x)^{\varepsilon}
$$

hence $a^{*}(x)$ is larger than any power of $A(x)$. Chen and Fang's result, though stated in quite different terms, is equivalent to the lower bound

$$
\frac{2}{3} \sqrt{a^{*}(x)} .
$$

The proof of Theorem 1.2 is based on their argument, with some parts improved.
Clearly the bound in (1.6) cannot be improved to $a^{*}(x)$, since for $x \in A$ we have $a^{*}(x)=x$, and this would contradict (1.2). However, it is possible that such an improvement holds whenever $a^{*}(x)$ is small compared to $x$. It is also a natural question, also formulated by Chen and Fang, whether one can give an absolute lower bound, say $A(x) B(x)-x>\log x$. We show this is not the case.

Theorem 1.3. Let $\omega$ be a function tending to infinity arbitrarily slowly. There are additive complements satisfying (1.2) such that for infinitely many values of $x$ we have

$$
\begin{equation*}
A(x) B(x)-x<\min \left(\omega(x), c a^{*}(x)\right) \tag{1.7}
\end{equation*}
$$

with some constant $c$.

## 2. The lower estimate

Lemma 2.1. Let $U, V$ be finite sets of integers. Put
$\sigma(n)=\#\{(u, v): u \in U, v \in V, u+v=n\}, \delta(n)=\#\{(u, v): u \in U, v \in V, v-u=n\}$.
We have

$$
\sum_{\sigma(n)>1}(\sigma(n)-1) \geq \frac{1}{|U|} \sum_{\delta(n)>1}(\delta(n)-1)
$$

Proof. We have

$$
\begin{gathered}
\sum \sigma(n)=\sum \delta(n)=|U||V| \\
\sum \sigma(n)^{2}=\sum \delta(n)^{2}
\end{gathered}
$$

by double-counting the quadruples satisfying $u+v=u^{\prime}+v^{\prime}$, which can be rearranged as $v-u^{\prime}=v^{\prime}-u$, and $\sigma(n) \leq|U|$ for all $n$. Hence

$$
\sum_{\delta(n)>1}(\delta(n)-1) \leq \sum\left(\delta(n)^{2}-\delta(n)\right)=\sum\left(\sigma(n)^{2}-\sigma(n)\right) \leq|U| \sum_{\sigma(n)>1}(\sigma(n)-1)
$$

This estimate can be doubled, as $\delta(n)-1 \leq\left(\delta(n)^{2}-\delta(n)\right) / 2$ whenever $\delta(n)>1$, but we cannot utilize this improvement.

There are sets $U, V$ for which this estimate is correct up to a constant factor. It is likely that the sets for which we shall apply this lemma are not of this kind, but I do not see any way to show this.
Lemma 2.2. Assume that the sets $A, B$ satisfy (1.2) and (1.3). Then

$$
\begin{equation*}
A(c x) / A(x) \rightarrow 1 \tag{2.1}
\end{equation*}
$$

uniformly in any range $c_{1}<c<c_{2}$ with $0<c_{1}<c_{2}$;

$$
\begin{equation*}
B(c x) / B(x) \rightarrow c \tag{2.2}
\end{equation*}
$$

uniformly in any range $c<c_{2}$ with $0<c_{2}$. Furthermore

$$
\begin{equation*}
\sum_{a \in A, a \leq x} a=o(x A(x)) . \tag{2.3}
\end{equation*}
$$

Proof. For $c=2^{k}$ with a (positive or negative) integer $k$ the claim (2.1) follows from an iterated application of (1.3). For general $c$ the claim for $A$ follows from the monotonicity of $A(x)$. For $B$ from (1.2) we get (2.2) for the same range; the range can be extended down to 0 by the monotonicity of $B(x)$.

To see (2.3) note that the sum with $a \leq \varepsilon x$ contributes at most $\varepsilon x A(x)$, and the sum with $a>\varepsilon x$ contributes at most

$$
x(A(x)-A(\varepsilon x))=o(x A(x))
$$

by (2.1).
Proof of the Theorem. Fix an integer $x$ and put $U=A \cap[1, x], V=B \cap[1, x]$. We use the notations $\sigma, \delta$ as in Lemma 2.1. We have

$$
A(x) B(x)-x=|U||V|-x=y+z-r
$$

where

$$
y=\sum_{\sigma(n)>1}(\sigma(n)-1)
$$

counts the excess multiplicities,

$$
z=\#\{n: n>x, n \in U+V\}
$$

counts the unnecessarily large sums, and $r=r(x)$ is the number of integers not in $A+B$.

