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Abstract 
 
Raman spectroscopy is widely used to evaluate the nature and potential origins of 

carbonaceous matter in Earth’s oldest rocks and minerals. It is also the tool that will be 

used for organic detection on the next vehicles to remotely explore the surface of Mars. 

Here we present, for the first time, a novel quantitative method in which previously 

neglected Raman spectral features are correlated directly, linearly, and with excellent 

accuracy, to the microchemistry of carbonaceous materials through the elemental H:C 

ratio, regardless of contamination. We show applicability and predictive capabilities of 

this methodology in evaluating H:C ratios between 0.01 and 0.65 in Archean and type III 

kerogens. We demonstrate its application to chemical microRaman mapping by statistical 

analysis of a 750Ma microfossil and its encompassing sediments. Raman-derived H:C 

data can also be used to estimate the degree to which kerogen C-isotopic data has been 

shifted from its original values due to the effects of metamorphism. The new 

methodology directly and non-invasively affords spatially resolved assessments of 

organic matter preservation and microscale chemical diversity within any geologically 
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preserved terrestrial or extraterrestrial sample, including in the use of organic matter in 

technological applications.  

 
 
1. Introduction 
 
The demonstrated facile, and non-destructive deployment of Raman spectroscopy to 

identify key chemical parameters in organic matter makes it extremely compelling for 

spatially-resolved quantitative geological and petrochemical surveys of the chemistry of 

organic matter (OM), as well as for the recent innovative use of OM for technological 

applications, such as thin films for electronics [1]. Several techniques can spatially 

resolve carbon chemistry such as laser desorption ionization (LDI) coupled to Fourier 

transform ion cyclotron resonance mass spectrometry (FTICR-MS) and Time-of-Flight -

Secondary Ion Mass Spectrometry (TOF-SIMS) [2, 3]. Yet, Raman spectroscopy has the 

potential to allow quantitative evaluation of carbon chemistry, while non-invasively 

preserving the specimen chemistry and morphology, and with minimal specimen 

preparation. Such flexibility is particularly of interest for its application to detection and 

characterization of organic matter were sample preservation is essential, such as for 

organic fossils, both in terrestrial and  - potentially - extraterrestrial samples [4-6]. 

 

A resurgence in interest in quantitative assessments of carbon chemistry of highly 

aromatic organic matter is also motivated by the challenges in understanding in the 

origins and early evolution of life on the Earth and, possibly, elsewhere in the solar 

system, which has been heightened by recent successes of NASA’s Mars Science 

Laboratory Mission. Sedimentological and geochemical features of ancient sedimentary 

rocks indicate the presence in Mars’ past of potentially habitable environments 

characterized by the extended presence of standing water [7]. A complementary search 

for indigenous, well-preserved OM, however, has been less conclusive, this due in part, 

by the lack of a spatially resolved quantitative method for rapid screening of chemical 

preservation of OM.  For example, to date, discoveries have been limited to the detection 

of small organic molecules during pyrolysis-gas chromatography-mass spectrometry (py-

GC-MS) experiments in Mars [8]. On Mars, the search for preserved organic matter, and 
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the determination of its chemical composition, has been particularly hindered by the 

highly reactive, strongly oxidizing nature of surface sediments activated by the invasive, 

high energy probe, which present obstacles to both preservation and the thermal 

volatilization and pyrolysis approaches for detection that have so far been deployed in 

landed missions [9-12].  

 

Similarly, the analysis of OM in Earth’s oldest sedimentary rocks has been subject to 

multiple combinations of problems. OM is ubiquitous in ancient terrestrial sediments and 

often occurs in great abundance, even in rocks more than 2.5 billion years old [13-15]. 

Here, the key problems are interpretive and revolve around establishing whether or not 

preserved organic molecules are syngenetic and indigenous to the rocks in which they 

occur [16, 17], identifying and excluding contamination artifacts [18] and seeing past the 

destructive  and confounding effects of thermal metamorphism [15] and ionizing 

radiation [19]. 

 

Raman spectroscopy and microscopy have been used extensively to characterize, often 

with submicron spatial resolution the OM of kerogens and microscopic fossils in both 

sedimentary rocks [20] and extra-planetary materials [21-24].  In particular, laser-Raman 

mapping with submicron-scale resolution was used to establish positive correlations 

between optically discernible microscopic fossils and the carbonaceous nature of their 

preserved walls or envelopes [25-27]. In studies of interplanetary dust particles and 

meteorites, Raman spectroscopy conducted at sub-micron resolution is able to identify 

heterogeneities in chemical composition of the OM, a feature that speaks to its origin by 

means of multiple chemical processes [24, 28]. 

 

Many authors have identified systematic changes in Raman spectra that accompany the 

thermal maturation and metamorphism of sediments. Comparative analyses of 

metamorphic rocks in relation to their thermal maturation document the evolution of the 

Raman D bands and the sharpening of the G band (Fig. 1) as a result of the progressive 

graphitization of sedimentary OM [29-33]. Similarly, early observations of Precambrian 

kerogens suggested that loss of the D band and sharpening of the G band accompanied 
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increasing metamorphic grade [34], while Schopf and colleagues developed a Raman 

Index of Preservation (RIP) [35] and observed positive correlations with Raman-based 

parameters, H:C and other indices of the maturity of microscopic fossils. Conversely, 

other techniques (such as FTIR) can provide a semi-quantitative, spatially resolved 

assessment of functional chemistry for biological and low maturity kerogen [36], and yet, 

any chemical assessment is qualitative at best for mature OM by the very low spectral 

contribution from aliphatics, while being predominantly dominated by aromatic 

compounds [37]. 

 

In the present study, we build on this foundation and document a novel suite of 

microchemical characterization tools that allow in situ, non-destructive, and unique 

approximation of the H:C ratio of mature organic matter from the micron to the 

millimeter scale. We provide accurate direct calibrations of the spectral response of a 

suite of chemically diverse, mature organic matter samples to elemental H:C for a range 

between 0.01 and 0.65 using Raman spectroscopy. The spatial upscaling enabled by the 

technique is designed to provide a maturity population distribution from the nanoscale to 

conventionally used macro-scale averaged parameters (such as vitrinite reflectance).  The 

derivation of elemental H:C ratios directly from analyses of Raman spectra affords a tool 

for rapidly and remotely evaluating bulk OM composition on future missions to Mars. On 

Earth, the approach is ideal for facile and inexpensive examination of spatial variations in 

the chemical composition of microscopic fossils or the regional maturity trends across 

sedimentary basins in order to identify the best preserved organic matter for more 

detailed geobiological study. It can be immediately used to determine H:C for OM-

derived electronic grade thin films and therefore infer their optical properties [38].  

