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Abstract

Basinal shales of the lower Mesoproterozoic Kaltasy Formation, sampled from three
boreholes drilled into the southeastern East European Platform, Russia, contain abundant
and moderately well preserved microfossils. 34 distinct entities have been identified, most
assigned to simple sphaeromorphic or small filamentous taxa found widely and
characterized by long stratigraphic ranges. Ornamented microfossils found in coastal
successions of other lower Mesoproterozoic basins are absent, but large filamentous
microfossils interpreted as possible benthic photosynthetic eukaryotes are recorded,
drawing comparisons to relatively deep water shales in Siberia. In overall aspect, the

Kaltasy microfossils are consistent with other broadly coeval assemblages, but they
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highlight the importance of environment, as well as age, in determining the distributions of
remains that record the early diversification of marine eukaryotes. Rectia magna is

described as a new species.

Keywords: Mesoproterozoic, microfossils, biostratigraphy, eukaryotes, East European

Platform
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1. Introduction

Recent paleontological and biogeochemical research has sharpened our
understanding of late Paleoproterozoic and early Mesoproterozoic marine ecosystems.
Silicified coastal carbonate facies offer a view of benthic microbes, including abundant and
diverse cyanobacteria (e.g., Zhang, 1981; Sergeev et al., 1995, 2007; Kumar and
Srivastava, 1995), while carbonaceous compressions in fine-grained siliciclastic lithologies
record both benthic and planktonic microorganisms across a range of lagoonal to basinal
environments (e.g., Prasad et al., 2005; Nagovitsin, 2009; Agi¢ et al., 2015; Vorob’eva et
al., 2015). In many basins of this age, microfossils thought to be eukaryotic are largely
restricted to coastal waters (Javaux et al., 2001), and an explanation for this may lie in the
physical nature of mid-Proterozoic oceans.. Geochemical data on iron-speciation, nitrogen
isotopes, and trace metal abundances-and isotopes concur in suggesting the surface mixed
layer of mid-Proterozoic oceans'lay above widespread and persistent anoxic water masses;
episodic upward mixing of these subsurface waters may have inhibited eukaryotic
diversification in open shelf environments (Anbar and Knoll, 2002; Johnston et al., 2009;
Stueeken, 2013; Guildbaud et al., 2015).

Although widespread, subsurface anoxia was not universal in mid-Proterozoic
oceans. Basinal shales in the lower Mesoproterozoic Kaltasy Formation, southeastern East
European Platform, preserve geochemical evidence that, at least to the depth recorded by
maximum flooding, water masses were oxic (Sperling et al., 2014). Here we report on
microfossils preserved in Kaltasy shales. The Kaltasy microfossil assemblage preserves
both cyanobacteria and eukaryotic microorganisms over a wider range of environments

than is typical for microfossils of this age. At the same time, conspicuously ornamented
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taxa well known from other, broadly coeval basins are absent, prompting questions about

the spatial as well as the time distribution of early eukaryotic microfossils.

PLACE FIGURE 1 NEAR HERE

2. Geological setting

2.1. Tectonic and stratigraphic framework

For many years, Russian geologists have discussed'Meso-and early Neoproterozoic
stratigraphy in terms of a Riphean stratotype located in the Bashkirian meganticlinorium, a
large structure on the western slope of the southern Ural Mountains (Chumakov and
Semikhatov, 1981; Keller and Chumakov, 1983; Fig. 1). The term Riphean, currently a
formal unit of Russian Stratigraphic Scale, was originally established to encompass a large
scale tectonic cycle, comparable to the Phanerozoic Caledonian or Hercynian orogenies
(Shatskii, 1964). Later, largely on the basis of stromatolitic assemblages, strata of
comparable age were recognized across much of Siberia and the term acquired its present
stratigraphic meaning. The Meso-Neoproterozoic succession in the Bashkirian
meganticlinorium records the eastern flank of an extensive sedimentary basin that probably
graded eastward into a continental margin; it can be correlated with confidence to strata in
platform aulacogen (graben, or rift) sections of the adjacent East European Platform. The
Uralian part of the basin, representing the margin per se, belongs to external part of the
Timanian orogeny, deformed in Ediacaran (Vendian) and Late Paleozoic time (Puchkov,
2013).

Regionally, the Mesoproterozoic to lower Neoproterozoic (Tonian and Cryogenian)

succession contains up to 15 km of weakly altered sedimentary and subordinate
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volcanogenic rocks, divided into the Burzyan, Yurmata, Karatau and Arsha groups,
separated by unconformities (the Arsha Group, which occurs only on the eastern limb of
the Bashkirian meganticlinorium, was recently added to the Riphean as a result of new
isotopic data; Puchkov, 2005, 2013). The entire succession is overlain unconformably by
the Ediacaran (Vendian) Asha Group (Fig. 2).

On the western limb of the Bashkirian meganticlinorium, the lower
Mesoproterozoic (Lower Riphean) is represented by the Burzyan Group, traditionally
divided into the Ai (siliciclastic and volcanogenic rocks, 1500-2000 m thick), Satka
(predominantly carbonates 900-1800 m to 2000-2400 m thick, but thinning significantly to
the west), and Bakal (shale—carbonate unit, 900-1800 m thick) formations, in ascending
stratigraphic order. Their counterparts on the Bashkirian Meganticlinorian eastern limb are
the Bolshoi Inzer, Suran and Yusha formations, respectively.

In the Volgo-Ural region to the west, sub-surface Riphean stratigraphy is known
from core and geophysical data. The Kyrpy, Serafimovka and Abdulino groups correlate
with the Burzyan, Yurmata and Karatau groups, respectively (Fig. 2). The Kaltasy
Formation occurs within the Or’ebash Subgroup of the Kyrpy Group (Kozlov et al., 2009,
2011; Kozlov and Sergeeva, 2011). Kaltasy strata include mixed carbonates and shales,
correlated with the Satka Formation in the Ural Mountains (Keller and Chumakov, 1983;
Kah et al., 2007; Kozlov et al., 2009); the 1230 to 3600 m succession has been subdivided
into three conformable members: Sauzovo, Arlan and Ashit. The Sauzovo Member (105 to
816 m thick) consists largely of dolostones that locally contain stromatolites, along with
interlayers of dark gray to black shales and less frequent feldspar-quartz siltstones near its
base. The overlying Arlan Member (535 to 1216 m thick) is comprised of carbonaceous
shales (some of them fossiliferous) and subordinate siltstones, carbonates and dolomitic
marls. The Ashit Member (230 to 1550 m thick) consists of dolostones with stromatolite

horizons and thin interbedded shales. Fossiliferous samples come from shales of the Arlan
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6
and Ashit members in three cores: 133 Azino-Pal’nikovo, 203 Bedryazh and 1 East Askino

(Figs. 1 and 2; Kozlov et al., 2011).

