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EXACT ADDITIVE COMPLEMENTS

IMRE Z. RUZSA

Abstract. Let A,B be sets of positive integers such that A + B contains all but
finitely many positive integers. Sárközy and Szemerédi proved that if A(x)B(x)/x →
1, then A(x)B(x) − x → ∞. Chen and Fang considerably improved Sárközy and
Szemerédi’s bound. We further improve their estimate and show by an example that
our result is nearly best possible.

1. Introduction

Two sets A,B of positive integers are called additive complements if their sumset
A+B contains all but finitely many positive integers. The counting functions of additive
complements clearly satisfy

(1.1) A(x)B(x) ≥ x− r,

where r is the number of positive integers not represented as a sum. It is easy to
construct sets, separating odd and even places in a digital representation, for which
equality holds for infinitely many values of x. These sets have the property that

lim supA(x)B(x)/x > 1.

Hanani asked whether this is always the case for infinite additive complements. This
was answered by Danzer[2], who first constructed infinite additive complements such
that

(1.2) A(x)B(x)/x → 1.

We shall call such additive complements exact. This property is less exotic than it
seems; powers of a fixed integer do have an exact complement, as do all sufficiently thin
sets [5, 7].
Narkiewicz[4] proved an important property of exact complements. He considered a

wider class.

Theorem 1.1 (Narkiewicz’s dichotomy). Let A,B be infitite sets of positive integers

such that the number r(x) of integers up to x not contained in their sumset A + B
satisfies r(x) = o(x). Under condition (1.2) we have

(1.3) A(2x)/A(x) → 1, B(2x)/B(x) → 2,

or this holds with the roles of A,B exchanged. If (1.3) holds, then for ε > 0 and

x > x0(ε) we have

(1.4) A(x) < xε, B(x) > x1−ε.
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This shows that polynomial sequences do not have an exact complement. The set of
primes does not have either, for less obvious reasons [6].
For the sequel we will assume that (1.3) holds, that is, A is small and B is large.
For exact complements Sárközy and Szemerédi[1] proved that if (1.2) holds, then

A(x)B(x) − x → ∞. (While this paper actually appeared in 1994, the result was
already announced in the 1966 edition of Halberstam and Roth’s book Sequences[3].)
They remark that their proof shows that

A(x)B(x)− x = o
(

A(x)
)

cannot hold, and they conjecture that

A(x)B(x)− x = O
(

A(x)
)

may be possible.
Chen and Fang[8] disproved this conjecture and considerably improved Sárközy and

Szemerédi’s bound. Their result shows that even

(1.5) A(x)B(x)− x = O
(

A(x)c
)

cannot hold for any constant c.
The aim of this paper is to improve Chen and Fang’s result and to show by means of

an example that there is precious little room for further improvement.
Write

a∗(x) = max{a ∈ A, a ≤ x.}

Theorem 1.2. Let A,B be infinite sets of positive integers such that the number r(x)
of integers up to x not contained in their sumset A + B satisfies r(x) = o(x). Suppose

they satisfy (1.2) and the notation corresponds to (1.3). If r(x) = o
(

a∗(x)
)

, then we

have

(1.6) A(x)B(x)− x >
(

1− o(1)
)a∗(x)

A(x)
.

The reason that this excludes (1.5) is that Narkiewicz’s dichotomy (1.4) implies that

A(x) = A
(

a∗(x)
)

< a∗(x)ε

hence a∗(x) is larger than any power of A(x). Chen and Fang’s result, though stated in
quite different terms, is equivalent to the lower bound

2

3

√

a∗(x).

The proof of Theorem 1.2 is based on their argument, with some parts improved.
Clearly the bound in (1.6) cannot be improved to a∗(x), since for x ∈ A we have

a∗(x) = x, and this would contradict (1.2). However, it is possible that such an im-
provement holds whenever a∗(x) is small compared to x. It is also a natural question,
also formulated by Chen and Fang, whether one can give an absolute lower bound, say
A(x)B(x)− x > log x. We show this is not the case.

