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FAST PARAMETER ESTIMATION IN LOSS
TOMOGRAPHY FOR NETWORKS OF GENERAL

TOPOLOGY∗

By Ke Deng†, Yang Li§, Weiping Zhu‡ and Jun S. Liu§

Tsinghua University†, University of New South Wales‡ and Harvard
University§

As a technique to investigate link-level loss rates of a computer
network with low operational cost, loss tomography has received con-
siderable attentions in recent years. A number of parameter estima-
tion methods have been proposed for loss tomography of networks
with a tree structure as well as a general topological structure. How-
ever, these methods suffer from either high computational cost or
insufficient use of information in the data. In this paper, we provide
both theoretical results and practical algorithms for parameter esti-
mation in loss tomography. By introducing a group of novel statistics
and alternative parameter systems, we find that the likelihood func-
tion of the observed data from loss tomography keeps exactly the
same mathematical formulation for tree and general topologies, re-
vealing that networks with different topologies share the same math-
ematical nature for loss tomography. More importantly, we discover
that a re-parametrization of the likelihood function belongs to the
standard exponential family, which is convex and has a unique mode
under regularity conditions. Based on these theoretical results, novel
algorithms to find the MLE are developed. Compared to existing
methods in the literature, the proposed methods enjoy great compu-
tational advantages.

1. Introduction. Network characteristics such as loss rate, delay, avail-
able bandwidth, and their distributions are critical to various network oper-
ations and important for understanding network behaviors. Although con-
siderable attention has been given to network measurements, due to various
reasons (e.g., security, commercial interest and administrative boundary)
some characteristics of the network cannot be obtained directly from a large
network. To overcome this difficulty, network tomography was proposed in
[1], suggesting the use of end-to-end measurement and statistical inference to
estimate characteristics of a large network. In an end-to-end measurement, a
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number of sources are attached to the network of interest to send probes to
receivers attached to the other side of the network, and paths from sources to
receivers cover links of interest. Arrival orders and arrival times of the probes
carry the information of the network, from which many network characteris-
tics can be inferred statistically. Characteristics that have been estimated in
this manner include link-level loss rates [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
delay distributions [14, 15, 16, 17, 18, 19, 20, 21, 22, 23], origin-destination
traffic [1, 16, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38], loss
patterns [39], and the network topology [40]. In this paper, we focus on the
problem of estimating loss rates.

Network topologies connecting sources to receivers can be divided into
two classes: tree and general. A tree topology, as named, has a single source
attached to the root of a multicast tree to send probes to receivers attached
to the leaf nodes of the tree. A network with a general topology, however,
requires a number of trees to cover all links of the network. Each tree has
one source sending probes to receivers in it. Because of the use of multiple
sources to send probes in a network with general topology, those nodes and
receivers located at intersections of multiple trees can receive probes from
multiple sources. In this case, we must consider impacts of probes sent by
all sources simultaneously in order to get a good estimate. This task is much
more challenging than the tree topology case.

Numerous methods have been proposed for loss tomography in a tree
topology. Cáceres et al. [2] used a Bernoulli model to describe the loss be-
havior of a link, and derived the MLE for the pass rate of a path connecting
the source to a node, which was expressed as the solution of a polynomial
equation [2, 3, 4]. To ease the concern of using numerical methods to solve
a high degree polynomial, several papers have been published to accelerate
the calculation at the price of a little accuracy loss: Zhu and Geng proposed
a recursively defined estimator based on a bottom-up strategy in [11, 12];
Duffield et al. proposed a closed-form estimator in [13], which has the same
asymptotic variance as the MLE to the first order. Considering the unavail-
ability of multicast in some networks, Harfoush et al. [5] and Coates et al.
[6] independently proposed the use of the unicast-based multicast to send
probes to receivers, where Coates et al. also suggested the use of the EM
algorithm [41] to estimate link-level loss rates.

For networks beyond a tree, however, little research has been done, al-
though a majority of networks in practice fall into this category. Concep-
tually, the topology of a general network can be arbitrarily complicated.
However, no matter how complicated a general topology is, it can always
be covered by a group of carefully selected trees, in each of which an end-
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to-end experiment can be carried out independently to study the properties
of the subnetwork covered by the tree. If these trees do not overlap with
each other, the problem of studying the whole general network can be de-
composed into a group of smaller subproblems, each for one tree. However,
due to the complexity of the network topology and practical constraints, it
is more than often that the selected trees overlaps significantly, i.e., some
links are shared by two or more trees (see Figure 2 for example). The shared
links of two selected trees induce dependence between the two trees. Simply
ignoring the dependence leads to a loss of information. How to effectively
integrate the information from multiple trees to achieve a joint analysis is a
major challenge in network tomography of general topology.

The first effort on network tomography of general topology is due to Bu et
al. [8], who attempted to extend the method in [2] to networks with general
topology. Unfortunately, the authors failed to derive an explicit expression
for the MLE like the one presented in [2] for this more general case. They
then resorted to an iterative procedure (i.e., the EM algorithm) to search for
the MLE. In addition, a heuristic method, called minimum variance weighted
average (MVWA) algorithm, was also proposed in [8], which deals with each
tree in a general topology separately and averages the results. The MVWA
algorithm is less efficient than the EM algorithm, especially when the sample
size is small. Rabbat et al. in [40] considered the tomography problem for
networks with an unknown but general topology, mainly focusing on network
topology identification, which is beyond the scope of our current paper.

