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Executive Summary

Cybersecurity is everyone’s problem. The target may be the electric grid, government systems
storing sensitive personnel data, intellectual property in the defense industrial base, or banks
and the financial system. Adversaries range from small-time criminals to nation states and other
determined opponents who will explore an ingenious range of attack strategies. And the damage
may be tallied in dollars, in strategic advantage, or in human lives. Systematic, secure system
design is urgently needed, and we believe that rigorous formal methods are essential for substantial
improvements.

Formal methods enable reasoning from logical or mathematical specifications of the behav-
iors of computing devices or processes; they offer rigorous proofs that all system behaviors meet
some desirable property. They are crucial for security goals, because they can show that no attack
strategy in a class of strategies will cause a system to misbehave. Without requiring piecemeal
enumeration, they rule out a range of attacks. They offer other benefits too: Formal specifica-
tions tell an implementer unambiguously what to produce, and they tell the subsequent user or
integrator of a component what to rely on it to do. Since many vulnerabilities arise from misun-
derstandings and mismatches as components are integrated, the payoff from rigorous interface
specifications is large.

Adoption of formal methods in various areas (including verification of hardware and em-
bedded systems, and analysis and testing of software) has dramatically improved the quality of
computer systems. We anticipate that formal methods can provide similar improvement in the
security of computer systems.

Moreover, formal methods are in a period of rapid development and significantly broaden-
ing practical applications. While formal methods have long been associated with cybersecurity
applications, new techniques offer deeper evidence for security goals across a wider range of
components, and for the systems built from them.

Without broad use of formal methods, security will always remain fragile. Attackers have
a clear advantage in what is currently a match between the cleverness of the attacker and the
vigilance of the defender. Formal methods provide guidance for gapless construction, and for
checking that an artifact has no points of entry for the adversary. Formal methods always use
models, and thus can exclude only gaps that are expressible in those models. However, each
model has specific, well-defined assumptions, which help focus a security analyst’s attention on
whether the actual system satisfies these properties.

The NSF workshop on Security and Formal Methods, held 19–20 November 2015, brought
together developers of formal methods, researchers exploring how to apply formal methods to
various kinds of systems, and people familiar with the security problem space. Participants were
drawn from universities, industry research organizations, government, and a selected pool of
scientists from foreign institutions. We explored how current research results and strategies can
provide improved secure systems using contemporary formal methods, and how these goals can
shape future refinements to formal methods.

The workshop was organized into four main areas: (i) Hardware architecture, (ii) Operating sys-
tems, (iii) Distributed systems, and (iv) Privacy. Each area had an expert area chair (or pair of chairs),
who guided discussion and helped to write a section of the report below. Participants were as-
signed to an area for part of the workshop, with whole group sessions and cross-cutting groups
to consider interactions among abstraction layers. These discussions led to the following observa-
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tions, conclusions, and recommendations:

1. Formal methods for security will have an enormous effect in the coming years. Recent ad-
vances now enable their use at scales that were previously impossible. The resulting secu-
rity improvements will spur new investments in formal tools and techniques. This interplay
will produce a virtuous circle of capital investments in the methods and increases in both
the quality of secure systems and the productivity of security-minded developers.

2. Formal methods are the only reliable way to achieve security and privacy in computer sys-
tems. Formal methods, by modeling computer systems and adversaries, can prove that a
system is immune to entire classes of attacks (provided the assumptions of the models are
satisfied). By ruling out entire classes of potential attacks, formal methods offer an alterna-
tive to the “cat and mouse” game between adversaries and defenders of computer systems.

Formal methods can have this effect because they apply a scientific method. They provide
scientific foundations in the form of precise adversary and system models, and derive cogent
conclusions about the possible behaviors of the system as the adversary interacts with it.
This is a central aspect of providing a science of security.

3. “Formal methods for security” should be construed broadly, beyond just mechanized logical
specifications and proofs. Formal methods include approaches to reasoning about compu-
tational entities in which logical or mathematical descriptions of the entities entail reliable
conclusions about their behavior. Contemporary cryptography relies on formal methods
in this broad sense, as does synthesis of secure programs and other correct-by-construction
mechanisms. The broad notion is also particularly relevant for privacy, where formal meth-
ods naturally extend to rigorous statistical and causal analysis methods.

4. Stark challenges remain. Computer systems are built in layers (e.g., hardware, operating
systems, applications, networking, and distributed algorithms) where each layer is typically
built under the assumption that lower layers behave correctly and securely. Security may
fail at all layers. Frequently, failure is due to mismatches between adjacent layers, when
behaviors of a lower layer do not satisfy the assumptions of a higher layer. Moreover, differ-
ent systems (or different stakeholders in a system) may seek different security goals. While
traditional goals such as authentication and confidentiality are already hard to pin down
precisely, privacy goals govern the conflict between data subjects who do not want infor-
mation about them disclosed, versus data owners seeking useful or lucrative uses for the
data.

5. There is no single set of “right” security and privacy guarantees for computer systems. The
desired security and privacy guarantees may ultimately depend on specifics of the computer
application and system deployment. This heightens the need to explore security guarantees
rigorously, and particularly privacy guarantees. Privacy should be studied as part of a larger
research program on personal data protection that encompasses fairness, transparency, and
accountability. Hence, formal methods researchers should work with researchers in philoso-
phy, law, public policy, and related disciplines to forge comprehensive privacy foundations
and meaningful tools for protecting privacy.

6. The are many open and compelling research problems, including: (1) Whole-system guaran-
tees: How to specify and ensure the security of a whole system (as opposed to individual
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components or abstraction layers within a system)? How can this be done while still en-
abling modular development and compositional reasoning? (2) Abstractions: What are the
right abstractions to enable formal methods for security, including abstractions to present to
the programmer and abstractions provided by the operating system and architecture? (3)
(In)Compatibility of Tools, Proofs, and Specifications: To what extent can existing and new tools
and techniques be standardized to enable compatibility of specifications, proofs, and inter-
operability of tools? (4) Software Development and Formal Methods for Security: How can formal
methods for security be supported throughout the lifecycle of software and hardware? (5)
Transition to Practice: What is required to enable formal methods for security at industrial
scales and make them compatible with common industry processes?

7. Challenge problems have the potential to ignite the imagination and enthusiasm of the com-
munity and to stimulate research that pushes the boundary of what is possible using formal
methods to secure computer systems. We propose several challenge problems, including the
following:

• Develop a formally verified crypto-currency wallet.

• Develop an end-to-end secure messaging system on a peer-to-peer overlay.

• Develop privacy-preserving tools for scientific discovery (data exploration and analysis) by med-
ical researchers, social scientists, and other academics working in data-intensive fields for daily
work.

• Verify functional correctness of a POSIX-like operating system.

• Use the results to design a post-POSIX operating system offering assured security services.

8. Security and formal methods are both relevant to a broad cross-section of the Computer
Science curriculum. In undergraduate education, security problems should be discussed in
a variety of courses in which they naturally arise. Rigorous techniques should be introduced
relatively early in the curriculum, and connected with numerous activities which repay their
use. Graduate education can follow suit at a more sophisticated level.

9. Usable tools and infrastructure are critical to formal methods for security. The community
should encourage their development, refinement, and shared use. Possible ways to do so in-
clude the active encouragement by conferences and journals of the submission or evaluation
of artifacts for formal methods for security, and the establishment of repositories of formal
artifacts and security-relevant benchmarks and test suites.

10. Clean slate redesigns can liberate innovative, high-quality work, but most systems will use
much existing infrastructure. A balance of both types of work is needed, to provide for-
mal methods a clean shot at improving security, as well as a path to broad impact by local
improvements in existing components.

Thus, we recommend both foundational scientific work and more applied engineering as foci for
improving cybersecurity via formal methods.
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1 Introduction

Our society depends on an enormous infrastructure of networked computing systems. These
systems have never been well-secured, and as the payoffs for successful attacks rise, the number
and severity of attacks increase. Indeed, in 2015 alone there were tens of thousands of successful
attacks on many parts of US society [2] including the healthcare industry [58, 50, 92], educational
institutions [51, 68], the finance industry [89], government and military agencies [99, 94], and
even computer security specialists [112, 3]. The cost of attacks on these systems is estimated to
be hundreds of billions of dollars [55, 4], not including loss of privacy and damage to national
security.

Formal methods are approaches to reasoning about computational entities whereby logical or
mathematical descriptions of those entities enable drawing reliable conclusions about their be-
havior. Formal methods enable modeling, verifying, and synthesizing computer systems. Formal
methods can be usefully applied with varying degrees of rigor.

Their use to ensure security has been recommended since the 1970s. The Anderson report [8],
Bell and LaPadula’s early work on operating system security modeling [19, 18], and Needham and
Schroeder’s 1978 paper on authentication protocols [85] all stressed the importance of rigorous
analysis of detailed models of secure systems.

By explicitly modeling the computer system and the abilities of adversaries, formal methods
can prove that the computer system is secure against all possible attacks (up to modeling assump-
tions). This provides high assurance of system security, even against as-yet-unknown attacks.
Indeed, formal methods are the only currently-known approaches that could provide strong end-
to-end security guarantees: security guarantees throughout the execution of a system and across
abstraction layers.

Formal methods at assorted levels of abstraction have had significant success in securing
computer systems. Tools such as SVA [31], KCoFI [32], CPI [71], and Verve [116] have demon-
strated the practicality of formal methods to build systems with strong security properties such
as control-flow integrity, memory safety, and type safety. Such properties can be used to provide
comprehensive application security, as in the Ironclad project [62]. There have been significant
advances in proving functional correctness for an OS kernel (including seL4 [70], CertiKOS [59],
ExpressOS [75], and MinVisor [33]) and of internal kernel components (such as Rocksalt [81],
Jitk [113], FSCQ [25], and XMHF [111]). Tools such as GLIFT [109], Caisson [73], Sapper [74],
SecVerilog [118], and SC-Sniffer [46] use formal methods to ensure strong information security
properties of hardware architecture. Advances in software-defined networking enable the synthe-
sis [78] of consistent network configuration updates [96], which can ensure, for example, that fire-
wall invariants are never violated, and thus insecure packet-flows are impossible. Formal methods
also provide secure-by-construction methods for building systems, including program synthesis
(e.g., [117, 54, 61]).

