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Abstract

Consider a monotone Boolean function f : {0, 1}n → {0, 1} and the canonical monotone
coupling {ηp : p ∈ [0, 1]} of an element in {0, 1}n chosen according to product measure
with intensity p ∈ [0, 1]. The random point p ∈ [0, 1] where f(ηp) flips from 0 to 1 is often
concentrated near a particular point, thus exhibiting a threshold phenomenon. For a sequence
of such Boolean functions, we peer closely into this threshold window and consider, for large
n, the limiting distribution (properly normalized to be nondegenerate) of this random point
where the Boolean function switches from being 0 to 1. We determine this distribution for
a number of the Boolean functions which are typically studied and pay particular attention
to the functions corresponding to iterated majority and percolation crossings. It turns out
that these limiting distributions have quite varying behavior. In fact, we show that any
nondegenerate probability measure on R arises in this way for some sequence of Boolean
functions.

Keywords. Boolean functions; sharp thresholds; influences; iterated majority function; near-
critical percolation

1 Introduction

It has been known for quite some time that typical events involving many independent random
variables exhibit “thresholds” in the sense that the probability of the given event changes sharply
as the parameter of the independent random variables varies. Observations of this kind were
first made in the context of random graphs by Erdős and Rényi [11]. A more general under-
standing of the existence of threshold phenomena has since then been obtained through a series
of papers. For instance, Russo [46] showed that a monotone event defined in terms of a family of
independent Bernoulli variables exhibits a threshold if its dependence on each variable is small.
Russo’s result was later refined by Talagrand [51]. The first estimates on the “sharpness” of
the threshold were obtained by Friedgut and Kalai [14], critically building on work originating
from Kahn, Kalai and Linial [31]. Related results also appeared in [4], [13] and elsewhere; see
also [32] for a more extensive overview of the field.

Less is known when it comes to closer inspections of the “threshold window”. Although the
windows corresponding to certain graph properties are well understood, there is to our knowledge
no general study of this transition. We aim with the present paper to offer a unified perspective
on threshold transitions, and show that these transitions present quite varying behavior.
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Let f : {0, 1}n → {0, 1} be a monotone (increasing) Boolean function and assign [0, 1]-
uniform random variables ξ1, ξ2, . . . , ξn to the elements of [n] := {1, 2, . . . , n}. For p ∈ [0, 1],
let ηp = {i ∈ [n] : ξi ≤ p}, and note that a) each i ∈ [n] is present in ηp with probability p
independently for different i; and b) i ∈ ηp implies i ∈ ηp′ for p′ > p. Thus, ηp corresponds
to an element ω ∈ {0, 1}n chosen according to product measure with intensity p, in the sequel
denoted by Pp, and (ηp)p∈[0,1] constitutes the standard monotone coupling of elements in {0, 1}n
chosen according to Pp, as p varies between 0 and 1. We study the random point p at which
f(ηp) changes from 0 to 1. For a given sequence of monotone Boolean functions (fn)n≥1, our
goal will be to find the (nondegenerate) limiting distribution of this random point after proper
normalization, should it exist. In the most interesting examples, one has a threshold phenomenon
where, for large n, Pp(fn) goes from 0 to 1 within a very small interval, which results in this
transition point having a degenerate limit; one then needs to renormalize in order to obtain
a nondegenerate limiting distribution. (If there is no threshold phenomenon, then this point
should already have a nondegenerate limit and no further analysis is made.) One of our goals is
to describe the distribution of this random point for some commonly studied Boolean functions.

To be more precise, given a monotone Boolean function f : {0, 1}n → {0, 1}, we define the
random variable

T (f) := min{p ∈ [0, 1] : f(ηp) = 1};

this is the point where f switches from 0 to 1 in the canonical coupling. Given a sequence (fn)n≥1

of monotone Boolean functions fn : {0, 1}n → {0, 1}, we want to find, if possible, normalizing
constants (an)n≥1 and (bn)n≥1 with the an’s nonnegative such that an(T (fn) − bn) converges,
as n→∞, to a nondegenerate limiting distribution, and to determine what that limit may be.
Observe that for x ∈ R

P
(
an(T (fn)− bn) ≤ x

)
= P

(
T (fn) ≤ bn + x/an

)
= Ppn

(
fn(ω) = 1

)
, (1)

where pn = bn + x/an. Recall the theorem of types (see [9, Theorem 3.7.5]) which tells us that
there is essentially only one way to normalize a sequence of random variables and that there is
essentially at most one possible nondegenerate limiting distribution. (The word “essentially” in
the latter part of the statement means “up to a change of variables of the form x 7→ ax+ b”).

Notation. When understood from the context, we will write Tn for T (fn).

The dictatorship function, which for every n outputs the value of the first coordinate of the
input, clearly has that Tn is uniformly distributed on the interval [0, 1] for each n and so no
scaling is needed. A simple example where scaling is needed is the OR function which is 1 if
and only if at least one bit is 1. In this case, it is immediate to check that nTn converges in
distribution to a unit exponential random variable. The cases when nontrivial normalization is
needed are exactly those covered in the next definition.

Definition. We say that (fn)n≥1 has a threshold if there exists a sequence (pn)n≥1 such that
for all ε > 0,

lim
n→∞

Ppn+ε(fn = 1) = 1 and lim
n→∞

Ppn−ε(fn = 1) = 0.

This is equivalent to Tn − pn approaching 0 in distribution. (Often pn will not depend on n.)

We give an alternative description of T (f) which will be useful to have in mind, in particular
when we study the Boolean function known as “tribes”. Recall that a 1-witness for f is a
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minimal set W ⊆ [n] such that {ωi = 1 for all i ∈ W} implies f(ω) = 1. Similarly, a 0-witness
for f is a minimal set W ⊆ [n] such that {ωi = 0 for all i ∈ W} implies f(ω) = 0. Witnesses
may be used to characterize T (f). Writing W 1 for the set of 1-witnesses and W 0 for the set of
0-witnesses for f , it is immediate to check that for any monotone Boolean function one has

T (f) = min
W∈W 1

max
i∈W

ξi = max
W∈W 0

min
i∈W

ξi. (2)

We next briefly discuss what one should expect the normalizing constants (an)n≥1 and (bn)n≥1

to be in typical situations. Certainly it is reasonable that bn should be close to E[Tn]. In cases
where we have a threshold, heuristically, the size of the “threshold interval” around pn where
Pp(fn = 1) moves from being near 0 to being near 1 should be governed by d

dpPp(fn = 1)
evaluated at p = pn. The Margulis-Russo formula (see e.g. [17, Theorem III.1]) tells us that
this is equal to the total influence at pn (defined below). Therefore the total influence dictates
what the scaling factor an should be. We mention that while this heuristic for the scaling works
in most natural examples, it is certainly not true in general. For example, if fn is the Boolean
function which is the AND of majority (to be defined later) on n bits and dictator, then the
total influence will be of order

√
n but no scaling (an ≡ 1) is needed to obtain a nondegenerate

limit for Tn.

Definition. Given a Boolean function f of n variables and a variable i ∈ [n], we say that i
is pivotal for f for ω if f(ω) 6= f(ωi) where ωi is ω but flipped in the ith coordinate. The
influence of the ith bit with respect to p, denoted by Infpi (f), is defined by

Infpi (f) := Pp( i is pivotal for f )

and the total influence with respect to p is defined to be
∑

i∈[n] Infpi (f).

1.1 Limiting behavior for some specific Boolean functions

We now summarize some of the results that we will obtain. The paper will begin by analyzing the
limiting distribution of Tn for the majority function (which will be normal), the tribes function
(which will be a reverse Gumbel distribution) and certain properties associated to graphs, such as
connectivity and clique containment. A connection between the tribes function and the coupon
collector problem is discussed. These results, which are not difficult, are presented in Section 2.

A class of functions that offers a quite interesting analysis is the so-called iterated majority
functions. For this class the analysis of the limiting distribution of Tn (both its existence and
its properties) requires somewhat more work and involves dynamical systems. Given an odd
integer m ≥ 3, the iterated m-majority function is defined recursively on mn bits as follows.
One constructs an m-ary tree of height n and places 0’s and 1’s at the leaves. One takes the
majority of the bits in each family of m leaves and thus obtains 0 and 1 values for the nodes at
height n − 1. One then continues iteratively until the root is assigned a value. This is defined
to be the output of the function.

The iterated majority function has been studied in various papers and is of interest in, among
other areas, theoretical computer science. Here we simply mention one paper, by Mossel and
O’Donnell [40], where these functions are explicitly studied. These authors showed that this
family, as m varies, provides examples of sequences of monotone Boolean functions where the
“noise sensitivity exponent” (which we do not define here) is arbitrarily close to 1/2.
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In Section 3 we identify the precise rate of decay for the tails of the limiting distributions
for this class of Boolean functions. To state the result of the analysis for iterated majority, we
let, for odd integers m ≥ 3,

γ(m) := m

(
m− 1
m−1

2

)
2−(m−1) and β(m) :=

log m+1
2

log γ(m)
.

Theorem 1. Consider, for each odd integer m ≥ 3, iterated m-ary majority on mn bits.

a) Then γ(m)n(Tn − 1
2) converges in distribution, as n tends to infinity, to a random vari-

able whose distribution Fm is symmetric, absolutely continuous and fully supported on R.
Moreover, for m 6= m′, Fm and Fm′ are not related by a linear change of variables.

b) There exist constants c1 = c1(m) and c2 = c2(m) in (0,∞) so that for all x ≥ 1,

exp(−c1x
β(m)) ≤ P(Wm ≥ x) ≤ exp(−c2x

β(m)),

where Wm has distribution Fm.

c) β(m) is strictly increasing, taking values in the interval (1, 2) and approaches 2 as m→∞.

d) The sequence (Fm)m≥1 approaches, as m→∞, a centered Gaussian with variance (2π)−1.

Remark. Note that parts b) and c) together state that the tails of Fm are between those of an
exponential and a Gaussian. The fact that β(m) approaches 2 is consistent with part d).

One of the most interesting and studied sequence of Boolean functions corresponds to per-
colation crossings of a square. The rich structure of this particular example has inspired an
extensive analysis; some parts of this recent development are presented in the book [18]. We
will state below a result for this example whose proof, unlike the proofs of all other results in
this paper which are proved from first principles, will be based on some recent highly nontrivial
developments in percolation and in so called near-critical percolation, due to Garban, Pete and
Schramm [15, 16], building on work by Kesten [33], see also [42].