In this paper, we provide a new perspective for the study of loss tomogra-
phy, which is applicable to both tree and general topologies. Our theoretical
contributions are: 1) introducing a set of novel statistics, which are com-
plete and minimal sufficient; 2) deriving two alternative parameter systems
and the corresponding re-parameterized likelihood functions, which benefit
us both theoretically and computationally; 3) discovering that the loss to-
mography for a general topology shares the same mathematical formulation
as that of a tree topology; and, 4) showing that the likelihood function be-
longs to the exponential family and has a unique mode (which is the MLE)
under regularity conditions. Based on these theoretical results, we propose
two new algorithms (a likelihood-equation-based algorithm called LE-ξ and
an EM-based algorithm called PCEM) to find MLE. Compared to existing
methods in the literature, the proposed methods are computationally much
more efficient.

The rest of the paper is organized as follows. Section 2 introduces no-
tations for tree topologies and the stochastic model for loss rate inference.
Section 3 describes a set of novel statistics and two alternative parameter
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Fig 1. A multicast tree.

systems for loss rate analysis in tree topologies. New forms of the likelihood
function are established based on the novel statistics and re-parametrization.
Section 4 extends the above results to general topologies. Section 5 and 6
propose two new algorithms for finding MLE of θ, which enjoy great compu-
tational advantages over existing methods. Section 7 evaluates performances
of the proposed methods by simulations. We conclude the article in Section
8.

2. Notations and Assumptions.

2.1. Notations for Tree Topologies. We use T = (V,E) to denote the
multicast tree of interest, where V = {v0, v1, ...vm} is a set of nodes repre-
senting the routers and switches in the network, and E = {e1, ..., em} is a set
of directed links connecting the nodes. Two nodes connected by a directed
link are called the parent node and the child node, respectively, and the di-
rection of the arrow indicates that the parent forwards received probes to
the child. Figure 1 shows a typical multicast tree. Note that the root node
of a multicast tree has only one child, which is slightly different from an
ordinary tree, and each non-root node has exactly one parent.

Each link is assigned a unique ID number ranging from 1 to m, based
on which each node obtains its unique ID number ranging from 0 to m
correspondingly so that link i connects node i with its parent node. Number
0 is reserved for the source node. In contrast to [2] and [13], whose methods
are node-centric, our methods here focus on links instead. For a network
with tree topology, the two reference systems are equivalent as there exists
an one-to-one mapping between nodes and links: every node in the network
(except for the source) has a unique parent link. For a network with general
topology, however, the link-centric system is more convenient, as a node in
the network may have multiple parent links.

We let fi denote the unique parent link, Bi the brother links, and Ci the
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child links, respectively, of link i. To be precise, Bi contains all links that
share the same parent node with link i, including link i itself. A subtree
Ti = {Vi, Ei} is defined as the subnetwork composed of link i and all its
descendant links. We let R and Ri denote the set of receivers (i.e., leaf nodes)
in T and Ti, respectively. Sometimes, we also use R or Ri to denote the leaf
links of T or Ti. The concrete meaning of R and Ri can be determined based
on the context.

Taking the multicast tree displayed in Figure 1 as an example, we have
V = {0, 1, · · · , 7}, E = {1, 2, · · · , 7} and R = {4, 5, 6, 7}. For the subtree T2,
however, we have V2 = {1, 2, 4, 5}, E2 = {2, 4, 5} and R2 = {4, 5}. For link
2, its parent link is f2 = {1}, its brother links are B2 = {2, 3}, and its child
links are C2 = {4, 5}.

2.2. Stochastic Model. In a multicast experiment, n probe packages are

sent from the root node 0 to all the receivers. Let X
(t)
i = 1 if the t-th probe

package reached node i, and 0 otherwise. The status of probes at receivers

{X(t)
r }r∈R,1≤t≤n can be directly observed from the multicast experiment;

but, the status of probes at internal links cannot be directly observed. In

the following, we use XR = {X(t)
R }1≤t≤n, where X

(t)
R = {X(t)

r }r∈R, to denote
the data collected in a multicast experiment in tree T .

In this paper, we model the loss behavior of links by the Bernoulli distri-
bution and assume the spatial-temporal independence and temporal homo-

geneity for the network, i.e. the event {X(t)
i = 0 | X(t)

fi
= 1} are independent

across i and t, and

P (X
(t)
i = 0 | X(t)

fi
= 0) = 1, P (X

(t)
i = 0 | X(t)

fi
= 1) = θi.

We call θ = {θi}i∈E the link-level loss rates, and the goal of loss tomography
is to estimate θ from XR.

2.3. Parameter Space. In principle, θi can be any value in [0, 1]. Thus,
the natural parameter space of θ is Θ∗ = [0, 1]m, an m-dimensional closed
unit cube. In this paper, however, we assume that θi ∈ (0, 1) for every
i ∈ E, and thus constrain the parameter space to Θ = (0, 1)m, to simplify
the problem. If θi = 1 for some i ∈ E, then the subtree Ti is actually
disconnected from the other part of the network, since no probes can go
through link i. In this case, the loss rate of other links in Ti are not estimable
due to the lack of information. On the other hand, if θi = 0 for some i ∈ E,
the original network of interest degenerates to an equivalent network where
node i is removed and all its child nodes are connected directly to node i’s
parent node. By constraining the parameter space of θ into Θ, we exclude
these degenerate cases from consideration.
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3. Statistics and Likelihood Function.