Contemporary cryptography is an example of a flourishing interplay between rigorous mathe-
matical methods, a clear model of the adversary, and strong practical motivations. Tools based on
formal methods can reason about the correctness of cryptographic algorithms (e.g., Cryptol [53],
CryptoVerif [22], EasyCrypt [13, 7], RF* [15], CertiCrypt [12]) and produce code or hardware that
provably implements cryptographic algorithms correctly. Formal methods were key to discov-
ering the FREAK SSL/TLS vulnerability in 2015 [20, 21], which affected roughly a third of all
deployed SSL/TLS servers.
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Formal methods have also had recent success in specifying and enforcing privacy guaran-
tees. Differential privacy [43, 41, 42] provides a strong compositional formal notion of privacy,
and several tools and systems provide enforcement and verification of differential privacy (e.g.,
Pinq [79, 93, 45], Airavat [98], DJoin [82], Fuzz [95, 60], DFuzz [52], VFuzz [83], GUPT [80], Cer-
tiPriv [14]). At the interface between technology and policy, significant progress has been made
on formal specification and enforcement of privacy laws and enterprise policies [11, 37, 56, 27, 17].
Several industrially-deployed privacy-protection systems are either directly supported by formal
methods or inspired by more formal work. For example, Microsoft’s Bing search engine uses
a domain-specific language, Legalease, to specify privacy policies and a tool, Grok, to track how
user-data flows among programs and check privacy policy compliance on millions of lines of code
written by several thousand developers.

However, significant challenges must be overcome to fully realize the potential benefits of for-
mal methods for security. These challenges concern the scale of the formal methods needed, their
integration across the layers of abstraction of real systems, and their adaptation to the environ-
ments and security goals of systems.

Thus, the National Science Foundation sponsored a workshop on the topic, to identify ex-
isting successes and opportunities for applying formal methods to security problems, and raise
awareness of these opportunities in relevant communities in academia, industry, and government
research labs. The workshop was held at the University of Maryland, College Park, November
19–20, 2015. The workshop had 37 attendees from academia and industry, and an additional 7
attendees from government agencies.

Through a series of discussions and presentations, workshop attendees identified many ex-
citing open research problems and opportunities and made recommendations that aim to raise
awareness and encourage useful research and development.

This report focuses on the motivations for incorporating formal methods into cybersecurity ac-
tivities; the opportunities for doing so and the obstacles; and a variety of challenges and activities
that will enrich the state of practice and of scientific knowledge in key ways. Thus, this report is
narrower than the recent, well-constructed Federal Cybersecurity Research and Development Strategic
Plan [86], which we recommend to readers who may desire a broader view of the cybersecurity
challenges and of research and development strategy.

Open research problems identified by the workshop include the following.

1. Whole-system security. How do we specify and ensure the security of a whole system, while
still enabling modular/compositional reasoning and development? For example: How do
we specify security guarantees of components to facilitate reasoning about security when we
combine components? How do we specify the assumptions and guarantees of abstraction
layers to facilitate reasoning about security across abstraction layers?

2. Abstractions. What are the right abstractions to enable formal methods for security? These
include abstractions to present to the programmer and abstractions provided by the oper-
ating system and architecture. Particularly with respect to hardware architecture, they also
include useful sets of formally defined, composable, verifiable, and high performance se-
curity primitives. Exploration and validation of abstractions is urgent: they are central to
developing secure computer systems and systematically applying formal methods to these
systems.
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3. (In)Compatability of Tools, Proofs, and Specifications. To what extent can existing and
new tools and techniques be standardized to enable compatibility of specifications, proofs,
and interoperability of tools?

4. Software Development and Formal Methods for Security. How can formal methods for
security be supported throughout the lifecycle of software and hardware, including sup-
porting security goals and mechanisms in the design process, reducing the effort required
to construct specifications and prove that specifications are met, and enabling the continued
use of formal methods as a system evolves after initial deployment?

5. Transition to Practice. What is required to enable formal methods for security at industrial
scales and make them compatible with common industry processes?

6. Mapping the Space of Privacy. What is the conceptual space of privacy requirements, and is
there a computational formalization of these requirements (analogous to defining complex-
ity classes and the complexity class hierarchy)? How do we develop a common framework
that accounts for different privacy-relevant guarantees?

This report makes the following observations and recommendations.

1. Challenge problems have the potential to ignite the imagination and enthusiasm of the
community and to stimulate research that pushes the boundary of what is possible using
formal methods to secure computer systems. We propose the following challenge problems.

• Develop a formally verified crypto-currency wallet. This challenge emphasizes providing
whole-system security for end-user software comprising hardware, an operating sys-
tem, and application code. The financial relevance of the software provides clear mo-
tivation for strong security guarantees, including the characterization and enforcement
of privacy and accountability. It may be reasonable to have dedicated or specialized
hardware. The security of the crypto-currency wallet likely relies both on the system
itself and on properties of the cryptographic protocols.

• Develop an end-to-end secure messaging system on a peer-to-peer overlay. This challenge
emphasizes whole-system security for a distributed application.

• Develop privacy-preserving tools for scientific discovery (data exploration and analysis) that can
be used by medical researchers, social scientists, and other academics working in data-intensive
fields to carry out their daily work. This challenge seeks to connect strong formal notions
of privacy with research on real data sets in social and life sciences.

• Verify functional correctness of a POSIX-like operating system. This challenge will push
forward the scale of formal methods for software verification and help identify suit-
able abstractions that the operating system requires of hardware and that the operating
system can present to the application to enable the use of formal methods for security.

• Use the results to design a post-POSIX operating system offering assured security services. This
challenge will require identifying the security goals that a wide range of applications
achieve, designing an OS interface providing services that allow them to achieve their
goals, and ensuring that the implementation delivers these services.
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2. Outreach and Education. We need to advocate for the advantages of formal approaches,
and specifically for formal approaches to security, as well as to inculcate a grasp of them
among newly trained professionals.

• Outreach advocacy to various communities, including security researchers, systems
researchers, and hardware designers is needed.
“Formal methods” for security can and should be interpreted more broadly than just
mechanizable logical specifications. Rigorous mathematical or logical methods to rea-
son about the behavior of computational entities can help document goals and provide
a basis for understanding and discussing privacy and security requirements. This is
perhaps particularly relevant with respect to privacy, where formal methods naturally
extend to rigorous statistical and causal analysis methods, and privacy has been exten-
sively studied in diverse disciplines.

• Security and formal methods are both relevant to a broad cross-section of the Computer
Science undergraduate curriculum. As such, we recommend incorporation into exist-
ing courses of both (a) security concepts and techniques and (b) formal methods and
tools. Although the Computer Science Curricula 2013 [5] proposes this with respect to
security, it does not do so for formal methods. Incorporation of formal methods into ex-
isting courses (as opposed to the development of new courses focused on formal meth-
ods) is also the recommendation of the 2012 NSF Workshop on Formal Methods [67].

3. Development of Tools and Infrastructure. The availability of tools and infrastructure will
be critical to the success of applying formal methods to improve security. We recommend
developing and sharing tools and other infrastructure to enable the application of formal
methods.

Based on previous successes of the application of formal methods for software correctness,
one possible way to achieve this is for conferences and journals to encourage the submission
or evaluation of artifacts, which encourages development and reuse of tools and infrastruc-
ture. Another possibility is the establishment of repositories of formal artifacts and security-
relevant benchmarks and test suites, to encourage the availability of tools and shared infras-
tructure.

Much work on tools and infrastructure can pursue an integrated transition to practice, which
some funding mechanisms can support. Additional work to polish tools, infrastructure, and
substantial worked examples can make them accessible to a broader community including
systems developers. Thus, research can lead much more quickly to social benefits.

We note that there is value in both clean-slate redesign and incremental improvement to ex-
isting infrastructure. Clean-slate redesigns can liberate innovative, high-quality work, but
improvement to existing infrastructure can have a more immediate impact on existing sys-
tems. A balance of both types of work is needed.

Section 2 describes the goals of the workshop. The workshop was structured into four main
areas: Hardware architecture (Section 3), Operating systems (Section 4), Distributed systems (Sec-
tion 5), and Privacy (Section 6). In addition, discussions were organized around cross-cutting
concerns, including whole-system security guarantees (Section 7.1), education and outreach (Sec-
tion 7.2), and tools and infrastructure (Section 7.3).
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2 Workshop Goals

We had three main goals at this workshop. First, we wanted to document some of the central
security problems, stretching across a number of layers from hardware and operating systems
through distributed systems to the more human-oriented questions of privacy.

Second, we wanted to appraise the relevance of today’s robustly developed formal methods.
These are able to handle great complexity now, particularly when the models are at a fairly uni-
form level of concreteness. Challenging aspects of security are that its concerns may be logically
complex (such as non-interference); its goals may be hard to formulate (as are many privacy con-
cerns); and systems may be susceptible to attack at many different levels of abstraction.

Third, we wanted to identify areas where formal methods are most likely to make a contribu-
tion to security. These have to be areas with a history of important security weaknesses; they must
be complex enough to be hard to get right by ordinary careful work; but convincing models of the
crucial security considerations must be within reach.

Above all, we wanted to provide a forum for interaction among the extremely varied and
strong participants. Outcomes of real value include stimulating new collaborations, a new ap-
praisal of the most pressing problems, a new respect for the available techniques, among those
present.

We proposed five main questions to structure the discussions:

1. What is the evidence that formal methods can make a substantial difference to the real prac-
tice of security?

2. What are the obstacles that could prevent formal methods from achieving substantial bene-
fits?

3. What are the most promising applications areas and security goals?

4. Why now: What changes suggest that now is a high payoff time for interactions between
security and formal methods?

5. What to do next? (Recommendations/ideas/challenges)

These questions were applicable across the four areas into which we subdivided the workshop:

Hardware Architecture led by Tim Sherwood and Patrick Schaumont;

Operating Systems led by Nickolai Zeldovich;

Distributed Systems led by Andrew Myers;

Privacy led by Anupam Datta and Benjamin Pierce.