To even begin this, we need to introduce a number of different concepts. However, we will
be very brief and refer to [52] and [17] for background and explanation of terms which are
not clear. We consider percolation on the hexagonal lattice embedded into R2. Given n, we
will consider the set of hexagons contained inside of [0, n] × [0, n], denoted by Bn, and we will
think of these hexagons as indexing our underlying i.i.d. random variables of which we will
then have approximately n2. We let fn be the indicator function of the event that there is a
path of hexagons from the left side of this box to the right side all of whose values are 1. It
is well known that there is a threshold at p = 1/2 which is the critical value for percolation
on the (full) hexagonal lattice. For critical percolation on the hexagonal lattice, we let α4(R)
be the probability that there are four paths of alternating value from a neighbor of the origin
0 to distance R away; this event is usually called the four-arm event. See Figure A.1 (in the
appendix) for a realization of this event (where 1 is replaced by black and 0 is replaced by
white). Using Schramm-Loewner evolution and conformal invariance, it was proved by Smirnov
and Werner [50] that

α4(R) = R−
5
4

+o(1) as R→∞.

A little bit of thought shows that if we have a hexagon H in Bn, not too close to the boundary,
which is pivotal for this crossing event, then the four-arm event to distance approximately n
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centered at H occurs. From here, it is possible to argue (see [17]) that the expected number of
pivotal hexagons for fn is, up to constants, n2α4(n). This suggests what the proper scaling of Tn
should be and this turns out to be correct. The following result will be proved in an appendix
to this paper authored by Gábor Pete.

Theorem 2. Consider percolation crossings of an n× n-square of the hexagonal lattice.

a) Then n2α4(n)(Tn− 1
2) converges in distribution, as n tends to infinity, to a random variable

whose distribution F is symmetric, absolutely continuous and fully supported on R.

b) There exist constants c1 and c2 in (0,∞) so that for all x ≥ 1

exp(−c1x
4/3) ≤ P(W ≥ x) ≤ exp(−c2x

4/3),

where W has distribution F .

Remark. The fact that the limit in part a) of this theorem exists follows from recent results
due to Garban, Pete and Schramm [16, Theorem 1.5 and Proposition 9.6], as stated already in
a previous version of this paper. However, the precise rate of decay, stated in part b), of the
tails of the limiting distribution was not known to us at the time, and only later found by the
appendix author.

1.2 Limiting behavior for general Boolean functions

When one considers the question about the limiting distribution of Tn for a given sequence of
Boolean functions, it is natural to ask which distributions on R can arise as normalized limits of
such a sequence of Tn. The next result, proved in Section 4, says that they all do. We remind
the reader that a function f : {0, 1}n → {0, 1} is called transitive if it is invariant with respect
to a transitive group of permutations of [n].

Part b) of the following theorem has been obtained jointly with Anders Martinsson.

Theorem 3. Let µ denote any probability measure on R.

a) For any sequence (an)n≥1 satisfying 1 � an �
√
n, there exists a sequence (fn)n≥1 of

monotone functions fn : {0, 1}n → {0, 1} for which an(Tn− 1
2) approaches µ in distribution.

b) For any sequence (an)n≥1 satisfying log n� an �
√
n, there exists a sequence (fn)n≥1 of

monotone and transitive functions fn : {0, 1}n → {0, 1} for which an(Tn − 1
2) approaches

µ in distribution.

Remark. By modifying the construction leading to part b) one may obtain, for any sequence
(an)n≥1 satisfying (log n)2 � an � n, a sequence (fn)n≥1 of monotone graph properties, defined
on n vertices and

(
n
2

)
edges, for which an(Tn − 1

2) approaches µ in distribution. Moreover, the
centralizing coefficient of Theorem 3 could in greater generality be replaced by any sequence
(bn)n≥1 bounded away from 0 and 1, although this may be of less interest. We further mention
that Rossignol [45] has previously showed that for any sufficiently smooth sequence (an)n≥1

satisfying log n ≤ an ≤
√
n there exists an increasing sequence (N(n))n≥1 and monotone and

transitive Boolean functions (fN(n))n≥1 with a threshold at 1/2 of width 1/an.

There are some conditions that the scaling coefficients (an)n≥1 have to meet in order to
obtain a non-degenerate limit. Further restrictions apply in order not to impose properties on
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the limiting distribution. These facts are described in the following proposition. While some
of these facts are well known to many we present them here for convenience to the reader, and
provide a proof in Section 4. Together they show that Theorem 3 is in fact sharp.

Proposition 4. Assume that an(Tn − bn) converges, as n tends to infinity, to some non-
degenerate probability measure µ, and that (bn)n≥1 is bounded away from 0 and 1. Then:

a) The sequence (an/
√
n)n≥1 is bounded from above.

b) If the functions (fn)n≥1 are transitive, then (an/ log n)n≥1 is bounded away from 0.

c) If (an)n≥1 is bounded from above, then µ is necessarily fully supported on a (finite) interval.

d) If the functions (fn)n≥1 are transitive and (an/ log n)n≥1 is bounded from above, then µ is
necessarily fully supported on a (possibly infinite) interval.

e) If (an/
√
n)n≥1 is bounded away from 0, then µ is necessarily absolutely continuous.

Remark. Part e) of the above proposition was pointed out to us by Anders Martinsson. We also
mention that the statement in the previous remark regarding graph properties is also essentially
best possible, due to the work of Bourgain and Kalai [7].

Interestingly, there are sequences of nondegenerate random variables (Xn)n≥1 which are not
renormalizable in the sense that for no subsequence (Xnk)k≥1 are there normalizing constants
(ak)k≥1 and (bk)k≥1 with the ak’s nonnegative so that ak(Xnk − bk) converges, as k → ∞,
to a nondegenerate limiting distribution. A typical example of such a sequence is given by
Xn = enZ where Z is a standard normal random variable. The vague idea is that when we try
to scale down to keep mass from going to infinity, then the result will be that all the mass is
accumulating at 0. Another example, which we will exploit, is when Xn is uniformly distributed
on {±2k : k = 1, 2, . . . , n}.

The following proposition shows that one cannot necessarily extract a subsequence of (Tn)n≥1

which after normalization converges to a nondegenerate limit.

Proposition 5. There exists a (nondegenerate) sequence (fn)n≥1 of monotone (and transitive)
Boolean functions fn : {0, 1}n → {0, 1} so that no subsequence of (Tn)n≥1 can be renormalized
to have a nondegenerate limiting distribution.

Remark. The proof of this result, provided in Section 4, will be based on Theorem 3. We may
therefore assume that the functions in the obtained sequence are transitive if we so wish.

We end this introductory section with an open question. As the reader may notice, all exam-
ples we have worked out yield a limiting distribution with exponentially or super-exponentially
decaying tails. Although our Theorem 3 certainly shows that there are (sequences of) mono-
tone Boolean functions giving rise to limiting distributions with heavier tails, the examples we
construct are not very natural. Are there any “natural” examples whose limiting distributions
present sub-exponential tails?

2 Some elementary examples

2.1 Majority and the standard normal

Majority is an example providing nontrivial, although classical, scaling behavior. The majority
function on n bits is defined to output the value 1 if there are at least n/2 bits with the value 1.
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More generality, we consider biased majority, which is the function with output 1 if and only if
there are at least pn bits valued 1, where p ∈ (0, 1) is a fixed parameter. The correct scaling
factor will be of order

√
n and the limit will be Gaussian, as stated in the following proposition.

Proposition 6. For every p ∈ (0, 1) we have for the p-biased majority function on n bits that√
n

p(1−p)(Tn − p) converges in distribution to a standard normal.

Note that the multiplicative scaling is of order
√
n and coincides with the order of the total

influence at the relevant parameter p; hence it is consistent with the heuristic described above.

Proof. Let x ∈ R, an =
√
n/[p(1− p)] and pn = p+ x/an. For large n we have pn ∈ [0, 1], and

P
(
an(Tn − p) ≤ x

)
= P(Tn ≤ pn) = Ppn

( n∑
i=1

ωi ≥ np
)
.

We of course have a sum of n Bernoulli variables with success probabilities pn.
A consequence of the Lindeberg-Feller central limit theorem (see e.g. [9, Theorem 3.4.5]) is

that if {Xi,n : 1 ≤ i ≤ n, n ≥ 1} is a family of bounded random variables, such that for each n,
{Xi,n : 1 ≤ i ≤ n} are i.i.d. with zero mean and variance that tends to 1 as n increases, then∑n

i=1Xi,n/
√
n converges in distribution to a standard normal.

Since Varpn(ωi) = pn(1 − pn), which tends to p(1 − p), and (np − npn)/
√
np(1− p) = −x,

the above consequence of the Lindeberg-Feller theorem implies that, as n→∞,

Ppn
( n∑
i=1

ωi ≥ np
)

= Ppn
( n∑
i=1

ωi − pn√
np(1− p)

≥ np− npn√
np(1− p)

)
→ Φ(x),

the distribution function of a standard normal distribution.

2.2 Tribes, Gumbel and coupon collectors

The tribes function on n bits is defined as follows. Given `n, partition [n] into bn/`nc sets
(‘tribes’) of length `n (plus some residual bits). Then fn(ω) = 1 if and only if ω is all 1’s for at
least one tribe. The correct choice for `n, in order for the distribution of to be nondegenerate
for the uniform measure, is of order log2 n− log2 log2 n.

Proposition 7. Consider tribes with `n = blog2 n−log2 log2 nc, set αn = (log2 n−log2 log2 n)/`n.
Then for all x ∈ R we have

lim
n→∞

P
(

2(log2 n)
(
Tn −

(
1
2

)αn) ≤ x)→ 1− exp(−ex).

Note that the multiplicative scaling is of order log2 n, which can be checked to be the order
of the total influence at the relevant parameter 1/2; again, this is consistent with the heuristic
described in the introduction. Note also that the upper tail of this limiting distribution decays
super-exponentially, whereas the lower tail just decays exponentially.
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Proof. Note that the bn/`nc tribes of length `n corresponds to the 1-witnesses for the tribes
function. Let Xn denote the number of tribes (1-witnesses) for which ω is all 1. For ω ∼ Pp, we
see that Xn is binomially distributed with parameters bn/`nc and p`n . Clearly, bn/`nc → ∞ as
n→∞. Also, for all x ∈ R we have

bn/`nc
((

1
2

)αn +
x

2 log2 n

)`n
= bn/`nc

(
1
2

)αn`n (1 +
x

21−αn log2 n

)`n
→ ex

as n → ∞. Given x ∈ R and letting pn = (1
2)αn + x

2 log2 n, we therefore have, by the Poisson
convergence theorem (see e.g. [9, Theorem 3.6.1]), that for ω ∼ Ppn , Xn(ω) converges in law to
a Poisson distribution with parameter ex. Since for each n,

P
(
Tn ≤

(
1
2

)αn +
x

2 log2 n

)
= Ppn(Xn ≥ 1),

we thus conclude that

lim
n→∞

P
(
Tn ≤

(
1
2

)αn +
x

2 log2 n

)
= 1− exp(−ex),

as we needed to show.