3.1. The likelihood function and the MLE. Given the loss model for each
link, we can write down the likelihood function and use the maximum like-
lihood principle to determine unknown parameters. That is, we aim to find
the parameter value that maximizes the log-likelihood function:

arg max
θ∈Θ

L(θ) = arg max
θ∈Θ

∑
x∈Ω

n(x) logP (x; θ),(3.1)

where x stands for the observation at receivers (i.e., a realization of XR),
Ω = {0, 1}|R| is the space of all possible observations with |R| denoting
the size of set R, n(x) is the number of occurrences of observation x, and
P (x; θ) is the probability of observing x given parameter value θ. However,
the log-likelihood function (3.1) is more symbolic than practical because of
the following reasons: (1) evaluating the log-likelihood function (3.1) is an
expensive operation as it needs to scan through all possible x ∈ Ω; and, (2)
the likelihood equation derived from (3.1) cannot be solved analytically, and
it is often computationally expensive to pursue a numerical solution.

3.2. Internal State and Internal View. Instead of using the log-likelihood
function (3.1) directly, we consider to rewrite it in a different form. Under the
posited probabilistic model, the overall likelihood P (XR | θ) is the product
of the likelihood from each probe, i.e.,

P (XR | θ) =

n∏
t=1

P (X
(t)
R | θ).

Thus, an alternative form of the overall likelihood can be obtained by ex-
plicating the likelihood of each single probe and accumulating them. Two
concepts called internal state and internal view can be generated from this
process.

3.2.1. Internal State. For a link i ∈ E, given the observation of probe
t at Ri and Rfi , we are able to partially confirm whether the probe passes

link i. Formally, for observation {X(t)
j }j∈Ri , we define Y

(t)
i = maxj∈Ri X

(t)
j

as the internal state of link i for probe t. If Y
(t)
i = 1, probe t reaches at

least one receiver attached to Ti, which implies that the probe passes link

i. Furthermore, by considering Y
(t)
fi

and Y
(t)
i simultaneously, we have three

possible scenarios for each internal node i:

• Y (t)
fi

= Y
(t)
i = 1, i.e., we observed that probe t passed link i; or
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• Y (t)
fi

= 1 and Y
(t)
i = 0, i.e., we observed that probe t reached node fi,

but we did not know whether it reached node i or not; or

• Y (t)
fi

= Y
(t)
i = 0, i.e., we did not know whether probe t reached node

fi or not at all;

as Y
(t)
fi

= 0 and Y
(t)
i = 1 can never happen by definition of Y .

The three scenarios have different impacts on the likelihood function.
Formally, define

Et,1 = {i ∈ E : Y
(t)
i = 1},

Et,2 = {i ∈ E : Y
(t)
fi

= 1, Y
(t)
i = 0},

Et,3 = {i ∈ E : Y
(t)
fi

= Y
(t)
i = 0}.

We have

(3.2) P (X
(t)
R | θ) =

∏
i∈Et,1

(1− θi)
∏
i∈Et,2

ξi(θ),

where
ξi(θ) = P (Xj = 0, ∀ j ∈ Ri | Xfi = 1; θ)

represents the probability that a probe sending out from the root node of
Ti fails to reach any leaf node in Ti.

3.2.2. Internal View. Accumulating the internal states of each link in
the experiment, we have

(3.3) ni(1) =
n∑
t=1

Y
(t)
i ,

which counts the number of probes whose pass through link i can be con-
firmed from observations. Specifically, we define n0(1) = n. Moreover, define

(3.4) ni(0) = nfi(1)− ni(1),

for ∀ i ∈ E. We call the statistics {ni(1), ni(0)} the internal view of link i.
Based on internal views, we can write the log-likelihood of XR in a more
convenient form:

L(θ) =
∑
i∈E

[
ni(1) log(1− θi) + ni(0) log ξi(θ)

]
.



8 K. DENG ET AL.

3.3. Re-parametrization. Two alternative parameter systems can be in-
troduced to re-parameterize the above log-likelihood function. First, based
on the definition of ξi(θ), we have

(3.5) ξi(θ) = θi + (1− θi)
∏
j∈Ci

ξj(θ), i ∈ E.

Note that if i ∈ R, we have Ci = ∅, and (3.5) degenerates to ξi(θ) = θi. Let
ξi , ξi(θ) for i ∈ E. Equation (3.5) defines a one-to-one mapping between
two parameter systems θ = {θi}i∈E and ξ = {ξi}i∈E , i.e.,

Γ : Θ 7→ Ξ, ξ = Γ(θ) ,
(
ξ1(θ), · · · , ξm(θ)

)
,

where Θ and Ξ are the domain and image, respectively. The inverse mapping
of Γ is

Γ−1 : Ξ 7→ Θ, θ = Γ−1(ξ) ,
(
θ1(ξ), · · · , θm(ξ)

)
, where

(3.6) θi(ξ) =
ξi −

∏
j∈Ci ξj

1−
∏
j∈Ci ξj

, i ∈ E.