The area chairs guided discussion and helped to write sections of the report below. Participants
were assigned to an area for part of the workshop. In addition, there were several group discussion
sessions, and participants self-organized into areas of cross-cutting concerns, including whole-
system security guarantees, education and outreach, and tools and infrastructure.
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3 Area: Hardware Architecture

3.1 Brief overview of the problem area

Underlying every computing system, from the smallest embedded sensor to the largest ware-
house-scale distributed system, ultimately is some form of computing hardware. All software
abstractions—from the application logic, to language run-time, operating system, and virtual
machine—in the end perform their function through a set of low-level commands to a physical
device. This fact provides both significant challenges and opportunities to system security. On
one hand, the hardware sub-systems implement the lowest level of computing abstraction and
cannot be undercut by software implementation artifacts. By the nature of sitting at this lowest
level, hardware mechanisms have the opportunity to provide a formally sound foundation on
which to build rich and layered approaches to software security. On the other hand, hardware
is physical and attackers are not constrained by the formal model that is used to develop or ver-
ify the hardware. Security failures in hardware may not be easily “patched” and may provide
complete access to the entire system state.

Despite these significant challenges and opportunities, most hardware designers today have
limited opportunity to learn about system security issues, let alone having access to formal tools
and techniques to help them in their efforts. Security analysis does not fit cleanly into the existing
process for functional verification and, in some cases, may even negatively impact designers’ ef-
forts to meet performance goals. Significant research is needed to help bring the power of formal
analysis to bear on the myriad problems of hardware security.

3.2 Central security goals to achieve

The physical nature of hardware means that many different classes of attack are possible. Each
operation pulls a measurable amount of current from the power supply, each wire toggled emits
observable electromagnetic radiation, each high-energy particle strike opens the possibility for
critical bits to be flipped, and each chip that falls into an adversary’s hands is an opportunity
to reverse engineer an entire design. In some cases one might not even trust the manufacturing
pipeline in its entirety. These classes of physical attack are “model breaking” for the vast majority
of formal approaches today. These, and other, physical attacks must be placed on a more formal
foundation and they need to be considered both independently and in conjunction.

Hardware designs today are often developed against an informal specification, e.g., an English
language document describing the intent of the design, rather than a mathematical definition of
the operation of the design. Researchers have increasingly taken to attempting to “formalize”
these informal specifications, which they can then test against the observed behavior on a set
of designs. We do not need to “discover” a formal foundation for hardware. What we need
are methods to create, analyze, and execute formal hardware security specifications, and prove
equivalences between them, starting from the earliest points in the design process.

Finally, new security mechanisms are needed to ease the creation and verification of higher-
level system security properties. Certain properties, such as true randomness, are available only
at the hardware level, while other properties (such as performance of cryptographic components,
isolation, and determinism) may be significantly improved through additional functionality at the
hardware level. A set of formally defined, composable, verifiable, and high performance security
primitives has the promise to transform the state of hardware security, and with it, the bedrock of
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software security.

3.3 Evidence that formal methods can help us achieve them

Formal techniques are well known in general hardware design, especially at the lower abstraction
levels (e.g., layout versus schematic equivalence checking), as well as in specialized subtasks of
hardware design (e.g., finite state machine reachability testing). Secure hardware design poses
particular design challenges by itself, and formal techniques can improve the design process in
two areas of secure hardware design: to verify the logical properties of a given design, and to
verify its physical properties.

Capturing secure hardware in a Hardware Description Language is error prone. Instead,
domain-specific languages (e.g., Cryptol [53]) support abstraction and verification of synthesized
results. For example, secure hardware, in particular hardware for cryptographic operations, is of-
ten based on specialized arithmetic derived from finite fields, and typically involves non-standard
wordlengths. Formal tools support the design correctness of these highly specialized operators by
demonstrating the equivalence between high-level specification and the implementation.

Another important area of success in verification is in information-flow analysis in hardware
circuits (e.g., GLIFT [109], Caisson [73], Sapper [74]), where high complexity prevents a designer
from doing manual verification. This kind of analysis leads to a guarantee with respect to isolation.
For example, it enables the integration of trusted and untrusted logic in the same physical chip
package.

Through proper modeling, formal methods can verify the physical effects of hardware execu-
tion, including timing and power consumption. With such models, designers can reason about
side-channel leakage (timing and power), and can verify countermeasures such as constant-time
design (e.g., SecVerilog [118]) and perfect-masking for power randomization (e.g., SC-Sniffer [46]).
Architecture models further help to verify the physical effects of software execution, such as cache
timing effects (e.g., CacheAudit [40]).

3.4 Obstacles to the applicability of formal methods

Several obstacles hinder adoption of formal methods for security in hardware. First, although
there has been significant uptake of formal methods for functional verification of hardware, func-
tional verification is typically performed only piecemeal, on parts of a design. Security is often a
holistic property of an entire design and questions about the scalability of these approaches are
always present. Second, hardware does not currently have the same open culture as software.
Commercial grade language run-times, operating systems, and virtual machines are all openly
available, free to study and run, and they are contributed to by a broad community of researchers.
In the hardware space, most security-critical hardware is not only closed-source, but it is often so
well guarded that it won’t be shared even with trusted commercial partners. This significantly
impedes our ability to understand the true needs of security-critical hardware and develop in-
novative solutions. Finally, the scope of attack models for hardware is staggering, and includes
side-channels, tampering, hardware Trojans, fault injections, and software-coordinated attacks.
While these challenges are significant, they are surmountable and can likely be overcome through
a sustained effort from the community and investment from both government and industry.
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3.5 Promising areas for upcoming research

Despite the early successes of formal techniques in hardware design, the scale and scope of the
problem domain still have significant room for improvement.

First, there is a great need for tools that can scale with design size. This calls for better modeling
and especially better abstraction of security issues. Such models should, ideally, capture risk—the
product of loss-probability and cost—over multiple possible threats. In practice, models should
initially focus on accurately capturing the design cost of security (overhead) against the likelihood
of a successful attack. Similarly, models could capture the design cost of privacy.

A second major challenge is the automatic analysis for Trojans, either statically or dynami-
cally. Such analysis does not look for bugs in design artifacts as specified. Instead, it looks for
unspecified design artifacts.

A third major challenge is the development of scalable, formal models to analyze side-channel
leakage, fault propagation behavior and information flow, in particular over long and extended
schedules.

A fourth major challenge is the extension of formal properties derived from hardware into
software. Indeed, many interesting cases of high-assurance design do not involve isolated soft-
ware or hardware, but rather a combination of them. A closely related challenge is the verification
of customized microprocessor features that enforce security properties such as isolation, memory
confidentiality, guaranteed service, and so on.

Finally, reconfigurable and runtime-adaptable systems will need formal proofs that can be
adapted at runtime. In addition, protocol features such as nonces and truly random inputs can be
verified only at runtime. Formal techniques could help in both of these cases to reduce the cost of
runtime testing.

3.6 Is this area ripe for a fresh focus?

While hardware has always played an important role in software security, (e.g., through mem-
ory management via the TLB, with support for virtualization through trapping, etc.) the hard-
ware/software interface remained relatively static for many decades. However, due to the con-
tinued slowing of transistor power/performance system there is a radical transformation now
taking place. Systems are becoming increasingly parallel, decentralized, heterogeneous, and rich
with custom hardware functionality. For the first time in many years, programmers are being
asked to understand and explicitly manage the underlying hardware in a new way. This shift
means that entirely new blocks of the system (e.g., on-chip networks and transaction memory
processing hardware) are asked to play a significant new role in security. The challenge is that the
security properties of these diverse new architectures are not well understood but the opportu-
nity is that software developers are more open now than ever before to changing the fundamental
hardware/software contract.

3.7 Actions that can create momentum

Formal tools for secure hardware design face the same challenges as other formal tools for hard-
ware design: they are not well integrated with the common hardware design flow, especially at the
higher abstraction levels. However, the context of security offers several compelling advantages
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for the use of formal tools, as argued above. Thus an important driving force in creating momen-
tum in this area will be to create opportunities to bring the secure hardware design community
and the formal verification community closer together.

First, there is need for open repositories that describe real design artifacts and actual, real-life
security problems. The secure hardware design community has been very successful, for example,
in stimulating research in side-channel analysis through open design artifacts, measurements and
hardware (e.g., DPA-contest [29], SASEBO-II side-channel analysis board [6]). To rally the formal
community into the challenges of secure hardware design, a set of common benchmarks is needed.
Some benchmarks are already available (e.g., Trust-Hub [110]), but there is need for a structure that
enables the formal verification community to interact with them.

Second, there is need to advocate the advantages of the formal approach in the hardware
design community, and vice versa, to explain the challenges of secure hardware design to the
formal community. This could be done by engaging the leading researchers of each field to host
tutorials or invited talks at the main conference venues of these communities. A Distinguished
Speaker program could help to support the travel costs and engagement costs for these speakers.

Third, there is a need to engage industry to prioritize the many security challenges faced in
a complex chip design. This can be done by engaging industry consortia such as SRC, and by
involving them in the research program of NSF (similar to, or as part of, SaTC/STARRS, but with
an emphasis on formal tools for security).

4 Area: Operating Systems

Operating systems provide many services that applications rely on, such as a network stack, a file
system, process isolation, inter-process communication, and so on. The security of applications
depends pervasively on the underlying OS, making operating systems an appealing target for
applying formal methods.

For instance, if a system executes multiple applications (or virtual machines) on the same com-
puter, the OS kernel is responsible for ensuring that a malicious (or compromised) application
is unable to tamper with the execution of other applications. Even if the computer is used for
running just one application, OS-level process isolation is often used to isolate less-trustworthy
components of a large application to mitigate the damage from a potential compromise. Ensuring
the correctness of process isolation in an OS kernel could provide stronger assurance that compro-
mised components cannot tamper with the rest of the system.