Theorem 1.3. Let ω be a function tending to infinity arbitrarily slowly. There are

additive complements satisfying (1.2) such that for infinitely many values of x we have

(1.7) A(x)B(x)− x < min
(

ω(x), ca∗(x)
)

with some constant c.
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2. The lower estimate

Lemma 2.1. Let U, V be finite sets of integers. Put

σ(n) = #{(u, v) : u ∈ U, v ∈ V, u+ v = n}, δ(n) = #{(u, v) : u ∈ U, v ∈ V, v − u = n}.

We have
∑

σ(n)>1

(σ(n)− 1) ≥
1

|U |

∑

δ(n)>1

(δ(n)− 1).

Proof. We have
∑

σ(n) =
∑

δ(n) = |U ||V |,
∑

σ(n)2 =
∑

δ(n)2

by double-counting the quadruples satisfying u+ v = u′ + v′, which can be rearranged
as v − u′ = v′ − u, and σ(n) ≤ |U | for all n. Hence

∑

δ(n)>1

(δ(n)− 1) ≤
∑

(

δ(n)2 − δ(n)
)

=
∑

(

σ(n)2 − σ(n)
)

≤ |U |
∑

σ(n)>1

(σ(n)− 1).

�

This estimate can be doubled, as δ(n)−1 ≤
(

δ(n)2− δ(n)
)

/2 whenever δ(n) > 1, but
we cannot utilize this improvement.
There are sets U, V for which this estimate is correct up to a constant factor. It is

likely that the sets for which we shall apply this lemma are not of this kind, but I do
not see any way to show this.

Lemma 2.2. Assume that the sets A,B satisfy (1.2) and (1.3). Then

(2.1) A(cx)/A(x) → 1

uniformly in any range c1 < c < c2 with 0 < c1 < c2;

(2.2) B(cx)/B(x) → c

uniformly in any range c < c2 with 0 < c2. Furthermore

(2.3)
∑

a∈A,a≤x

a = o(xA(x)).

Proof. For c = 2k with a (positive or negative) integer k the claim (2.1) follows from an
iterated application of (1.3). For general c the claim for A follows from the monotonicity
of A(x). For B from (1.2) we get (2.2) for the same range; the range can be extended
down to 0 by the monotonicity of B(x).
To see (2.3) note that the sum with a ≤ εx contributes at most εxA(x), and the sum

with a > εx contributes at most

x
(

A(x)−A(εx)
)

= o(xA(x))

by (2.1). �

Proof of the Theorem. Fix an integer x and put U = A ∩ [1, x], V = B ∩ [1, x]. We use
the notations σ, δ as in Lemma 2.1. We have

A(x)B(x)− x = |U ||V | − x = y + z − r,
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where
y =

∑

σ(n)>1

(σ(n)− 1)

counts the excess multiplicities,

z = #{n : n > x, n ∈ U + V }

counts the unnecessarily large sums, and r = r(x) is the number of integers not in
A+B.
Let t = a∗(x). Adding t to any b ∈ B, b > x− t we get a sum > x, so

z ≥ B(x)− B(x− t).

If t ≥ x/2, we use only this and (1.3) with c = (x− t)/x to conclude

z ≥

(

1−
x− t

x
− o(1)

)

B(x) ∼
t

x
B(x) ∼

t

A(x)
.

(This argument works for t > cx with any fixed c > 0, but fails for very small t, which
is the typical situation.)
Assume now t < x/2. We are going to estimate y. Put V ′ = B ∩ [1, x− t]. We will

consider the sets V ′+U , V ′−U , and use σ′, δ′ to denote the corresponding representation
functions.
We have

∑

δ′(n) = |U ||V ′| = A(x)B(x− t).

