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Abstract

Chromium (Cr) isotopes in marine sedimentary rocks can be used as a sensitive proxy for
ancient atmospheric oxygen because Cr-isotope fractionation during terrestrial
weathering only occurs when pO, exceeds a threshold value. This is a useful system
when applied to rocks of mid-Proterozoic age, where fundamental questions persist about
atmospheric pO; and its relationship to biological innovation. Whereas previous studies
have focused on temporally limited iron-rich sedimentary rocks, we present a pilot study
of Cr-isotopes in mid-Proterozoic marine carbonate rocks. Application of the Cr-isotope
proxy to carbonate rocks has the potential to greatly enhance the temporal resolution of
Proterozoic palaeo-redox data. Here we report positive °>Cr values in four carbonate
successions, extending the mid-Proterozoic record of Cr-isotope fractionation—and thus
pO, above threshold values—back to ~1.1 Ga. These data suggest that pO, sufficient for

the origin of animals was transiently in place well before their Neoproterozoic
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appearance, although uncertainty in the pO;, threshold required for Cr-isotope
fractionation precludes definitive biological interpretation. This study provides a proof of
concept that the Cr-isotopic composition of carbonate rocks can provide important new

constraints on the oxygen content of the ancient atmosphere.

Introduction

The chromium (Cr) isotope system functions as an atmospheric redox proxy because
oxidative weathering of crustal Cr(Ill)-bearing minerals results in the release of >*Cr-
enriched mobile Cr(VI) to solution (Izbicki et al., 2008). Cr(VI) (dominantly as
chromate; CrOy) is then carried to the oceans via rivers, thus imparting a positively
fractionated §>Cr signal on modern seawater (+0.13 to +1.55%. compared to crustal
values of —0.123 + 0.102%o) (Schoenberg et al., 2008; Bonnand et al., 2013; Scheiderich
et al., 2015; Wang et al., 2016; Paulukat et al., in prep.). Terrestrial Cr(Il1)-oxidation
occurs by reaction with manganese (Mn) oxides (Oze et al., 2007), and it is thought that
Mn-oxide formation requires a threshold level of O, in the atmosphere. Frei et al. (2016)
suggested that Cr-oxidation by Mn-oxides is thermodynamically possible at pO, as low
as 10 of the present atmospheric level (PAL). Kinetic considerations dictate, however,
that 0.1 to 1 % PAL is necessary to oxidize Cr(l1l) within typical soil residence times
(Planavsky et al., 2014) and between 0.03 and 0.3 % PAL is necessary to export Cr
without re-reduction by Fe(Il) (Crowe et al., 2013). Thus, the Cr-isotope system serves as
a sensitive binary indicator of atmospheric pO, above or below these threshold values.
Upon entering the marine environment, Cr(VI) can be reduced back to particle-reactive

Cr(111)—a process that preferentially utilizes **Cr, leaving residual Cr(V1) >*Cr-enriched.
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As a result, differing degrees of in situ Cr-reduction control Cr-isotope heterogeneity in

the modern oceans (Scheiderich et al., 2015; Paulakut et al., in prep.).

Because terrestrial Cr-oxidation is sensitive to atmospheric oxygen, the Cr-isotope
composition of seawater through time—as recorded in marine sedimentary rocks—is a
potentially powerful tool for reconstructing ancient atmospheric pO,. This is particularly
useful for testing hypotheses about atmospheric oxygenation during the Proterozoic Eon,
where fundamental questions persist about the O, content of Earth’s atmosphere and its

relationship to temporal patterns of biological innovation.

The oxygenation of Earth surface environments was a protracted process that occurred
over >2 billion years (Ga). Two first-order oxygen pulses have been identified from the
Proterozoic geologic record. During the Great Oxidation Event (GOE) at ~2.4 Ga, pO-
was sustained above 10 PAL for the first time in Earth history (Pavlov and Kasting,
2002), although transient ‘whiffs’ of O, have been recognized from the Archaean
geochemical record (Anbar et al., 2007). During a subsequent Neoproterozoic
oxygenation event (NOE) at ~635-550 Ma, pO, began to rise to near-modern levels—a

transition that continued into the Palaeozoic Era (Och and Shields-Zhou, 2012).