Remark. The unfortunate term αn arises due to the fact that log2 n−log2 log2 n is not an integer.
A related fact is that if p = 1/2, then the number of tribes which are identically 1 has all Poisson
distributions with parameter in [1, 2] as subsequential limits. If we were to restrict outselves to

n’s of the form 22k , then log2 n− log2 log2 n would be an integer and we would have the simpler
form that

lim
n→∞

P
(

2(log2 n)
(
Tn − 1

2

)
≤ x

)
→ 1− exp(−ex)

along this thin subsequence of n.

The reader might recognize the limiting distribution obtained in Proposition 7. In general
if X has distribution F (x), then −X has distribution 1− F (−x). If Y is distributed according
to the above limiting distribution, then −Y has distribution exp(−e−x) which is known as
the standard Gumbel distribution. This distribution often arises in extreme value theory and
in particular is the limiting distribution after proper normalization of a) the maximum of n
independent unit exponential random variables (where one subtracts logn but uses no scaling
factor to normalize); and b) the number of picks needed to collect n coupons when each pick is
uniform (where one subtracts n log n and divides by n to normalize). Heuristically, the reason
that one gets the same limiting distribution in these two models is that in the latter case, we
have the maximum of n weakly dependent geometric random variables with parameters 1/n.
When dividing by n (which explains the difference of a factor of n in the two normalizations),
the geometric random variables become unit exponentials in the limit.

While we will not give an alternative proof of Proposition 7 based on these ideas, we want
to explain why we obtained the limiting distribution there that we did.

Given a Boolean function f , define its reversal f̂ by f̂(ω) = 1 − f(1 − ω) and observe that
f̂ is also a monotone Boolean function. One immediately checks that T (f̂) and 1 − T (f) have
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the same distribution. If fn is our tribes function, then this distributional relationship and
Proposition 7 easily yields that

2(log2 n)
(
T (f̂n)− 1 +

(
1
2

)αn) (3)

converges to the standard Gumbel distribution. We now give a heuristic for this. Clearly, f̂n is
the function which is 0 if and only if there is a tribe which is all 0’s. (The tribes are 0-witnesses
for f̂n.) One easily checks that T (f̂n) is the smallest p such that each tribe has a 1 in it with
respect to ηp; compare with (2). The distribution of the time at which a given tribe gets its first
1 is equal to the distribution of the minimum of `n uniform random variables. The minimum of
k uniform random variables after multiplying by k converges to a unit exponential. Therefore,
since different tribes are disjoint (and hence their corresponding uniform random variables are
independent) and have size `n, it follows that `nT (f̂n) is approximately the maximum of bn/`nc
unit exponential random variables. Therefore one should have that

`nT (f̂n)− log(bn/`nc) = `n

(
T (f̂n)− log(bn/`nc)

`n

)
converges to the Gumbel distribution. This is certainly close to (3) and heuristically explains
the reverse Gumbel distributional limit.

Remark. The so-called circular tribes function is a more symmetric version of tribes and perhaps
more natural. It is defined as follows. We place the n bits in a circle and define fn(ω) to be 1
if ω contains an interval of 1’s of length blog2 nc. One can prove in a similar manner that the
corresponding sequence Tn also has the reverse Gumbel distribution as a limit. The situation
is however slightly different than for tribes since the number of such intervals containing all 1’s
is no longer Poisson but rather compound Poisson, where the summands are mean 2 geometric
random variables.

2.3 Random graph properties

In this subsection we cover a few monotone functions related to random graphs. We remind
the reader that a random graph on n vertices is obtained by declaring each of the possible

(
n
2

)
edges open with probability p ∈ (0, 1). Equivalently, this amounts to determining an element

ω ∈ {0, 1}(
n
2) according to Pp. We first discuss two functions whose critical values occur near 0.

The proof of the following proposition is very straightforward (when using well known results)
and hence we only sketch the proof.

Proposition 8.

a) Let fn be the function corresponding to containing a triangle in a graph with n vertices.
Then, for all x ≥ 0, we have that

lim
n→∞

P
(
nTn ≤ x

)
= 1− exp(−x3/6).

b) Let fn be the function corresponding to a graph with n vertices being connected. Then, for
all x ∈ R, we have that

lim
n→∞

P
(
nTn − log n ≤ x

)
= exp(−e−x).
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The multiplicative scaling n can in both cases be checked to be the order of the total influence
at the relevant parameter.

Proof. a) It is well known (see e.g. [3, Theorem 4.1]) that if p = x/n, then the number of
triangles contained in the random graph converges to a Poisson distribution with parameter
x3/6. The result follows immediately using (1).

b) It is well known (see e.g. [3, Theorem 7.3]) that for any x ∈ R, if p = (log n + x)/n, the
probability that the random graph is connected approaches exp(−e−x). The result follows.

Remark. We see that in part a) of the above proposition the threshold is coarse and the support
of the limiting distribution bounded to the left, while in part b) the threshold is sharp and
the support unbounded to the left. This in an instance of the general phenomenon that only
sharp thresholds may give rise to limiting distributions supported on the whole line. More
precisely, assume that (bn)n≥1 is bounded away from 1 and that an(Tn − bn) converges, as n
tends to infinity, to some probability measure µ. Then a coarse threshold is characterized by
the sequence (anbn)n≥1 being bounded above, and if c is an upper bound on this sequence, then
the support of µ is contained in [−c,∞).

A clique is a maximal complete subgraph of a graph. At a given parameter p ∈ (0, 1), the
expected number of complete subgraphs of size ` of a random graph on n vertices falls abruptly
from being very large to being very small, as ` increases. As a consequence, the maximal clique
size of a random graph is highly concentrated, with high probability equal to either of two
consecutive values `n − 1 or `n, where `n = `n(p). Using Stirling’s approximation one sees that
this sequence must satisfy `n ∼ 2 log1/p n. This is well known; see e.g. [3, Chapter 4].

We will be interested in the function encoding the existence of a clique of size `n. For most
values of n the maximal sized clique consists of `n vertices with probability close to 1. However,
along certain subsequences this probability remains bounded away from 1. Instead of restricting
to subsequences we may allow p to vary, similar to the case of tribes. We simply state this result
without proof since the argument follows more or less the argument for tribes. One obtains
the result by proving Poisson approximation for the number of complete graphs of a given size.
While this is more involved than for tribes, it is proved in [3, Theorems 11.7 and 11.9].

Proposition 9. Let p ∈ (0, 1) and `n = `n(p) be the above mentioned sequence. Let p1, p2, . . .
be any sequence bounded away from 0 and 1 such that the limit

λ := lim
n→∞

(
n

`n

)
p
(`n2 )
n exists in (0,∞).

Then, for the Boolean function encoding the existence of a complete graph of size `n, we have

lim
n→∞

P
(
`2n

2pn

(
Tn − pn

)
≤ x

)
= 1− exp(−λex) for x ∈ R.

3 Iterated majority

In this section, we will analyze iterated majority and prove Theorem 1. In order to understand
the asymptotic behavior of iterated majority, one is led to study its recursive structure. The
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limiting distribution will be described through the iterates of some function g : [0, 1] → [0, 1],
and the appropriate scaling will be determined by the derivative of g at 1

2 .
We begin by describing what the limiting distribution Fm will be. Define g : [0, 1] → [0, 1]

as the probability at parameter x ∈ [0, 1] that the majority on m bits equals 1. Formally, g is
given by

g(x) =
m∑

k=(m+1)/2

(
m

k

)
xk(1− x)m−k.

Observe that γ(m), which will be our scaling coefficient satisfies

γ(m) :=
m

m− 1
γ(m− 2). (4)

It is clear that γ(m) is increasing in m, and Stirling’s approximation says that γ(m) ∼
√

2m/π
as m tends to infinity. It turns out that the total influence for fn, i.e. iterated majority on mn

bits (where m is implicit), is γn and we will below see that γ coincides with the derivative of
g at 1

2 . The recursive structure of γ(m) stated in (4) easily yields that γ(m) < m
2 , implying

in turn that β(m) > 1 for all m ≥ 3. Also, using γ(m) ∼
√

2m/π, we find that β(m) → 2 as
m→∞.

It turns out to be convenient to consider the translate

h(x) = g(1
2 + x)− 1

2

of g. The scaling limit of iterated m-majority will be described in terms of the limit as n→∞
of h(n)(αγ−n), where α ∈ R and h(n) denotes the composition of h with itself n times.

We will break up the proof of the four parts of Theorem 1 into subsections.

3.1 Proof of part a)

We begin with the following proposition which will be central for our analysis.

Proposition 10. For every odd integer m ≥ 3 and α ∈ R, the limit L(α) := limn→∞ h
(n)
(
αγ−n

)
exists and the resulting function L : R → (−1

2 ,
1
2) is odd, onto, 1-Lipschitz continuous, strictly

increasing and continuously differentiable.

We first need the following lemma.

Lemma 11. The function h : [−1
2 ,

1
2 ]→ [−1

2 ,
1
2 ] is odd, onto, strictly increasing, strictly convex

on [−1
2 , 0] and strictly concave on [0, 1

2 ]. In particular h′(x) ≤ h′(0) = γ(m) for x ∈ [−1
2 ,

1
2 ].

Proof. It suffices to demonstrate the corresponding characteristics for g. From the interpretation
of g as a probability, it is clear that g is strictly increasing, maps 0, 1

2 and 1 to themselves, and
that

g(x) = P
(
Bin(m,x) ≥ m/2

)
= 1− P

(
Bin(m,x) < m/2

)
= 1− g(1− x).

Thus h is odd, strictly increasing, has fixed points at −1
2 , 0 and 1

2 , and is therefore also onto.
We know that g is differentiable and we aim to determine its derivative. Note that

g′(1) = g′(0) = lim
x→0

∑
k≥m/2

(
m

k

)
xk−1(1− x)m−k = 0.

11



Next, pick δ > 0 and let ξ1, ξ2, . . . , ξm be independent and [0, 1]-uniformly distributed. Using
the monotone coupling we find that

g
(
x+ δ(1− x)

)
− g(x) = P

(
#{ξi ≤ x} < m/2,#{ξi ≤ x+ δ(1− x)} ≥ m/2

)
.

Conditioning on the number of ξi’s whose value is at most x we arrive at∑
k≤m/2

(
m

k

)
xk(1− x)m−k P

(
#{ξi ≤ x+ δ(1− x)} ≥ m/2

∣∣∣#{ξi ≤ x} = k
)
.