As another example, applications can store user information, such as passwords, in a file sys-
tem. These applications rely on the OS to not disclose that data, and to not allow an adversary to
tamper with the user passwords (e.g., by changing them to a password that the adversary knows).
Here, the OS might not be directly in charge of enforcing application-level security, but if the OS
functions incorrectly, an adversary can still subvert the application’s security. Thus, a formal guar-
antee that the file system in an OS is working correctly is critical to ensuring that this application
achieves its own security goals. Applications may similarly rely on other OS subsystems for their
security.

The ultimate goal of applying formal methods to an operating system is to help application
developers build secure applications on top of that OS. This places a significant emphasis on the
interface between the OS and the application, and on formal specifications of that interface that
would be most helpful for an application developer to prove their application’s security.
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One reason why operating systems are an especially appealing target for applying formal
methods is that the same operating system is often shared across a wide range of applications.
As one example, the Linux kernel runs on everything from sensors and watches, to mobile phones
and laptops, to high-end servers. This means that the significant effort of formally verifying the
correctness or security of an operating system can be amortized across a large number of applica-
tions that would benefit from the verification effort, and thus potentially provide a high payoff.

As we will discuss shortly, there are exciting success stories in applying formal methods to
operating systems. However, there is still no formally verified operating system that provides
the typical services applications expect, such as a file system, a network stack, etc. Building such
an operating system, and using it to develop examples of secure applications on top of it, is an
important next step for this area.

4.1 Benefits of formal verification

One of the main benefits of applying formal methods to OS kernels is that it can provide a strong
assurance of the kernel’s correctness or security properties. This can be especially useful to ker-
nel developers working on tricky, bug-prone code inside an OS kernel, such as ensuring crash
recovery in a file system, dealing with concurrent code (such as Read-Copy-Update in the Linux
kernel), and so on.

However, even if the kernel is bug-free, formal methods can have a range of other benefits.
First and foremost, a precise specification of the kernel’s behavior can eliminate disagreement
between the application and kernel developers about what an interface provides; such disagree-
ments have often led to application bugs in the past [90]. This, in turn, can help application
developers build secure applications.

Moreover, formal specifications provide a strong way of documenting the assumptions that an
OS kernel is making (e.g., about how the underlying hardware is behaving, about how the kernel
is configured, or about how the application is using the OS kernel). The specification can also help
make explicit what critical invariants must be maintained in order for a particular property (e.g.,
process isolation) to be enforced.

Finally, formal methods can help make the OS kernel more evolvable. Having precise specifi-
cations frees kernel developers to pursue more aggressive refactoring or optimizations, since they
can be sure their new code meets the same exact guarantees as the previous version. Furthermore,
precise specifications can enable developers to add extensions to existing kernel code, without
having to worry about forgetting some subtle detail or interface.

4.2 Goals for formal methods and initial successes

One of the central questions in applying formal methods to operating systems lies in deciding
what specification should be proven about the operating system. At a high level, there are a
number of different properties that can be proven, from weaker to stronger:

• Absence of certain kinds of bugs, or resistance to certain classes of attacks. For instance, an
OS developer may want to ensure control flow integrity, memory safety, or type safety for
their OS kernel. One benefit of providing these properties is that they correspond to signifi-
cant classes of attacks in practice, and thus can eliminate certain avenues of attack. Another
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benefit is that it is often possible to check or enforce these properties for existing code, al-
lowing for incremental adoption. For example, SVA [31], KCoFI [32], and CPI [71] have
shown that it is already practical to build systems that provide these types of guarantees.
Type- and memory-safety is also a key building block for proving higher-level properties;
for instance, the Verve kernel [116] proved type- and memory-safety of a simple OS kernel,
which was later extended in the Ironclad project [62] to prove comprehensive security for
the application.

However, these properties protect only against certain classes of attacks. They do not pro-
vide any guarantees if the adversary uses a different sort of attack, for instance, enforcement
of a control-flow integrity property does not provide any guarantees against data-flow in-
tegrity attacks [26].

• Functional correctness of internal kernel components. This means that the developers have
formalized the specification of some subsystem in the OS kernel, and proven that the code in
that subsystem meets their specification. This can be particularly useful for security-critical
subsystems, where formal methods can ensure the absence of bugs in that specific part of the
kernel. For instance, Rocksalt [81] proved the security of a Native-Client-like software fault
isolation system; Jitk [113] proved the security of the Seccomp/BPF bytecode interpreter in
the Linux kernel; FSCQ [25] proved the correctness of a file system; and XMHF [111] verified
internal invariants for an x86 hypervisor. Microsoft’s SLAM model checker [9] uses predicate
abstraction to scalably analyze the correctness of Windows device drivers.

Verification of internal kernel components is an important step towards applying formal
methods to an entire OS, and results from this space will likely help verify the correctness
of the same kinds of components in the context of an entire operating system. Verifying
individual components can also be a useful strategy for incremental adoption, especially for
security-critical components of existing systems.

• Functional correctness of the entire operating system. This means specifying the behavior of
the entire OS kernel that’s visible to user-space applications (such as system calls, schedul-
ing, etc.), and proving that the OS kernel implementation meets that specification.

There has been significant work in proving functional correctness for an OS kernel, with
different kinds of user-level interfaces and corresponding specifications. For example, the
seL4 microkernel [70] has a proof that its kernel implementation meets an abstract model of a
microkernel, along with the capDL language for formally reasoning about the isolation prop-
erties achieved by seL4’s capabilities [70, §6.1]. Several other projects have also proven the
correctness of simple hypervisor-like OS kernels, including CertiKOS [59], ExpressOS [75],
and MinVisor [33]. However, researchers have not yet been able to build a provably correct
OS kernel providing traditional abstractions expected by applications, such as a network
stack, a file system, inter-process communication, etc.

• As mentioned earlier, the ultimate goal of formal methods would be to reason about an
entire system, consisting of both the operating system and the applications running on top
of it. Here, the ultimate specification is application-dependent, and the OS specification
serves only as a way to help the application developer prove that the application’s own
specification is satisfied. The most prominent result in this space is the Ironclad project [62],
which proved the correctness (and security) of several applications, including a password
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hasher and a differentially private database. seL4’s work on CapDL has also been used
to reason about the isolation of programs running on top of the seL4 microkernel [70, §6].
Finally, some work has been done on proving the security of simple applications on top of
existing operating systems with the help of shims [97, 66].

4.3 Open research questions

Factoring out security. In the context of applying formal methods to operating system security,
one of the biggest questions is, what security primitives should the OS provide to its applications?

Ideally, the OS would provide applications with mechanisms that factor out application se-
curity from other (non-security) correctness concerns. This would, in turn, allow application de-
velopers to focus their formal method efforts on the security of their application (where formal
methods may be able to add significant value), and less on the overall correctness (where apply-
ing formal methods may be of less value).

Alternatively, if such mechanisms do not exist, then there is little difference between full func-
tional correctness and security at the OS interface. Thus, applying formal methods to OS security
will mean specifying and proving full functional correctness of the OS interface, and it will be up
to application developers to prove their application-level security goals, on top of the OS kernel’s
functional correctness specification.

Unfortunately, there isn’t clear agreement on this question, even without considering formal
verification. Existing security mechanisms such as access-control lists (ACLs) are widely de-
ployed, but do not seem to provide much help in reducing the effort of reasoning about security.
Information flow control (IFC) and capabilities are two alternative security mechanisms that have
been widely studied, and in principle can help application developers reduce the code that has to
be considered for the purposes of security properties. However, it’s not yet clear how hard it is to
build large-scale applications using IFC or capabilities in practice, although some initial evidence
suggests some variants of IFC may be promising [104, 57].

Specifications. OS interfaces such as POSIX have traditionally been specified informally, using
English at best. As a result, the specifications may not be a good fit for formal methods, which
require a precise description of how an interface operates. What’s the right approach to formaliz-
ing OS interfaces? Should we formalize POSIX despite unclear or inconsistent handling of corner
cases, which might lead to needlessly complex and hard-to-use specifications? Should we start
anew with a specification geared towards formal verification from the beginning? Or is there a
way of evolving existing interfaces like POSIX to be more formalization-friendly?

Hardware models. OS kernels run on bare hardware, which means that formally reasoning
about an OS kernel requires a formal model of the underlying hardware. Building such a model
is a non-trivial task: processors are highly complex, especially when considering the privileged
instructions needed by an OS kernel, and the rest of the hardware platform used by an OS kernel
(DRAM controllers, timers, PCI, power management, devices, etc.) also requires formalization.
One approach taken by prior work is Ironclad’s idiomatic specification [62], which formalizes just
the subset of the instruction set that is actually used. However, for an OS kernel that can run ar-
bitrary user-space code, can this approach still work? And how feasible is idiomatic specification
for the rest of the hardware platform, aside from the CPU?
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Concurrency. Concurrency is a key concern for OS kernels, which are typically in charge of
running multiple processes on a single computer. However, most existing work on OS verification
focuses on sequential execution of OS kernels.1 Moreover, concurrency is fundamentally required
to reason about the execution of multiple processes or applications on top of the same OS kernel.

However, formal reasoning about concurrency seems to be still in the early stages; there is
still no consensus on the best way to reason about concurrent programs, or how to verify that
concurrent code meets a specification. Perhaps the biggest formally verified concurrent program
is a garbage collector [63]. Addressing these basic questions is critical to make progress on OS
verification.

Systems programming language. What language should the verified system be written in? C
is well understood and low-level, but has complex semantics; the resulting proof obligations can
significantly increase the proof effort. The C language is also not well integrated with formal
tools such as proof assistants, making it more difficult to co-develop code, specifications, and
proofs. Functional languages like Haskell or Gallina are better integrated into formal tools, so that
it’s easy to change the code, specification, and proof all in the same file and same development
environment. But can functional languages provide acceptable performance for an OS kernel?
Newer languages such as Go and Rust provide a potential alternative, although it’s not yet clear
whether Go’s garbage collector is compatible with the performance needs of an OS kernel, or
whether Rust’s concurrency memory model is a good fit for an OS kernel that fundamentally
operates on shared memory.