 
2. Materials and Methods 
 
2.1 Raman spectroscopy. Micro-Raman spectra were acquired using a Horiba LabRAM 

800 HR spectrometer in a confocal configuration equipped with a He-Ne (632.817 nm) 

laser as the excitation source and a Peltier-cooled CCD detector. The laser was focused 

on the sample with a 400 nm confocal hole using the 100X objective under reflected 

illumination. The laser spot on the sample was ~800 nm in diameter and had a power of 
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~4 mW at the sample surface. A calibrated edge high band filter (lowest wavenumber: 

~70 cm-1) was used to minimize the elastic backscattered signal. The method for spectral 

fitting and background subtraction can be found in SI. 

 

2.2 Cluster Analysis of Raman maps. Identification of clusters or phases within a map 

through correlation of Raman spectral features are carried out using cluster analysis based 

on the mixture modeling [39] as implemented in the R-package MClust [40, 41]. Further 

details in the SI. 

 

2.3 Isolated Kerogen Samples. Kerogen samples (Table S1) with a well-characterized as 

well as uniform chemical fingerprint (H:C and mineralogy) were chosen for the 

calibration of Raman spectral features such as intensity peak ratios with macroscopic H:C 

ratios (between 0.01 and 0.65 by elemental analysis). For the purpose, a total of 16 

samples (age range: 1.4-3.9 Gy) from the Precambrian Paleobiology Research Group 

(PPRG) [42], were provided by JW Schopf. Isolated type III kerogens from the Penn 

State Coal bank (Department of Energy Coal Samples – DECS) were used were also 

used. Additional samples from two Agouron Institute Drilling Projects in Australia 

(samples with the AIDP identifier) and South Africa (Samples with the GKF and GKP 

identifiers), which were used in recent geochemical studies of organic matter-rich 

Neoarchean sediments from the Pilbara [43, 44] and Kaapvaal Cratons [14, 18, 45-48] 

were included to evaluate their H:C using the calibration above. Details of kerogen 

selection and isolation are available in SI. 

 

2.4 Organic Fossil. The application of the novel Raman method here developed to 

mapping was done using a thin section of silicified coastal carbonate containing 

organically preserved fossils of the protist Trachyhystrichosphaera aimika, from the 750 

Ma Draken Formation, Spitsbergen.  The fossil is deposited in the Paleobotanical 

Collections of the Harvard University Herbaria, collection number 62371. 

 

3. Results and discussion 
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The conventional approach to interpreting Raman spectra relies on characterization of the 

intensity and width of two of the major bands, the G peak and D peak complex [49] (Fig. 

1). The G peak (at 1582 cm-1) is related to an in-plane sp2 bond stretching shear vibration 

within the aromatic ring in a large, graphene-like cluster. The full-width, half-max of the 

G peak (FWHM) ωG increases monotonically with the degree of disorder in the graphitic 

lattice [49], either by defects within the aromatic clusters or through scattering by their 

edges. In the context of OM, it is expected that the size of aromatic clusters will increase 

with maturity, hence a correlation between ωG and maturity is expected. To test this 

hypothesis, we extracted ωG from a set of previously well-studied kerogens from the 

collection of the Precambrian Paleobiology Research Group (PPRG), Table S1 [50].  

 

The data are plotted against the nominal H:C ratio of each sample (Fig. S1). The 

correlation, while acceptable, is indirect: ωG is related only to the size of aromatic 

clusters, which themselves are not directly related to H:C. Therefore, it is expected that 

the double correlation between ωG vs maturity and maturity vs H:C will lead to a 

correlation between ωG and H:C. In essence, while ωG can be used to represent the 

maturation process of a given OM, it does not represent a proxy for a defined chemical 

entity such as the elemental H:C ratio. The limitation of such correlations to aromatic 

hydrocarbons hinders their applicability to complex non-aromatic functional groups 

present in OM. Furthermore, in the case of low maturity OM, the estimation of ωG is 

further complicated by the presence of a shoulder band D2 related to intravalley defects 

in the aromatic structure [51].  Accounting for D2 may ultimately be possible for high 

maturity O, where the peak can distinctively be separated from the G peak and ωD2 

(FWHM(D2)) and effectively be used in itself as a maturity indicator [52].  However, its 

range of applicability is ultimately restricted to the case where it can be deconvoluted 

from the G peak.  
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Figure 1 Raman spectrum of kerogen type III, (Department of Energy Coal Samples - DECS1515 from the 

Penn State coal bank, details in Supplementary information). The fit is performed as described in the 

Methods, and the final bands obtained from the fit are identified.  

 
The complex structure of the D band is highlighted by the presence of several sub-bands 

[53-55] (Fig.1). Because of its highly convoluted nature, complex fitting procedures are 

required to identify each sub-band within the D complex. Among them, the D1 peak (∼ 

1340 cm-1) is usually predominant and is only sub-band present in graphitic carbon. The 

D1 peak corresponds to the breathing mode of the sp2 aromatic ring within a graphitic 

cluster [49]. This peak is highly resonant, which means that the optical response is 

strongly influenced by the electronic structure of the local environment. Conventionally, 

several variations of ratio of D1 and G peak amplitudes (D1/G) or integrated intensities 

(D1/(D1+G)) have been used to correlate with the size of the graphic clusters, measured 

using x-ray diffraction. Beginning with the work of Tuinstra and Koenig [56] multiple 

correlations have been explored to account for the excitation energy of the laser [57, 58]. 

The correlation between the integrated intensities of D1/G and maturity has been proven 

fairly successful, but only under metamorphic conditions (H:C < 0.3-0.4) [59] where OM 

has an extensive and predominant aromatic and graphitic character (well above 90% 

[60]). Since both the D1 and G peaks represent vibrations within aromatic rings, it is 
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expected that any evolution in size and order of the D1 and G peak will correlate, 

approximately, with other proxies for maturity (including burial temperature). A similar 

argument was made for the width of the D1 peak (FWHM(D1)) as correlated to maturity 

[52] and showing a good correlation with burial temperature down to 150 °C. However, 

when a non-negligible fraction of H is within a non-aromatic structure in OM, this 

correlation no longer applies [6, 37, 61] or at least is not necessarily expected. Indeed, 

when D1/(G+D2) vs H:C is plotted for the PPRG sample set (Fig. S4), the correlation is 

poor, mainly for higher values of H:C, where aliphatic components are not negligible in 

OM, but also in the regime where D1/G is well correlated with burial temperature. 