Let $t=a^{*}(x)$. Adding $t$ to any $b \in B, b>x-t$ we get a sum $>x$, so

$$
z \geq B(x)-B(x-t)
$$

If $t \geq x / 2$, we use only this and (1.3) with $c=(x-t) / x$ to conclude

$$
z \geq\left(1-\frac{x-t}{x}-o(1)\right) B(x) \sim \frac{t}{x} B(x) \sim \frac{t}{A(x)}
$$

(This argument works for $t>c x$ with any fixed $c>0$, but fails for very small $t$, which is the typical situation.)

Assume now $t<x / 2$. We are going to estimate $y$. Put $V^{\prime}=B \cap[1, x-t]$. We will consider the sets $V^{\prime}+U, V^{\prime}-U$, and use $\sigma^{\prime}, \delta^{\prime}$ to denote the corresponding representation functions.

We have

$$
\sum \delta^{\prime}(n)=|U|\left|V^{\prime}\right|=A(x) B(x-t) .
$$

As $U \subset[1, t]$ and $V^{\prime} \subset[1, x-t]$, we have $V^{\prime}-U \subset[1-t, x-t-1]$. We show that few sums lie in $[1-t, t]$. Indeed, if $b-a \leq t$ with $a \in U, b \in V^{\prime}$, then $b \leq a+t$, so for an $a \in A$ there are at most $B(a+t)$ possible choices of $b$, This gives altogether

$$
\sum_{a \in U} B(a+t)<(1+o(1)) \sum_{a \in U} \frac{a+t}{A(a+t)}
$$

by (1.2). As $A(a+t)=A(t)=A(x)=|U|$ in this range, the sum is equal to

$$
t+\frac{1}{|U|} \sum_{a \in U} a=(1+o(1)) t
$$

by Lemma 2.2. Hence

$$
\sum_{a \in U} B(a+t)<(1+\varepsilon) t .
$$

This means that at least $A(x) B(x-t)-(1+\varepsilon) t$ pairs give a difference in the interval $[t+1, x-t-1]$, which contains less than $x-2 t$ integers. Consequently

$$
\sum_{\left.\delta^{\prime} n\right)>1}\left(\delta^{\prime}(n)-1\right)>(A(x) B(x-t)-(1+\varepsilon) t)-(x-2 t)=A(x) B(x-t)-x+(1-\varepsilon) t
$$

We now apply Lemma 2.1 to the sets $U, V^{\prime}$ to conclude

$$
\sum_{\sigma^{\prime}(n)>1}\left(\sigma^{\prime}(n)-1\right) \geq \frac{1}{|U|}(A(x) B(x-t)-x+(1-\varepsilon) t)=B(x-t)-\frac{x-(1-\varepsilon) t}{A(x)} .
$$

Clearly $\sigma(n) \geq \sigma^{\prime}(n)$ for all $n$, so

$$
y=\sum_{\sigma(n)>1}(\sigma(n)-1) \geq \sum_{\sigma^{\prime}(n)>1}\left(\sigma^{\prime}(n)-1\right) .
$$

Adding the estimates we obtain

$$
A(x) B(x)-x+r=y+z \geq B(x)-\frac{x-(1-\varepsilon) t}{A(x)}=\frac{A(x) B(x)-x}{A(x)}+\frac{(1-\varepsilon) t}{A(x)}
$$

which can be rearranged as

$$
A(x) B(x)-x \geq \frac{(1-\varepsilon) t}{A(x)-1}-\frac{r A(x)}{A(x)-1}
$$

## 3. The construction

We prove Theorem 1.3 ,
Take an increasing sequence $p_{1}, p_{2}, \ldots$ of primes such that $k^{3}<p_{k}<(k+1)^{3}$, possibly with finitely many exceptions. We shall construct a sequence of integers $u_{k}$ such that $u_{k}>k u_{k-1}, p_{k} \mid u_{k}$ and finite sets $A_{i}$ of integers such that

$$
\begin{gathered}
A_{1}=\left\{1,2, \ldots, p_{1}\right\}, A_{k} \subset\left(u_{k}, 2 u_{k}\right) \text { for } k \geq 2, \\
\quad\left|A_{1}\right|=p_{1},\left|A_{k}\right|=p_{k}-p_{k-1} \text { for } k \geq 2,
\end{gathered}
$$

hence

$$
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right|=p_{k},
$$

and the set $A_{1} \cup A_{2} \cup \ldots \cup A_{k}$ is a complete set of residues modulo $p_{k}$. One of the complements will be

$$
A=\bigcup_{k=1}^{\infty} A_{k}
$$

To specify the other set we put

$$
B_{k}=\left\{n: p_{k} \mid n, k u_{k}<n<(k+3) u_{k+1}\right\}
$$

and

$$
B=\bigcup_{k=1}^{\infty} B_{k}
$$

First we prove that such sets $A_{k}$ exist, provided the sequence $u_{k}$ increases sufficiently fast.