Empirical constraints remain limited, however, on pO, during the prolonged period in
between. Constraining pO, during the mid-Proterozoic Eon has major implications for
understanding potential biogeochemical controls on the timing of animal diversification.

Some argue that exceedingly low mid-Proterozoic pO, was a direct impediment to
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metazoan evolution prior to the Neoproterozoic Era (Lyons et al., 2014; Planavsky et al.,
2014; Tang et al., 2016), whereas others argue that oxygen levels required by early
animals were in place long before their Neoproterozoic appearance (Butterfield, 2009;
Mills et al., 2014; Zhang et al., 2016). Mid-Proterozoic Cr-isotope data have the potential
to inform this debate because estimates of the pO, threshold needed for Cr-isotope
fractionation are roughly similar to experimental and theoretical estimates of the O;
requirements of early animals (0.3 to 4 % PAL) (Levin, 2003; Palma et al., 2005;

Sperling et al., 2013a; Mills et al., 2014).

Thus far, studies have largely focused on iron-rich sedimentary rocks as an archive for
ancient seawater 5°°Cr values (Planavsky et al., 2014; Frei et al., 2009; 2016). In the
presence of Fe(ll), seawater Cr(VI) is reduced to Cr(Ill) and can be co-precipitated with
Fe-oxyhydroxides (Dgssing et al., 2011). Cr reduction favors the light *Cr isotope, so
that iron-rich rocks record seawater 5°>Cr values only if Cr reduction is quantitative.
Ironstone and iron formation data have thus far provided important constraints on
Archaean ‘whiffs’ of oxygen and the subsequent GOE, as well as new clues about the
NOE (Frei et al., 2009; Planavsky et al., 2014). Sparse ironstone data from the mid-
Proterozoic suggest a lack of Cr-isotope fractionation (Planavsky et al., 2014). Iron-rich
rocks are rare in mid-Proterozoic successions, however, limiting our ability to generate

data for the crucial period preceding the NOE.

The impetus of this study, then, is to test the reliability of Cr-isotopes in an alternative

lithology (marine carbonate rocks) that is ubiquitous in the mid-Proterozoic geologic
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record. A potential advantage of using carbonate rocks as a Cr-isotope archive is that
chromate can be incorporated into the lattice of carbonate minerals with no change in
oxidation state. Studies of modern invertebrate shells (coral, bivalves, gastropods) reveal
that Cr-isotope fractionation does occur during biomineralization, making skeletal
carbonates an unreliable archive of seawater 8°>Cr values (Paulukat et al., 2015; Pereira
et al., 2016). Mohanta et al. (2016) showed that modern bulk biogenic carbonate is as
much as 0.45 %o lighter than seawater. Co-precipitation experiments involving chromate
incorporation into calcite have shown, however, that abiogenic carbonate has the
potential to record 8°°Cr values of the ambient solution (Rodler et al., 2015). In
experiments with the lowest initial Cr concentration (8.6 ppm), precipitates were <0.1 %o
heavier than the solution, suggesting that minimal fractionation occurs during chromate
incorporation into calcite at low Cr concentrations typical of seawater (0.08 to 0.5 ppm;

Scheiderich et al., 2015; Paulukat et al., in prep.).

In this study, we measured the Cr-isotopic composition of marine limestone and
dolostone from four geographically distinct mid-Proterozoic successions, along with a
suite of major and trace elements to constrain diagenetic pathways and the influence of
detrital contamination. We focused on the interval between ~1.1 and 0.9 Ga—where sea
level highstand resulted in marine carbonate deposition across multiple cratons—and a
variety of depositional environments to assess the consistency and reliability of the
proxy. Our data are discussed in the context of best practices regarding diagenesis and
detrital contamination, and ultimately, used to provide important new constraints on

atmospheric pO, during the mid-Proterozoic Eon.
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Geologic Background

Samples were analyzed from the Turukhansk Uplift, Siberia (~900-1035 Ma), the
Angmaat Formation, Canada (~1092 Ma), the EI Mreiti Group, Mauritania (~1107 Ma),
and the Vazante Group, Brazil (~1112 Ma). Detailed description of the geologic setting,
depositional environments, geochronology, and post-depositional history of each

succession can be found in the Supplementary Information.