Development effort. A significant barrier to adoption of formal methods in OS development is
the high development effort. How can we reduce the effort required to construct specifications
and prove that code meets them? Perhaps even more importantly, how can we make sure that
future changes to the OS kernel don’t require developers to redo all of the proofs?

Clean-slate or incremental deployment. What’s the best route to making sure that work on
formal methods in operating systems achieves real-world impact? Clean-slate approaches offer
appealing simplicity, yet make it difficult to deploy in an existing system. One answer may be to
verify individual components of existing systems incrementally, as described earlier; however, to
achieve full functional correctness of an OS in the long term, it is important to eventually combine
these individual components into a comprehensive proof for the entire OS.

Whole-system verification. Ultimately, verifying the OS kernel is just a step to proving strong
properties about the entire system, which includes the OS kernel and the applications running on
top of it. But how can we verify the entire system, when the applications (and the kernel) might be
written in different languages, with different styles of theorems and specifications, and different
proof tools?

Even within an OS kernel, different methodologies, proof techniques, or formal tools, might
be best suited to different parts of the kernel code. How can we effectively combine them?

We explore some of these questions separately in Section 7.1.

1The one exception is Microsoft’s work on using VCC to verify the Hyper-V hypervisor [30], although that project
stopped before they were able to finish the verification.
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4.4 Possible next steps

We believe that the next goal in OS verification should be to actually prove functional correctness
of a complete POSIX-like operating system. Doing this would require addressing many of the
research challenges listed above, such as coming up with a specification for a reasonable subset of
the OS interface, determining the best approach for handling concurrency, developing a suitable
hardware model, choosing a language for implementing the OS kernel, and actually proving its
correctness against the specification.

One way to drive this work, and in particular, to ensure that it produces a useful specification,
is to focus on an example application that would stress the need for a usable formalization of the
OS interface. For example, building a verified Dropbox-like file sharing application, or a prov-
ably secure banking app for a cell phone, or provably secure encrypted off-the-record messaging,
would be a good driver for the underlying OS verification research.

We expect that the above goal entails a significant amount of research. Consequently, it may
be fruitful to focus on smaller first steps towards that goal, which would also be useful in their
own right. For instance:

• Provably correct building blocks, such as an append-only log, a cryptographic key storage
module, persistent storage system, a high-performance VMM, and a library of concurrent
data structures. These building blocks are likely to be useful in building a comprehensively
verified OS; would likely result in important research outcomes; and would also be useful
in existing systems.

• Provably correct libraries, such as a verified TLS implementation, or a library for autho-
rization models (e.g., RBAC), would both address current problems in these security-critical
libraries, as well as be eventually useful in a comprehensively verified system.

• Provably correct execution of a simple system under aggressive threat models, such as an
imperfect memory (reflecting row hammer attacks [69]) would advance research on harden-
ing software against hardware errors and attacks, and enable security researchers to provide
strong formal guarantees in these challenging environments.

5 Area: Distributed Systems and Networks

Security matters at every layer of modern computing systems, but especially at the level of dis-
tributed systems and networks. Modern computing systems and modern applications are typi-
cally distributed systems, with data storage and computation happening at different nodes in the
distributed system. On the user side there are a variety of different devices ranging from desk-
top computers to smartphones; but the functionality of these devices are backed by cloud-based
storage and compute nodes. Distribution is not merely used to connect users to remote resources;
within and across enterprises, services are stitched together across the network to form larger
systems.

The security of distributed systems is critically important. There are many distributed sys-
tems whose compromise could lead to loss of life include power grids, government and military
information systems, medical information systems. And many more systems are economically
critical.
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Unfortunately, distributed systems are hard to secure. Arguably they pose the greatest chal-
lenge:

• The whole stack. Their security rests on the security and correctness of every layer of soft-
ware and hardware below them. Hence, distributed systems are at least as difficult to secure
as application software, networks, operating systems and hardware.

• Size. Distributed systems are large systems, frequently involving millions of lines of code
or more. These systems are too simply large to directly construct proofs of correctness or
security, although formal proofs can be applied to key components.

• Complexity. Distributed systems tend to contain complex algorithms that are hard to im-
plement correctly. Their security often rests on the correctness of complex cryptographic
protocols and fault-tolerance protocols that are challenging to prove correct even in the ab-
stract, and that furthermore are easy to implement incorrectly.

• Evolution. Distributed systems are moving targets: they evolve over time. They are often
built using existing service components exporting an API that can be used by components
developed later. Security verification cannot be done once at the beginning of time; systems
must be reverified as they evolve.

• No central control. Since distributed systems often cross organizational boundaries, any
one participant in a distributed system has less control over the system as a whole. Many
activities are happening concurrently on modern distributed systems, some not under the
control of any given participant. Other participants may have their own security goals and
some parts of the system are likely to be opaque to any given participant. And it is typically
more difficult to exclude “the adversary” from a distributed system, because adversaries
have network access.

Although distributed system security offers serious challenges, the security problem becomes
easier in this context in some ways. Current hardware and software architectures tend to provide
a degree of isolation between distributed nodes “for free.” The expectations of security are some-
times lower for distributed systems. Proofs of functional correctness may be infeasible, but may
also not be necessary, at least in the near term. It would be a step forward for many systems if
even simple security guarantees could be offered.

5.1 The value of formal methods for distributed systems security

There is already considerable evidence that formal methods developed in the academic research
community can have an impact on the security and correctness of fielded distributed systems:

• Engineers at Amazon Web Services have used formal methods [87] including formal veri-
fication and model checking to verify the correctness of their widely used Simple Storage
System (S3). They used formal specifications written in the TLA+ specification language.

• During the past year, the so-called FREAK vulnerability was discovered in roughly a third
of all deployed SSL/TLS servers [20]. This rather shocking discovery depended on the use
of formal methods. Researchers at INRIA, MSR, and IMDEA developed a formally verified
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TLS implementation that was then used as a reference implementation against which to sys-
tematically test existing TLS implementations when subjected to deviant message sequences.
Formal methods contributed to replacing the OpenSSL state machine with a corrected ver-
sion. In fact, formal methods have been crucial to the development of many secure cryp-
tographic protocols in use today. Many protocol suites have been scrutinized using formal
methods, e.g., the standardized ISO/IEC authentication protocols [16].

• Facebook Infer is a static analyzer developed at Facebook, used by Facebook engineers to
identify null pointer access and resource leaks in Java programs. Facebook Infer builds on
the key technology of separation logic, which enables precise but scalable reasoning about
program code that performs complex heap manipulation. This system has also recently been
released as open source.

5.2 Challenges for formal methods for distributed system security

Distributed systems are typically too large and complex to perform verification after construction
or to treat verification as a monolithic, one-time process. The scale of these systems demands
the development of methods for security assurance that are more modular, compositional, and
incremental.

Modularity is needed so that formal methods can be applied to individual system components
rather than requiring that the verifier confront the entire complexity of the system at once. It must
be possible to prove that individual components provide the properties required of them by the
rest of the system, while treating the rest of the system in an abstract way.

Modularity also demands compositionality: if separately verified components are combined
to form a larger system, the desired security properties of the larger system should follow from
the formally verified properties of the individual component modules, rather than requiring that
modules be verified again for their new context.

Since the components of distributed systems often lie in different administrative domains—
they are federated systems—the implementations of some components may not be available to
be studied formally. Participants may only know what security guarantees are offered (that is,
promised) by components not under their control. Compositional reasoning is therefore crucial to
federated systems.

Existing methods for modular, compositional reasoning about distributed system security are
far from satisfactory. Further, distributed systems are built using previously implemented services
(possibly in different trust domains) that communicate over a networked API. An additional chal-
lenge is posed because these systems are constantly evolving. Therefore, it is desirable to have
methods for incrementally verifying distributed systems, so that the work of verifying security is
proportional to the degree of change in the system being verified, rather than to the total size of
the system.

Toward security by construction What the past 10 years of increasing success with applying
formal methods to building secure and reliable systems has shown is that formal methods are
most effective when they are part of the design process—when formal methods are used to capture
the evidence and reasoning that the programmer constructs as part of the development process.
If software is constructed through conventional means with this evidence effectively erased after
construction, proving important properties of the software becomes far more difficult. Formal
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methods such as program analysis and model checking can still be applied, but these methods are
currently not modular or scalable.

The existing abstractions and APIs for distributed programming are also too low-level to sup-
port formal verification well. Programming at the level of, say, TCP sockets not only offers the pro-
grammer many opportunities to make security-critical mistakes, but also obscures the higher-level
security issues. There is simply too large a semantic gap between these low-level abstractions and
the security and privacy goals of distributed systems. Formal methods will likely become easier to
apply to application code if distributed systems are built using higher-level abstractions. Higher-
level abstractions separate the problem of security verification into two problems: first, verifying
the implementation of the higher-level abstractions, and second, verifying the application code
that is built using them.

A serious impediment to this goal of higher-level abstractions, and to modular and compo-
sitional verification of distributed systems security generally, is that the security requirements of
distributed systems are hard to specify and hard to formalize. More research is needed on ways to
capture these requirements in a way that can be presented to both developers and verifiers. Vari-
ous promising methods have been developed for describing at least some aspects of the security
of complex distributed systems. Examples of compositional specification methods include infor-
mation flow control, session types, and separation logic. However, these languages and logics are
not able to capture the full range of security requirements.

5.3 Goals

In the longer run it is critical to make progress toward verifiably secure distributed systems, be-
cause too much is at stake. There are large challenges that likely must be overcome to build
verified secure distributed systems.