Lemma 3.1. There are integers $v_{k}$, depending only on the primes $p_{j}$, such that sets $A_{k}$ with the above described properties can be found whenever $u_{k}>v_{k}$ for all $k$.

Proof. Write

$$
\delta=\prod_{i=k}^{\infty}\left(1-\frac{p_{k}-1}{p_{j}}\right)
$$

and choose $r$ so that

$$
\sum_{i=r+1}^{\infty} \frac{1}{p_{i}}<\frac{\delta}{4 p_{k}}
$$

The positivity of $\delta$ and the existence of $r$ follows from the convergence of the series $\sum 1 / p_{i}$. Write $q=p_{k} p_{k+1} \ldots p_{r}$. We show that suitable sets can be found if $u_{k}>v_{k}=$ $2 q / \delta$.

We will construct the sets $A_{k}$ recursively. Given $A_{1}, \ldots, A_{k-1}$, a necessary condition for the existence of $A_{k}$ is that the elements of $A_{1} \cup A_{2} \cup \ldots \cup A_{k-1}$ be all incongruent modulo $p_{k}$. Hence the property which we shall preserve during the induction is:
"the elements of $A_{1} \cup A_{2} \cup \ldots \cup A_{k}$ are all incongruent modulo $p_{j}$ for every $j \geq k$." We assume this holds for $k-1$ and we build $A_{k}=\left\{a_{1}, a_{2}, \ldots, a_{p_{k}-p_{k-1}}\right\}$.

Suppose $a_{1}, \ldots, a_{t-1}$ are already found. We want to find $a_{t}$ so that $m=p_{k}-p_{k-1}+t-1$ residue classes are forbidden for each $p_{j}, j \geq k$. In each interval of length $q$ there are

$$
q \prod_{i=k}^{r}\left(1-\frac{m}{p_{j}}\right)>\delta q
$$

integers which avoid the $m$ forbidden residue classes modulo all $p_{j}, k \leq j \leq r$. In the interval ( $u_{k}, 2 u_{k}$ ) this means at least $\delta u_{k}-q$ candidates.

Next we count the numbers in forbidden residue classes modulo $p_{j}, j>r$. The number of integers in a residue class $a(\bmod p)$ in the interval $\left(u_{k}, 2 u_{k}\right)$ is exactly

$$
\left[\frac{2 u_{k}-a-1}{p}\right]-\left[\frac{u_{k}-a}{p}\right] \leq \frac{2 u_{k}}{p}
$$

assuming that $p<2 u_{k}$. We use this estimate for $p_{j}<2 u_{k}$. This excludes less than

$$
p_{k} \sum_{i=r+1}^{\infty} \frac{2 u_{k}}{p_{i}}<(\delta / 2) u_{k}
$$

integers.
Finally, if $p_{j}>2 u_{k}$, then there are no new excluded integers. Indeed, the only integer satisfying $n \equiv a\left(\bmod p_{j}\right)$ with some $a \in A_{1} \cup A_{2} \cup \ldots \cup A_{k-1} \cup\left\{a_{1}, \ldots, a_{t-1}\right\}$ is $a$ itself, which was already excluded (even several times) by previous congruences.

This leaves us at least $(\delta / 2) u_{k}-q$ integers to choose from, which is positive if $u_{k}>$ $2 q / \delta$.

Now we show that $A, B$ are additive complements, then estimate $A(x) B(x)-x$.
To prove the first claim, take an arbitrary $n>3 u_{1}$. It satisfies

$$
(k+2) u_{k}<n \leq(k+3) u_{k+1}
$$

with some $k$. Select $a \in A$ so that

$$
a \in A_{1} \cup A_{2} \cup \ldots \cup A_{k}, a \equiv n \quad\left(\bmod p_{k}\right) .
$$

As $1 \leq a<2 u_{k}$, the integer $b=n-a$ satisfies $k u_{k}<b<(k+3) u_{k+1}$ and $p_{k} \mid b$, so $b \in B_{k}$.