PLACE FIGURE 2 NEAR HERE

As described by Sperling et al. (2014), the Arlan Member in the 203 Bedryazh core
(and in 1 East Askino) consists almost entirely of dark, parallel laminated shales with
minor, commonly diagenetic micrite/dolomicrite. Clay-rich laminae predominate, with
thin intercalations that contain appreciable quartz silt. Fine sand grains of angular quartz
occur in some laminae; commonly these float in a finer matrix and may have been
transported into the basin by wind. No wave- or current-generated sedimentary structures
are present in more than a kilometer of stratigraphic thickness, suggesting persistent
deposition below storm wave-base. Consistent with this view, Kah et al. (2007) argued that
the 203 Bedryazh drill core penetrates some of deepest Arlan facies found in the entire
basin. Kah et al. (2007) also suggested that the cyclic granular dolostones and fine-grained
sandstones recovered by the 133 Azino-Pal’ nikovo borehole record shallow water, high-
energy platform environments near the western limit of the Kama—Belaya aulacogen.
Although basinal environments in many lower Mesoproterozoic basins were anoxic, and
sometimes euxinic (Sperling et al., 2015, and references therein), Fe-speciation
geochemistry of the Kaltasy succession indicates oxic water throughout the range of depths

recorded by the succession (Sperling et al., 2014).

2.2. Age of the Kaltasy Formation.

The age of Kaltasy correlatives in the southern Ural Mountains is constrained by the

~1380 Ma Mashak volcanics in the overlying Middle Riphean (Mesoproterozoic) Yurmata
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Group (Puchkov et al., 2013; Krasnobaev et al., 2013a) and by ~1750 Ma basalts 200
meters above the base of the Ai Formation (Puchkov et al., 2012, Krasnobaev et al.,
2013b). More directly, a series of K—Ar dates obtained for glauconite from the Arlan
Member provides ages of 1510, 1520 and 1425 Ma in Borehole 3, Buranovo area; 1488 and
1469 Ma in Borehole 36, Arlan area; and 1358 and 1334 Ma in Borehole 191, Urustamak
area (Keller and Chumakov, 1983; all age estimates have an uncertainty of approximately
3%; Gorozhanin, personal communication, 2015). Illite from mudstone of the underlying
Norkino Formation penetrated by Borehole 20005 in the Karachevo area, is dated at
1400+42Ma by K—-Ar (Gorozhanin, 1995), and K—Ar dates of 1368, 1377 and 1310 Ma
were obtained for whole-rock samples of gabbroids that intruded the overlying Nadezhdino
Formation (Keller and Chumakov, 1983). Recently Arlan shales were dated using
Rhenium-Osmium (Re-Os) geochronology, yielding depositional ages of 1414+40 Ma and
1427443 Ma for two horizons near the base of the succession (Sperling et al., 2014). In
summary, all available geochronological data are consistent with early Mesoproterozoic
deposition.

Stromatolites in more proximal facies of the Kaltasy Formation are consistent with
geochronological data, recording forms found previously in lower Mesoproterozoic (Lower
Riphean) carbonates in the Southern Urals and Siberia (Kozlov et al., 1995).
Chemostratigraphic data likewise support an early Mesoproterozoic age (Kah et al., 2007).
Microfossils, however, were originally interpreted as supporting a younger age of
deposition. Veis et al. (2000) discovered an assemblage of large and relatively complex
microfossils in Kaltasy rocks that they termed the Pal’nikov microbiota. As the
assemblage differed from known microbiotas of the contemporaneous Satka and Omachta
formations, more closely resembling, at least broadly, younger assemblages from Siberia
and the southern Ural Mountains, Veis et al. (2000) proposed a Neoproterozoic age of

deposition. Since that time, however, both the longer stratigraphic range of many simple
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8
Neoproterozoic microfossils and the importance of facies in Proterozoic micropaleontology
have become more fully appreciated (e.g., Sergeev, 1992, 2009; Sergeev et al., 1995, 2010;
Kah et al., 2007). Thus, as discussed below, Kaltasy microfossils are fully consistent with

an early Mesoproterozoic age.

3. Materials and methods

3.1. Fossiliferous localities.

Microfossils reported in this study occur in shale samples of the Arlan and Ashit
members of the Kaltasy Formation collected in 2011 by V.N. Sergeev during joint research
with A.H. Knoll, E.A. Sperling, N.D. Sergeeva and the late V.I. Kozlov. The samples were
taken from the 203 Bedryazh borehole core extracted near Bedryazh village in the Cis-Ural
area (Fig. 1; Google Map Coordinates, decimal degrees latitude and longitude,
56.340809°N, 55.475973°E) and reposited in the BIPiNeft’ core storage facility near
Kungur; sample depth is shown in Fig. 2. Further Arlan samples come from the 1 East
Askino borehole drilled near Askino village in the Cis-Ural area (Fig. 1; 56.093889°N,
56.702778°E) and reposited in the Kuraskovo core storage facility on the outskirts of Ufa;
again, sample depths are shown in Fig. 2. Additionally, we examined nine samples of
Ashit shale collected by the late A.F. Veis from the 133 Azino-Pal’nikovo borehole (Fig. 1;
56.523374°N, 53.529541°E) obtained from southern Udmurtia, near Izhevsk and partially

described by Veis et al.(2000); sample depths are marked in Fig. 2.

3.2. Methods of slide preparation and investigation.
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Microfossils were extracted from the shales by low agitation processing. After
standard sample processing using approximately 10% concentration (roughly one
tablespoon per 100 ml of water) of caustic potash, the shales were dissolved in hydrofluoric
acid (100%). Then, acritarchs and other microfossils were collected manually from the
residue by a needle using a stereomicroscope. This simple and effective technique avoids
the requirement for centrifugation and heavy liquid treatment, facilitating the intact
preservation of large microfossils (e.g., Grey, 1999, 2005; Willman and Moczydiowska,
2008; Sergeev et al., 2011). Slide-preparation methods were similar to those described in
many previous publications; permanent strew mounts were made using Canada balsam
mixed with polypropylene ether to inhibit recrystallization. Microfossils in the maceration
slides prepared by A.F. Veis were extracted from rock samples by chemical processing
using hydrochloric and hydrofluoric acids in a conventional palynological maceration
method, filtering the residue on a 90-um sieve mesh.

Transmitted-light photomicrographs were acquired using a RME-5 microscope
(Rathenower, Germany) equipped with-a Canon EOS 300D digital camera (Canon, Tokyo,
Japan) and a Zeiss Axio Imager A1 microscope (#3517002390) equipped with an
AxioCamMRec 5 digital camera (both Carl Zeiss, Germany).

The microfossils reported in this study were measured using Zeiss Axio Imager Al
microscope Axiovision software. Where appropriate, taxonomic descriptions indicate the
mean ("u") and standard deviation ("c") for sample populations, the relative standard
deviation (“RSD”, or standard deviation as a percent of the mean) and number of measured

specimens ("n") using SigmaPlot softwear.

3.3. Repository of illustrated specimens.
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All specimens discussed and illustrated in this study are reposited in the
Paleontological Collection of the Geological Institute of the Russian Academy of Sciences
(PCGIN of RAS), Collection # 14712. The sample numbering from the 133 Azino-
Pal’nikovo borehole by the late A.F. Veis corresponds to the borehole depth from which

samples were taken (Veis et al., 2000).