Using ξ to replace θ in L(θ), we have the following alternative log-likelihood
function with ξ as parameters:

L(ξ) =
∑
i∈E

[
ni(1) log(

1− ξi
1−

∏
j∈Ci ξj

) + ni(0) log ξi

]
.

Second, L(ξ) can be further re-organized into

L(ξ) =
∑
i∈E

ni(1) log(
1− θi(ξ)

ξi
) +

∑
i∈E

nfi(1) log ξi

= n log ξ1 +
∑
i∈E

ni(1) logψi(ξ),

where ψi(ξ) is defined as

(3.7) ψi(ξ) =

{
log 1−θi(ξ)

ξi
, i ∈ R,

log ξi−θi(ξ)
ξi

, i /∈ R.

Similarly, let ψi , ψ(ξ) for i ∈ E. Equation (3.7) defines a one-to-one
mapping between parameter system ξ = {ξi}i∈E and ψ = {ψi}i∈E , i.e.,

Λ : Ξ 7→ Ψ, ψ = Λ(ξ) ,
(
ψ1(ξ), · · · , ψm(ξ)

)
,
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where Ψ , Λ(Ξ) is the image of ψ. The inverse mapping of Λ is

Λ−1 : Ψ 7→ Ξ, ξ = Λ−1(ψ) ,
(
ξ1(ψ), · · · , ξm(ψ)

)
.

It can be shown that

ψi = logP
(
Xi = 1 | Xfi = 1; Xj = 0, ∀ j ∈ Ri

)
for i /∈ R,

from which the physical meaning of ψi can be better understood. Using ψ
to replace ξ in L(ξ), we have the following log-likelihood function with ψ as
parameters:

L(ψ) = n log ξ1(ψ) +
∑
i∈E

ni(1)ψi.

To illustrate the relations of θ, ξ and ψ, let’s consider the toy network in
Figure 1 with θi = 0.1 for i = 1, · · · , 7. It is easy to check that:

ξ4 = ξ5 = ξ6 = ξ7 = 0.1,

ξ2 = ξ3 = 0.1 + (1− 0.1)× 0.12 = 0.109,

ξ1 = 0.1 + (1− 0.1)× 0.1092 ≈ 0.1107;

ψ4 = ψ5 = ψ6 = ψ7 = log
1− 0.1

0.1
≈ 2.1972,

ψ2 = ψ3 = log
0.109− 0.1

0.109
≈ −2.4941,

ψ1 ≈ log
0.1107− 0.1

0.1107
≈ −2.3366.

We list these concrete values in Table 1 for comparison purpose. The no-
tations, statistics and parameter systems are summarized into Table 2 for
easy reference.

Table 1
Comparing different parameter systems for the toy network in Figure 1

Link 1 2 3 4 5 6 7

θ 0.1 0.1 0.1 0.1 0.1 0.1 0.1
ξ 0.1092 0.109 0.109 0.1 0.1 0.1 0.1
ψ −2.3366 −2.4941 −2.4941 2.1972 2.1972 2.1972 2.1972

4. Likelihood Function for General Networks. In this section, we
will extend the concept of internal view and alternative parameter sys-
tems to general networks containing multiple trees. Formally, we use N =
{T1, · · · , TK} to denote a general network covered by K multicast trees,
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Table 2
Collection of symbols

Symbol Meaning

T the multicast tree of interest

V the node set of T

E the link set of T

R the set of leaf nodes (receivers) or leaf links of T

Ti the subtree with link i as the root link

Vi the node set of subtree Ti
Ri the set of leaf nodes (receivers) or leaf links of Ti
fi the parent link of link i

Bi the brother links of link i

Ci the child links of link i

X
(t)
i X

(t)
i = 1 if probe t reached node i, and 0 otherwise

Y
(t)
i maxj∈Ri X

(t)
j

ni(1)
∑n
t=1 Y

(t)
i , number of probes that passed link i for sure

ni(0) nfi(1)− ni(1)

θi P (Xi = 0 | Xfi = 1), the loss rate of link i

ξi P (Xj = 0, ∀ j ∈ Ri | Xfi = 1), the loss rate of Ti
ψi logP (Xi = 1 | Xfi = 1;Xj = 0, ∀ j ∈ Ri)

where each multicast tree Tk covers a subnetwork with Sk as the root link.
For example, Figure 2 illustrates a network with K = 2, S1 = 0 and S2 = 32.
Let S = {S1, · · · , SK} be the set of root links in N .

For each tree Tk, let {nk,i(1), nk,i(0)} be the internal view of link i ∈ Ek
in Tk based on the nk probes sent out from Sk. Specially, define nk,i(1) = 0
for link i /∈ Ek. The experiment on Tk results in the following log-likelihood
functions with θ, ξ and ψ as parameters, respectively:

Lk(θ) =
∑
i∈E

[
nk,i(1) log(1− θi) + nk,i(0) log ξi(θ)

]
,

Lk(ξ) =
∑
i∈E

[
nk,i(1) log(

1− ξi
1−

∏
j∈Ci ξj

) + nk,i(0) log ξi

]
,

Lk(ψ) = nk log ξSk(ψ) +
∑
i∈E

nk,i(1)ψi.