Similarly to the relation with ωG, a set of spectral features that originate uniquely from 

aromatic fragments within OM (such as D1, G, D2) and that are highly sensitive to 

structural disorder in the aromatics (like D1, D2), D1/(G+D2) cannot reliably represent 

the real H:C in presence of a more diverse functional chemistry. Similarly, it does not 

favor the extraction of chemical information from structurally similar, but chemically 

different OM. This issue is similar to the use of vitrinite reflectance (VRo), the optical 

response of a particular maceral, to evaluate the maturity for any OM as different OM 

with different aromatic content and H:C may have the same VRo, limiting the predictive 

nature of the chemical variability of different OM types [62]. 

 

The D4 and D5 peaks (at ~1150 and ~1265 cm-1 respectively, Fig. 1) often appear as 

broad shoulders of the D1 peak at 1330 cm-1[53] and are less well understood. Neither 

peak is present among carbonaceous and graphitic materials: for example, these peaks are 

absent in purely graphitic or highly carbonized materials, while they appear in fairly 

immature OM or in functionalized carbon systems, both natural (e.g. fatty acids [63, 64] 

and synthetic (e.g. nano-diamond [65]). The most common interpretations of the origin of 

the D4 peak focus on vibrations of Caromatic–Calkyl; aromatic aryl-alkyl ethers, C–C in 

aromatic rings and C–H in aromatic rings [55], as well as trans-polyene-like C-C and 

C=C stretch bonds [54, 65]. Despite the origin of D5 (~1270 cm-1) not being currently 

well understood, it was used along with D4 and D1 by Schopf and colleagues to define 

the Raman Index of Preservation [35]. Whereas the integrated intensity of the Raman 

spectra between 1100 and 1300 cm-1was decreasing in relation to the integrated intensity 
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of the whole D complex (1100-1500 cm-1) the RIP was found to be empirically correlated 

with both H:C and N:C.  

 

The physical origin of D1 is well understood in terms of the double resonance 

phenomena in aromatic and graphitic carbon, which requires the presence of a defect in 

the aromatic texture (such as vacancies, heteroatoms and functional groups) for its 

initiation [66]. Yet, it is counterbalanced by the lack of a unique explanation for the 

origin of D4 and D5, neither of which can be explained by the defect-induced double 

resonance phenomena. Vibrations in the region associated with D5 (~1270 cm-1) are 

often found to be related to the presence of methyl groups in either saturated and 

unsaturated alkane chains, such as CH2 twist, rock, and deformation modes in oleic, 

petroselinic and linoleic fatty acids [63]. These vibrations are usually associated with the 

identification of particular types of lipids in tissues from cancer diagnostics [67] to food 

science [68-71]. Furthermore, strong bands related to stretching modes (v(CC)) in 

alkanes appear up to 1300 cm-1, with broad variations below this frequency threshold [72, 

73]. For example, in long chain methylene systems several twisting modes of CH2 modes 

take place in the D4-D5 region, from 1150 and 1300 cm-1 [72]. Therefore, D5 is uniquely 

related to vibrations originating from aliphatic hydrocarbon chains. In addition to a strong 

contribution from C-C vibration typically associated with aliphatic functionals to D4, D5 

is poised to represent functional groups that are not associated with aromatic or graphitic 

systems. Non-aromatic functionalities at the aromatic edges (from methyl groups to 

alkanes or alkenes) do not significantly alter the fundamental vibrations of large aromatic 

and graphitic systems towards the D4-D5 region and they rather contribute to spectral 

intensity in the D4-D5 region instead [72]. A more comprehensive discussion on the 

origin of the D4-D5 bands can be found in the supplementary information. In this work, 

we assign spectral features that follow, independently, the evolution of aromatic clusters 

and aliphatic functionals with increasing maturation. In light of the diverse chemical 

origin of the D4-D5 and G peaks, we define two metrics that follow directly the evolution 

of a chemically relevant parameter (such as H:C) rather than maturity indexes that are 

either non-chemically defined (such as burial temperature) or only indirect or sample 

specific (Vitrinite reflectance or pyrolysis byproduct). 
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Ideally, the distinct nature of the D4 and D5 peaks from D1 would allow for perfect 

statistical independence, so that the integrated intensity over the region corresponding to 

each peak would suffice for analysis. However, the broadness and close proximity of 

such peaks in the form of shoulder fundamentally limit the applicability of this method, 

as the contribution to the intensity from the tail of a peak (from D1, for example) is 

accounted in the intensity from the others. To limit the contribution from neighboring 

peaks, a PseudoVoigt peak fit is performed as described in the Methods.  

 

In devising a metric that independently tracks Raman peaks associated with aliphatics 

and aromatics, we further limit the contribution to aliphatic peaks such as D4 and D5 

from neighboring peaks that originate from aromatics by tracking the integrated intensity 

of the G and D2 bands, rather than D1. While, G and D2 have physically different origin 

within an aromatic or graphitic cluster, their presence is strictly related to the aromatic 

component only. Ideally, given D2 variability both in intensity and width as function of 

defects (such as physical defects in the aromatic structure or presence of heteroatoms), G 

alone would serve as the ideal reference band for aromatic. Yet, for smaller aromatic 

clusters in low maturity OM, the blueshift of the G peak towards higher wavenumbers 

due to confinement effects leads to the G and D2 peaks merging into a single broad peak 

[4, 33, 74]. Therefore, within this work, we use the sum of the integrated intensity of the 

fitted G and D2 peaks when the peak can be discriminated or, otherwise, the overall fit of 

the G+D2 band. We note that this method allows for the elimination from any cross-

contribution from D1 to D4 and D5. Indeed, when ID5/(IG+ID2) or the 

(ID4+ID5)/(IG+ID2) are plotted against ID1/(IG+ID2) no meaningful correlation is 

found (Fig. S5). 
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Figure 2  Correlations between the Raman intensity peak ratios: a) D5/(G+D2) and H:C and b) 

(D4+D5)/(G+D2) and H:C for the Precambrian kerogen (PPRG) and the kerogen type III (Table S1). 