Now we estimate $B(x)$ for a typical $x$. This number satisfies $k u_{k}<x \leq(k+1) u_{k+1}$ for some $k$. All blocks $B_{j}, j>k$ lie above $x$. An initial segment of $B_{k}$ gives

$$
B_{k}(x) \leq \frac{x-k u_{k}}{p_{k}}
$$

elements. To estimate the contribution of smaller blocks note that

$$
\left|B_{j}\right| \leq \frac{(j+3) u_{j+1}-j u_{j}}{p_{j}}
$$

hence

$$
B(x) \leq B_{k}(x)+\left|B_{k-1}\right|+\left|B_{k-2}\right|+\ldots+\left|B_{1}\right|
$$

$$
\leq \frac{x}{p_{k}}+\sum_{j=2}^{k}\left(\frac{j+2}{p_{j-1}}-\frac{j}{p_{j}}\right) u_{j} .
$$

This estimate is not quite exact, since possibly only a segment of $B_{k-1}$ is contained in our interval, and the sets $B_{j}$ are not disjoint; takint these into account would not substantially improve our result.

By our assumption about the rate of growth of the sequence $p_{j}$ the coefficient of $u_{j}$ in the above formula is $O\left(j^{-3}\right)$, that is,

$$
B(x) \leq \frac{x}{p_{k}}+c_{1} \sum_{j=2}^{k} \frac{u_{j}}{j^{3}}<\frac{x}{p_{k}}+c_{2} \frac{u_{k}}{k^{3}}
$$

by our assumption about the rate of growth of the sequence $u_{j}$.
Since $A_{k+2}$ consists already of elements $>u_{k+2}>(k+1) u_{k+1}$, we have $A(x) \leq p_{k+1}$, consequently

$$
A(x) B(x)-x<\frac{p_{k+1}-p_{k}}{p_{k}} x+c_{2} \frac{u_{k} p_{k+1}}{k^{3}}=O(x / k)=o(x),
$$

which shows that these sets are indeed exact complements.
For $x=u_{k+1}$ we have $A(x)=p_{k}$ and $u_{k}<a^{*}(x)<2 u_{k}$, so

$$
A(x) B(x)-x<c_{2} \frac{u_{k} p_{k}}{k^{3}}<c_{3} u_{k}<c_{3} a^{*}(x)
$$

and also

$$
c_{3} u_{k}<\omega(x),
$$

provided the sequence $u_{j}$ grows so fast that $\omega\left(u_{k+1}\right)>u_{k}$. These estimates show the bound (1.7).

## 4. Concluding remark

All known constructions of exact complements use a variant of this approach, namely combining a complete set of residues modulo some integers $p_{k}$ (primes here, other sorts of integers in other papers, depending on the situation) and multiples of these $p_{k}$ in an interval. The difficulty is that multiples of $p_{k}$ are needed for a time after the appearance of the firts few multiples of $p_{k+1}$, which creates multiply represented sums. I see no way to eliminate or reduce this effect, nor a way to improve the lower estimate which would then vindicate this overkill.

## References

1. E. Szemerédi A. Sárközy, On a problem in additive number theory, Acta Math. Hungar. 64 (1994), 237-245.
2. L. Danzer, Über eine Frage von G. Hanani aus der additiven Zahlentheorie, J. Reine Angew. Math. 214/215 (1964), 392-394.
3. H. Halberstam and K. F. Roth, Sequences, Clarendon, London, 1966, 2nd ed. Springer, 1983.
4. W. Narkiewicz, Remarks on a conjecture of Hanani in additive number theory, Colloq. Math. 7 (1959/60), 161-165.
5. I. Z. Ruzsa, An asymptotically exact additive completion, Studia Sci. Math. Hungar. 32 (1996), 51-57.
6. __ On the additive completion of primes, Acta Arithmetica 86 (1998), 269-275.
7. , Additive completion of lacunary sequences, Combinatorica 21 (2001), 279-291.
8. J.-H. Fang Y.-G., Chen, On a conjecture of Sárközy and Szemerédi, Acta Arithmetica (to appear).

Alfréd Rényi Institute of Mathematics, Budapest, Pf. 127, H-1364 Hungary
E-mail address: ruzsa@renyi.hu


[^0]:    1991 Mathematics Subject Classification. 11B13, 11B34.
    Author was supported by ERC-AdG Grant No. 321104 and Hungarian National Foundation for Scientific Research (OTKA), Grants No. 109789 , and NK104183.