Analytical Methods

Chromium separation and isotopic analysis techniques were modified from Pereira et al.
(2016). All Cr-isotope and Cr concentration measurements were performed at the
University of Copenhagen on a thermal ionization mass spectrometer (TIMS). Ca, Mg,
Fe, Sr, Mn, and Al concentrations were measured by ICP-OES on splits of the same
solutions used for Cr-isotopic analysis. Ti and Zr concentrations were measured by ICP-
MS at the Geological Survey of Denmark and Greenland. Additional detail can be found

in the Supplementary Information.

Diagenetic Considerations

Carbonate minerals are reactive in the diagenetic environment so that care must be taken
in selecting the best-preserved samples for isotopic analysis. Criteria for sample inclusion
were based upon conventional petrography, carbon and oxygen isotope compositions, and
trace element concentrations. Micritic to microsparitic textures characterize most

samples, with the exception of discrete intervals of alteration that were excluded (Figs.
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SI-1, SI-2). Similarly, §'*C, 8'°0, and trace element signatures are in line with typical
least-altered mid-Proterozoic limestone and dolostone (Kah et al., 1999) with some
exceptions that were considered altered, and thus excluded (Fig. SI-3). A total of 17
samples were excluded based on diagenetic criteria, including 13 from the Vazante
Group. Interestingly, samples that are considered altered—with lower than average §'°0
values—tend to have unfractionated §°*Cr values that approach average crust (-0.12 %o)
(Fig. SI-4). This may indicate that discrete intervals of alteration (particularly in the
Vazante Group) were characterized by a resetting of the °°Cr signal to crustal values.
Future study should investigate this possibility, but for the purposes of this study, these
samples were excluded based on standard diagenetic criteria. Additional textural and

geochemical information can be found in the Supplementary Information.

The only previously published study on Cr-isotopes in carbonate rocks (Frei et al., 2011)
demonstrated stratigraphic 8°*Cr trends that mirror primary 8*3C trends across a mixed
limestone-dolostone interval. Because the C-isotope signal is thought to reflect seawater,
co-variation with §°*Cr speaks to the fidelity potential of Cr-isotopes in both limestone
and dolostone and suggests that, in the absence of further study on Cr-isotope behavior
during diagenesis, standard petrographic and geochemical criteria can be used as a

starting point for Cr-isotope diagenetic screening.

Detrital Chromium Contamination
Our results indicate a broad range of 8°*Cr values in each succession, ranging from

crustal values (near —0.12 %o) to strongly positive values (up to +1.77 %o). To understand
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this isotopic heterogeneity, we first evaluated the degree to which measured 5°*Cr values
reflect authigenic Cr in carbonate vs. allogenic Cr from detrital sources. As part of each
dissolution for §°Cr analysis, we measured a split for aluminum (Al) content to assess
the degree to which clay—which can be a host phase for detrital Cr—was leached during
dissolution. In a plot of Al concentration in the leachate vs. measured &°3Cr values (Fig.
1A), positively fractionated 8°Cr is only recorded in samples where less than ~400 ppm
Al is leached. A similar trend is observed for other detrital indicators. Positively
fractionated &°°Cr is only observed when leachate titanium (Ti) and zirconium (Zr)
concentrations are generally less than 10 and 1 ppm, respectively (Fig. SI-5), although the
relationship is not well-defined for Zr. Assuming that Al is the most effective indicator of
clay contamination, we compared sample Cr/Al ratios to an average shale composite (Cr
= 90 ppm; Al = 8.89 wt. %; Wedepohl, 1991)—which serves as a first-order proxy for
clay-rich detrital sediment—to derive a rough estimate of the fraction of Cr sourced from
detrital material for each sample. Similarly, positively fractionated 5°*Cr is only recorded

in samples where less than ~35 % of measured Cr is detritally sourced (Fig. 1B).