Considering that a multicast experiment in a general network N is a
pool of K independent experiments in the K trees of N , the log-likelihood
function of the whole experiment is just the summation of K components,
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Fig 2. A 5-layer network covered by two trees.

i.e.,

L(θ) =

K∑
k=1

Lk(θ), L(ξ) =

K∑
k=1

Lk(ξ) and L(ψ) =

K∑
k=1

Lk(ψ).

Define the internal view of link i in a general network as:

(4.1) ni(1) =
K∑
k=1

nk,i(1), ni(0) =
K∑
k=1

nk,i(0).

It is straightforward to see that

L(θ) =
∑
i∈E

[
ni(1) log(1− θi) + ni(0) log ξi(θ)

]
,(4.2)

L(ξ) =
∑
i∈E

[
ni(1) log(

1− ξi
1−

∏
j∈Ci ξj

) + ni(0) log ξi

]
,(4.3)

L(ψ) =
K∑
k=1

nk log ξSk(ψ) +
∑
i∈E

ni(1)ψi.(4.4)

Note that in this general case, we have:

for i ∈ S , nSk(1) = nk; and

for i /∈ S , ni(0) + ni(1) =
∑
j∈Fi

nj(1).
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Here, Fi stands for the unique or multiple parent links of link i in the general
network N .

5. Likelihood Equation. The bijections among the the three param-
eter systems mean that we can switch among them freely without changing
the result of parameter estimation:

Proposition 1. The results of likelihood inference based on the three
parameter systems are equivalent, i.e.,

Γ
(

arg max
θ∈Θ

L(θ)
)

= arg max
ξ∈Ξ

L(ξ) = Λ−1
(

arg max
ψ∈Ψ

L(ψ)
)
;

and the likelihood equations under different parameters share the same solu-
tion, i.e.,

∂L(θ)

∂θ

∣∣∣
θ=θ∗

= 0⇔ ∂L(ξ)

∂ξ

∣∣∣
ξ=ξ∗

= 0⇔ ∂L(ψ)

∂ψ

∣∣∣
ψ=ψ∗

= 0,

if θ∗ ∈ Θ, or ξ∗ ∈ Ξ, or ψ∗ ∈ Ψ, where Γ(θ∗) = ξ∗ = Λ−1(ψ∗).

This flexibility provides us great theoretical and computational advan-
tages. On the the theoretical aspect, as {nk}Kk=1 are known constants, L(ψ)
falls into the standard exponential family with ψ as the natural parameters.
Thus, based on the properties of the exponential family [42], we have the
following results immediately:

Proposition 2. The following results hold for loss tomography:

1. Statistics {ni(1)}i∈E are complete and minimal sufficient;

2. The likelihood equation ∂L(ψ)
∂ψ = 0 has at most one solution ψ∗ ∈ Ψ;

3. If ψ∗ exists, ψ∗ (or θ∗ = (Λ ◦ Γ)−1(ψ∗)) is the MLE.

On the computational aspect, the parameter system ξ plays a central
role. Different from the likelihood equation with θ as parameters, which
is intractable, the likelihood equation with ξ as parameters enjoys unique
computational advantages. Let

ri =
ni(1)

ni(1) + ni(0)
.

It can be shown that the likelihood equation with ξ as parameters is:

(5.1) ξi = (1− ri) + ri ·
∏
j∈Bi

ξj · I(i /∈ S ),
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for any link i ∈ E.
For link i ∈ S , (5.1) degenerates to

ξi = 1− ri.

For link i /∈ S , define πi =
∏
j∈Bi ξj . We note that solving ξi from (5.1) is

equivalent to solving the following equation about πi:

(5.2) πi =
∏
j∈Bi

[
(1− rj) + rj · πi

]
,

which can be solved analytically when |Bi| = 2, and by numerical approaches
[43] when |Bi| > 2.

From (5.1) and (5.2), it is transparent that only local statistics {rj}j∈Bi
are involved in estimating ξi. This observation leads to the following fact im-
mediately: if a processor keeps the values of {rj}j∈Bi in its memory, {ξj}j∈Bi
can be effectively estimated by the processor independent of estimating the
other parameters. Based on this unique property of the likelihood equation
with ξ as parameter, we propose a parallel procedure called “LE-ξ” algo-
rithm to estimate θ (see Algorithm 1).

Algorithm 1. The LE-ξ Algorithm

Hardwire requirement:
{Pi}i: a collection of processors indexed by node ID i ∈ V ;

Input:
{rj}j∈E with distributed storage where Pi keeps {rj}j∈Ci ;

Output:

θ̂ = {θ̂j}j∈E .

Procedure:
Operate in parallel for IDs of all non-leaf nodes {i ∈ V : i /∈ R}

If i ∈ S ,

Get ξ̂j = 1− rj for the unique child link j of node i with Pi;
If i /∈ S ,

Get x̂i with Pi from {rj}j∈Ci by solving equation below about x
x =

∏
j∈Ci

[
(1− rj) + rjx

]
,

Get ξ̂j = (1− rj) + rj x̂i for every j ∈ Ci with Pi;
End parallel operation

Return θ̂ = Γ−1(ξ̂).