4. Kaltasy microfossils: taxonomy and biological interpretation

4.1. General characteristics.

The Kaltasy Formation contains abundant organic-walled microfossils of moderate
diversity. We recognize 34 distinct entities, largely of sphaeromorph, disphaeromorph and
netromorph acritarchs and filamentous forms (Fig. 3). Large and distinctive filamentous and
morphologically simple spheroidal fossils dominate the assemblage, including taxa previously
described from both lower Mesoproterozoic (e.g., the Lower Member of the Kotuikan
Formation, Anabar Uplift, Siberia; Vorob’eva et al., 2015) and upper Mesoproterozoic to
lower Neoproterozoic successions (e.g., the Lakhanda Group of the Uchur-Maya Uplift, the
Derevnya and Miroedikha formations of the Turukhansk Uplift, and the Inzer Formation of
the southern Ural Mountains; Yankauskas, 1989). Most of these taxa have simple
morphologies and long stratigraphic ranges, and so they are consistent with radiometric
constraints without further constraining depositional age. Ornamented acritarchs found in
upper Paleoproterozoic and lower Mesoproterozoic formations elsewhere (e.g., Yin, 1997;
Prasad et al., 2005; Nagovitsin, 2009; Adam, 2014; Singh and Sharma, 2014; Agi¢ et al.,
2015) have not been identified in the Kaltasy assemblage. Thus, not surprisingly,
environment as well as age played a role in determining the composition of Mesoproterozoic

microfossil assemblages.
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PLACE FIGURE 3 NEAR HERE

4.2. Sphaeromorph, disphaeromorph and netromorph acritarchs.

Unornamented spheroidal microfossils assigned to the form genus Leiosphaeridia are
abundant constituents of the Kaltasy assemblage. The simple observation that leiosphaerid
sizes range from a few microns to more than a millimeter indicates that diversity existed
within this component of the assemblage, but formalizing this by recognizing distinct
populations and assigning them to discrete species can be challenging because so few
characters are available. Yankauskas (1989) addressed this problem by classifying
Proterozoic Leiosphaeridia according to diameter and wall thickness, inferred on the basis of
folding and color pattern. Both color and folding geometry during compression can reflect
wall composition as well as thickness, and, of course, color varies as a function of diagenetic
temperature. Nonetheless, Yankauskas’s framework has found widespread use and we adopt
it here as it captures muchof the apparent diversity among these populations; we recognize L.
Jjacutica (Figs. 4.1, 4.6 ,4.7; diameter 285-800 um, wall more than 2 um thick), L. crassa
(Fig. 4.2, the smaller fossil; diameter 65-70 pm, robust wall with a limited number of large
folds), L: tenuissima (Fig. 4.2, the larger fossil; diameter 125-135 pum, wall less than 0.5 pum
thick), L. atava (Fig. 4.5; diameter 360-365 pum, wall 1.5 pm thick), L. minutissima (diameter
10-60 um, wall less than 0.5 um thick; illustrated in Sperling et al., 2014, Fig. 4.14) and
Leiosphaeridia sp. (Figs. 4.8-4.10, diameter 135-410 pm, wall about 2 um thick). We also
recognize L. ternata (Figs. 4.3, 4.4; diameter 120-190 pm) as a distinctive taxon based on its
nearly opaque wall and characteristic radial cracks. Both features are arguably diagenetic in

origin, but they appear to reflect a distinctive original wall composition.
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Additionally, we consider a population of unusually large sphaeromorphs (diameter
800-1000 pum; Fig. 4.11-4.13; see Section 7). Such large spheroids are commonly lumped
together in Chuaria circularis, but the Kaltasy fossils differ in key characters from the Grand
Canyon populations, including the lectotype designated by Ford and Breed (1973; see
discussion in Vidal and Ford, 1985). Specifically, the type population is characterized by an
unusually thick wall, with large, thick folds (Butterfield et al., 1994; see also Vidal, 1976),
whereas the Kaltasy fossils, while large, had thin walls marked by numerous fine folds. For
this reason, we assign the Kaltasy population to Leiosphaeridia (?7) wimanii, reflecting a
combination established by Butterfield (in Butterfield et al., 1994) for large, smooth, thin-
walled sphaeromorphs. Rare, dark sphaeromorphs with a spongy wall texture are assigned to
Spumosina rubiginosa (Fig. 5.1, diameter 150-250 pum; Hofmann and Jackson, 1994). The
spongy texture is likely to reflect diagenetic alteration.

There is consensus that Leiosphaeridia species reflect a variety of biological origins,
nonetheless, leiosphaerids have commonly been interpreted as green algae, either the
phycomata of prasinophyte green algae (Tappan, 1980) or chlorophyte cell walls
(Moczydtowska, 2010; Moczydlowska et al., 2010). Leiosphaerids generally lack
ultrastructural features known to be associated with prasinophytes, but a distinctive TLS
(trilaminar sheath structure) ultrastructure has been recognized in TEM images of Cambrian
and Neoproterozoic specimens, supporting their interpretation as chlorophytes (Talyzina and
Moczydlowska, 2000; and, with less certainty, Moczydlowska et al., 2010). This, however,
does not mean that all spheroidal acritarchs were sourced by green algae, as potentially
preservable spheroidal envelopes are made by organisms ranging from cyanobacteria (e.g.,
Fairchild, 1985; Sun, 1987; Sergeev, 1992) to ciliates (e.g., Villalobo et al., 2003). Questions
of systematic affinity become more challenging in older successions, where the probability of
encountering extinct stem group lineages increases substantially. Mesoproterozoic

leiosphaerids examined to date do not show recognizably chlorophyte ultrastructures (Javaux
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et al., 2004) and so, informed by molecular clocks (e.g., Parfrey et al., 2011; Eme et al., 2014),
the range of potential eukaryotic sources for these fossils must include undiagnostic crown
group green algae, stem group greens, stem group archaeoplastids (the photosynthetic group
that includes green, red, and glaucocystophyte algae), or stem group eukaryotes. In principle,
any or all could be represented in the Kaltasy assemblage. C29 steranes, widely accepted as
biomarkers for green algae, first become significant constituents of sedimentary organic
matter in Ediacaran strata (Knoll et al., 2007; Bhattacharya and Dutta, 2015); thus, if greens
are represented among Kaltasy and other early Mesoproterozoic microfossil assemblages, they
would appear to have played only a minor role in marine primary production. [Many
prasinophytes synthesize mainly C28 sterols, but C28 steranes are also rare or absent in
Mesoproterozoic rocks (Kodner et al., 2008).] Aggregates of relatively small (20-35 um)
spheroidal vesicles are identified as Synsphaeridium sp. (Figs. 5.2 and 5.3, diameter 20-40
um). The biological interpretation of this taxon is uncertain and could include cyanobacteria

as well as either planktonic or benthic eukaryotes.