As U ⊂ [1, t] and V ′ ⊂ [1, x− t], we have V ′ − U ⊂ [1− t, x− t− 1]. We show that few
sums lie in [1 − t, t]. Indeed, if b − a ≤ t with a ∈ U, b ∈ V ′, then b ≤ a + t, so for an
a ∈ A there are at most B(a+ t) possible choices of b, This gives altogether

∑

a∈U

B(a+ t) < (1 + o(1))
∑

a∈U

a+ t

A(a + t)

by (1.2). As A(a+ t) = A(t) = A(x) = |U | in this range, the sum is equal to

t +
1

|U |

∑

a∈U

a = (1 + o(1))t

by Lemma 2.2. Hence
∑

a∈U

B(a+ t) < (1 + ε)t.

This means that at least A(x)B(x− t)− (1+ ε)t pairs give a difference in the interval
[t+ 1, x− t− 1], which contains less than x− 2t integers. Consequently
∑

δ′n)>1

(δ′(n)− 1) >
(

A(x)B(x− t)− (1 + ε)t
)

− (x− 2t) = A(x)B(x− t)− x+ (1− ε)t.

We now apply Lemma 2.1 to the sets U, V ′ to conclude
∑

σ′(n)>1

(σ′(n)− 1) ≥
1

|U |

(

A(x)B(x− t)− x+ (1− ε)t
)

= B(x− t)−
x− (1− ε)t

A(x)
.

Clearly σ(n) ≥ σ′(n) for all n, so

y =
∑

σ(n)>1

(σ(n)− 1) ≥
∑

σ′(n)>1

(σ′(n)− 1).
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Adding the estimates we obtain

A(x)B(x)− x+ r = y + z ≥ B(x)−
x− (1− ε)t

A(x)
=

A(x)B(x)− x

A(x)
+

(1− ε)t

A(x)
,

which can be rearranged as

A(x)B(x)− x ≥
(1− ε)t

A(x)− 1
−

rA(x)

A(x)− 1
.

�

3. The construction

We prove Theorem 1.3.
Take an increasing sequence p1, p2, . . . of primes such that k3 < pk < (k+1)3, possibly

with finitely many exceptions. We shall construct a sequence of integers uk such that
uk > kuk−1, pk|uk and finite sets Ai of integers such that

A1 = {1, 2, . . . , p1}, Ak ⊂ (uk, 2uk) for k ≥ 2,

|A1| = p1, |Ak| = pk − pk−1 for k ≥ 2,

hence

|A1 ∪A2 ∪ . . . ∪ Ak| = pk,

and the set A1 ∪ A2 ∪ . . . ∪ Ak is a complete set of residues modulo pk. One of the
complements will be

A =
∞
⋃

k=1

Ak.

To specify the other set we put

Bk = {n : pk|n, kuk < n < (k + 3)uk+1}

and

B =
∞
⋃

k=1

Bk.

First we prove that such sets Ak exist, provided the sequence uk increases sufficiently
fast.

Lemma 3.1. There are integers vk, depending only on the primes pj, such that sets Ak

with the above described properties can be found whenever uk > vk for all k.

Proof. Write

δ =
∞
∏

i=k

(

1−
pk − 1

pj

)

and choose r so that
∞
∑

i=r+1

1

pi
<

δ

4pk
.

The positivity of δ and the existence of r follows from the convergence of the series
∑

1/pi. Write q = pkpk+1 . . . pr. We show that suitable sets can be found if uk > vk =
2q/δ.
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We will construct the sets Ak recursively. Given A1, . . . , Ak−1, a necessary condition
for the existence of Ak is that the elements of A1 ∪ A2 ∪ . . . ∪ Ak−1 be all incongruent
modulo pk. Hence the property which we shall preserve during the induction is:
“the elements of A1 ∪ A2 ∪ . . . ∪ Ak are all incongruent modulo pj for every j ≥ k.”

We assume this holds for k − 1 and we build Ak = {a1, a2, . . . , apk−pk−1
}.