The validity of the LE-ξ algorithm is guaranteed by the following theorem:

Theorem 1. When nk →∞ for all 1 ≤ k ≤ K, with probability one,
the LE-ξ algorithm has a unique solution in Θ = (0, 1)m that is the MLE.
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Proof of Theorem 1. First, we will show that under the following regularity
conditions:

(5.3) ni(1) > 0, ni(0) > 0 and
∑
j∈Fi

nj(1) <
∑
j∈Bi

nj(1) for ∀ i ∈ E,

the likelihood equation with ξ as parameters has a unique solution in (0, 1)m.
Note that when (5.3) holds, we have

0 < ri < 1 and
∑
j∈Bi

rj > 1 for ∀ i ∈ E.

Because the Lemma 1 in [2] has shown that: if 0 < cj < 1 and
∑

j cj > 1,
equation for x

x =
∏
j

[
(1− cj) + cjx

]
has a unique solution in (0, 1). It is transparent that under the regularity
conditions in (5.3), equation (5.2) has a unique solution π̂i ∈ (0, 1) for every
non-root link i. Considering that for every link i ∈ E,

ξi = (1− ri) + ri · πi · I(i /∈ S ),

it is straightforward to see that the likelihood equation with ξ as parameters
has a unique solution ξ̂ ∈ (0, 1)m.

Moreover, if

(5.4) ξ̂ ∈ Ξ,

we have ψ̂ = Λ(ξ̂) ∈ Ψ. Thus, based on Proposition 1 and Proposition 2, we
know that if both (5.3) and (5.4) are satisfied, ψ̂, which is the solution of
the likelihood equation with ψ as parameter, is the MLE. Considering the
bijections among θ, ξ and ψ, this also means that θ̂ = Γ−1(ξ̂) is the MLE.

Note that the probability that (5.3) or (5.4) fails goes to zero when
nk →∞ for k = 1, · · · ,K, we complete the proof.

The large sample properties of MLE have been well studied by [2] for tree
topology, where the asymptotic normality, asymptotic variance and confi-
dence interval are established. Considering that the likelihood function keeps
exactly the same form for both tree and general topology, it is natural to
extend these theoretical results for MLE established in [2] to a network of
general topology.
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With a finite sample, there is a chance that (5.3) or (5.4) fails. In this
case, the MLE of θ falls out of Θ, and may be missed by the LE-ξ algorithm.
For example,

1. If ni(1) = 0 and ni(0) > 0, we have ξ̂i = 1;
2. If ni(1) > 0 and ni(0) = 0, we have ξ̂i = 0;
3. If

∑
j∈Fi nj(1) =

∑
j∈Bi nj(1) > 0, we have θ̂i = 0;

4. If ξ̂i ≤ π̂i =
∏
j∈Bi ξ̂j (i.e., ξ̂ /∈ Ξ), we have θ̂i ≤ 0.

Moreover, if ni(1) = ni(0) = 0, the parameters in subtree Ti (i.e., {θj}j∈Ti)
are not estimable due to lack of information.

In all these cases, we cannot guarantee that the estimate from the LE-ξ
algorithm θ̂ is the global maximum in Θ∗ = [0, 1]m. In practice, we can
increase sample size by sending additional probes to avoid this dilemma. In
case that it is not realistic to send additional probes, we can simply replace
θ̂ by the point in Θ∗ that is the closest to θ̂, or search the boundary of Θ∗

to maximize L(θ).

6. Impacts on the EM Algorithm. The above theoretical results
have two major impacts to the EM algorithm widely used in loss tomography.
First, as we have shown in Theorem 1, as long as regularity conditions (5.3)
and (5.4) hold, likelihood function L(θ) has a unique mode in Θ. In this
case, the EM algorithm always converges to the MLE for any initial value
θ(0) ∈ Θ. Considering that the chance of violating (5.3) or (5.4) goes to zero
with the increase of sample size, we have the following corollary for the EM
algorithm immediately:

Corollary 1. When nk →∞ for all 1 ≤ k ≤ K, the EM algorithm
converges to the MLE with probability one for any initial value θ(0) ∈ Θ.

Second, the formulation of the new statistics {ni(1)}i∈E naturally leads
to a “pattern-collapsed” implementation of the EM algorithm, which is com-
putationally much more efficient than the widely used naive implementation
where the samples are processed one by one separately. In the naive imple-
mentation of the EM algorithm, one enumerates all possible configurations
of the internal links compatible with each sample carrying the information
on whether the corresponding probe reached the leaf nodes or not. The
complexity of the naive implementation in each E-step can be O(n2m) in
the worst case. With the pattern-collapsed implementation, however, the
complexity of an E-step can be dramatically reduced to O(m).

The first pattern collapsed EM algorithm is proposed by Deng et al. [23] in
the context of delay tomography. The basic idea is to reorganize the observed
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data at receivers in delay tomography into delay patterns, and make use of
a delay pattern database to greatly reduce the computational cost in the
E-step. We will show below that the spirit of this method can be naturally
extended to the study of loss tomography.