PLACE FIGURE 4 NEAR HERE

Three more, broadly sphaeromorphic, disphaeromorphic and netromorphic
populations bear mention. First is Pterospermopsimorpha pileiformis, a form taxon applied to
spheroidal microfossils where one vesicle is encompassed by another. In Figs. 5.4, 5.5 and
5.7, this organization is clearly evident, and it supports the interpretation of these fossils as
photosynthetic. In all likelihood, at least one of the preserved walls was vegetative, and living
eukaryotes with continuous vegetative walls are nearly all photosynthetic or osmotrophic
(Margulis et al., 1990; Teyssedre, 2006; Moczydlowska et al., 2011). Fig. 5.6 is also

tentatively assigned to P. pileiformis, but the internal body may represent shrunken cell
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contents rather than a distinct wall layer. Found separately, if poorly preserved, the two
vesicles of P. pileiformis would be assigned to distinct Leiosphaeridia species.

We also note the presence of rare elongated vesicles with surfaces that include strips
twisted into spiral structures: Spiromorpha aff. S. segmentata (Figs. 5.8 and 5.9). Similar
forms were previously reported from lower Mesoproterozoic shales in China (Yin et al.,
2005) and India (Prasad and Asher, 2001), where they were compared to conjugating green
algae (Yin et al., 2005). The comparison, however, is broad, and molecular clocks suggest
a much later origin of conjugating streptophyte greens (Becker, 2013). Given its rarity and
relatively poor preservation, we leave the Kaltasy specimen in open nomenclature.

There are the rare, but distinctive microfossils assigned here to (?)Moyeria (Figs. 5.10,
5.11 and possibly 5.12). These large (nearly 200 pm in maximum dimension) vesicles have a
strikingly pleated surface of biological origin. The genus Moyeria was erected for distinctive
Ordovician and Silurian microfossils recovered from fluviatile successions and interpreted as
the preserved pellicle of a euglenid protist (Gray and Boucot, 1989). Broadly similar
microfossils with longitudinal folds have been figured from nonmarine shales of the 1.1 Ga
Oronto Group, Michigan (Wellman and Strother, 2015). Whether these late Mesoproterozoic
fossils are euglenids-or reflect broad morphologic convergence remains to be established.
Given that the Kaltasy fossils are both rare and still further removed from unambiguous
Moyeriaby both time and environment, we remain uncertain of both their formal taxonomic
assignment and phylogenetic interpretation. Quite possibly, this fossil represents a new genus
and species, but formal evaluation of this awaits the discovery of additional specimens.

Finally, Navifusa is a genus name applied to elongate, or netromorph, acritarchs
(Hofmann and Jackson, 1994). These fossils are much larger than ellipsoidal fossils called
Archaeoellipsoides, generally found in silicified carbonates and interpreted as the akinetes of
nostocalean cyanobacteria (Horodyski and Donaldson, 1980; Golubic et al., 1995; Sergeev et

al., 1995), as well as their at least partial counterpart in shales Brevitrichoides (Y ankauskas,
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1980). The specimen illustrated in Fig. 5.15 closely approximates N. actinomorpha from the
upper Mesoproterozoic Bylot Supergroup in Baffin Island (Hofmann and Jackson, 1994). The
partial specimen in Fig. 5.13 may also fit within this species, but the elongate form in Fig.
5.14 is distinct and can plausibly be interpreted as representing elongation at an early stage of
binary cell division. If correct, this would relate the specimen to Leiosphaeridia and provide

further evidence of a vegetative cell wall.

PLACE FIGURE 5 NEAR HERE

4.3. Large filamentous forms.

Large filamentous forms comprise large, relatively complex microfossils plausibly
interpreted as the remains of eukaryotic algae because they exceed the maximal width of
known cyanobacterial filaments (~100 pum; Schopf, 1992). Moreover, the constituent cells
of the filaments have continuous cell walls, strongly suggesting that the organisms were
photosynthetic or osmotrophic. Among living eukaryotes, filaments made of cells with
dimensions like those observed in the fossils tend to be photosynthetic, as osmotrophy
would be far more efficient with thin filaments such as those of fungial mycelia. They also
tend to be benthic. There is no inherent conflict between our interpretation of the
environmental setting as basinal and the hypothesis of photosynthesis. Today, benthic
multicellular algae grow beneath storm wave base, indeed, at depths greater than 200 m
(Littler et al., 1985).

Most important are two groups of large, broadly tubular microfossils with
transverse ribs or septa assigned to Eosolena minuta (Vorob’eva et al., 2015) and Rectia
magna sp. nov. Originally described from the upper Mesoproterozoic Lakhanda

Formation, the type species of Eosolena, E. loculosa (Hermann and Timofeev, 1985)
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consists of uniseriate filaments, several millimeters long, with constituent cells up to 150
um wide and variably constricted at prominent septum-like transverse walls (Yankauskas,
1989; Hermann, 1990; Hermann and Podkovyrov, 2009, 2014; Vorob’eva et al., 2015).
Eosolena minuta, originally described from the lower Mesoproterozoic Kotuikan
Formation, has smaller cells (up to 200 um wide) but similar organization (Figs. 6.7-6.9;
Vorob’eva et al., 2015). For the reasons outlined above, these forms may record benthic
photoautotrophs (which does not necessarily make them crown group green algae; see
discussion of Leiosphaeridia).

Rectia magna sp. nov., is also large, exhibiting a broadly filamentous organization
that widens distally before tapering sharply at its terminus; the wall has thick transverse
annulations, ca. 5-7 um wide (Fig. 6.1-6.6). The size of this population approaches the
maximum observed for cyanobacterial filaments, but its overall morphology suggests that
R. magna, like E. minuta, could have been-eukaryotic and benthic. A few fossils (Fig.
6.10) exhibit broad features comparable to those of Rectia but also have a thin surface
covering that deforms into tight, thin folds, as observed in the genus Plicatidium
(Yankauskas, 1989). These may be taphonomic variants of Rectia magna; here we
differentiate them as Plicatidium latum following Veis et al.’s (2000) earlier identification.
Rugosoopsis sp. (Figs. 6.11 and 6.12) is the name given to non-branching, rigid tubes that
bear numerous cross ribs, in contrast to Plicatidium, which features elastic tubes bearing
cross ribs that are often folded along the primary axis. The affinities of all these fossils
remain obscure; however, their large size and relatively complex morphology support an

eukaryotic origin.

PLACE FIGURE 6 NEAR HERE

4.4. Filamentous microfossils.
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The Kaltasy microfossil assemblage contains abundant and moderately diverse
filamentous microfossils less than 100 um in diameter, most of which can be interpreted in
light of the biology and taphonomy of cyanobacteria. Traditionally, uniseriate trichomes
with no cell differentiation were placed in the Oscillatoriales (Elenkin, 1949) or Subgroup
II (Rippka et al., 1979) of the Cyanobacteria. Molecular phylogenies now make it clear
that, as circumscribed, this group is not monophyletic (e.g., Giovannoni et al., 1988;
Schirrmeister et al., 2015), but whether simple filamentous multicellularity evolved once
within the cyanobacteria and was lost several times (Schirrmeister et al., 2015) or evolved
multiple times convergently (Ishida et al., 2001) remains a topic of debate. In either event,
the microfossil record of Subgroup III cyanobacteria is'one of cellular trichomes, variously
well preserved, and extracellular sheaths, and so extant species assigned to Lyngbya,
Oscillatoria, and related genera provide a morphological basis for interpretation.