 
 
Fig. 2a shows the strong positive correlation between the ratio of the integrated intensities 

of the D5 and G+D2 bands and H:C for the Precambrian (PPRG) and type III kerogen 

(coal): 

 

H:C = 0.871 � ID5/IG+D2 – 0.0508 

R2 = 0.9924 

 

The excellent agreement within the range of H:C between 0 and 0.65 clearly shows that 

the integrated intensity ratio of the C-H related D5 peak with the aromatic G+D2 peak is 

directly correlated to the distribution of H:C between aliphatic and aromatic moieties in 

kerogen, with no significant relation to their aromatic nanostructure (such as aromatic 

cluster size), unlike D1/G or ωG. This strong correlation supports our interpretation of the 



 12 

origin of the D5 peak based on C and H within aliphatic chains. A similar correlation is 

found for the ratio: 

 

(D4+D5)/(G+D2) (Fig. 2b, H:C = 0.6024 � (ID4 + ID5)/IG+D2 – 0.0739 

R2 = 0.9548 

To our knowledge, this is the first time a linear, direct relation is proposed that links a 

Raman spectral feature to elemental H:C. We note that for highly mature kerogens (H:C 

< 0.15), the very low concentration of aliphatics and related C-H groups results in a 

strong reduction in intensity of the D5 peak. The persistence of the D4 peak under these 

conditions, where aliphatic carbons are not expected, can be attributed to the presence of 

C–C on aromatic rings that may persist at higher maturity [55]. As the intensity of D5 

may approach negligible values at high maturity, making the fit more unreliable, 

(D4+D5)/(G+D2) may be better suited for H:C < 0.15. 

 

The higher limit for the estimate of H:C from D5/(G+D2) and (D4 + D5)/(G+D2) is 

imposed uniquely by the ability to discriminate accurately between the D5 and G peak 

intensity of a given spectrum and its fluorescence-induced background. With a 633 nm 

excitation wavelength, the onset of strong fluorescence is for H:C ~0.6-0.65. However, 

instruments using higher energy excitations up to UV, such SHERLOC, slated to fly on 

the Mars2020 rover mission [75] would either limit fluorescence or completely remove it, 

allowing for the application of this method beyond current limits. 

 

The correlation found between the RIP index and N:C (in addition to H:C, Schopf et al. 

2005) might cast doubt on the relation with between D5/(G+D2) and H:C inferring that is 

not a direct consequence to the physical interpretation of the origin of the D5, G and D2 

bands and can be potentially affected by heteroatoms. However, the very poor correlation 

between D5/(G+D2) and N:C (Figure S6) reflects the poor correlation between the 

nominal values of H:C and N:C within the PPRG sample set (Figure S7). The effects of 

heteroatoms on D5/(G+D2) is a priori unexpected, as no major C-N bond is realistically 

expected within the 1100-1700 cm-1 spectral range. The excellent correlation with H:C, 

and not with N:C, further confirm the direct dependence of D5/(G+D2) from H:C.   
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By identifying a metric based on both the non-aromatic (D5 band) and aromatic/graphitic 

component (G, D2 bands), the evaluation of thermal maturity in OM (conventionally 

obtained in Raman—based indicators in terms of aromatic nanostructure, such as D1/G 

or ωG) can be independently evaluated against its chemistry, using the Raman-derived 

H:C content. This enables us, for example, to evaluate the role of nanostructure for 

different OM with similar H:C chemistry. Fig. S8 shows the spectra of the PPRG-048 

(shale lithology, ~2.5 Ga, Pilbara Craton, Hamersley Formation) and the PPRG-266 

(shale lithology, ~3.0 Ga, Mozaan Group), both having the same nominal H:C of 0.11. 

The differences are striking: PPRG-048 has significantly broader D1 and G peaks than 

PPRG-266, which shows the resolution of the D2 peak as a shoulder to the G peak. This, 

in addition to the sharper ωG and ωD1 for PPRG-266, suggests a nanostructure that 

exhibits the presence of spatially more extended graphitic clusters than PPRG-048, which 

appears to be more amorphous, despite having the same H:C. A similar trend can be 

observed in comparing two different coals with identical H:C (DECS-21 and DECS-

1515, Fig. S11). We stress that despite the striking spectral differences related to the 

nanostructure, the D5/(G+D2) peak ratios are similar (More info and spectral fitting in 

supplementary information), reflecting the actual similarity in H:C. Future studies are 

needed to elucidate the nano-microstructural differences highlighted from the Raman 

spectra for a particular H:C in relation to chemical (including heteroatoms such as S, O, 

N) and biological origin of the organic matter (biological or abiotic), burial conditions 

(anisotropic stress affecting nucleation of aromatic clusters),  catalytic effects induced by 

minerals and inorganics.  
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Figure 3 Optical micrographs of a fossil protist, Trachyhystrichosphaera aimika, from silicified coastal 

carbonates of the 750 Ma Draken Formation, Spitsbergen. Raman mapping is carried out at low 

magnification (10X, spatial resolution: ~5 µm) over the full fossil (large image), and at high magnification 

(50X, spatial resolution: ~1 µm) over the area within the white box, shown in the inset. Cell walls, 

collapsed cell contents, and quartz infilling cement are indicated by the red, blue and green arrows, 

respectively. 

We purposely chose OM with very different biological origin (marine PPRG vs terrestrial 

plant Type III kerogen) and oxygen content (low in PPRG, high in Type III kerogen) to 

extract the correlations between D5/(G+D2) and (D4 + D5)/(G+D2) vs H:C, to further 

highlight the universality of this method across different types of OM (Fig. 2). This is a 

direct consequence of its reliance on spectral features that are uniquely related to the H:C 

chemistry of molecular compounds (aromatic and non-aromatic) within the OM itself. 

Hence, evaluating the correct H:C of OM is possible with the method here proposed, 

even in cases where high H-containing species, such as the presence of traces of hydrated 

minerals as contaminants, cause conventional elemental analysis to overestimate H:C 

[76]. For example, OM samples isolated from highly silicified samples via HCl/HF/HCl 

attack, often show anomalously high H:C ratios attributable to secondary hydrated 
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mineral contaminants. An example of the extent of such over-estimation is shown in Fig. 

S14 for the AIDP kerogens that were prepared as above but without additional kerogen 

purification steps. Here, a significant number of the analyzed samples display a nominal 

H:C between 25 and 100% higher that measured using the D5/(G+D2) ratio.  The 

consequences for the systematic application of this method to OM in complex lithologies 

are far-reaching: it allows for the verification of OM preservation not only in terms of 

burial conditions, but also with respect to kerogen processing and isolation. It can be 

argued that kerogen isolation, required for H:C elemental analysis, is in fact no longer 

needed for the method proposed here, so long as the Raman spectral signature of OM is 

significantly strong to be detected over fluorescence. 