These trends represent a mixing curve where Cr in the carbonate lattice is dissolved and
analyzed in addition to Cr leached from clay. When detrital Cr exceeds ~35 % of total
measured Cr, &°3Cr values approach average crust (-0.12 %.) and the isotopic
composition of the authigenic seawater component is unresolvable. When samples have
less than ~35 % detrital Cr, we can perform a basic correction of measured §>*Cr values,
assuming the detrital component has a crustal 8°°Cr value. This yields a first-order

estimate of the isotopic composition of the authigenic Cr component (5°*Craun), which is
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derived from seawater (see Supplementary Information). We also performed corrections
using post-Archaean Australian shale (PAAS) values (Taylor and McLennan, 1985)
instead of the average shale composite of Wedepohl (1991), but found <2 % differences
in estimates of detrital Cr contribution and < 0.02 %o differences in corrected §°*Crau

values.

After exclusion of samples based on diagenetic and detrital contamination criteria, our
dataset consisted of 62 samples that cover all four successions. These methods for
assessing detrital Cr contamination represent a new set of best practices that should be

applied in future studies that examine the Cr-isotopic composition of carbonate rocks.

Constraining Atmospheric Oxygen

The main observation of our dataset is that all four successions record positively
fractionated 8°*Craun values. The maximum isotopic difference observed by Rodler et al.
(2015) between synthetic calcite and ambient solution was 0.33 %o so that, even if some
fractionation did occur during carbonate formation, the preponderance of strongly
positive 8>Cr values in our dataset (n = 24 samples >0.3 %o) indicate that mid-
Proterozoic seawater was positively fractionated. Additionally, if carbonate preferentially
incorporated **Cr as observed by Mohanta et al. (2016), then our dataset provides even

stronger evidence for positively fractionated Cr in mid-Proterozoic seawater.

The record of positively fractionated Cr in seawater has recently been extended back to

~3.8 Ga, which Frei et al. (2016) interpret as terrestrial Cr-oxidation under an otherwise
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anoxic Archaean atmosphere. Banded iron formations from the Archaean-Proterozoic
transition record pulses of terrestrial Cr-oxidation prior to the GOE and a lack of Cr-
isotope fractionation immediately following the GOE, which is interpreted as a post-GOE
decline in atmospheric pO, (Frei et al., 2009). Subsequent evidence for Cr-isotope
fractionation is not found until ~750 Ma (Planavsky et al., 2014), leading to the
suggestion that persistently low pO, inhibited Cr-isotope fractionation during the entire
mid-Proterozoic Eon. Here we extend the mid-Proterozoic record of positively

fractionated Cr back to ~1.1 Ga—a revision of ~350 Ma from previous estimates (Fig. 2).

At present, there is no clear consensus on the pO, level required for Cr-isotope
fractionation during terrestrial weathering (e.g., Crowe et al., 2013; Planavsky et al.,
2014; Frei et al., 2016). If we take soil residence time calculations (~0.1 to 1 % PAL;
Planavsky et al., 2014) as our best estimate, we conclude that pO, at least transiently
exceeded ~0.1 to 1 % PAL during the mid-Proterozoic Eon. These data are consistent
with a broad range of proxies that suggest mild biospheric oxygenation in the
Mesoproterozoic Era (Kah et al., 1999; 2001; 2004; Frank et al., 2003; Johnston et al.,
2005; Parnell et al., 2010; Spinks et al., 2014; Zhang et al., 2016). Data are potentially
inconsistent, however, with recent estimates of pO, persistently between or below 0.1 to
1 % PAL throughout the entire mid-Proterozoic Eon (Lyons et al., 2014; Liu et al., 2016;
Tang et al., 2016), including Cr-isotope data from sparse mid-Proterozoic iron oolites

(Planavsky et al., 2014).
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Conflict between our data and other proxies could be related to uncertainty regarding the
pO, threshold required for Cr-isotope fractionation. If we take 0.03 % PAL as the
required threshold (Crowe et al., 2013), for example, our data become compatible with
the pO; estimate of Liu et al. (2016) based on carbonate Zn/Fe systematics. Regardless of
the threshold value, however, our data remain inconsistent with Cr-isotope data from
mid-Proterozoic iron oolites (Planavsky et al., 2014). This discrepancy cannot be
explained by Cr-isotope fractionation during carbonate formation, particularly if
carbonates preferentially incorporate *’Cr (Mohanta et al., 2016), which would only
amplify evidence for positively fractionated Cr in mid-Proterozoic seawater. Carbonate
diagenesis can also be excluded because least-altered samples in our dataset have positive
8°%Cr values and, in samples where there is evidence for diagenesis, unfractionated &°*Cr
values are recorded. This indicates that—at least in our dataset—diagenesis is more likely
to give a false negative than a false positive result. Another possibility is that ironstone
data do not record seawater 5°*Cr because of partial Cr-reduction during precipitation of
shallow water iron oolites, which may have occurred under fluctuating redox conditions.
As articulated by Planavsky et al. (2014), however, this would be expected to generate a

range of 5°>Cr values—not the persistently unfractionated values that were measured.