Polytrichoides aff. P. lineatus Hermann, 1974 (Fig. 7.1), which are bundles of
trichomes bound within a common cylindrical sheath, are usually compared with
polytrichomous filaments of the oscillatorian genera Microcoleus, Hydrocoleum or
Schizothrix (Hermann, 1990; Vorob’eva et al., 2015).

Trichomes composed of disc-like medial cells and rounded terminal cells without
encompassing sheaths -- comparable to extant Oscillatoria -- are placed in the genus
Oscillatoriopsis, represented in the Kaltasy assemblage by O. longa (Timofeev and
Hermann, 1979; Figs. 7.2, 7.6 and 7.7; 22.0-30.0 um in cross-sectional diameter).

As exemplified by extant Lyngbya, simple trichomes can be encompassed by an
extracellular polysaccharide sheath. Sheaths can bear the imprint of trichome cells they
once contained, either as distinct collar-like annulations (Cephalonyx sp.; Fig. 7.4, 7.8) or
as regularly spaced pseudosepta (Tortunema patomica, Butterfield et al., 1994; Figs. 7.3,

7.5). Whether each of the form species recognized in the Kaltasy assemblage corresponds
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to a distinct biological entity is uncertain; differing taphonomic circumstances could easily
account for some observed distinctions. Moreover, the boundaries between form genera
are porous; all tubular sheaths once contained trichomes and while the distinction between
sheaths containing well-preserved trichomes and empty tubes is straightforward, trichomes
exhibit a continuum of intermediate preservational states. Nonetheless, classification
adopted here captures the morphological variation found within the assemblage.

Taphonomic observation and experiments show that cyanobacterial sheaths
preserve better than the trichomes they contain (Sergeev and Krylov, 1986; Bartley, 1996),
and so tubular sheaths are more common in the Proterozoic fossil record than are
trichomes, including in the Kaltasy assemblage. Smooth, non-septate tubes are assigned to
the genus Siphonophycus (Schopf, 1968; Knoll et al., 1991) and partitioned into species on
the basis of size frequency distribution (Butterfield etal., 1994); on this basis, we recognize
five species (S. robustum, S. typicum, S. kestron, S. solidum, and S. punctatum; Fig.3),
found as individual fragments or loosely intertwined populations (Figs. 8.4-8.7).

Some cyanobacteria form true or false branches, and this can be recorded by
branched sheaths; in the Kaltasy assemblage we find scattered fragments of Pseudodendron
anteridium (Butterfield et al., 1994; Figs. 8.1-8.3) that arguably record nostocalean
cyanobacteria:

In general, then, filamentous microfossils record a diversity of cyanobacteria, many
of which lived on the oxic seafloor of the Kaltasy basin, but some of which could have

inhabited overlying surface waters.

PLACE FIGURE 7 NEAR HERE

4.5. Miscellaneous forms.
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PLACE FIGURE 8 NEAR HERE

The Kaltasy assemblage contains additional populations that do not fit into the
aforementioned categories. Miscellaneous microfossils include Pellicularia tenera
(Yankauskas, 1980), relatively large and problematic fusiform vesicles with longitudinal,
intertwined thread-like filaments within the body (Figs. 8.8 —8.10), as well as five
populations left in open nomenclature. Unnamed Form 1 (Figs. 9.1-9.3) includes
translucent, irregular, elongated vesicles with a reticulate surface probably formed during
diagenesis. Unnamed Form 2 (Figs. 9.4-9.6) consists of opaque spheroidal vesicles with
irregular outlines. Vesicles appear to exhibit blunt conical processes, but we interpret these
as products of diagenesis. Unnamed Form 3 (Figs. 9.7 and 9.10) also appears to exhibit
small conical spines of uncertain and possibly diagenetic origin. Unnamed Form 4 (Figs.
9.8,9.9,9.11 and 9.12) is applied to elongate vesicles often arranged en echelon, with two
or three connected individuals. Vesicles are translucent to opaque, with a chagrinate
surface and, commonly, perpendicular cracks or transverse annulations in the equatorial
region. These morphological features are shared by Pololeptus rugosus, recently described
from Neoproterozoic deposits in China (Tang et al., 2013, see above). Nonetheless, we
have chosen to treat these microfossils informally because the transverse annulations could
be of diagenetic origin. And finally, Unnamed Form 5 (Figs. 9.13 and 9.14) consists of
elongated translucent solitary vesicles composed of two or three segments communicating

freely each to other and bearing elongated horn-like protrusions.

PLACE FIGURE 9 NEAR HERE

5. The Kaltasy microbiota in the Mesoproterozoic world
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All microfossil assemblages found in upper Paleoproterozoic to lower

Mesoproterozoic shales contain simple spheroidal acritarchs and most also contain
cyanobacteria-like filaments. Beyond this, however, they can be divided into three broad
groupings, based on fossil types not shared among all contemporaneous formations
(Vorob’eva et al., 2015). Type I assemblages lack conspicuously ornamented acritarchs
but contain abundant small coccoidal (e.g. Ostiana, Myxococcoides, Synsphaeridium) and
filamentous (e.g., Siphonophycus, Leiotrichoides, Brevitrichoides) microfossils not
exceeding a hundred microns in diameter; prokaryotic microorganisms account for much of
this diversity, as recorded in the Satka and Bakal formations of the southern Ural
Mountains and the Omachta and Svetly formations of the Uchur-Maya Region, Siberia
(Yankauskas, 1982; Veis and Semikhatov, 1989; Veis et al., 1990; Sergeev and Lee Seong-
Joo, 2001, 2004; Sergeev, 2006). Type Il assemblages are characterized by the presence of
eukaryotic remains with processes or other conspicuous ornamentation, for example,
Shuiyousphaeridium, Tappania, Valeria, Dictyosphaera and Satka favosa. These taxa have
a wide geographic distribution, being reported from the Beidajiang and Baicaoping
formations of the Ruyang Group; China (Xiao et al., 1997; Pang et al., 2013; Agi¢ et al.,
2015); the Roper Group, Australia (Javaux et al., 2001, 2004); the Chitrakut, Rampur and
Deonar formations of the Semri Group and the Bahraich Group, India (Prasad and Asher,
2001; Prasad et al., 2005; Singh and Sharma, 2014); the Newland Formation of the Belt
Supergroup, USA (Adam, 2014), and the Dalgokta and Dzhelindukon formations of the
Kamo Group, Central Angara Basin, Siberia (Nagovitsin, 2009). Type III microbiotas may
share some of the simple coccoids and filaments found in Type I biotas, but additionally
include large structures such as Eosolena, Elatera, and Rectia magna, as observed in the
Kotuikan and Ust’-II’ya formations of the Anabar Uplift, Siberia (Veis et al., 2001;
Vorob’eva et al., 2015), and the McMinn Formation of the Roper Group, Australia (Peat et

al., 1978).
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The Kaltasy assemblage clearly belongs to the Type III grouping. Morphologically