Clearly there is need for secure compositional distributed and cryptographic protocols that
deal with heterogeneous trust, consistency issues, and side channels. More broadly, the commu-
nity is still seeking appropriate abstractions to enable the design and efficient implementation of
secure distributed systems. There are many requirements on such abstractions. The abstractions
should expose security properties (including confidentiality, integrity, and availability properties)
in a form understandable to “normal” (i.e., non-security-specialist) programmers. We need high-
level abstractions that are suitable for programming “the Internet Computer,” that is, to easily map
code and data to distributed systems with heterogeneous trust. However, the abstractions should
not create side channels, vulnerabilities, or unacceptable performance issues. Ideally, abstractions
for building secure distributed systems should cleanly interface with “lower-level” abstractions
(i.e., OS-level mechanisms) to provide a separation of concerns with respect to distributed system
security versus single-machine security. Traditional adversary models for distributed systems
may need to be extended to incorporate economic and game-theoretic adversary models, and, for
example, ensure distributed protocols and systems are incentive-compatible with expected adver-
saries.

In the shorter term, there are steps that the research community can take to help build the
foundations to solve the larger problem of verified secure distributed systems. Higher-level ab-
stractions for constructing and verifying distributed systems will rely on core building blocks that
have been carefully verified. Unfortunately these core components are largely absent at present.
In many cases, the incentives to both academics and industry to create verified implementations
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of these components are currently too weak. Some examples of needed key building blocks in-
clude both security mechanisms for distributed systems and implementations of other distributed
algorithms:

Secure distributed security mechanisms

• Secure authenticated channels are a core abstraction. TLS is an attempt to provide such
channels, but verified implementations are needed.

• Verified implementations of cryptographic libraries that can be used in a composable fash-
ion.

• At the root of security mechanisms for authorization and audit is unspoofable identity.
Trustworthy identity management services would provide a solid foundation for a wide
range of other security mechanisms.

• Multiuser systems must decide whether to authorize requests. In the distributed setting, se-
cure authorization becomes more difficult: authorization itself may be a distributed compu-
tation that may be subverted by adversaries or may leak information to them. Abstractions
and implementations are needed for distributed authorization.

• A functionality growing in importance is the ability to run code in trustworthy fashion on
untrusted compute nodes. Support from hardware (e.g., SGX) or cryptography (e.g., homo-
morphic encryption) is required. Both are areas of active research, but verified implementa-
tions are needed.

Secure distributed algorithms

• Consensus is a key distributed algorithm that lies at the heart of distributed transaction
processing systems and other distributed algorithms. For example, current cryptocurrency
mechanisms are essentially a very inefficient consensus algorithm. An efficient, secure im-
plementation of consensus is needed with clearly defined, verified security properties.

• Many distributed algorithms depend on measuring time, but the measurement of time is
itself a distributed protocol that could be subverted by adversaries. NTP, the standard time
protocol, is based on strong trust assumptions.

• When data is stored in faraway data centers, access latency interferes with many applica-
tions. Replicating the data at multiple locations is crucial so that users are typically close
enough to at least one replica. However, programming with replicated data is quite chal-
lenging because replicas can become inconsistent with each other. Further, the more replicas
there are, the more likely it is that one is compromised. It would be very valuable to have
verified implementations of replicated storage abstractions that offer guarantees regarding
data integrity and the availability and latency of data access.

• Beyond simple storage abstractions, applications need higher-level functionality for access-
ing remote storage, such as atomic transactions and queries.
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5.4 A multicommunity effort

Distributed systems security is a big problem that involves expertise from multiple research ar-
eas: systems researchers (distributed systems, networking, operating systems, databases), formal
methods and programming languages researchers, and cryptographers. It seems hard to make
real progress on this important problem without bridging the gaps between these research com-
munities, and may require explicit action to build community around larger efforts.

6 Area: Privacy

In this section, we elaborate on the scope of the research area on formal methods for privacy. We
interpret both “privacy” and “formal methods” in a broader sense than their typical interpretation
in the computer science community.

6.1 Defining Privacy and Formal Methods

Privacy has become a significant concern in modern society, because, increasingly, a wide range
of organizations collect, use, and share personal information about individuals. The emergence
of sophisticated statistical methods for big data analytics, including machine learning methods,
has further exacerbated the problem. Indeed, the very question of what “privacy” means has
been extensively studied—and remains highly contentious—in many disciplines ranging from
philosophy to law to public policy [114, 115, 88, 103]. Recognizing this plurality of ideas, we
suggest a broadening of work in computer science on this topic.

A starting point for work in privacy is ensuring the lack of “inappropriate” flows of personal
data. The determination of which flows are inappropriate is a difficult normative question. Some
have argued for “privacy as control” where data subjects decide for themselves how their data
flows [115]. Others have argued for “privacy in context” where entrenched norms of a context
determine whether a flow is appropriate [88]. These are but two examples from an extensive body
of work. Our point in mentioning them is to highlight the fact that depending on the conception
of privacy that is being formalized, different types of formal methods may be appropriate. At the
same time, this body of work typically views data types as atomic. Advances in machine learn-
ing and other statistical methods have been the basis for numerous attacks demonstrating that
seemingly innocuous data types (e.g., an individual’s movie ratings, or social network) can re-
veal information about other data types (e.g., their identity or sexual orientation). Thus, nuanced
models of information, statistical inference methods, and related ideas from computer science also
inform the foundations of privacy. We recommend that computer scientists, in general, and formal
methods researchers, in particular, work with researchers in philosophy, law, public policy and re-
lated disciplines to forge comprehensive privacy foundations and meaningful tools for protecting
privacy.

A second form of broadening that we suggest is to study privacy as part of a larger research
program on personal data protection that encompasses fairness, transparency, and accountability.
This viewpoint is consistent with conceptions embodied in the Fair Information Practices Princi-
ples (FIPPs) [107] and in recent reports from the White House [91].

We also suggest that the term “formal methods” when applied to privacy be interpreted more
broadly than its typical use. In particular, formal methods in specifications should include not just
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readily mechanizable logical specifications but rigorous methods more broadly, e.g., ones couched
in the ordinary mathematical language of statistics. Such precise specifications can help documen-
tation of goals, and as a basis for understanding and discussion of privacy requirements. Indeed,
in a later section we formulate the goal of developing a map of the privacy space as a grand chal-
lenge. With a similar philosophy, we suggest that the scope of formal methods for enforcement
should include a broad class of rigorous methods. Examples of such methods are conventional
formal methods such as language-based methods, theorem-proving, model checking, run-time
verification, and unconventional formal methods, such as forms of experimentation and testing
of personal information processing systems that draw on statistical and causal analysis meth-
ods [34, 36].

In summary:

1. Computer scientists in general, and formal methods researchers in particular, should work
with researchers in philosophy, law, public policy and related disciplines to forge compre-
hensive privacy foundations and meaningful tools for protecting privacy.

2. Privacy should be studied as part of a larger research program on personal data protection
that encompasses fairness, transparency, and accountability.

3. The term “formal methods” when applied to privacy should be interpreted more broadly
than its typical use to encompass a range of specification and enforcement methods—in
particular, rigorous statistical and causal analysis methods.

6.2 Early Successes

Since the formal study of privacy is a relatively young area, one might expect success stories to
come mainly from academia, and indeed there are many of these. We mention some notable ones
that reflect successful basic research, plus some success stories that are indicative of transitions
from basic research to industry practice.

From philosophy and law to computer science. We summarize a body of work where an in-
fluential philosophical theory of privacy has informed the design of a logic of privacy. This logic
has been used to formally specify a number of privacy regulations. Associated formal monitoring
methods enable automated enforcement of parts of these regulations. These results can be viewed
as a more expressive counterpart in privacy to work on enforceable security policies [100].

Contextual integrity is a philosophical theory of privacy [88]. The building blocks of this theory
are social contexts and context-relative informational norms. A context captures the idea that
people act and transact in society not simply as individuals in an undifferentiated social world,
but as individuals in certain roles in distinctive social contexts, such as healthcare, education,
friendship, and employment. Norms prescribe and proscribe the flow of personal information
in a given context, e.g., in a healthcare context a norm might prescribe flow of personal health
information from a patient to a doctor and proscribe flows from the doctor to other parties who
are not involved in providing treatment. This theory has been used to explain why a number of
technology-based systems and practices threaten privacy by violating entrenched informational
norms. The theory is now well known in the privacy community and has influenced privacy
policy in the US (for example, “respect for context” was included as an important principle in the
Consumer Privacy Bill of Rights released by the White House in 2012 [108]).

23



The idea that privacy expectations can be stated using context-relative informational norms
is formalized in a semantic model and logic of privacy [11] and developed further in follow-up
work [37, 56]. While contextual integrity talks about information flow norms in the abstract, a
precise logic enables specification in a form that information processing systems can check for
violations of such norms. Two considerations are particularly important in designing the logic:
(a) expressivity — the logic should be able to represent practical privacy policies; and (b) enforce-
ability — it should be possible to provide automated support for checking whether traces satisfy
policies expressed in the logic. While the initial work of Barth et al. [11] employed first-order
linear temporal logic (LTL) for specification, enforcement was limited to propositional LTL. Garg
et al. [56] present an expressive enforceable logic of privacy. This privacy logic is an expressive
fragment of first-order logic. It has been used to develop the first complete formalization of all
disclosure-related clauses of two US privacy laws: the HIPAA Privacy Rule for healthcare organi-
zations and the Gramm-Leach-Bliley Act for financial institutions [37]. These comprehensive case
studies shed light on common concepts that arise in information flow norms in practice—data
attributes, dynamic roles, notice and consent (formalized as bounded time temporal properties),
purposes of uses and disclosures, and principals’ beliefs—as well as how individual norms are
composed in privacy policies. A related early effort on formal techniques to specify and analyze
legal privacy policies appears in May et al. [77].

At a technical level, the policy enforcement algorithm of Garg et al. [56] advances run-time
monitoring formal methods to a restricted fragment of first-order logic. Chowdhury et al. [27]
further improve the time- and space-efficiency of this algorithm by using a fragment of Metric
First-Order Temporal Logic as the specification logic and using summary structures to compactly
represent relevant state from the execution trace. Related formal methods are also employed in
the work of Basin et al. [17].