 

Potential uses for the elemental H:C ratio data acquired in this way would be to rapidly 

and accurately discern the extent to which thermal metamorphism might have affected 

the preservation of hydrocarbon biomarkers [18]. Taken a step further, the elemental H:C 

ratios can be used to estimate and correct for positive shifts in the d13C values of highly 

mature ancient kerogens, as has been observed by in several studies [15, 77-81]. A small 

sample of such calculations (Table S1) confirms that organic matter preserved in Archean 

sedimentary sequences is, on average, more 13C-depleted than that found in younger 

times consistent with other observations that the Archean carbon cycle must have 

operated in fundamentally different ways prior to and following the oxygenation of 

Earth’s ocean-atmosphere system [14, 78, 82-84]. Furthermore, because kerogen 

isolation is unnecessary, this method may be applied directly to OM still embedded 

within its original host rock provided the organic domains are of sufficient size. In this 

context, microRaman spectroscopy could afford valuable augmentation for SIMS isotope 

analysis of organically-preserved fossils.  Being non-destructive, samples could be first 

screened in this way to identify chemical differences at small spatial scales to prioritize 

regions for detailed SIMS measurements [85-87].   

 

The preservation of OM within its inorganic framework favors investigation of the 

spatially resolved variability of H:C through the D5/(G+D2) Raman ratio, within a 

particular fossilized object or among several visibly or functionally different objects 
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within the same rock. As an example, we analyzed the protistan microfossil 

Trachyhystrichosphaera aimika, preserved in silicified coastal carbonates of the ca. 750 

Ma Draken Formation, Spitsbergen [88].  The OM in this ca. 300 µm wide fossil occurs 

in a well preserved cell wall and collapsed cell contents within its interior (Fig. 3). 

Raman mapping on this fossil was recently performed to investigate the heterogeneity 

and potential biotic origin of the OM in organic fossil based on the evolution of structural 

order, rather then chemical composition [4-6]. With this work, we set to perform Raman 

mapping at different magnifications to quantitatively probe the relation of spectral 

sensitivity to differences in H:C across the sample in relation to length-scale. At low 

magnification (10x, spatial resolution of ~5 µm), the integrated intensity of the G peak 

mapped across the full fossil is shown in Fig. 4a. The absence of significant OM in the 

quartz core (green arrow, Fig. 3) is clearly highlighted by the almost negligible intensity 

of the G peak in this material. Strong G peak intensity is observed from the collapsed 

cytoplasm, the cell walls, and in the space probed outside the cell walls, which is 

pigmented by abundant particulate OM. Despite the strong presence of quartz outside the 

cell walls, residual organic matter is clearly detected. And despite the observation that 

OM is presented in morphologically distinct entities of differing relative abundance (from 

the strength of the G peak), there is little variability in the H:C ratio that can be extracted 

from the intensity ratio D5/(G+D2) (Fig. 4b). This is not unexpected, as thermal 

maturation at the micron-scale should lead to similar H:C values during diagenesis. 

However, while strong differences are not expected, phase discrimination based on weak 

spectral differences in relation to H:C and nanostructural ordering can be achieved using 

a statistical approach based on cluster analysis [40, 41] (Details in Methods and 

Supporting Information).  

 

The approach followed in this study is based on mixture modeling and implements 

maximum likelihood estimation and Bayesian Information Criteria (BIC) to identify the 

most likely model and the number of clusters. Two complementary approaches are 

followed in defining the clustering parameters, in addition to the H:C ratio and FWHM of 

the G peak, ωG: 1) intensity peak ratios (D1/(G+D2), D5/(G+D2), (D4+D5+D1)/ (G+D2), 

(D4+D5)/ (G+D2)) or 2) absolute intensities (D1, D4, D5, G+D2).  
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Cluster identification based on peak intensity for the low resolution Raman map is shown 

in Fig. 4c-d. The quartz phase is clearly identified (phase 6) not from an actual spectral 

signature of quartz, but through the low intensity of the G peak. The main organic phase 

(phase 5) includes both the cell walls and collapsed cell content. Residual OM outside the 

cell is either identified within the organic phase itself or within one of the remaining 

“hybrid” phases. If we focus on the OM within the cell (wall and content), we notice that 

no diversification is observed within the organic phase (phase 5) based on differences 

either in H:C or nanostructural ordering. This would be intuitively expected, as peak 

intensities tend to reflect relative abundance rather than differences in comparing spectral 

features. We infer that cluster analysis based on peak intensity provides phase 

identification based on relative concentration of organic and inorganics within the region 

probed. We note that from a statistical perspective, the over-clustering with more phases 

than one would expect can provide a guideline whether similar phases can be combined, 

or whether the over-clustering allows for the identification of particular interfacial phases 

that in themselves may contain specific information about the interface (between 

different organics, or between inorganics/minerals and organics, etc). 
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Figure 4 Low resolution Raman map (magnification 10x) of the protistan microfossil 

Trachyhystrichosphaera aimika. (a) Map of the integrated intensity of the G peak; (b) map of the H:C ratio 

extracted from the D5/(G+D2) intensity peak ratio. Cluster analysis including intensity peak intensity (D1, 

D4, D5, G+D2) identifies 6 different phases. (c) The G peak intensity vs H:C is plotted to highlight the 

heterogeneity in H:C in relation to a particular phase. We note that collapsed cell content (blue arrow in 

Fig. 3), has a higher average H:C than the cell walls (red arrow in Fig. 3)  (d) The Raman map is plotted 

against the assigned detected phase. Phase 6 is the quartz core (green arrow in Fig. 3) within the cell walls. 

Phase 5 corresponds to the organic matter in the cell wall and collapsed cell content. 
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Figure 5 Cluster analysis of the high resolution Raman map (magnification 50x) of region of the organic 

fossil highlighted in the inset of Figure 3. (a-b) Cluster analysis including intensity peak intensity (D1, D4, 

D5, G) identifies 6 different phases. Phase 3 is the quartz core within the cell walls. Phases 2 and 6 

correspond to the organic matter in the cell wall and collapsed cell content, respectively. (c) When cluster 

analysis is carried out based on peak intensity ratios (D5/(G+D2), D1/(G+D2), (D4+D5)/(G+D2), 

(D4+D5+D1)/ (G+D2)), the organic matter is detected as a single phase (6). Within this phase, however, a 

strong differentiation based on different average H:C, 0.33±0.07 and 0.49± 0.05 for the cell content and 

wall respectively is observed (d). 

The potential for more accurate spatially resolved analysis and possible phase 

discrimination within the organic matter is explored with a high resolution Raman map 

(Fig. 5a, magnification: 50X, spatial resolution ~1 µm) corresponding the region of the 
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organic fossil highlighted in Fig. 3. The intensity-based cluster analysis still correctly 

identifies the inorganic phase (Phase 4, cyan in Fig 5b-c). Two distinct phases are 

identified for the OM, from collapsed cell content and walls (phase 2 and 6, green and 

purple in Fig. 5b-c). The collapsed cell content is predominant in phase 2, while the cell 

wall is equally divided between the phase 2 and 6. In addition to OM abundance, the 

distinction in two separate OM phases appears to be partially driven by differences in 

H:C, as reflected by the average H:C ratios for the two phases (0.38±0.10 and 0.49±0.10 

for phase 2 and 6 respectively), with a threshold in H:C between the two phases of about 

0.4. The convolution between the distribution of H:C ratios and difference in OM 

concentration limits phase identification based uniquely on H:C within the OM. A clear 

example is given by the cell wall, which includes both phases despite having a fairly 

homogeneous H:C. 