complex acritarchs are conspicuously absent, while large filaments like Eosolena and
Rectia magna are equally conspicuously present. The assemblages noted in the previous
paragraph are constrained by radiometric dating to fall within a single ca. 200 million year
time bloc, but we do not know that they are strictly coeval, leaving open the possibility that
differences among assemblages reflect evolutionary change. That said, we think it more
likely that differences among assemblages mainly reflect environmental distinctions.
Where assemblage composition has been tied to sedimentology and sequence stratigraphy
(e.g., Javaux et al., 2001; Vorob’eva et al., 2015), assemblages rich in ornamented
acritarchs tend to cluster in near-shore facies. The absence of such fossils in the Kaltasy
assemblage could thus reflect the open marine setting of these fossils. The large
microfossils that characterize Type III assemblages reflect benthos, probably
photosynthetic, growing on the seafloor. In-many Paleoproterozoic and Mesoproterozoic
basins, basinal shales accumulated beneath anoxic and sometimes sulfidic waters,
restricting the environmental amplitude of benthic eukaryotes. In the Kaltasy basin,
however, basinal environments were oxic (Sperling et al., 2014), allowing eukaryotes to
flourish. Perhaps, then, these assemblages reflect a co-occurrence of moderate depth and
oxic waters not broadly observed in basins of this age. Consistent with this interpretation,
Type Ill-assemblages of the Kotuikan Formation, Siberia, were deposited during maximum
flooding in shales that drape large stromatolitic bioherms; according to Vorob’eva et al.
(2015), deposition took place between storm and fair weather wave base. Iron speciation
chemistry is not available for this basin but the presence of large, apparently eukaryotic
benthos in shales deposited during maximum flooding implies oxic waters in relatively

basinal environments.

Sedimentological constraints for Type I assemblages are little explored, but it is

likely that all three major assemblage types and variations on these themes reflect
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deposition along a gradient from near-shore, predominantly lagoonal facies to basinal
marine environments deposited beneath tens to more than a hundred meters of seawater.
Ecological variation along environmental depth gradients is characteristic of modern
oceans, and it has been documented previously in both younger and contemporaneous
Proterozoic basins (Knoll, 1984; Butterfield and Chandler, 1992; Javaux et al., 2001).
Diversity is commonly highest in mid-shelf environments that are neither restricted by
coastal environmental variation nor inhibited by anoxic subsurface waters that mix upward
in open marine settings (Veis, Petrov, 1994 a,b; Petrov, Veis, 1995). The hypothesis
proposed by Veis et al. (2000) that Kaltasy microfossils are distinct because of their
Neoproterozoic age is falsified by radiometric age constraints as well as chemostratigraphic
data. Our work, however, helps to explain why Veis could have been misled (see also
Sergeev et al., 1995), including a greater appreciation that many Proterozoic acritarchs
have long stratigraphic ranges and the local, environmentally mediated absence in Veis’
assemblages of those few morphologically complex taxa that do seem to be restricted to
lower Mesoproterozoic rocks. Paradoxically, associations of evolutionarily conserved
cyanobacteria may prove biostratigraphically informative in some Mesoproterozoic
successions, because they are closely tied to physical environments that themselves are

limited in time (Knoll'and Sergeev, 1995; Sergeev et al., 1995; Sergeev, 2006, 2009).

6. Conclusion

The microbiota of the lower Mesoproterozoic Kaltasy Formation, Cis-Ural Area, East
European Platform contains a moderately diverse assemblage of (cyano)bacterial and
eukaryotic microorganisms. Kaltasy shales are unusual among Mesoproterozoic strata in
recording a depositional environment that was both basinal (but within the photic zone) and

oxic, and this helps to explain the distinctive features of Kaltasy microfossils. Thus, the
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Kaltasy microfossils provide a fresh reminder that Proterozoic microfossils vary as a function
of both time and space, and inferences about evolution or biostratigraphy cannot be drawn in
the absence of information about the physical and chemical dimensions of depositional
setting. That relatively large multicellular remains occur in basinal, oxic environments
indicates that aspects of early eukaryotic evolution may have occurred in environments not
commonly sampled by paleontologists (a similar argument has been made concerning early
evolution in non-marine environments; Wellman and Strother, 2015). In general, sharper
paleoenvironmental and radiometric constraints on informative microfossil assemblages will
help us to build a better evolutionary and biostratigraphic understanding of life in mid-

Proterozoic oceans

7. Systematic paleontology

7.1. Location of specimens within maceration slides

Figure legends identify the slide containing the fossil, borehole and sample number,
location of the specimen within the fossiliferous maceration slide (denoted by the number
of the point above the specimen on an overlay-map attached to the palynological slide and
by England Finder Slide coordinates for the specimen), and the catalog number of the
specimen in the GIN paleontological collection. Thus, for the specimen of Pseudodendron
anteridium shown in Fig. 8.3, (203B)-40-3, p. 1, E57[3], 14712-86 indicates that the
illustrated fossil is from 203 Bedryazh borehole (for borehole index abbreviations see
caption to Fig. 1) and occurs in maceration slide 40-3, prepared from rock sample 40
obtained from the Kaltasy Formation (Fig. 2); that within this maceration slide, the fossil
occurs at location point 1 and within the England Finder Slide E57[3] area; and that the

specimen itself is cataloged as GINPC 14712-86. For the samples collected by the late
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A.F. Veis from the 133 Azino-Pal’nikovo borehole, sampled intervals are indicated by
sample number. Thus, for the specimen of P. anteridium shown in Fig. 8.2, (133 AP)-2760-
2765-1, p. 4, H36[3], 14712-2764, the sampled interval is 2760-2765.
In this study, we provide the descriptions of new and key importance for Proterozoic
paleobiology and biostratigraphy as well as for the taxonomy of the Kaltasy taxa. Well-
known and broadly distributed/ long-ranging taxa are not described in detail; however, their

morphometric characteristics are briefly provided above.

7.2. Sphaeromorph, disphaeromorph and netromorph acritarchs

Genus Leiosphaeridia Eisenack, 1958, emend. Downie and Sarjeant, 1963

Type species: Leiosphaeridia baltica Fisenack, 1958

Leiosphaeridia (?)wimanii Brotzen, 1941, emend. and comb. Butterfield (in Butterfield et al.,
1994)

Figures 4.11, 4.12, and 4.13

Das Fossil aus der Visingsogruppe Wiman, 1894, pl. 5, Figs. 1-5.

Chuaria wimani Brotzen, 1941, p.258-259.

Kildinella magna Timofeev, 1969, p. 14, pl. 6, Figs. 4-5.

Chuaria circularis Walcott, 1899 (partim): Ford and Breed, 1973, pl. 62, Fig. 3.

Shouhsienia shouhsienensis Xing (Hsing) in Zhang et al., 1991 p. 120, pl. 1, Figs. 16-26.

Chuaria wimanii Butterfield in Butterfield et al., 1994, p. 42-43, Figs. 13D-13F (see Zhang et al., 1991, for

additional synonymy).