The above conditional probability coincides with the probability that a binomial random variable
with parameters m− k and δ is at least m/2− k, and is thus independent of x. In addition,

δ−1 P
(
Bin(m− k, δ) ≥ m/2− k

)
=

∑
`≥m/2−k

(
m− k
`

)
δ`−1(1− δ)m−k−`,

and sending δ to 0 leaves us with m−k = (m+ 1)/2 in case k = (m− 1)/2, and 0 for all smaller
values of k. In conclusion, for x ∈ (0, 1),

g′(x) = lim
δ→0

g
(
x+ δ(1− x)

)
− g(x)

δ(1− x)
=

m+ 1

2

(
m
m−1

2

)[
x(1− x)

]m−1
2 . (5)

Differentiating once more gives

g′′(x) =
m+ 1

2

m− 1

2

(
m
m−1

2

)[
x(1− x)

]m−3
2 (1− 2x).

In conclusion, the derivative of g is strictly positive on (0, 1), and the second derivative is
strictly positive on (0, 1

2) and strictly negative on (1
2 , 1). So h possesses the claimed properties

and h′ reaches its maximum at the origin, which is easily seen to equal γ(m).

The proof of Proposition 10 will make repeated use of the properties of h displayed in
Lemma 11. For instance, we note that h cannot have any fixed points other than −1

2 , 0 and 1
2 .

Proof of Proposition 10. Since h(0) = 0 we also have L(0) = 0, and since h is odd the limit
L(α), if it exists, has to be odd as well. In particular, it will be sufficient to consider α ≥ 0 for
the rest of this proof.

Existence. Given α ≥ 0, choose n0 such that αγ−n ≤ 1
2 for all n ≥ n0. Note that we

may obtain h(n)(αγ−n) from αγ−(n+1) by first multiplying by γ, and then applying h n times.
h(n+1)(αγ−(n+1)) is similarly obtained from αγ−(n+1) by first applying h once, and then another
n times. Lemma 11 shows that the derivative of h is bounded by γ. Hence γx ≥ h(x) for all
x ∈ [0, 1/2], and it follows that h(n)(αγ−n) is decreasing in n for n ≥ n0. Since the sequence is
bounded below by 0, the limit L(α) necessarily exists for all α ≥ 0.

1-Lipschitz Continuity. Using again that |h′| ≤ γ, together with iterated use of the mean
value theorem, we find for α, α′ ∈ R that∣∣L(α)− L(α′)

∣∣ = lim
n→∞

∣∣h(n)(αγ−n)− h(n)(α′γ−n)
∣∣ ≤ lim inf

n→∞
γn
∣∣αγ−n − α′γ−n∣∣ = |α− α′|,

12



where we also have used that αγ−n and α′γ−n are contained in [−1
2 ,

1
2 ] for large n.

An observation that will be important for the rest of this proof is that, by continuity of h,
for all α ∈ R

h
(
L(α)

)
= lim

n→∞
h(n+1)(αγ−n) = L(αγ). (6)

Iterating this yields that

L(α) = h
(
L(αγ−1)

)
= h(n)

(
L(αγ−n)

)
. (7)

Strict Monotonicity. Note that weak monotonicity of course follows from h being increasing.
We will next aim to show that for α ≥ α′ ≥ 0 sufficiently small, we have

L(α)− L(α′) ≥ (α− α′)
∞∏
k=1

(
1− α

(
3
4

)k)
. (8)

Apart from showing that L is strictly increasing in a neighborhood around the origin, (8) will
be an important step in the proof of differentiability of L. Note that strict monotonicity of L
would follow for all α ∈ R by (7) and (8), since h is strictly increasing.

We now deduce (8). Using concavity of h on [0, 1
2 ], we observe that 4

3 ≤ γ − 1
6 ≤ h′(x) ≤ γ

on some interval [0, c], where c = c(m) > 0. So, by the mean value theorem we conclude that

4
3x ≤ h(x) ≤ γx on [0, c].

Consequently, for all α ∈ [0, c] and 1 ≤ k ≤ n, we have h(k)(αγ−n) ≤ α, and therefore

h(k)(αγ−n) ≤ 3
4 h

(k+1)(αγ−n) ≤
(

3
4

)n−k
h(n)(αγ−n) ≤ α

(
3
4

)n−k
.

Now, for any α′ ≤ α in [0, c] and given n, we obtain, from iterated use of the mean value theorem,
the existence of constants {snk}1≤k≤n with snk ∈

[
h(k−1)

(
α′γ−n

)
, h(k−1)

(
αγ−n

)]
and such that

h(n)
(
αγ−n

)
− h(n)

(
α′γ−n

)
=
(
αγ−n − α′γ−n

) n∏
k=1

h′(snk). (9)

Since h′ is decreasing on [0, 1
2 ] and h′′(0) = 0, we have that h′(x) is bounded below by γ(1− x)

on some, possibly smaller, interval [0, c′]. As a consequence we obtain the lower bound on (9),

(
αγ−n − α′γ−n

) n∏
k=1

γ
(
1− h(k−1)(αγ−n)

)
≥ (α− α′)

n∏
k=1

(
1− α

(
3
4

)n−k+1)
= (α− α′)

n∏
k=1

(
1− α

(
3
4

)k) ≥ (α− α′)
∞∏
k=1

(
1− α

(
3
4

)k)
.

(10)

Combining (9) and (10) and letting n→∞ yields (8) for every α′ ≤ α in [0, c′].
Continuous Differentiability. Using (7) we have for any α ≥ 0 and δ ∈ R that

L(α+ δ)− L(α) = h(n)
(
L
(
(α+ δ)γ−n

))
− h(n)

(
L(αγ−n)

)
=
[
L
(
(α+ δ)γ−n

)
− L(αγ−n)

] n∏
k=1

h′
(
h(k−1)

(
L(αkγ

−n)
))
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and where we in the last step have used the mean value theorem iteratively; the αk’s are
bounded between α and α + δ. By continuity and monotonicity of h and L, these αk’s exist.
Using h(k−1)

(
L(α)

)
= L(αγk−1), and reindexing the terms of the product, we arrive at

L(α+ δ)− L(α)

δ
=

L
(
(α+ δ)γ−n

)
− L(αγ−n)

δγ−n

n∏
k=1

γ−1h′
(
L(αn−k+1γ

−k)
)
. (11)

We now want to take limits. First, since L is 1-Lipschitz continuous,

lim sup
δ→0

L(α+ δ)− L(α)

δ
≤

n∏
k=1

γ−1h′
(
L(αγ−k)

)
,

which is decreasing in n. Second, we note that the infinite product in (8) tends to 1 as α → 0.
Applying this to the first term in (11), we conclude that for every ε > 0, if n is sufficiently large,
then

lim inf
δ→0

L(α+ δ)− L(α)

δ
≥ (1− ε)

n∏
k=1

γ−1h′
(
L(αγ−k)

)
.

Sending n to infinity, and then ε to zero, we conclude that the inferior and superior limits
coincide and that

L′(α) = lim
δ→0

L(α+ δ)− L(α)

δ
=
∞∏
k=1

γ−1h′
(
L(αγ−k)

)
. (12)

Since h′ ≤ γ the limit is finite, and since L(αγ−k) ≤ αγ−k and h′(x) ≥ γ(1− x) for small x ≥ 0,
the limit is strictly positive for all α ∈ R. This, again, shows that L is strictly monotone on R.

We need to show that L′ is continuous, and note, based on (12), that L′ is decreasing on
[0,∞) since L is increasing. Since also L′ > 0 on R it follows that

∞∏
k=`

γ−1h′
(
L(αγ−k)

)
→ 1 as `→∞

uniformly on compact sets. Thus, for every ε > 0∣∣∣∣∣ limx→α
L′(x)−

∏̀
k=1

γ−1h′
(
L(αγ−k)

)∣∣∣∣∣ < ε

for large enough `, showing that limx→α L
′(x) = L′(α).

Surjectivity. Since L(0) = 0 and L is continuous, it remains to show that L(α) → 1
2 as

α→∞. For any k ∈ N we have from (7) that L(αγk) = h(k)
(
L(α)

)
. Since L(α) > 0 for α > 0,

the properties of h imply that h(k)
(
L(α)

)
→ 1

2 as k →∞. Together with the proven continuity
of L and its weak monotonicity, this shows that L maps [0,∞) onto [0, 1

2).

We now use the above to analyze the asymptotics of Tn for iterated m-majority on mn bits
to prove part a) of Theorem 1. With x ∈ R fixed, the goal will be to relate, for large n, the
probability P(Tn ≤ pn), where pn = 1

2 + xγ−n, with the function L : R → [−1
2 ,

1
2 ] defined in

Proposition 10.
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Given p ∈ (0, 1) and n ∈ N, let

qn(p) := Pp
(
fn(ω) = 1

)
.

Using the iterated majority structure, it is easy to express qn(p) in terms of qn−1(p). Specifically,
qn(p) is the probability that a binomial random variable with parameters m and qn−1(p) is at
least m/2. That is,

qn(p) = P
(
Bin(m, qn−1(p)) ≥ m/2

)
= g

(
qn−1(p)

)
,

where g is defined as above. Of course, the base case q0(p) equals the probability of the majority
function on one bit being 1, which equals p. Iterating the above procedure we get qn(p) = g(n)(p).
Replacing p by pn = 1

2 + xγ−n leaves

P(Tn ≤ pn) = Ppn
(
fn(ω) = 1

)
= qn(pn) = g(n)

(
1
2 + xγ−n

)
= 1

2 + h(n)(xγ−n),

which, according to Proposition 10, converges as n→∞ to 1
2 + L(x).

That the limiting distribution is absolutely continuous and fully supported on R is a conse-
quence of the properties of L established in Proposition 10. The final sentence of part a) follows
from parts b) and c).

Remark. Observe that the first equality in (7) has a very nice interpretation. It says that
the two homeomorphisms x 7→ γx from R to itself and x 7→ h(x) from [−1/2, 1/2] to itself are
conjugate and that L provides a conjugation between these homeomorphisms (showing that they
are conjugate). We know that L is also a homeomorphism. Since the two conjugate mappings
are analytic, one might guess that one can show that L has good properties (such as analyticity
or being continuously differentiable) by virtue of the fact it is a conjugacy between these systems.
This is unfortunately not true. One can construct self-conjugacies f of x 7→ γx which, while
being homeomorphisms, are not continuously differentiable. Being a self-conjugacy amounts to
saying that f(γx) = γf(x) and so in particular we are saying that f(γx) = γf(x) does not imply
that f is linear even for homeomorphisms. Since L ◦ f would also be a conjugacy between the
two systems, one cannot conclude good properties of L using only the fact that it is a conjugacy.

3.2 Proof of part b)

We first need the following lemma.