Suppose a1, . . . , at−1 are already found. We want to find at so thatm = pk−pk−1+t−1
residue classes are forbidden for each pj, j ≥ k. In each interval of length q there are

q

r
∏

i=k

(

1−
m

pj

)

> δq

integers which avoid the m forbidden residue classes modulo all pj, k ≤ j ≤ r. In the
interval (uk, 2uk) this means at least δuk − q candidates.
Next we count the numbers in forbidden residue classes modulo pj, j > r. The

number of integers in a residue class a (mod p) in the interval (uk, 2uk) is exactly
[

2uk − a− 1

p

]

−

[

uk − a

p

]

≤
2uk

p
,

assuming that p < 2uk. We use this estimate for pj < 2uk. This excludes less than

pk

∞
∑

i=r+1

2uk

pi
< (δ/2)uk

integers.
Finally, if pj > 2uk, then there are no new excluded integers. Indeed, the only integer

satisfying n ≡ a (mod pj) with some a ∈ A1∪A2∪ . . .∪Ak−1∪{a1, . . . , at−1} is a itself,
which was already excluded (even several times) by previous congruences.
This leaves us at least (δ/2)uk − q integers to choose from, which is positive if uk >

2q/δ. �

Now we show that A,B are additive complements, then estimate A(x)B(x)− x.
To prove the first claim, take an arbitrary n > 3u1. It satisfies

(k + 2)uk < n ≤ (k + 3)uk+1

with some k. Select a ∈ A so that

a ∈ A1 ∪A2 ∪ . . . ∪ Ak, a ≡ n (mod pk).

As 1 ≤ a < 2uk, the integer b = n − a satisfies kuk < b < (k + 3)uk+1 and pk|b, so
b ∈ Bk.
Now we estimate B(x) for a typical x. This number satisfies kuk < x ≤ (k + 1)uk+1

for some k. All blocks Bj, j > k lie above x. An initial segment of Bk gives

Bk(x) ≤
x− kuk

pk

elements. To estimate the contribution of smaller blocks note that

|Bj | ≤
(j + 3)uj+1 − juj

pj
,

hence

B(x) ≤ Bk(x) + |Bk−1|+ |Bk−2|+ . . .+ |B1|
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≤
x

pk
+

k
∑

j=2

(

j + 2

pj−1
−

j

pj

)

uj.

This estimate is not quite exact, since possibly only a segment of Bk−1 is contained
in our interval, and the sets Bj are not disjoint; takint these into account would not
substantially improve our result.
By our assumption about the rate of growth of the sequence pj the coefficient of uj

in the above formula is O(j−3), that is,

B(x) ≤
x

pk
+ c1

k
∑

j=2

uj

j3
<

x

pk
+ c2

uk

k3

by our assumption about the rate of growth of the sequence uj.
Since Ak+2 consists already of elements > uk+2 > (k + 1)uk+1, we have A(x) ≤ pk+1,

consequently

A(x)B(x)− x <
pk+1 − pk

pk
x+ c2

ukpk+1

k3
= O(x/k) = o(x),

which shows that these sets are indeed exact complements.
For x = uk+1 we have A(x) = pk and uk < a∗(x) < 2uk, so

A(x)B(x)− x < c2
ukpk
k3

< c3uk < c3a
∗(x),

and also
c3uk < ω(x),

provided the sequence uj grows so fast that ω(uk+1) > uk. These estimates show the
bound (1.7).

4. Concluding remark

All known constructions of exact complements use a variant of this approach, namely
combining a complete set of residues modulo some integers pk (primes here, other sorts
of integers in other papers, depending on the situation) and multiples of these pk in an
interval. The difficulty is that multiples of pk are needed for a time after the appearance
of the firts few multiples of pk+1, which creates multiply represented sums. I see no way
to eliminate or reduce this effect, nor a way to improve the lower estimate which would
then vindicate this overkill.
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