Description: Spheroidal vesicles 800-1000 um in diameter; walls translucent, about 0.5-1.0
pm thick; surface texture smooth or fine-grained, with numerous fine folds oriented
subparallel to cell margin.

Material examined: Nine well-preserved specimens.

Occurrence: Widely distributed in Proterozoic rocks.

Remarks: Chuaria is a formal taxon incorporating large spherical microfossils with robust

opaque walls that are the remains of either unicellular eukaryotic cells or empty envelopes



602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

25
of prokaryotic colonies (See Vidal and Ford, 1985; Fairchild, 1985; Yankauskas, 1989;
Butterfield et al., 1994; Sergeev, 2006; Sergeev et al., 2012 for additional discussion).
Based on SEM observations of material from the type locality, Butterfield in Butterfield et
al., 1994, suggested that Chuaria should be restricted to spheroidal fossils with wall thicker
than 2 um. We follow the Butterfield et al., 1994, classification here; uncertainty about
species attribution reflects a broader uncertainty about how many species of exceptionally

large Leiosphaeridia may exist.

Leiosphaeridia sp.

Figures 4.8 — 4.10

Description: Solitary, spheroidal, single-walled vesicles 140 to 390 um in diameter with
robust, translucent, chagrinate walls 2 um thick that are commonly ruptured and exhibit
what may be biological openings (n = 8, p= 225 um, o = 103, RSD =45%). Some vesicles
contain a spheroidal cyst-like inclusion up to 350-370 um in diameter, with a translucent
wall 0.5-1.0 um thick (Fig. 4.9). Vesicle surface fine-grained and smooth, with occasional
possible striations.

Material examined: Eight well-preserved specimens.

Discussion: Members of the genus Leiosphaeridia are among the most commonly
occurring sphaeromorph acritarchs known from Precambrian sediments. Like Valeria, this
population shows both medial splits and, occasionally, a striation-like surface pattern.
Recently Pang et al. (2015) suggested that in Valeria the striation-like surface functioned as
a mechanism to guide biologically programmed excystment through medial split. In our
specimens, however, possible striations could be diagenetic, and so we prefer to classify

this form as Leiosphaeridia sp.

(7) Genus Moyeria Thusu, 1973
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Type species: Moyeria cabottii (Cramer, 1970), emend. Miller and Eames, 1982
(DMoyeria sp.
Figures 5.10, 5.11 and 5.12?

Leiosphaerid with multiple folds: Sperling et al., 2014, Figs. 4.4 and 4.4a

Description: Vesicle ellipsoidal, fusiform or spindle-shaped; wall consisting of 14 well
developed pleats twisted spirally and oriented parallel to the vesicle’s longitudinal axis.
Pleats overlapping without intermediate space, but also without septa or diaphragm.
Vesicle 240 pm long and 200 um wide; pleats 5-18 pm wide. Vesicle translucent, with
psilate surface; wall about 1 pm thick.

Material examined: One well-preserved specimen and another problematic vesicle.
Remarks: This form is similar to Moyeria species described from the Paleozoic deposits
(Molyneux et al., 2008; Le Herisse et al., 2013) and interpreted as euglenid pellicles.
However, only one well-preserved specimen has been found and therefore we defined it as
(NDMoyeria sp. Whether it bears any close phylogenetic relationship to Paleozoic

populations is unclear.

Genus Navifusa Combaz et al., 1967

Type species: Navifusa bacilla (Deunff, 1955).

Navifusa sp.

Figures 5:13 - 5.15

Description: Solitary single-layered nonseptate ellipsoidal vesicles with rounded ends.
Vesicle walls translucent to opaque, coarse-grained, 1.0-2.0 pm thick. Ellipsoids 300-550 pm
long and 190-375 um wide (n=3); length/width ratio 1.7-1.5.

Material examined: Nine variously preserved specimens.

Remarks: These ellipsoidal microfossils from the Kaltasy Formation were identified in open

nomenclature as Navifusa sp. They are larger than ellipsoidal akinetes of nostocalean
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cyanobacteria Archaeoellipsoides (= Brevitrichoides), which can be abundant in
Mesoproterozoic peritidal facies (Sergeev et al., 1995); most likely, the Kaltasy specimens are
the remains of eukaryotic microorganisms. We cannot exclude the possibility that some
specimens assigned to Navifusa sp. (e.g., Fig. 5.14) are sphaeromorphic vesicles elongated in

an early stage of binary cell division.

Genus Pterospermopsimorpha Timofeev, 1966, emend. Mikhailova and Yankauskas, in
Yankauskas, 1989

Type species: Pterospermopsimorpha pileiformis Timofeev, 1966
Pterospermopsimorpha pileiformis Timofeev, 1966, emend. Mikhailova, in Yankauskas,
1989

Figures 5.4 — 5.7

Pterospermopsimorpha pileiformis Timofeev, 1966, p. 34, pl. 5, Fig. 12; Mikhailova in Yankauskas, 1989, p.
49-50, pl. 3, Figs. 7 and 8; Veis and Petrov, 1994a, pl. 3, Fig. 15; Sergeev and Lee Seong-Joo, 2004, p. 18, pl.
3, Figs. 1-3, and 9; Sergeev, 2006, p. 231; pl. 30, Figs. 1-3, and 8; Sergeev et al., 2008, pl. 7, Figs. 1 and 2;
Sergeev and Schopf, 2010, p. 395, 396, Figs. 15.1, 15.2, 15.4, and 15.5; Vorob’eva et al., 2015, p. 217, 218,

Figs. 8.7, 8.9, and 8.10.

Description: Solitary spheroidal vesicles 110 to 315 um in diameter (n = 7, p= 130um, ¢ =
96, RSD = 74%), defined by single-layered, 0.5- to 1.0-um-thick, medium-grained walls,
which contain a large, opaque, more or less spheroidal body 95-180 um in diameter (n = 8§,
u= 123um, o = 38, RSD = 30%), with a chagrinate superficial texture.

Material examined: Fifteen moderately well-preserved specimens.

Occurrence: Widely distributed in Meso- and Neoproterozoic microfossil assemblages.
Remarks: A well-known disphaeromorph acritarch, Pterospermopsimorpha, differs from
sphaeromorph acritarchs by the presence a dark robust cyst-like inner body approximately
2/3 of the outer vesicle diameter. Pterospermopsimorpha pileiformis differs from other

species of Pterospermopsimorpha by its vesicle size and by the chagrinate surface of the
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inner body (Yankauskas, 1989). The specimen illustrated to Fig. 5.7 is similar to Simia,
with a flap-like membrane surrounding an inner translucent body, but it also could turn out
to be poorly preserved Leiosphaeridia with a collapsed inner envelope layer.