Lemma 12. For every odd integer m ≥ 3 there exists ε0 = ε0(m) > 0 such that for all ` ≥ 1
and ε ∈ (0, ε0),

ε(m+1
2

)` ≤
∣∣∣h(`)

(
1
2 − ε

)
− 1

2

∣∣∣ ≤ (9ε)(m+1
2

)` .

Proof. First note that
1
2 − h

(
1
2 − ε

)
= 1− g(1− ε) = g(ε),

which after iteration leaves us with 1
2 − h

(`)(1
2 − ε) = g(`)(ε). In addition, each term in g with

non-zero coefficient has degree at least (m+ 1)/2. Thus,

g(x) =

(
m
m+1

2

)
x
m+1

2
(
1 + r(x)

)
15



for some polynomial r(x)→ 0 as x→ 0. Since(
m
m+1

2

)
=

(
m
m−1

2

)
≤
(

2em

m− 1

)m−1
2

≤ 9
m−1

2 ,

we see that g(ε) lies in
[
ε
m+1

2 , (9ε)
m+1

2 /9
]

for all sufficiently small ε. Using the fact that g is

increasing and g(x) ≤ x on (0, 1
2), it then follows by two inductions that ε(m+1

2
)` and (9ε)(m+1

2
)`/9

are lower respectively upper bounds for g(`)(ε).

Now, fix m ≥ 3, and let ε0 = ε0(m) > 0 be given as in Lemma 12. We first show the second
inequality. Since L approaches 1

2 continuously, we can choose a0 > 0 so that L(a0) = 1
2 −

ε0
9 .

Given x ≥ 1, let nx := blogγ
x
a0
c. We first restrict to x’s which are sufficiently large so that

nx ≥ 1. This immediately yields
a0 ≤ xγ−nx .

Using (7) and monotonicity of L and h, we have

L(x) = h(nx)
(
L(xγ−nx)

)
≥ h(nx)

(
L(a0)

)
.

By Lemma 12 and the definition of a0, we have that

P(Wm ≥ x) = 1
2 − L(x) ≤ 1

2 − h
(nx)
(
L(a0)

)
= 1

2 − h
(nx)
(

1
2 −

ε0
9

)
≤ ε

(m+1
2

)nx

0 .

An easy computation shows that, for all x for which nx ≥ 1(
m+ 1

2

)nx
≥ 2

m+ 1

(
x

a0

)β(m)

.

From this, the upper bound follows with c2 = − 2
m+1a

−β(m)
0 log ε0 for all large x. By decreasing

c2 if necessary, one can of course get the desired inequality for all x ≥ 1.
We now move to the lower bound. This time, choose a0 > 0 so that L(a0) = 1

2 −
ε0
2 , and

given x ≥ 1, let nx := dlogγ
x
a0
e. We again restrict to large x for which nx ≥ 1. This immediately

yields
a0 ≥ xγ−nx .

Using (7) and monotonicity of L and h, we have

L(x) = h(nx)
(
L(xγ−nx)

)
≤ h(nx)

(
L(a0)

)
.

By Lemma 12, we have that

P(Wm ≥ x) = 1
2 − L(x) ≥ 1

2 − h
(nx)
(
L(a0)

)
= 1

2 − h
(nx)
(

1
2 −

ε0
2

)
≥
(
ε0
2

)(m+1
2

)nx
.

An easy computation shows that one has, for all x for which nx ≥ 1, that(
m+ 1

2

)nx
≤ m+ 1

2

(
x

a0

)β(m)

.

From this, the lower bound follows for some c1 for all large x, and by increasing c1 if necessary,
one can of course get the desired inequality for all x ≥ 1. This proves part b).
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3.3 Proof of part c)

We set out to show that β(m) is strictly increasing. Since

β(m+ 2)− β(m) =
log m+3

2 log γ(m)− log m+1
2 log γ(m+ 2)

log γ(m) log γ(m+ 2)
, (13)

it will suffice to show that the numerator in the right-hand side of (13) is strictly positive. Using
the recursive structure of γ(m), i.e., that γ(m+ 2) = m+2

m+1 γ(m), we aim to show that

log γ(m) log
m+ 3

m+ 1
− log

m+ 1

2
log

m+ 2

m+ 1
> 0.

For x ≥ 0 a Taylor estimate for log(1 + x) gives the lower and upper bounds x − x2

2 and x,
respectively. A lower bound on the numerator in the right-hand side of (13) is thus given by

log γ(m)

[
2

m+ 1
− 2

(m+ 1)2

]
− 1

m+ 1
log

m+ 1

2
. (14)

A lower bound on γ(m) can be obtained from known bounds on the central binomial coefficient.
For instance, Wallis’ product formula states that an :=

∏n
k=1

2k
2k−1

2k
2k+1 converges to π

2 as n→∞.
Since an is increasing we have an ≤ π

2 for all n ≥ 1, leading to the bound(
2n

n

)
≥ 4n

√
2

π(2n+ 1)
.

Consequently γ(m) ≥
√

2m/π for all m ≥ 3. After multiplication by m + 1, a lower bound on
the expression in (14) is given by

log
2m

π

[
1− 1

m+ 1

]
− log

m+ 1

2
= log

4

π
− log

m+ 1

m
− 1

m+ 1
log

2m

π
.

One may check that the latter expression is increasing in m and positive for m = 13. Using the
slightly sharper lower bound 4n√

πn
(1− 1

8n) on the central binomial coefficient, obtained from the

Stirling series, one may arrive at an alternative lower bound on the difference in (13), which is
positive for all m ≥ 5. In either case, one further checks that β(m) < β(m+2) for the remaining
values of m by hand, so that β(m) is strictly increasing for all m ≥ 3.

3.4 Proof of part d)

Since m will now be changing, it is natural to now write Lm instead of L. The distribution given
by Fm(x) = 1

2 + Lm(x) has density L′m(x). We will show that limm→∞ L
′
m(x) = e−πx

2
, which

we recognize as the density of a centered normal distribution with variance 1/(2π). By virtue
of Scheffé’s theorem (see e.g. [9]), pointwise convergence of densities implies the desired weak
convergence of Fm to a normal distribution. By symmetry, it suffices to prove this for x ≥ 0
which we now assume to be the case.
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We first show that L′m(xγ−1) → 1 as m → ∞, for every x ≥ 0. First recall that by
Proposition 10, we have that L′m(x) ≤ 1 for all x ≥ 0. Using (12) and (5) and then that L′m ≤ 1,
we find that

L′m(xγ−1) =
∞∏
k=1

[
1− 4[Lm(xγ−k−1)]2

]m−1
2 ≥

∞∏
k=1

[
1− 4x2γ−2(k+1)

]m−1
2
.

Since e−2y ≤ 1 − y for small positive y, replacing the terms of the product by an exponential,
we obtain that for all large m

L′m(xγ−1) ≥
∞∏
k=1

exp
(
−4x2(m− 1)γ−2(k+1)

)
= exp

(
−4x2(m− 1)

∞∑
k=1

γ−2(k+1)

)
≥ exp

(
−8x2mγ−4

)
,

where we in the last step have used that γ2 ≥ 2. Since γ = γ(m) increases at the rate of√
m, we may conclude that L′m(xγ−1) → 1 as m → ∞. Moreover, the convergence is uniform

in x over compact sets. Consequently, for every ε > 0 and x ≥ 0 there is m0 such that
Lm(xγ−1) ≥ (1− ε)xγ−1 for all m ≥ m0.

Second, again using (12) and (5), or differentiating (7), we arrive at

L′m(x) = L′m(xγ−1)
[
1− 4[Lm(xγ−1)]2

]m−1
2 .

Together with our previous conclusions we find that

L′m(xγ−1)
[
1− 4x2γ−2

]m−1
2 ≤ L′m(x) ≤ L′m(xγ−1)

[
1− (1− ε)24x2γ−2

]m−1
2 .

Taking limits, first as m→∞ and then as ε→ 0, leaves us with

lim
m→∞

L′m(x) = e−πx
2
,

as required.

4 All measures are distributional limits

In this section, we prove Theorem 3 and Propositions 4 and 5.

Proof of Theorem 3. The main part of the proof will be to, in both settings a) and b), prove
the result for a restricted class of probability measures, namely those µ of the form

∑k
i=1 qiδxi ,

i.e., having finite support. To see why this will suffice in order to obtain the general result, we
first state a simple lemma, whose proof is left to the reader, concerning metric spaces. Assume,
in a metric space, we are given xm converging to x∞ and for each m, we have xm,n converging
to xm as n → ∞. Then there is a sequence mn (not necessarily strictly increasing) so that we
have that xmn,n converges to x∞ as n→∞.

We note that it is well known that convergence in distribution is metrizable. Assume now
that we are given an arbitrary probability measure µ and a sequence (an)n≥1 satisfying the
stated properties. It is clear we can find a sequence (µm)m≥1, each with finite support as
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above, converging to µ. Assume that, for each m, we can find a sequence of Boolean functions
(fm,n)n≥1 such that fm,n is defined on n bits and an(T (fm,n) − 1

2) approaches, as n → ∞, µm
in distribution. By the above general metric space result, there exists a sequence (mn)n≥1 (not
necessarily strictly increasing) so that an(T (fmn,n)− 1

2) approaches µ in distribution, as n→∞.
This shows that it will suffice to prove parts a) and b) for measures µ having finite support.

Proof of part a). Assume that a probability measure µ of the form
∑k

i=1 qiδxi is given and
let (an)n≥1 satisfy 1 � an �

√
n. We may assume that x1 < x2 < . . . < xk and that the qi’s

are all positive. For each i = 1, 2, . . . , k fix yi ∈ R such that

1− Φ(yi) = q1 + q2 + . . .+ qi,

where Φ(·) denotes the distribution function of the standard Gaussian. (Of course, this defines
yk to be −∞, but we allow this slight abuse of notation.)

Now let Ei denote the event that the proportion of 1’s among the n bits is at least 1
2 +xi/an,

and let Fi denote the event that the proportion of 1’s among the first banc bits is at least
1
2 + yi/(2

√
an). Although not explicit in the notation, these events depend on n. Notice further

that the events are defined so that E1 ⊇ E2 ⊇ . . . ⊇ Ek and F1 ⊆ F2 ⊆ . . . ⊆ Fk hold. Finally,
we define fn as the indicator function of the event

⋃k
i=1(Ei ∩ Fi).