Define event {Yi = 0 | Yfi = 1}, or equivalently {Xj = 0, ∀ j ∈ Ri | Xfi =
1}, as the loss event in subtree Ti, denoted as Li. Let L(XV ; θ) be the log-
likelihood of the complete data where the status of probes at internal nodes
are also observed, θ(r) be the estimation obtained at the r-th iteration, the
objective function to be maximized in the (r + 1)-th iteration of the EM
algorithm is:

Q(θ, θ(r)) = Eθ(r)
(
L(XV ; θ) | XR

)
=

n∑
t=1

Eθ(r)
(
L(X

(t)
E ; θ) | X(t)

R

)
=

∑
i∈E

[
ni(1) log(1− θi) + ni(0)Q(θTi , θ

(r))
]
,(6.1)

where QLi(θTi , θ
(r)), which is called the localized Q-function of loss event Li,

is defined as:

QLi(θTi , θ
(r)) = Eθ(r)

[
logP (XTi ; θTi) | Li

]
.

Similar to the results for delay patterns shown in the Proposition 1 of [23],
QLi(θTi , θ

(r)) has the following decomposition:
(6.2)

QLi(θTi , θ
(r)) =

(
1−ψi(θ(r))

)
log(θi)+ψi(θ

(r))
[

log(1−θi)+
∑
j∈Ci

QLj (θTj , θ
(r))
]
.

Integrating (6.1) and (6.2), we have

Q(θ, θ(r)) =
∑
i∈E

[
ωi(1) log(1− θi) + ωi(0) log(θi)

]
,

where {ωi(1), ωi(0)}i∈E are defined recursively as follows:
• for i ∈ {S1, · · · , SK}, i.e., being one of the root links,

ωi(1) = ni(1) + ni(0) · ψi(θ(r)),

ωi(0) = ni(0) ·
(
1− ψi(θ(r))

)
;

• for i /∈ {S1, · · · , SK},

ωi(1) = ni(1) +
∑
j∈Fi

ωj(0) · ψj(θ(r)),

ωi(0) =
∑
j∈Fi

ωj(0) ·
(
1− ψj(θ(r))

)
.
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And, the M-step is:

θ
(r+1)
i =

ωi(0)

ωi(0) + ωi(1)
, ∀ i ∈ E.

In this paper, we refer to the EM with the pattern-collapsed implementa-
tion as PCEM to distinguish from the EM with the naive implementation,
which is referred to as NEM. We have shown in [23] by simulation and theo-
retical analysis that PCEM is computationally much more efficient than the
naive EM in the context of delay tomography. In context of loss tomography,
it is easy to see from the above analysis that PCEM enjoys a complexity
of O(m) for each E-step, which is much more efficient than the naive EM,
whose complexity can be O(n2m) for each E-step in the worst case.

7. Simulation Studies. We verify the following facts via simulations:

1. PCEM obtains exactly same results as the naive EM for both tree
topology and general topology, but is much faster;

2. LE-ξ obtains exactly same results as the EM algorithm when regularity
conditions (5.3) and (5.4) hold, but is much faster when the speedup
from parallel computation is considered.

We carried out simulations on a 5-layer network covered by two trees as
showed in Figure 2. The network has 49 nodes labeled from Node 0 to Node
48, and two sources Node 0 and Node 32. We conduct two set of simulations.
One is based on the ideal model, and the other is by using network simulator
2 (ns-2, [44]).

7.1. Simulation study with the ideal model. In the first set of simulations,
the data is generated from the ideal model where each link has a pre-defined
constant loss rate.

To test the performance of methods on different magnitude of loss rates,
we draw the link-level loss rates from Beta distributions with different pa-
rameters. The link-level loss rates θ = {θi}i are randomly sampled from
Beta(1, 99), Beta(5, 995), Beta(2, 998) or Beta(1, 999). For example, the mean
of Beta(1, 999) is 0.001, so if we draw loss rates from Beta(1, 999), then on av-
erage we expect a 0.1% link-level loss rate in the network. Given the loss rate
vector θ for each network, we generated 100 independent datasets with sam-
ple sizes 50, 100, 200 and 500, respectively. Thus, a total of 100×4×4 = 1600
datasets were simulated. The sample size is evenly distributed into the two
trees, e.g., the source of each tree will send out 100 probes when sample size
n = 200.
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Table 3
Performance of different methods on simulated data from ideal model on the 5-layer

network in Figure 2.

Beta(1,100) Beta(5,1000) Beta(2,1000) Beta(1,1000)
n Method Time (ms) MSE (1e-5) Time (ms) MSE (1e-5) Time (ms) MSE (1e-5) Time (ms) MSE (1e-5)

50

NEM 5065.50 764.49 4444.10 364.88 3396.20 188.78 2778.15 91.10
PCEM 2.25 764.49 2.55 364.88 2.55 188.78 2.60 91.10
LE-ξ 2.15 768.14 2.25 365.44 2.15 189.12 2.20 91.22

MVWA 2.35 772.01 2.05 368.78 2.35 189.70 2.60 91.34

100

NEM 12102.90 434.39 9109.65 245.08 7323.90 89.64 7112.55 36.69
PCEM 3.85 434.39 3.90 245.08 3.90 89.64 4.85 36.69
LE-ξ 3.70 436.41 3.50 247.29 3.80 90.02 4.30 36.74