 

Cluster analysis based on peak intensity ratios removes the variability introduced by 

varying concentrations of OM, leaving only variability in H:C (through D5/(G+D2)) and 

order in the aromatic nanostructure (D1/G). The results of the clustering based on peak 

intensity ratio are shown in Fig. 5c. The OM is identified as a unique phase (phase 6, 

yellow in Fig. 5c). Additional OM outside the cell walls is identified by phase 4 (cyan). 

The main organic phase 6, appears to span a wide H:C range from 0.2 to 0.7. Such broad 

variability is only weakly reflected in the limited variability in D1/G (Fig. 5c), providing 

additional insight on the limited reliability of D1/G (associated with ordering and size of 

aromatic clusters) as a metric to assess chemical (rather than structural) variability in 

OM. In essence, the limited variability in D1/G leaves H:C as the only diversifier 

chemical composition. As a result, what appears to be a fairly continuous distribution of 

H:C values in the OM (Fig. 5c) result in a single and chemically heterogeneous OM 

phase. Yet, when the previously identified threshold in H:C (~0.4) is introduced to the 

single OM phase (Fig. 5d), a striking differentiation in H:C appears between the cell 

content and wall, based uniquely on original chemical differences between the two 

cellular constituents. A relation between structural and chemical diversity may still exists, 

since a similar differentiation in structural order was observed between cell content and 

cell walls [6]. We conclude that a significant chemical differentiation still exists between 
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the cell walls and the collapsed cell content, that is, however, not reflected in a significant 

change in nanostructural ordering of the aromatic component. The general and sample-

agnostic ability to compare independently the same parameter in different phases, shows 

that clustering analysis serve a unique opportunity in restricting the pool of parameters 

that contribute to a particular feature (for example H:C) and allows for evaluating the 

diversity of another parameter (for example D1/G and therefore the size of aromatics) 

within that specific phase.  

 

In conclusion, a new quantitative, non-destructive and universal method to directly 

extract H:C values from OM has been developed. This method allows for direct 

identification of the state of preservation of kerogen as a consequence of both burial and 

processing. Its reliance on spectral differences related to both aromatic and non-aromatic 

components in OM for the determination of H:C enables the evaluation of maturity with 

respect to aromatic microstructural ordering, obtained through the D1/G. By extension, 

and benefitting from the non-invasive nature of Raman spectroscopy, chemical mapping 

is achieved in combination of statistical cluster analysis, with direct identification of 

spatially-resolved inorganic/organic phase detection.  This methodology is directly 

applicable to the remote search for, and evaluation of, organic matter, geobiological 

studies of the early Earth, practical analyses of potential hydrocarbon reservoirs, or for 

the extraction of relevant optical and electronic parameters in all-carbon or OM-based 

electronic devices. Direct microRaman chemical mapping of microscopic fossils, or the 

preserved tissues of macroscopic fossils, or the determination of the chemical variability 

within electronic devices is also feasible. 
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S1. Kerogen selection and isolation 
 
For the 16 samples (age range: 1.4-3.9 Gy) from the Precambrian Paleobiology Research 
Group (PPRG) [2], kerogens with a range of lithologies (shale, carbonate, chert etc) were 
isolated using standard acid attack methods, further demineralized by digestion with 
AlCl3 and LiAlH4 and checked by XRD to ensure neo-formed fluorides and pyrite were 
removed [3, 4]. For the resulting isolated kerogens, H:C ranged between 0.01 and 0.65 
obtained by elemental analysis (Table S1) with excellent reproducibility. 
 
For the Raman measurements, powder samples were dispersed on microscope slides. 
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Table S1. Sample pedigrees for kerogens studied in this report. C-isotopic data for Archean and Proterozoic 
kerogens were corrected for the fractionation resulting from thermal alteration using the polynomial 
equation 3 from [1]. The naming convention for each class is listed as follow: PPRG (Precambrian 
Paleobiology Research Group); DECS (Department of Energy Coal Samples); ARG (Argonne Coal Bank); 
AIDP (Agouron Institute Drilling Projects, Australia); GKF-GKP (Agouron Institute Drilling Projects, 
South Africa). 

 
Type III Kerogen 

DOE ID Seam Location Rank C-
content 
[%] * 

Mean 
VRo 
[%] 

H:C O:C 

DECS21 Lykens 
Valley 2 

Columbia, 
PA 

an 82.6 5.19 0.533 0.03 
 

DECS1515 PA Semian Sullivan,  
PA 

sa 58.7 2.80 0.533 0.027 

ARG8 Pocahontas - lvb - 1.42 0.585 0.0203 
DECS19 Pocahontas 

#3 
Buchanan, 

VA 
lvb 73.3 1.71 0.654 0.027 

 
 
Table S2. Maturity and elemental analysis information for Kerogen type III Department 
of Energy Coal Samples (DECS), from standard coals of the Penn State Coal Bank, and 
Argonne Coal Bank [29-31].  
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S2. Method for spectral fitting and background subtraction 
 
A minimum of 10 independent spots on each sample was analyzed on each sample and 
data were collected from 5 to 60 seconds per spot depending upon the 
Raman/Fluorescence intensity. The full spectral window for each acquisition is from -50 
to 4000 cm-1. For the analysis, the first-order spectral window for the region relevant to 
carbon-based vibrations was taken from 1000 to 1800 cm-1. The background subtraction 
in this spectral window is performed using 2th order polynomial functions to fit the 
background within the selected region (1000-1800 cm-1).  
 
Peak fitting was carried out using Horiba LabSpec LabSpec 5, Horiba Scientific 
(http://www.horiba.com/us/en/scientific/products/raman-
spectroscopy/software/functionality/). The fit is initialized with the inclusion of the D4, 
D5, D1, D3, G+D2 peaks (with initialization position at: 1150, 1260, 1330, 1400, 1500, 
1580 and 1600 cm-1, respectively). The maximum allowed peak width is 100 cm-1. If D2 
is discernible from G, a separate peak is fit (at 1600 cm-1). The optimal peak fit is 
achieved when the standard error between the fit result and the raw data is converged to 
its smallest value (the converged standard error can varies depending on the level of noise 
in the spectra). The peaks at 1400 and 1500 may be reduced to a single peak during the 
fitting, if that leads to a lower standard error.  
 