Let pn = 1
2 + x/an. To complete the proof of part a) we need to verify that

P
(
an(Tn − 1

2) ≤ x
)

= Ppn
(
Ei ∩ Fi for some i

)
tends to 0,

∑j
i=1 qi or 1, depending on whether x < x1, x ∈ (xj , xj+1) and j = 1, 2, . . . , k− 1, or

x > xk. We first examine the events Ei and Fi. Appealing to the Lindeberg-Feller central limit
theorem, or Chebyshev’s inequality, we find that

Ppn(Ei) = Ppn
(

1

n

∑
j∈[n]

ωj ≥
1

2
+
xi
an

)
→

{
0 x < xi,

1 x > xi,
(15)

as by assumption an �
√
n. Moreover, as an � 1, using Lindeberg-Feller, for any x ∈ R

Ppn(Fi) = Ppn
(

1

banc

banc∑
j=1

ωj ≥
1

2
+

yi
2
√
an

)
→ 1− Φ(yi). (16)

(The above abuse of notation is here manifested in that Fk equals the whole sample space.)
Since Ppn

(
Ei ∩ Fi for some i

)
is at most Ppn

(
Ei for some i

)
, the case x < x1 is immediate

from (15). Similarly, as Fk equals the whole sample space, Ppn(Ek) gives a lower bound on
Ppn
(
Ei ∩ Fi for some i

)
, so also the case x > xk is immediate from (15). For j = 1, 2, . . . , k − 1

and x ∈ (xj , xj+1), using (15), (16) and the fact that F1 ⊆ F2 ⊆ . . . ⊆ Fk, gives

lim
n→∞

Ppn
(
Ei ∩ Fi for some i

)
= lim

n→∞
Ppn(Fj) = q1 + q2 + . . .+ qj , (17)

due to the definition of the yi’s, as required.
Proof of part b). Assume again that a probability measure µ of the form

∑k
i=1 qiδxi is given

and let (an)n≥1 satisfy log n � an �
√
n. We may assume that x1 < x2 < . . . < xk and that
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the qi’s are all positive. As before, let Ei denote the event that the proportion of 1’s among the
n bits is at least 1

2 + xi/an.
Let `n = b2 log2 nc. In order to define events Fi we extend the partial ordering on binary

strings of length `n, in which y ≥ y′ if y dominates y′ coordinate-wise, to a total ordering. (One
such ordering is inherited from the set of integers through their binary representation.) Consider
the n bits of ω positioned in a circle and, for each string y ∈ {0, 1}`n , let F (y) denote the event
that ω contains an interval of length `n on which ω is at least as large as y with respect to the
total ordering. We claim that it is possible to choose yn1 ≥ yn2 ≥ . . . ≥ ynk in {0, 1}`n such that
Fi := F (yni ), for every i = 1, 2, . . . , k, x ∈ R and with pn = 1

2 + x/an, satisfies

lim
n→∞

Ppn(Fi) = q1 + q2 + . . .+ qi. (18)

These definitions guarantee that E1 ⊇ E2 ⊇ . . . ⊇ Ek and F1 ⊆ F2 ⊆ . . . ⊆ Fk hold also here.
Assuming that such a selection of yni ’s can be made, we define fn as the indicator function

of the event
⋃k
i=1(Ei ∩ Fi). The resulting function is monotone (with respect to the partial

ordering on {0, 1}n) and invariant with respect to rotations of the bits and therefore transitive.
Before proving the claim we argue for why this would complete the proof of part b). As in

part a), to complete the proof we need to verify that

P
(
an(Tn − 1

2) ≤ x
)

= Ppn
(
Ei ∩ Fi for some i

)
tends to 0,

∑j
i=1 qi or 1, depending on whether x < x1, x ∈ (xj , xj+1) and j = 1, 2, . . . , k − 1,

or x > xk. As the events Ei are defined just as above, and the monotone structure F1 ⊆ F2 ⊆
. . . ⊆ Fk holds also here, these conclusions would follow from the claim as in part a).

It remains to prove the claim. We first show that for every n ≥ 1 and q ∈ [0, 1] there
exists y ∈ {0, 1}`n such that

∣∣P1/2

(
F (y)

)
− q
∣∣ ≤ 2/n. Let y1 = max{y : P1/2

(
F (y)

)
≥ q} and

denote its successor in the total ordering by y2, should it exist (otherwise set F (y2) = ∅). Then
P1/2

(
F (y2)

)
< q and we have

0 ≤ P1/2

(
F (y1)

)
− P1/2

(
F (y2)

)
≤ P1/2

(
some interval of ω equals y1

)
≤ n2−`n ≤ 2/n,

where the second-to-last inequality comes from a first moment estimate. In particular, for y = y1

we obtain
∣∣P1/2

(
F (y)

)
− q
∣∣ ≤ 2/n.

We next show that if some (sequence of) y ∈ {0, 1}`n satisfies P1/2

(
F (y)

)
→ q as n→∞, then

also Ppn
(
F (y)

)
→ q. Recall the monotone coupling (ηp)p∈[0,1] of elements in {0, 1}n. Assume

that x ≥ 0 so that pn ≥ 1/2, and let A denote the event that η1/2 contains no interval on which
it is at least as large as y (in the total ordering) but that ηpn does. Then,

Ppn
(
F (y)

)
− P1/2

(
F (y)

)
= P(A) = E

[
P(A|ηpn)

]
≤ `n(pn − 1

2)/pn ≤ 2x`n/an, (19)

since P(A|ηpn) either equals zero, in the case ηpn does not contain an interval on which it is
at least as large as y, or is bounded by `n(pn − 1

2)/pn, since if such an interval exists then at
least one bit in this interval (or the first in some ordering, if there are several intervals with this
property) must have changed its value as p ranges from 1

2 to pn. Since an � log n, the upper
bound in (19) tends to zero as n→∞, as claimed. The case x < 0 is analogous.

This proves the claim that we may choose yni ’s such that (18) holds for all x ∈ R, and thus
completes the proof of part b).
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Remark. In order to obtain a sequence (fn)n≥1 of monotone graph properties on n vertices and(
n
2

)
edges (which are the variables here), with the property described in the remark following

Theorem 3, only minor modifications to the above construction are necessary: Define the Ei’s
as before, but now on

(
n
2

)
bits. Let `n = b4 log2 nc, say, and extend the usual partial ordering

on the set of unlabled graphs on `n vertices to a total ordering. Given an unlabled graph y on
`n vertices, define F (y) as the event that ω contains an induced subgraph at least as large as y
with respect to the total ordering. The calculations needed to verify that one may choose graphs
yni so that (18) holds also in this setting are straightforward.

We continue investigating the possible behavior of the scaling coefficients.

Proof of Proposition 4. Let µ be a non-degenerate probability measure and (fn)n≥1 some se-
quence of monotone Boolean functions for which an(Tn − bn) approaches µ in distribution.
Denote by F the distribution function associated to µ.

To prove part a), we first recall the well known fact that for monotone Boolean functions the
total influence, for p bounded away from 0 and 1, is of order at most

√
n. The Margulis-Russo

formula then implies that there is an upper bound of order
√
n on the derivative of Pp(fn = 1),

for p bounded away from 0 and 1. Now, pick x1 < x2 at which F is continuous and satisfies
F (x1) ≤ 1/3 and F (x2) ≥ 2/3. With pi = bn + xi/an, we thus obtain, for all large n,

an
4(x2 − x1)

≤ Pp2(fn = 1)− Pp1(fn = 1)

p2 − p1
≤ an

x2 − x1
. (20)

Via the mean value theorem, the first inequality in (20) gives a lower bound on the derivative of
Pp(fn = 1) for some p ∈ [p1, p2], which, consequently, yields an upper bound on an of order

√
n.

The proof of part b) is similar to that of part a). Recall the well known fact from KKL [31]
and its extensions that the total influence of transitive Boolean functions grows at least of order
log n when their variance is bounded away from 0 and 1. With the mean value theorem, the
Margulis-Russo formula and the second inequality in (20) we thus obtain a corresponding lower
bound on an, of order log n.

The proofs for parts c), d) and e) are also similar to each other. Let, again, x1 < x2 be
continuity points of F and set pi = bn+xi/an. Using the mean value theorem we find qn ∈ [p1, p2]
so that

F (x2)− F (x1)

x2 − x1
= lim

n→∞

Pp2(fn = 1)− Pp1(fn = 1)

x2 − x1
= lim

n→∞

1

an

d

dp
Pp(fn = 1)

∣∣
qn
. (21)

For c) we assume that (an)n≥1 is bounded above and that 0 < F (x1) ≤ F (x2) < 1. Recall the
discrete Poincaré inequality which states that for any Boolean function f : {0, 1}n → {0, 1}

n∑
i=1

Infpi (f) ≥ Varp(f). (22)

Hence, a lower bound on (21) of lim infn→∞Varqn(fn)/(supn≥1 an), which is strictly positive, is
obtained via the Margulis-Russo formula. Consequently F (x1) < F (x2), from which c) follows.

For transitive functions KKL [31] and its extensions improve on the lower bound in (22)
with a factor of order log n. In this setting, assuming that (an/ log n)n≥1 is bounded above, we
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thus obtain a lower bound on (21) of lim infn→∞Varqn(fn)
(

infn≥1 log n/an
)
, which is strictly

positive by assumption. Again we find that F (x1) < F (x2), which settles part d).
For e) we assume that an/

√
n is bounded away from 0 and use the upper bound of order

√
n

on the derivative of Pp(fn = 1), for p bounded away from 0 and 1, to obtain a uniform upper
bound in (21), showing that F is Lipschitz continuous.

Remark. While the above proof of part c) shows that no monotone Boolean function f may have
Pp(f = 1) making a finite number of “jumps” but otherwise remaining more or less constant,
it is still possible to have sudden jumps between which Pp(f = 1) grows linearly. An example
would be the event A consisting of all configurations for which either ω1 = 1 and the proportion
of 1’s is at least 1/3 or the proportion of 1’s is at least 2/3.

As mentioned in the introduction, one easily shows that no subsequence of the probability
measures giving equal weight to the points in Ωm = {±2k : k = 1, 2, . . . ,m} can be normalized
in order to give a nondegenerate limit. We base the proof of Proposition 5 on this example.