Privacy in statistical databases. Differential privacy [43, 41, 42] has emerged in the past decade
as a gold standard definition for strong privacy in statistical databases, giving rise to a veritable
mountain of work in both algorithms and systems conferences as well as many variations and
refinements. The basic idea is that, by adding a small amount of random noise to the result of
an aggregate query over a large data set (e.g., “What fraction of the patients in this study were
smokers but did not develop cancer?”), we can guarantee that the presence or absence of any sin-
gle individual in the data set can make only a small difference in the distribution of outputs—i.e.,
the privacy loss for any individual from any differentially private query is bounded in a precise
sense. One major attraction of differential privacy is that it is compositional: the privacy loss from
publishing the results of two differentially private queries is no more than the sum of the losses
for running either of the two queries separately. This avoids vulnerabilities of earlier privacy def-
initions such as k-anonymity [106], where the results of two separate privacy-preserving queries
can be combined to completely violate privacy, as happened in the Netflix Challenge debacle [84].

There are now a number of query languages for differentially private data analysis, including
Pinq [79, 93, 45], Airavat [98], DJoin [82], Fuzz [95, 60], DFuzz [52], VFuzz [83], GUPT [80], and
others. The goal of all these languages is to automatically enforce privacy restrictions, allowing
the owners of sensitive datasets to query them (or make them available for querying by others)
without fearing that mistakes or malicious intent will lead to privacy breaches.

The languages mentioned above make it easy to query sensitive data without fear of violating
privacy, but they are also limited in that each embodies a specific “format” for private queries. By
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contrast, the algorithms literature is full of complex and subtle methods for answering particular
sorts of questions while guaranteeing differential privacy, and the majority of these algorithms
fall outside the scope of what can be expressed and automatically verified by these languages.
This has led to another thread of work that has demonstrated promising initial successes in going
beyond fully automatic enforcement and into the realm of interactive verification tools for privacy-
preserving computations. Gilles Barthe’s group at IMDEA is probably furthest ahead in this area; for
example, their CertiPriv system [14] has been used to verify a number of examples whose formal
analysis is out of the reach of previous techniques. In particular, they give the first machine-
checked correctness proofs for the Laplace, Gaussian, and exponential mechanisms (three critical
building blocks for differentially private algorithms) and of the privacy of some recent random-
ized and streaming algorithms.

Deployed privacy-preserving systems. Besides these academic successes, some significant suc-
cess stories are starting to come from industrially deployed privacy-protection systems that are
either directly supported by formal methods or simply inspired by more formal work.

Recent work [101] develops a formal methodology and tool chain for checking software sys-
tems written in big data programming languages (e.g., Scope, Hive, Dremel) for compliance with
a class of privacy policies. The privacy policies restrict direct and implicit information flows based
on role, purpose, and other considerations. The tool chain has been applied to check over a mil-
lion lines of source code in Microsoft Bing’s data analytics pipeline for compliance with its privacy
policies. This work addresses two central challenges in making privacy compliance tools practical.
First, it presents the Legalease policy language that allows precise specification of real-world pri-
vacy policies while still being usable by the target users of this language—the legal privacy team.
Second, it presents the Grok data inventory tool that maps existing code-level schema elements
to datatypes in Legalease, in essence annotating existing programs with information-flow types
with minimal human input. Compliance checking is then reduced to a form of information-flow
analysis of big data programs. The design of Legalease (especially its treatment of nested allow-
deny rules) was influenced, in part, by prior work on logical formalization of the HIPAA Privacy
Rule [37] mentioned earlier in this section. The compliance checking method was influenced, in
part, by work on language-based privacy [64].

Several types of privacy-preserving systems have recently been deployed at scale. While not
supported yet by formal methods, we mention them here because they serve as useful motiva-
tion for basic research in this area. They are also attractive targets for application of the already
developed formal methods.

For example, the formal methods developed to support differentially private data release
could be directed to the study of the design and implementation of the RAPPOR system from
Google [47]. Another example is the system for differentially private release of password fre-
quencies that was recently employed to release statistics about 70 million user passwords by Ya-
hoo! [23].

While much of our focus here has been on data privacy, another significant area of privacy
research is communication privacy, where a significant body of work has emerged on anti-sur-
veillance tools and their foundations. An influential and widely used tool in this area is Tor [39].
While there is some work on formal analysis of anonymous communication protocols and systems
including Tor [102, 49], this is a rich area that awaits a deeper dive from our community.
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6.3 Grand Challenges

These successes offer encouraging evidence that formal methods may fruitfully be applied to tech-
nologies for preserving privacy. But a great deal remains to be done, both at the level of concep-
tual and mathematical foundations and at the level of deployable technologies. In this section, we
identify some of the main foundational challenges, and outline several potential grand challenge
applications that could drive further foundational advances at the same time as learning how to
deal with engineering and organizational hurdles and delivering useful systems.

Grand challenge 1: Map the privacy space. This foundational challenge demands a deeper un-
derstanding of the concept of privacy and its relationship to neighboring concepts in the personal
data protection space, such as fairness and transparency. This viewpoint is consistent with con-
ceptions embodied in the Fair Information Practices Principles (FIPPs) [107] and in recent reports
from the White House [91]. Often, privacy and these related properties can be understood as
imposing different kinds of information flow and use constraints. The grand challenge involves
developing computational formalizations of a broad range of these properties and studying their
relationships, much as we have a broad set of security definitions in cryptography and a formal
understanding of their relationships.

Grand challenge 2: Develop and deploy privacy-preserving tools for scientific discovery, that
is, data exploration and analysis tools that can be used by medical researchers, social scientists,
and other academics working in data-intensive fields to carry out their daily work. Until now,
most research in social and life sciences takes a fairly rough-and-ready approach to privacy, while
work on strong notions of privacy (e.g., differential privacy) and accompanying tools has not
made much impact outside of computer science. The goal would be the publication of papers in
strong subject-area journals whose results are obtained by analyzing real data sets using a research
analytics system with strong, formally verified privacy guarantees.

Grand challenge 3: Develop foundations and tools that support privacy and accountability in
big-data analytics. Contemporary research in, for example, health-care often proceeds by at-
tempting to learn models from large, privacy-sensitive datasets. This methodology raises two
competing concerns. First, public release of these models themselves (for example, in academic
publications) may violate the privacy of individuals whose data is included in the studies. Second,
to support future research or clinical practice, these models must be transparent, or explainable—
i.e., it must be evident what features of the data led to particular conclusions. The challenge here is
to improve transparency of big-data analytics (a difficult problem in itself!) while still preserving
privacy. Socially relevant applications abound: online personalization, predictive policing, credit
scoring, insurance risk estimation, etc. The goal would be to influence the design and analysis of
industrial systems in these areas. More generally, accountability in big-data analytics demands
methods for detecting violations of privacy, explaining how these violations came about, assign-
ing responsibility and blame, and then adopting appropriate corrective measures. The call for
accountability in big data analytics and its importance for protecting privacy and other values
is being increasingly recognized [91, 38], with initial results beginning to appear in the privacy
literature [34, 72, 36].
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Grand challenge 4: Develop methods for balancing privacy and accountability in protocols.
A clear case of the need for this is in voting systems: we want to develop protocols that protect
sensitive information such as who voted for which candidate while making it possible for elec-
tion officials to audit election results. Similarly, currencies for crypto-currencies need to maintain
anonymity while ensuring that, if someone tries to spend the same “coin” twice, either they will
not succeed or they will be detected. Accountability is enforced either through post-hoc blame
assignment or through economic incentives that deter misbehavior. One concrete goal would be a
formal, comprehensive privacy and accountability analysis of a widely used crypto-currency such
as BitCoin. Another goal—already actively pursued, but worth reiterating—is a formal analysis of
a deployed voting system. Another is anonymous communication, where it is desirable to be able
to tie actions to individuals under some cases (such as misbehaving users or illegal activity) while
preserving anonymity under ordinary circumstances. Another is formal analysis of anonymous
credentials, which can be used to prove that some property of an individual (being more than 21
years old, belonging to some organization, having paid to drive on a particular set of toll roads)
while not revealing identity. Mechanized verification of such protocols is a crosscutting challenge.

Grand challenge 5: Develop fundamental concepts and formally verified, deployable technolo-
gies for protecting privacy in cyber-physical systems such as the Internet of Things. This domain
raises some particularly significant challenges for formal methods. First, since we envision a world
in which user data will be collected and used by numerous devices, it will be particularly impor-
tant to be cognizant of user preferences during privacy enforcement. This observation necessitates
developing usable languages for expressing privacy preferences (by users) and infrastructure-side
privacy requirements (by developers), formally connected to enforcement mechanisms. Second,
these systems, while controlled by software, will interact continuously with the physical world.
Thus, privacy models have to be aware of the interaction between software systems and physical
dynamical systems and enforcement methods and their formal verification will require us to go
significantly beyond the state-of-the-art in the cyberphysical systems (CPS) area. A concrete chal-
lenge is that while much prior work in CPS has focused on safety verification, privacy verification
will require advances that go beyond reasoning about trace properties.

7 Cross-Cutting Considerations

7.1 Whole-system guarantees

Current formal method techniques can provide strong security guarantees for individual com-
ponents of a system, and at varying levels of abstraction. Ideally, however, we want security
guarantees for the whole system.

Systems are built by composing existing libraries, sub-systems, and components. For example,
a system that provides a web service may comprise a web server, a database, a web application,
and the Linux operating system. Each of these sub-systems are themselves composed of many
components.

Security issues can arise at the boundaries between components, even though individual com-
ponents may be “secure” (e.g., [76, 35]). Security issues at these boundaries can be exacerbated
when different individuals or organizations have responsibility for the various components.
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In addition to ensuring security guarantees when individually-secure components are com-
posed together, “whole-system guarantees” (also “cross-layer security” and sometimes “end-to-
end guarantees”) refers to security guarantees that hold across abstraction boundaries. For ex-
ample, having assurance that a system is secure at all levels of abstraction, from the hardware
through the operating system, through the network/distribution layer, to the application itself.
This requires, for example, that assumptions made at the application-level are in fact guaranteed
to be enforced by lower-level abstractions.