Peak fitting is carried out using PseudoVoigt profiles, a linear combination of a Gaussian 
and a Lorentzian [13]. The peak shape itself is parameterized between the two extremes 
(fully Gaussian or fully Lorentzian). Its determination through the fit allows for the 
identification of the nature of the statistical distribution of the vibrational frequency of a 
particular peak. A fully Gaussian peak will follow a normal distribution, which is 
expected for vibrations generated by a normal distribution of bonds with different local 
geometries and chemical environments. A fully Lorentzian peak fit represents a uniform 
individual vibration of a specific peak, with no statistical distribution around its mean. 
Peak intensities are averaged over multiple acquisitions for the extraction of peak 
intensity ratio. The reported error is the standard error of the mean. 
 
S3. Relation between ωG and D1/G with H:C 
 

  
Figure S1. H:C vs ωG for the PPRG sample set.  
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Under the assumption of pseudo-circular aromatic clusters with hydrogenated edges of 
the clusters, an empirical model can be constructed to evaluate the relation between the 
H:C ratio and the size of aromatic clusters through a simple relation (Fig. S2):  𝐻: 𝐶~1/
ωG                                                                    
 

 

Figure S2. Relation between H:C and the size of a round aromatic cluster  

 
Using this relation, The D1/G peak intensity ratio can be then estimated through the 
Tuinstra-Koenig relation, corrected for the excitation energy [14-16]. The resulting ideal 
relation between D1/G and H:C is shown in Fig. S3. The complete lack of correlation as 
observed from the PPRG kerogen set (Fig. S4) suggests that the D1/G method to estimate 
H:C is unreliable for non-metamorphic kerogen. 
 
 

 
 
Figure S3. Ideal H:C vs D1/G for circular aromatic clusters with hydrogenated edges.  
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Figure S4. H:C vs D1/G for the PPRG sample set.  

 

 
Figure S5. ID1/(IG+ID2) vs ID5/(IG+ID2) (left plot) and (ID4+ID5)/(IG+ID2) (right 
plot) for the PPRG sample set.  
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Figure S6. N:C vs ID5/(IG+ID2) for the PPRG sample set. 

 

             
Figure S7. Nominal N:C vs Nominal H:C for the PPRG sample set. Data from Table 1. 

S.5. On the origin of the D4 and D5 Raman bands 
 
Previous attempts in assigning vibrations in the D4-D5 (1100-1300 cm-1) region to 
specific bonds or molecular compounds were limited, since they could not fully explain 
or cover the broad range of frequencies covered by this region. In this work, we perform 
the identification based on a broad range of molecular compounds of aliphatics character. 
A broad review literature exists regarding the identification of spectral bands in the 1200-
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1300 cm-1region for aliphatic compounds e.g. [17, 18].  A particularly fitting class of 
organic compounds, fatty acids, have been widely studied with Raman spectroscopy to 
evaluate their state of saturation. The Raman bands in the D4-D5 region are used as 
metric indicators for saturation for uses in multiple disciplines from medical diagnostics 
[19] to food science to characterize the type of lipids [20-23].  
 
In this work, we used fatty acids as a proxy of molecular compounds where deformation 
modes of CH species (both C-H and =C-H) typical of long saturated and unsaturated 
alkane chains can be found in the D4-D5 spectral region [20, 24]. Such C-H deformation 
modes directly relate to H:C in aliphatics systems. However, in addition to these, several 
other modes exists from aliphatic compounds that directly affect H:C. Strong bands 
related to stretching modes (v(CC)) in alkanes appear up to 1300 cm-1, with broad 
variations below this frequency threshold (Chapter 2 of [18]). For example, in long chain 
methylene systems several twisting modes of CH2 modes take place in the D4-D5 region, 
from 1150 and 1300 cm-1 (Fig. 2.12 in [18]). The extreme diversity within different 
families of alkanes is consistent with the lack of a pronounced individual peak. Such 
variety is the result of the dependence of the coupled wagging and twisting vibrations in 
C-H with the nature of the adjacent carbons, and any change in the character of such 
carbons will affect the twisting mode [17, 18]. While such modes are usually very weak 
in IR, they are very strong for Raman. Other examples of non-aromatic compounds exist 
with frequencies in the D5 region: for example, allenes C=C=C stretch vibration is at 
1076 cm-1 (Chapter 4 in [18]). This points to the fact that other aliphatic vibration appears 
to in this region. The presence of functionalities in allenes (or the use of deuterium), 
shows significant downwards deviations in the stretch vibration, further enriching the 
presence of spectral signal below 1300 [18]. Therefore, such assignment leads to a direct 
link between the signal strength in the D4-D5 region and H:C uniquely from aliphatics. 
Since the contribution of aliphatics to the G peak is essentially absent (as G is purely of 
aromatic character), the ratio reflects directly the amount o H:C from aliphatics in 
relation to aromatics. Furthermore, any contribution from unsaturated hydrocarbons with 
at least one C=C (alkenes) is not significant in the D4-D5, since most stretch vibrations 
appear in the region >1650, while out of-plane modes are in the <990 region, outside of 
the region of interest (Chapter 5 of [18]).  
 
The question of whether C-H in aromatics contribute directly to the D4-D5 region is 
addressed by noting that hydrogenated edges of aromatic clusters do not exhibit any 
vibration in this region (see table 5.4 in [18]). Ring stretching modes (such D1, ~1330 
cm-1) and shear modes (G at ~1580-1600 cm-1) are typical vibrations for large aromatics. 
The presence of atomic hydrogen on their edges does not affect the spectra. C-C stretch 
vibrations at aromatic edges by added methyl groups (for example in hexamethyl benzene 
or toluene) do not significantly affect ring stretching or shear modes [18]. It is worth 
nothing, however, that the actual C-C stretch and rocking modes between the benzene 
ring and the methyl group in toluene occurs in the D4-D5 region 1040 and 1155, 1200 
[25]. In this case, as for aliphatics, the additional methyl group on the benzene ring is 
accounted in the D4-D5 in the total H:C.  
 



 8 

In essence, the observed correlation between (D4+D5)/G or D5/G and H:C is a direct 
representation of the concentration of CH species (and therefore also methyl groups) in 
aliphatics or aliphatic chains attached to aromatic clusters. If the material would have no 
aliphatic moieties (i.e. purely aromatics), H:C would be determined uniquely by the 
hydrogen termination at edges around small aromatic clusters (as discussed in the 
elswhere), which for extended aromatic systems, it is very low. If the same clusters 
would include aliphatic chains (or alicyclics) the significant increase in D4-D5 as a result 
from a diverse set of vibrations associated with these molecules, leads to the increase in 
H:C that is indeed observed. This is consistent with the observation of strong vibrations 
in the lattice of fatty acids, and in general to aliphatic systems, in the region of relevance.   
 