Proof of Proposition 5. We prefer to work with continuous distributions. Let µm be the measure
whose density function equals 1

2m for x ∈ [k− 1
2 , k+ 1

2 ] and k ∈ Ωm, and 0 otherwise; let Fm denote
the corresponding distribution function. Then Fm is continuous and µm effectively has the same
properties as the uniform measure on Ωm. According to Theorem 3 we may choose an = n1/4,
say, and monotone Boolean functions fm,n : {0, 1}n → {0, 1} such that an(T (fm,n) − 1

2) tends
to µm in distribution, as n→∞. Writing Fm,n for the distribution function of an(T (fm,n)− 1

2)
and using that Fm is continuous, we find for each m an integer nm such that

sup
x∈R

∣∣Fm,n(x)− Fm(x)
∣∣ ≤ 1

m
for all n ≥ nm. (23)

Define fn := fm,n for n ∈ [nm, nm+1), and note that fn is a monotone function on n variables.
Let mn := max{m ∈ N : nm ≤ n}. Now, assume there are nonnegative sequences (bn)n≥1

and (cn)n≥1, and a nondegenerate probability measure with distribution function F such that,
along some subsequence, Fmn,n(cnx+ bn)→ F (x) for all continuity points of F . Then,∣∣Fmn(cnx+ bn)− F (x)

∣∣ ≤ ∣∣Fmn(cnx+ bn)− Fmn,n(cnx+ bn)
∣∣+
∣∣Fmn,n(cnx+ bn)− F (x)

∣∣,
which, for continuity points of F , would tend to zero along this subsequence, in virtue of (23).
This would contradict the fact that no subsequence of µm can be normalized to obtain a non-
degenerate limit, and therefore shows that no subsequence of (T (fn))n≥1 can be normalized to
obtain a nondegenerate limit.

A The tail of the crossing probability in near-critical percolation
(An appendix by Gábor Pete)

The goals of this appendix are to prove Theorem 2 of the main text, to draw attention to
an interesting difference between the flip times of crossing events in near-critical and dynamical
percolation in the plane, and to examine, on an intuitive level, how near-critical high-dimensional
percolation may behave.
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A.1 Planar percolation

We will work with site percolation on the triangular lattice T with mesh size 1, at density close
to the critical value pc = 1/2. See [19, 52] for background. Let LRQ denote the left-to-right
crossing event in a nice quad Q, by which we mean the image of the square [0, 1]2 under a smooth
injective map into C. If we magnify Q by a factor of ρ, the new quad will be denoted by ρQ, the
center of magnification being irrelevant. Furthermore, let α4(n) denote the critical alternating
four-arm probability from a given site to Euclidean distance n, and let r(n) := 1/

(
n2α4(n)

)
.

The asymptotics r(n) = n−3/4+o(1) was proved in [50].
Consider now the canonical coupling of percolation configurations at different densities: take

Ux ∼ Unif[0, 1] i.i.d. for all vertices x ∈ T, and for any λ ∈ (−∞,∞) and n large enough so that
λr(n) ∈ [−1/2, 1/2], define ωn(λ) to be the configuration where x is open iff Ux ≤ 1/2 + λr(n).
This process {ωn(λ)}λ∈R is called the near-critical ensemble. Note that the flip time Tn for
LR[0,n]2 considered in the main text, with rescaling Wn := n2α4(n)(Tn − 1/2), exactly satisfies
{Wn ≤ λ} = {ωn(λ) ∈ LR[0,n]2}.

R

0

Figure A.1: A realization of the four-arm event.

It is proved in [15, 16] that the process {ωn(λ)}λ∈R has a scaling limit in a certain topology:
for any fixed λ, the static topology encodes quad-crossings, while as a process, the Skorokhod
topology of càdlàg processes is used; see [16, Theorem 1.5] for the precise statement. (The time-
parametrization of ωn(λ) in [16] is slightly different from the above definition, but this makes
no real difference.) It is also proved in [16, Proposition 9.6] that this limiting càdlàg process has
no jumps at deterministic values of λ, which implies that for any λ ∈ R, the limit

f(λ,Q) := lim
n→∞

Ppc+λr(n)

[
LRnQ

]
(A.1)

exists for any nice quad Q (which does not automatically follow from the existence of the limit
as a process, because of the Skorokhod topology of càdlàg processes). Moreover, this limit is
absolutely continuous in λ, and most importantly, it is non-trivial: it satisfies f(λ,Q) ∈ (0, 1),
and

lim
λ→−∞

f(λ,Q) = 0 , and lim
λ→∞

f(λ,Q) = 1 . (A.2)
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In fact, these properties were already known from Kesten’s work [33, 42], for any subsequential
limit, at that time. Briefly, in the entire critical window where Pp[LRnQ] ∈ (ε, 1− ε) holds, the
expected number of pivotals is comparable to the scaling factor n2α4(n) (with constant factors
depending on Q and ε), which implies absolute continuity and (A.2) using Russo’s formula.

The above results imply Part (a) of Theorem 2.
For the proof of Part (b), we will also need that the limit f(λ,Q) in (A.1) is conformally

covariant, proved in [16, Theorem 10.3]. Instead of defining exactly what this means, let us just
give a special case that we will use:

f(ρλ,Q) = f(λ, ρ4/3Q) , (A.3)

for any scaling factor ρ > 0. For simplicity, we will just take Q = [0, 1]2. Then, the limiting
tail behaviour of the rescaled flip time Wn is determined by the following result, proved below,
together with the well-known duality f(−λ, [0, 1]2) = 1− f(λ, [0, 1]2):

Theorem A.1. As λ→∞, we have the superexponential decay

f(−λ, [0, 1]2) = exp
(
−Θ
(
λ4/3

))
,

where, as usually, g(λ) = Θ(h(λ)) means the existence of universal constants 0 < c < C < ∞
such that c < g(λ)/h(λ) < C holds for all λ in question.

Besides the question raised in the main text, another motivation for Theorem A.1 is [20],
where the analogous tail behaviour was studied for the scaling limit of dynamical percolation.
Namely, if we start with critical percolation, then resample each site at rate r(n), keeping the
configuration stationary, then we may look at

g(t,Q) := lim
n→∞

P
[
LRnQ does not hold at any moment in [0, t]

]
. (A.4)

Again, this limit exists and is conformally covariant by [15, 16]. Then, regarding the tail be-
haviour, it was proved in [20] using general Markov chain arguments such as spectral compu-
tations and a dynamical (space-time) FKG-inequality, that there exists an absolute constant
c > 0, and for every K > 0 some cK > 0, such that

exp(−c t) ≤ g(t, [0, 1]2) ≤ cKt−K , (A.5)

for all t ≥ 1. Furthermore, the present author was speculating in [44], using non-rigorous
renormalization ideas (motivated by [38, 37, 47]) and a very strong universality hypothesis, that
the true behaviour could be exp(−t2/3+o(1)). Several people in the community agreed that this
speculation looked quite solid (even if non-rigorous) as a lower bound, while more questionable
as an upper bound. And, as typical for these planar percolation scaling limits, that argument
seemed to be working equally well for the symmetric (dynamical) and asymmetric (near-critical)
versions. However, our present Theorem A.1 violates not only this bold prediction for the near-
critical case, but it also shows that f(t,Q) does not satisfy the rigorous exponential lower bound
of (A.5) for g(t,Q), hence this tail probability question turns out to be an instance where the
asymmetric versus symmetric dynamical versions of critical percolation show drastically different
behaviour. Regarding the true decay in the symmetric dynamical version, our simulations

24



5 10 15

2

4

6

8

Figure A.2: On the left, simulation results are shown for − log f(λ, [0, 1]2), with
the near-critical percolation parameter varying from λ = 0 to 1.5, board sizes
n = 10, 100, 500. On the right, simulation results are shown for − log g(t, [0, 1]2)
in dynamical percolation for scaled time going from t = 0 to 10, on board sizes
n = 10, 100, 200. In both cases, the values are lower and have more fluctuations
as n increases, since fewer simulation runs were feasible. The superexponential decay
for f(λ, [0, 1]2) is apparent, the subexponential decay for g(t, [0, 1]2) is less so.

suggest a subexponential decay, but are far from being conclusive, and are even further from
giving a prediction for the exponent. See Figure A.2.

The proof of Theorem A.1 is very simple, given the results of [15, 16] cited above, and
standard percolation techniques proving exponential decay for certain connection probabilities,
as can be found in [42, Section 7]. This is somewhat similar to [8], where Duminil-Copin showed,
again building on [15, 16], that the super-critical percolation Wulff shape is asymptotically
circular, as the density p approaches pc.

Proof of Theorem A.1. By the scaling covariance (A.3), we need to show that

f
(
− 1, [0, λ4/3]2

)
= exp

(
−Θ
(
λ4/3

))
, (A.6)

as λ→∞.
By [42, Lemma 39 and (7.28)], there exist 0 < C1 ≤ C2 <∞ such that for all N and p < pc,

C1 exp
(
− C2N/L(p)

)
≤ Pp

[
LR[0,N ]2

]
≤ C2 exp

(
− C1N/L(p)

)
, (A.7)

where L(p) is a correlation length; say,

L(p) := inf
{
n : Pp

[
LR[0,n]2

]
< 1/100

}
. (A.8)

Let us remark that (A.7) is nothing mysterious: the main reason for it is that 1/100 is small
enough so that a variation of the Peierls contour argument works on a renormalized lattice with
mesh L(p).

On the other hand, it is well-known (see, e.g., Proposition 34 in [42]) that we have L(pc −
r(n)) = Θ(n), with the constant factors in Θ depending, of course, on 1/100 in definition (A.8).
Now take p = pc − r(n) and N = λ4/3n in (A.7), then send n→∞ to see that (A.6) holds.
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A.2 What about high dimensions?

It is proved in Theorem 3 of the main text that for any probability distribution function F (·)
there exists a sequence of monotone Boolean functions {fn} and some parameters pn, bn such
that Ppn+λbn

[
fn = 1

]
→ F (λ) as n → ∞, for all λ ∈ R. However, all “natural” examples of

limit distributions F (·) found so far have exponential or superexponential tails. The exponent
4/3 in the superexponential decay exp(−|λ|4/3) of the previous section appears to be a rather
direct consequence of the planar correlation length exponent being ν = 4/3 (i.e., the correlation
length (A.8) satisfies L(p) = |p − pc|−4/3+o(1) as p ↗ pc) and of the critical window being
r(n) = n−3/4+o(1). Therefore, one might hope (as the present author did in the first version of
this appendix) that crossing events in near-critical percolation on Zd, where d is high enough
so that already mean-field behaviour takes place, with ν = 1/2 < 1, could have subexponential
tails. However, as we will briefly explain, this turns out to be very naive, and we expect now that
the lower tail in high dimension is exponential in |λ|, while the upper tail is doubly exponential,
similarly to some of the examples in Section 2 of the main text.

By high-dimensional percolation we will mean d high enough so that the critical two-point
connectivity function already scales like Green’s function for simple random walk:

Ppc

[
x←→ y

]
= Θ

(
‖x− y‖2−d

)
. (A.9)

This is conjectured to be the case for d > 6, proved for d ≥ 19 in [22], and recently for d ≥ 11
in [12]. From now on, we will always assume that this mean-field behavior holds. Two-point
connectivity can also be used to define a near-critical correlation length ξ(p):

Pp

[
x←→ y 6←→ ∞

]
= exp

(
−Θ

(
‖x− y‖/ξ(p)

))
,

which makes sense both for p < pc and p > pc. In the planar case, it is known that ξ(p) � L(p),
with L(p) defined in (A.8); see [42, Theorem 33]. The mean-field value of the exponent in
ξ(p) = |p − pc|−ν+o(1) is ν = 1/2, proved for p < pc in [21]. In analogy with the 2-dimensional
case, this may suggest that the critical window for left-to-right crossing in a box of side-length n is
of size n−2+o(1). However, there are some huge differences between planar and high-dimensional
percolation, hence we have to examine this more closely.