Another alternative is that mid-Proterozoic pO, was variable around the threshold
required for Cr-isotope fractionation. There is evidence for this in our dataset—the
persistence of unfractionated §>*Cr values that are not related to detrital contamination
(Fig. 1) could be related to transient periods of pO, below threshold values. Indeed the

only measured iron oolites that temporally overlap with samples from this study are
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limited samples from the ~0.9 Ga Aok Formation (Canada), implying that the coarse
temporal resolution of current data may be insufficient to track short-term variability in
pO,. Data from earlier Proterozoic carbonate successions are needed to further test the
hypothesis of Planavsky et al. (2014). Taken together with the full range of published
proxy data (Frank et al., 2003; Kah et al., 2004; Johnston et al., 2005; Parnell et al.,
2010; Planavsky et al., 2014; Liu et al., 2016; Tang et al., 2016; Zhang et al., 2016), we

conclude that mid-Proterozoic pO, was likely more dynamic than previously envisaged.

Biological Implications

Implications of our data on biospheric evolution are similarly tied to uncertainty
regarding the pO; threshold needed for Cr-isotope fractionation. Tank experiments have
shown that sponges can survive when pO, is as low as 0.5 to 4 % PAL, leading Mills et
al. (2014) to conclude that this level was likely sufficient for the origin of animals. Based
on theoretical early annelid body plans, a small worm with a circulatory system could
likely survive at pO, as low as 0.14 % PAL (Sperling et al., 2013a). Studies from modern
oxygen minimum zones confirm these estimates and suggest that the bilaterian body plan
would only be inhibited if pO, were below 0.4 % PAL (Levin, 2003; Palma et al., 2005;
Sperling et al., 2013a). If we take 0.1 to 1 % PAL as the threshold required for Cr-isotope
fractionation (Planavsky et al., 2014), then our data suggest that pO, levels sufficient for
the origin of animals were at least transiently in place by ~1.1 Ga—some 300 Ma before
the origin of sponges based on molecular clock estimates (Erwin et al., 2011) and >450
Ma before the first appearance of animals in the fossil record (Narbonne, 2005). By

contrast, if we take the lower threshold value of 0.03 % PAL proposed by Crowe et al.
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(2013), then our data have less direct implications for biology. Ecological considerations
are also important and modern oxygen minimum zones suggest that there is a clear
linkage between oxygen availability, animal size, and the relative proportion of
carnivorous taxa (Sperling et al., 2013b). Based on these considerations it seems that,
although the oxygen requirements of small, simple animals were likely met by ~1.1 Ga,
low atmospheric pO, may still have inhibited the development of larger, more energetic

animals that have greater preservation potential in the fossil record.

Conclusions and Outlook

This pilot study demonstrates the viability of the Cr-isotope palaeo-redox proxy as it is
applied to ancient carbonate rocks. Once best screening practices for diagenesis and
detrital contamination are applied, Cr-isotope data can be interpreted in the context of
ancient atmospheric pO,. Results from four carbonate successions extend the mid-
Proterozoic record of positively fractionated Cr back to ~1.1 Ga—a revision of ~350 Ma
from previous estimates. If we take 0.1 to 1 % PAL as the pO, threshold needed for Cr-
isotope fractionation, then our data suggest that the oxygen requirements of small, simple
animals were at least transiently met well prior to their Neoproterozoic appearance,
although uncertainty regarding this pO, threshold precludes definitive biological
interpretation. Ultimately, the development of novel carbonate-based redox proxies has
the potential to greatly enhance the temporal resolution of palaeo-redox data for the

Proterozoic Eon.
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