MVWA 4.70 439.50 4.40 247.36 4.90 90.08 5.00 36.80

200

NEM 31368.95 212.79 23558.50 109.03 19184.65 44.79 16249.45 18.52
PCEM 12.10 212.79 11.05 109.03 10.20 44.79 11.20 18.52
LE-ξ 11.65 212.87 10.65 109.69 10.70 44.91 10.75 18.54

MVWA 13.90 213.90 11.05 109.75 11.80 44.90 10.20 18.55

500

NEM 90221.95 85.17 49625.15 43.88 45402.80 14.35 43475.15 6.98
PCEM 25.05 85.17 22.25 43.88 22.70 14.35 22.35 6.98
LE-ξ 28.05 85.17 21.75 43.88 21.30 14.35 23.10 6.98

MVWA 27.00 85.45 22.50 44.02 28.10 14.38 24.25 6.98

To each of the 1600 simulated data sets, we applied NEM, PCEM, LE-
ξ and MVWA, respectively. The stopping rule of the EM algorithms is

maxi |θ(t+1)
i −θ(t)

i | ≤ 10−6, the initial values are θ
(0)
i = 0.03 for all i ∈ E. We

implement MVWA algorithm by obtaining MLE estimate in each tree with
LE-ξ algorithm. Table 3 summarize the average running time and MSEs of
these methods under different settings. From the tables, we can see that:

1. The performances of all four methods in term of MSE improve with
the increase of sample size n in both networks.

2. NEM and PCEM always get exactly same results.
3. The result from LE-ξ is slightly different from these of the EM algo-

rithms when sample size n is as small as 100 or 200 due to the violation
of the regularity conditions (5.3) and (5.4). When n = 500, the results
of LE-ξ and EM algorithms become identical.

4. LE-ξ, PCEM and MVWA algorithm implemented with LE-ξ are dra-
matically faster than NEM. For example, in simulation configuration
with Beta(1, 1000) and sample size n = 500, the running time of NEM
is almost 2,000 times of LE-ξ and PCEM.

5. The MSE of MVWA is always larger than the MSE of the other three
methods, which capture the MLE. This is consistent with the result
in [8].

7.2. Simulation study by network simulator 2. We also conduct the sim-
ulation study using ns-2. We use the network topology shown in Figure 2,
where the two sources located at Node 0 and Node 32 multicast probes
to the attached receivers. Besides the network traffic created by multicast
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Table 4
Performance of different methods on simulated data from network simulator 2.

Sim time (n) Method Time (ms) MSE (1e-5)

1s (528)

NEM 54675.20 581.29
PCEM 21.80 581.29
LE-ξ 22.00 581.29

MVWA 22.80 584.50

2s (2038)

NEM 256270.60 232.49
PCEM 21.80 232.49
LE-ξ 22.00 232.49

MVWA 22.80 233.63

5s (5648)

NEM 745393.40 122.23
PCEM 329.40 122.23
LE-ξ 315.00 122.23

MVWA 299.10 122.86

10s (13355)

NEM 1334478.90 75.24
PCEM 612.90 75.24
LE-ξ 612.10 75.24

MVWA 657.00 76.59

probing, a number of TCP sources with various window sizes and a number
of UDP sources with different burst rates and periods are added at several
nodes to produce cross-traffic. The TCP and UDP cross-traffic takes about
80% of the total network traffic. We generated 100 independent datasets by
running the ns-2 simulation for 1, 2, 5 or 10 simulation seconds. The longer
experiments generate more multicast probes samples. We record all pass
and loss events for each link during the simulation, and the actual loss rates
are calculated and considered as the true loss rates for calculating MSEs.
Table 4 shows the average number of packets (sample size), running time of
methods and MSEs for different ns-2 simulation times.

In Table 4, we observe similar results as shown in Table 3. The perfor-
mances of all four methods in term of MSE improve with the increase of
sample size n in both networks. The result from LE-ξ is slightly different
from these of the EM algorithms when sample size n is as small. More im-
portantly, LE-ξ and PCEM are dramatically faster than NEM.

8. Conclusion. We proposed a set of sufficient statistics called internal
view and two alternative parameter systems ξ and ψ for loss tomography.
We found that the likelihood function keeps the exactly same formulation
for both tree and general topologies under all three types of parametrization
(θ, ξ and ψ), and we can switch among the three parameter systems freely
without changing the result of parameter estimation. We also discovered
that the parameterization of the likelihood function based on ψ falls into
the standard exponential family, which has a unique mode in parameter
space Ψ under regularity conditions, and the parametrization based on ξ
leads to an efficient algorithm called LE-ξ to calculate the MLE, which
can be carried out in a parallel fashion. These results indicate that loss
tomography for general topologies enjoys the same mathematical nature
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as that for tree topologies, and can be resolved effectively. The proposed
statistics and alternative parameter systems also lead to a more efficient
pattern-collapsed implementation of the EM algorithm for finding MLE,
and a theoretical promise that the EM algorithm converges to the MLE
with probability one when sample size is large enough. Simulation studies
confirmed our theoretical analysis as well as the superiority of the proposed
methods over existing methods.
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[2] R. Cáceres, N.G. Duffield, J. Horowitz, and D. Towsley. Multicastbased inference
of network-internal loss characteristics. IEEE Transactions on Information Theory,
45(7): 2462-2480, 1999.
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