There have been several promising success stories (and in-progress stories) for whole-system
security, including Ironclad [62], the HACMS DARPA program [1], and verification of a radiation
therapy system [48].

However, significant challenges must be overcome to use formal methods to provide whole-
system security guarantees.

Incompatibility of formal method tools can hamper integration of individually-secure compo-
nents. Currently there are a few standards for low-level tools such as SAT or SMT solvers [10, 105],
but no common standards for formal specifications and proofs, and existing tools can vary greatly
in their representation of specifications and proofs. Thus if different tools are used to formally
validate the security of components, it may require significant effort to combine these formaliza-
tions. Similarly, there is a lack of standardization of threat models and formal security guarantees,
and mismatches in the statement of security guarantees that individual components achieve can
complicate achievement of whole-system security guarantees.

One instance of such a mismatch is between standard cryptographic-style security specifica-
tions and traditional program logics. Cryptographic security specifications and proofs typically
require pervasive reasoning about probabilities. This is typically at odds with the compositional
structure of program logics. A notable exception is universal composability [24], a framework for
cryptographic protocols that preserves security under composition. However, universal compos-
ability is a very strong requirement that is difficult to achieve in cryptographic protocols.

Difficulties with providing whole-system security guarantees across abstraction layers may
be indicative that current abstractions do not and can not provide security guarantees that are
sufficient to satisfy security assumptions required at higher-levels of abstraction. For example,
TCP does not provide any liveness guarantees, making it difficult or impossible to provide whole-
system liveness properties in systems that use TCP.

As we develop our understanding of the formal guarantees that abstraction layers require and
are able to provide, we may identify opportunities to modify the abstraction layers to improve the
use of formal methods for security and privacy. That is, clean-slate approaches to the design of
whole systems may enable whole-system security using modular formal methods.

Challenge problems Simple systems may provide suitable challenge problems to both highlight
difficulties of providing whole-system security guarantees, and also to advance the state-of-the-art
of (modular and composable) formal methods for whole-system security. We propose two such
systems as challenge problems.

• Develop a formally verified crypto-currency wallet. Crypto-currencies such as BitCoin and Eth-
ereum use distributed cryptographic mechanisms to secure financial transactions and the
creation of new units of currency. Users of a crypto-currency rely on software—called a wal-
let—to store, send, and receive currency. The financial relevance of wallets provides a clear
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motivation to provide strong whole-system security guarantees for wallets (including char-
acterization and enforcement of privacy and accountability; see Section 6.3). The emergence
of hardware wallets (that use dedicated or specialized hardware) means that it may be feasible
to provide strong security guarantees from the hardware upwards. Wallet software interacts
with distributed cryptographic mechanisms in interesting ways, which adds an additional
dimension to this challenge problem.

• Develop an end-to-end secure messaging system on a peer-to-peer overlay. Messaging systems—
such as text messages over a phone network, or instant messaging systems—are increasingly
used to send sensitive information. Adversaries may seek to learn confidential messages,
corrupt messages, or learn the senders and recipients of messages. The security of a messag-
ing system depends on the protocols of the distributed system and also on the design and
implementation of end-user software.

7.2 Education and outreach

Use of formal methods for security and privacy can be encouraged by increased awareness of
the need for strong security and privacy guarantees and of the availability and capabilities of for-
mal methods. While there is significant potential for outreach to software practitioners, graduate
students, and K–12 students, we focus here on undergraduate students.

Many colleges offer courses in computer security, and some even offer degrees specializing in
computer security (e.g., University of Maryland, University of Delaware, and Boston University).
Similarly, there are a number of courses devoted to formal methods (see the report from the 2012
NSF Workshop on Future Directions for Formal Methods and Its Transition To Practice [67] for
a list of college courses that focus on formal methods). However, in general, these courses are
electives and taken by a relatively small proportion of undergraduate students. To increase the
use of formal methods for security in the next generation of software practitioners, it is desirable
for most students completing a computer science undergraduate degree to be exposed to both the
need for strong security and privacy guarantees, and the capabilities of formal methods.

The Computer Science Curricula 2013 [5]—developed by the ACM/IEEE-CS Joint Task Force
on Computing Curricula—added Information Assurance and Security as a new knowledge area and
notes that it “is unique among the set of [Knowledge Area]s” in that its “topics are pervasive
throughout other Knowledge Areas.” This reflects the cross-cutting nature of security. To the
extent that the Computer Science Curricula are incorporated into college-level classes, we hope
to see an increase in the students that encounter core security and privacy concepts during their
undergraduate education.

Formal methods are also cross-cutting, providing tools and techniques that support the correct
design and implementation of many kinds of systems. In the Computer Science Curricula 2013,
however, formal methods are presented only as an elective topic (in the Knowledge Area of Soft-
ware Engineering). Introduction of courses specifically focused on formal methods is likely not
the best approach to expose a broad range of students to the concepts and benefits of formal meth-
ods. Such courses would likely be electives and taken by a relatively small number of students.
Instead, incorporation of formal methods and tools into existing courses can show how formal
methods can support better design and implementation, for example, proving properties of dis-
tributed systems, or verifying the correctness of hardware design. This approach has been used
successfully in several courses, such as at Northeastern University, where second semester fresh-
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men use ACL2 to state and prove properties about the programs they write [44]. This approach is
also the recommendation of the 2012 NSF Workshop on Formal Methods [67].

We do not expect most colleges and universities to have sufficient resources to offer special-
ized courses in formal methods applied to security and privacy. Rather, security courses offer an
opportunity to present formal methods in context, supporting the design and implementation of
secure systems. This has been the approach taken in, for example, Professor Michael Hicks’ (Uni-
versity of Maryland, College Park) Coursera MOOC on Software Security2, which has units on the
use of static analysis and symbolic execution to build secure software.

7.3 Tools, usability, infrastructure

Tools are vastly more capable than a few years ago. Both satisfiability solvers (SAT solvers; soft-
ware that, given a propositional formula, will identify an assignment of truth values that satisfies
it) and satisfiability-modulo-theory solvers (SMT solvers; satisfiability solvers that find an assign-
ment of values subject also to theories such as linear arithmetic) are vastly stronger. Theorem
provers are rigorous, and a body of experience shows that they can be successfully used on a large
scale. Code analysis techniques—such as ensuring that code respects given invariants, including
type systems—are better, and well-integrated into solvers or provers. Theorem provers and SMT
solvers may be used in combination, providing human assistance where SMT solvers are weak,
such as reasoning in non-linear arithmetic, as needed in cryptography.

Nevertheless, workshop participants are painfully aware of the quirks and limitations of tools
that support formal methods. Renaming variables may sometimes cause a SAT solver to fail;
changes to specifications that reorder premises can cause proof scripts to fail. This creates a chal-
lenge in incorporating formal methods into system build processes, for which stability is impor-
tant. Worse, verification toolchains transform the user’s input substantially, with the consequence
that errors are often reported in terms remote from the user’s source code.

The participants explored various paradigms for the relation between formal artifacts and test-
ing. Many organizations (though not all) maintain systematic unit tests to control software evolu-
tion. Unit tests interact with specifications in desirable ways. When unit tests already exist, they
can be used to check whether the specifications express the intended goals. Alternatively, many
unit tests can be generated from specifications; this helps to provide empirical evidence that code
meets its specifications. Especially, it provides empirical evidence when it doesn’t, and this evi-
dence can be much quicker to produce than rigorous analysis. This type of counterexample may
be much harder to construct formally, although finite model finders (e.g., Alloy [65]) and bounded
model checkers [28] are geared toward this goal.

8 Conclusion

Cyber attacks threaten personal privacy, economic activity, society’s infrastructure, and national
security. The game is asymmetric: An attacker has a wide choice of strategies, which may use
a succession of footholds traversing different abstraction layers. Because attribution is difficult,
many exploratory sallies may precede a successful attack. Thus, the defender must win against
every strategy, while the attacker need find only a single one.

2https://www.coursera.org/course/softwaresec
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This is the core reason formal methods are indispensable to security. Formal methods reason
about computational entities, using logical or mathematical descriptions of the entities to draw
reliable conclusions about the behavior of those entities. Without this modeling rigor, systems of
realistic complexity will always offer behaviors an adversary can exploit. Moreover, after a long
period of development, formal methods now provide strong techniques for a variety of different
styles of modeling.

In this report, we have advocated their systematic role in security research, with increasing
impact on the development of our secure software and hardware. Widened use of formal methods
will provide techniques calibrated to specific security goals, and establish that specific types of
systems meet those goals. These efforts will also make specific, formally certified components
available, which can be incorporated into new systems. This process will ease the burden of future
formal secure development, leading to an acceleration of productivity and wide increases in the
quality of secure systems. Methods that lack rigor will never lead to comparable improvements,
since they provide no overview of the attacker’s possible strategies, and no evidence to exclude
their success.

Formal methods include a wide range of techniques, tools, and approaches, and these should
be flexibly applied. Not all systems aim at the same security goals, and researchers should be
explicit about the properties that they intend to achieve. The nature of these properties helps to
determine what formal methods are appropriate, and what balance to strike among specification,
rigorous hand proof, and mechanized proof support.

We should not underestimate the challenges. Many security problems arise from the interac-
tions of different layers in a system’s stack, leading from hardware through kernel and networking
infrastructure toward applications. These layers often use quite different abstractions, and using
the specification of the services of one layer to discharge the assumptions of the next higher layer
often involves guesswork. Indeed, identifying the goals of different stakeholders at a given layer
often involves psychoanalyzing their use cases. Extensive experience and, most likely, redesign of
components well entrenched in today’s systems will be needed.

We have identified pressing research topics—such as whole-system guarantees, choice of ab-
stractions, finding compatible tools, proofs, and modeling styles, and development methods usable
in practice—and made them concrete by proposing grand challenge efforts that will stimulate re-
solving them under the constraints of important, realistic outcomes. Finally, we emphasize that
improved education will be needed, with better training in security and formal methods both;
and that the community will need to build up reusable infrastructure and tools. The result will be
transformational improvements in the security of systems on which our society relies.
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