 
S.6. Decoupling aromatic ordering and nanostructure from H:C through the Raman 
spectra 
 
The striking difference in the Raman spectra of two different samples whose OM carries 
the same H:C ratio is shown through two examples, within the PPRG sample set (Fig. S6) 
and the DECS coal sample set (Fig. S7). We highlight the spectral fits for PPRG-048 
(Fig. S7) and PPRG-266 (Fig. S8) as well as DECS-21 (Fig. S10) and DECS-1515 (Fig. 
S11). The extracted value of H:C from ID5/(IG+iD2) is very similar for the two PPRG 
and DECS samples and nearly identical to their nominal value (0.11 and 0.533 for the 
PPRG and DECS samples, respectively), despite the significant spectral differences.  
 
Further insight on the nanostructure can be gained by analyzing the shape of the fitting 
profile of each single peak. By purposefully avoiding constraining the shape of the peak 
to either a Lorentzian or a Gaussian through the use of a Pseudo-Voigt profile, we find 
that D1 is usually a perfect Gaussian regardless of the type of organic matter or its 
maturity. This is consistent with the defect-induced activation of the peak, as it originates 
from a stochastic distribution of electronic and vibrational states around defects. The G 
peak however shows a higher degree of variability. For highly graphitic organic matter 
(PPRG-266, Fig. S6) the shape of G is purely Lorentzian: this is consistent with the peak 
arising from a single shear vibration within the aromatic plane. For slightly less ordered 
organic matter (PPRG-048, Fig. S6), there is a 10% Gaussian component in the G peak 
that can be associated with a small distribution of vibrational frequencies around for the 
G peak in perfect graphite, possibly induced by deformations, strain or defects. This is 
consistent with a system where we can no longer associate aromatic clusters with 
extended graphene sheets, but with aromatic clusters with different size and shape; 
therefore no single vibration is effectively responsible for the G peak and its increased 
width. 
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Figure S8. Comparison between the Raman spectra of two different OM from the PPRG 
set, with the same H:C (0.11). 

 

     

Figure S9. Spectral peak fitting for a typical spectra of PPRG-048. The H:C = 0.102 is 
determined through ID5/(IG+ID2) = 0.174 (nominal value = 0.11). When 
(ID4+ID5)/(IG+ID2) = 0.33 is used, the estimated H:C = 0.124.  
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Figure S10. Spectral peak fitting for a typical spectra of PPRG-266. The H:C = 0.101 is 
determined through ID5/(IG+ID2) = 0.173 (nominal value = 0.11). When 
(ID4+ID5)/(IG+ID2) = 0.284 is used, the estimated H:C = 0.097.  
 
 

 

Figure S11. Comparison between the Raman spectra of OM in two different samples 
from the DECS coal collection (details in S.5) with the same H:C (0.533). 
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Figure S12. Spectral peak fitting for a typical spectra of DECS-21. The H:C = 0.539 is 
determined through ID5/(IG+ID2) = 0.677 (nominal value = 0.533).  
 
 

 
Figure S13. Spectral peak fitting for a typical spectra of DECS-1515. The H:C = 0.522 
 is determined from ID5/(IG+ID2) = 0.658 (nominal value = 0.533).  
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additional carbon residue (from incomplete demineralization of carbonates) may lead to 
under/overestimation of H:C from OM. The D5/G vs H:C relationship is based strictly on 
H and C in the OM regardless of the presence of inorganic or aqueous residue. To show 
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set is plotted against their nominal H:C from elemental analysis (Fig. S.12). AIDP 
kerogen was isolated from the carbonate matrix through hydrochloric and hydrofluoric 
acid, leaving a strong CaF2 presence along with water. This is likely due to incomplete 
removal of carbonates or insufficient washing of some samples prior to treatment with 
HF. The discrepancy in the measured H:C compared to the projected H:C in the actual 
OM points to resilience and insensitivity of this method towards contamination. 
 

 
 

Figure S14. H:C vs D5/(G+D2) for the PPRG and AIDP sample sets. H:C for the AIDP 
obtained through elemental analysis shows a large discrepancy compared to the PPRG 
set. The AIDP samples with high H:C also have a strong CaF2 signal response. 

 
S.8 Cluster analysis 
Phase-based correlations among several Raman spectral features are statistically analyzed 
using cluster analysis [26-28]. In cluster analysis, the number of clusters or phases in a 
dataset can be identified along with the uncertainty of observations belonging to a cluster 
based on statistical criteria. The approach followed in this study is based on mixture 
modeling and implements maximum likelihood estimation and Bayesian Information 
Criteria (BIC) to identify the most likely model and the number of clusters. 
 
In this method, each event xi  is comprised of Raman spectral features such as peak ratios 
(D1/G, D5/G, DTOT/G, (D4+D5)/G), peak width (FWHM G peak, ωG), peak intensities 
(D1, D4, D5, G) and H:C ratios. Each event xi  is considered to be a realization of the 
random multi-dimensional vector X = (X1

T ,...,Xn
T ) , where n is the total number of events 
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(i.e. total number of points in a Raman map). The probability density function f (xi )  of 
the observed data xi  in Xi  in a G-component mixture is 

       f (xi,Ψ) = τ k
k=1

g

∑ φ(xi;µk,Σk )        

     (3) 
where 𝜏* is the probability that an observation belongs to the 𝑘-th component ( 𝜏* =-

*./
1 ), Ψ = (τ1,...,τ k,ξ

T )T with ξ  containing the (unknown) group mean µk  and the 
covariance matrix 𝚺* and φ(xi;µk,Σk )  corresponding to the multi-variate normal density 

𝜙 𝑥3, 𝜇*, 𝚺* =
𝑒𝑥𝑝 −12 (𝑥3 − 𝜇*)

< 𝚺* =/(𝑥3 − 𝜇*)

det	(2𝜋𝚺*)
 

 (4) 
 

The likelihood for data consisting of 𝑛  independent observations assuming normal 
mixture model with 𝐺 components is given by: 

𝜏*𝜙 𝑥3, 𝜇*, 𝚺*

-

*./

E

3./

 
(5) 

The best model is identified by fitting models with differing parameterization and/or 
number of components to the data by maximum likelihood, and then by implementing a 
statistical criterion for model selection, (here Bayesian Information Criteria (BIC)).  
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