The heuristic picture of high-dimensional percolation, closely related to (A.9), is that the
critical cluster is like a critical Galton-Watson tree, embedded into Zd as a branching random
walk. A precise formulation of this is that the scaling limit of the Incipient Infinite Cluster is
Integrated Infinite Canonical Super-Brownian Motion. This has been proved only very partially
[23, 29, 24]; see [49] for a nice introduction into the limit object, and [25] for a survey. Therefore,
in order to understand near-critical high-dimensional percolation, one could first look at near-
critical Galton-Watson trees. One can show that, for any offspring distribution with mean 1−λε
and finite variance,

PGW(1−λε)
[
o←→ 1/ε

]
= Θ(ε) exp

(
−Θ(λ)

)
, 0 ≤ λ < 1/ε , (A.10)

where {o ←→ 1/ε} denotes the event that the tree reaches generation 1/ε. There are several
ways to prove this estimate; one is to consider a depth-first type exploration process of the tree,
and use martingale calculations for the resulting integer-valued random walk, as in [41]. Now,
accepting the heuristic picture above, and using that a random walk path in Zd with 1/ε steps
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goes to a Euclidean distance about
√

1/ε with large probability, the estimate (A.10) suggests
that, for near-critical percolation on Zd,

Ppc−λε

[
o←→ ∂B√

1/ε
(o)
]

= Θ(ε) exp
(
−Θ(λ)

)
, 0 ≤ λ < pc/ε , (A.11)

where Br(o) denotes the ball of Euclidean radius r. Note here that, in principle, the cluster
could reach to a large distance not only by the embedded critical tree having a large radius, but
also by the embedding reaching unusually far. However, changing the speed exponent 1/2 has
a probability cost that is exponential in the number of steps, 1/ε, hence this strategy cannot
improve on (A.11).

This was just heuristics, and in fact, only the critical case λ = 0 of (A.11) has been proved
[36]: that is, the 1-arm exponent is 2. One approach to build an actual proof could be that
the backbone of high-dimensional IIC is known to have a linear “chain of sausages” structure,
with a linear number of pivotal edges, without too long sausages between them [29, 35, 24],
hence the IIC must have a tree-like structure; also, its embedding into Zd is known to have
4-dimensional features [29, 28]; these support the view that it is a large critical tree embedded
as a branching random walk. Then, lowering the percolation density by λε, the probability
of keeping the connection, which exists at criticality with probability Θ(ε), is at most the
probability of not closing any of the pivotals, and should in fact be comparable to that: about
(1− λε)Θ(1/ε) � exp

(
−Θ(λ)

)
. This yields (A.11).

We would like to use (A.11) to understand the critical window of left-right crossing in a
large box [n]d. One key difference from the planar case, observed in [1], is that at the critical
density pc(Zd), with large probability there is already a large number of disjoint crossings.
More precisely, using the critical two-point function (A.9), we get that the expected number of
vertices y on the right side of [n]d connected to a given vertex x on the left is on the order of
n2−dnd−1 = n. Alternatively, by the λ = 0 case of (A.11), the probability of x being connected
to the right side is about n−2, and conditioned on this event, the cluster should look like a
conditioned critical branching random walk, having about n4 vertices within Euclidean distance
n, hence about n3 vertices on the right side, altogether giving an expectation about n−2n3 = n.
Furthermore, the expected number of disjoint clusters connecting the left and right sides is about
nd−1n/n2·3 = nd−6, since there are nd−1n pairs of vertices x and y that are connected to each
other, with each cluster having n3 possible x’s and n3 possible y’s. Indeed, it was proved in [1]
that with probability tending to 1, there are at least order nd−6 disjoint connections, with the
possibility of having some more spanning clusters that are thinner than 4-dimensional.

In particular, pc(Zd) is already outside of the critical window for left-to-right crossing. When,
in order to find the critical window, we start decreasing p from pc(Zd), by (A.11), the expected
number of disjoint crossings should be about

Epc− λ
n2

[
#
{

disjoint crossings from left to right in [n]d
}]

= Θ(nd−6) exp
(
−Θ(λ)

)
; (A.12)

the effect of the slight subcriticality on the size of the conditioned tree, and hence on the factor
nd−6 should be only polynomial in λ, which is negligible compared to exp(−λ). To actually
prove (A.12) or something a little weaker, instead of using (A.11), it might be easier to start
directly from Aizenman’s proof [1].

Now, the finite size critical density pc(n), where the probability of having a left-to-right
crossing is exactly 1/2, should be around a value pc− λ/n2 where the above expectation (A.12)
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is about 1, and the critical window should be where the expectation is independent of n. This
gives the following:

Conjecture A.2. For left-to-right crossing in percolation on [n]d, d > 6, the critical density is

pc(n) = pc(Zd)− (cd + o(1))
log n

n2
,

with cd > 0. The critical window is

p = pc(n) +
λ

n2
, λ ∈ (−∞,∞) .

In this window, the number of disjoint crossings should be approximately Poisson, with mean
exp(Θ(λ)). Hence, for a very negative λ, the probability of a left-to-right crossing should be
exp(−Θ(|λ|)), while, for a large positive λ, the probability of having no left-to-right crossing
should be exp

(
− exp(Θ(λ))

)
.

This location of the window is also conjectured, independently, by Gady Kozma [34], while
a Gumbel limit distribution is confirmed by computer simulations of Eren Metin Elçi [10].

We also note that an upper bound O(n−2/3) on the width of the critical window can in fact
be proved via the following argument using randomized algorithms, partly due to Gady Kozma.

Let fn : {−1, 1}[n]d −→ {−1, 1} be the ±1-valued indicator function of the left-to-right
crossing event in [n]d, at a density p in the near-critical ε-window: Pp[fn = 1] ∈ (ε, 1 − ε), for
some fixed ε > 0. Note that, for n large enough, we have 1/(2d) < p < pc(Zd).

Consider now the following randomized version of the algorithm used in [2, Section 4] to
determine the value of fn. Choose uniformly at random a coordinate hyperplane separating the
left and right faces. Now explore the clusters of all the sites in this hyperplane to determine
whether there is a crossing. This way, each bit (site or edge) of the box is explored with
probability at most O(n−2/3): either the bit is within distance n1/3 of the chosen hyperplane,
which has probability n−2/3, or it will be queried only if in a cluster of radius at least n1/3,
which has probability O(n−2/3), since the critical one-arm exponent is 2, and we are at density
p < pc(Zd).

In the wording of [48], the above algorithm has revealment O(n−2/3): the probability δi of
revealing any bit i is O(n−2/3). By the main inequality of [43], see also [18, Theorem XII.36],
for the total influence we get

Varp(fn) ≤ 4p(1− p)
∑
i∈[n]d

δi I
p
i (fn) ≤ O(n−2/3) Ip(fn) . (A.13)

Being in the ε-window, we have 4ε(1 − ε) ≤ Varp(fn), hence (A.13) gives c(ε)n2/3 ≤ Ip(fn),
for some c(ε) > 0. By Russo’s formula, this implies that the near-critical ε-window for fn has
width at most C(ε)n−2/3, as we claimed.

Let us mention that another way to do this argument, yielding a worse exponent, would
have been via noise sensitivity and Fourier analysis; for background, see [18]. By [48, Theorem
1.8] (or more precisely, by its straightforward extension from density p = 1/2 to general p values
bounded away from 0 and 1), the revealment O(n−2/3) implies that fn is sensitive to any noise
� n−1/3. In terms of the Fourier spectral sample Specp(fn), defined by

P
[
Specp(fn) = S

]
:=

f̂n(S)2

‖fn‖22
= f̂n(S)2 , S ⊂ [n]d ,
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where f̂(S) := Ep
[
f χpS

]
is the Fourier coefficient corresponding to the orthonormal basis

χpS(ω) :=
∏
i∈S

ωi

(
1− p
p

)ωi/2
, ω ∈ {−1, 1}[n]d

for L2
(
{−1, 1}[n]d ,Ep

)
, this noise sensitivity can be written as follows: for any ε-window and

any δ > 0, if κ > 0 is small enough, then

P
[
0 < |Specp(fn)| < κn1/3

]
< δ . (A.14)

On the other hand, P
[
Specp(fn) = ∅

]
= Ep

[
fn
]2 ≤ (1 − 2ε)2, since we are in the ε-window.

Combined with (A.14), for δ sufficiently small, we get that the total influence, for p in the
ε-window, satisfies

Ip(fn) = E
[
|Specp(fn)|

]
≥ c(ε)n1/3, c(ε) > 0 ,

giving that the width of the ε-window is at most C(ε)n−1/3.

Finally, one might prefer to deal with transitive Boolean functions only, hence would want
to consider high-dimensional percolation on tori. Another observation of [1] was that finite size
boundary effects become important here, and the cluster structure in a torus is different from
the cluster structure in a box. In particular, for percolation on the torus, already Erdős-Rényi
random graph asymptotics take place: the largest critical cluster has size of order n2d/3, and
the critical window should be n−d/3. (Nevertheless, large clusters are still “four-dimensional”,
similarly to the box case; in particular, their Euclidean diameter, when pulled back to the
universal cover of the torus, is nd/6.) A large part of this conjectured basic near-critical picture
has already been proved; see [5, 6, 26, 27, 30].

The above-mentioned critical window n−d/3 should hold for most natural monotone events
on the torus: e.g., for the existence of a non-contractible cluster, or a cluster of pulled-back
Euclidean diameter nd/6, or a cluster of size n2d/3. However, the near-critical tails should be dif-
ferent. At the lower end of the window, with very negative λ, to get a cluster with large Euclidean
diameter nd/6 (independent of λ), the near-critical GW tree diameter asymptotics (A.10) should
be relevant, yielding a tail exp(−Θ(|λ|)). To get a cluster with volume n2d/3, the near-critical
GW tree volume asymptotics should be relevant, which can be shown to be exp(−Θ(|λ|2)). A
similar difference for the Erdős-Rényi random graphs was pointed out in [39]. Regarding the
tail for the existence of a non-contractible cluster, we will not make a guess. But in any case, it
seems unlikely that natural monotone events will have subexponential tails.

For a recent survey of high-dimensional percolation and random graphs, see [25].
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