Pterospermopsimorpha and the morphologically similar, predominantly Paleozoic
taxon Pterospermella are commonly interpreted as phycomata of prasynophyte algae
(Teyssédre, 2006; Moczydlowska et al., 2011). This is reasonable for Paleozoic forms, but
morphology in Proterozoic populations assigned to Pterospermopsimorpha is generally
quite simple and so might have been generated by a number of distinct groups (e.g.,
amoebas, see Margulis et al., 1983, Figs. 5D, 5SH and 20B). Teyssédre (2006) considered
that the name Pterospermopsimorpha was a waste-basket for many Precambrian acritarchs
in which the so called wings are actually degraded protoplasmic residues. Not surprisingly,
Pterospermopsimorpha has been reported from numerous silicilastic units ranging in age
from early Mesoproterozoic through late Neoproterozoic. Disphaeromorphic
Pterospermopsimorpha-like morphologies are common among Proterozoic silicified
chroococcacean cyanobacteria where a central translucent sphere formed as a result of an
inner sheath layer during post-mortum alteration (e.g., Knoll and Golubic, 1979, Fig. 6A-E;
Sergeev, 2006, pl. 26, Figs. 1-9; pl. 40, Figs. 11, 12 and 15; pl. 41, Figs. 2 and 3; Sergeev et

al., 2012, pl. 7, Figs. 1-6; pl. 8, Figs. 9, 10 and 13).

Genus Spiromorpha Yin et al., 2005

Type species: Spiromorpha segmentata (Prasad and Asher, 2001)

Spiromorpha aff. S. segmentata (Prasad and Asher, 2001) emend. and comb. Yin et al.,
2005

Figures 5.8 and 5.9

Navifusa segmentatus Prasad and Asher, 2001, p. 77, pl. 5, Figs. 4, 5, 14 and 15.

Spiromorpha segmentata Yin et al., 2005, p. 57, 60, Figs. 5.1, 5.4-5.8.
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Description: Vesicle ellipsoidal, straight, empty inside, consisting of 7-12 strips twisted
helically from one end to the other. Strips connected closely without any intermediate
space and without septa or diaphragm in the vesicle interior, but with prominent connecting
welds forming upraised crescent-like structures (Fig. 5.9, marked by arrows). Vesicle
length about 125 pm, vesicle width 45-55; spiral strips 7.5-9.5um wide, welds 0.5-1.5 pm
and upraised 1.5-2.5 um above main vesicle body. Vesicle surface smooth; wall fine
grained about 1 um thick.
Material examined: One indifferently preserved specimen.
Remarks: The Kaltasy form is similar to S. segmentata, but differs slightly in the presence
of upraised welded zones connecting adjacent strips. Spiromorpha segmentata has been
reported from the middle part of the Beidajian Formation, upper Mesoproterozoic Ruyang
Group, Shanxi Province, China, and the Sarda and Avadh formations of the Ganga Basin,
India (Prasad and Asher, 2001). Spiromorpha has compared to modern conjugating green
algae, but this comparision is superficial, and molecular clock inferences suggest that
conjugating algae diverged as much as 700 million years after the time of Kaltasy
deposition (Becker, 2013). We previously identified this Kaltasy specimen as
Brevitrichoides bashkiricus, misled by its poor preservation (Sperling et al., 2014, Figs. 4.6

and 4.6a).

7.3: Large filamentous forms

Genus Eosolena Hermann in Hermann and Timofeev, 1985

Type species: Eosolena loculosa Hermann (in Hermann and Timofeev, 1985).
Eosolena minuta Vorob’eva and Sergeev in Vorob’eva et al., 2015

Figures 6.7 - 6.9

Eosolena loculosa Hermann in Hermann and Timofeev, 1985 (partim): Veis et al., 2001, Fig. 2 x.
Large trichome-like fossils: Veis and Petrov, 1994a, pl. 3, Figs. 1-3, 8, 10, 11, and 13; Veis et al., 2001, Fig. 2 .

Eosolena minuta Vorob’eva and Sergeev in Vorob’eva et al., 2015, p. 215, Figs. 6.3-6.5.
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Description: Compressed, unbranched tubes separated by cross-ribs into partially isolated
isometric chambers that communicate freely each with each other. Tubes with 90-160 um
cross-sectional diameters, up to 360 um long (incomplete specimen); tube walls translucent,
variably constricted at prominent transverse walls, medium-grained, ca. 1-2 pm thick. Cross-
ribs opaque, 3-5 um (possibly up to 9 pm, but this isn’t clearly visible) wide and 2-10 pm
high; distance between cross-ribs ranges from 20 to 30 pm.
Material examined: Five variously preserved specimens.
Occurrence: Early Mesoproterozoic: Kotuikan Formation, Anabar Uplift, Siberia; Kaltasy
Formation, Cis-Urals area, East European Platform.
Remarks: Eosolena minuta differs from E. loculosa and from E. anisocyta Hermann (in
Hermann and Timofeev, 1985) in the smaller cross-sectional diameter of tubes: 75-205 um
vs. 200-800 and 450-750 pm, respectively, and from E. anisocyta in a lack of clear

separation of the thallus into chambers (Yankauskas, 1989).

Genus Plicatidium Y ankauskas, 1980
Type species: Plicatidium latum Y ankauskas, 1980
Plicatidium latum Y ankauskas, 1980

Figure 6.10

Plicatidium latum Y ankauskas, 1980, p. 109, 110, pl. 12, Fig. 15; Yankauskas, 1989, p. 139, pl. 41, Figs. 3
and 4; Veis et al., 2000, pl. 2, Fig. 10; Sergeev et al., 2007, pl. 1, Fig. 19; Pang et al., 2015, Figs. 2A and 2B;

Vorob’eva et al., 2015, p. 216, Figs. 6.6-6.9.

Description: Compressed, unbranched tubes with thin elastic walls bearing numerous elastic
cross-ribs or fine folds broadly perpendicular to the tube axis. Tubes 160-170 wm in cross-
sectional diameter, up to 135 um long (incomplete specimen); tube walls translucent,
medium-grained, ca. 1 pm thick. Ribs opaque, 1.0-2.0 to 3-4 um wide and 0.5-1.5 pm high;

distance between ribs ranges from 5.5 to 7.5 pm.
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Material examined: Two well-preserved specimens.
Occurrence: Widely distributed in Proterozoic microfossil assemblages.
Remarks: We do not accept the emendation and merging of Plicatidium and Rugosoopsis
suggested by Pyatiletov, 1988 and Butterfield et al., 1994, as both the details of
morphology and mechanical properties of the two entities differ (rigid vs. elastic tubes; see
Sergeev et al., 2007 and Vorob’eva et al., 2015, their Figs. 4C and 4D). Recently Pang et

al., 2015 suggested a secondary origin for Plicatidium folds.

PLACE FIGURE 10 NEAR HERE

Genus Rectia Yankauskas, 1989

Type species: Rectia costata (Yankauskas, 1980) comb. Yankauskas, 1989

Remarks: Rectia was erected by Yankauskas in 1989 on the basis of sheaths with
annulations earlier described as Siphonophycus costatus (Yankauskas, 1980, 1982). The
genus suffered many subsequent revisions and was considered as a junior synonym of
Cephalonyx (Butterfield et al., 1994) or Rugosoopsis (as Siphonophycus costatus,
Moczydlowska, 2008). We consider Rectia to be a distinct morphological entity, differing
from Rugosoopsis by its pseudocellular, filamentous nature (in contrast to rugose surface of
Rugosoopsis and Plicatidium) and by its paired ring-like annulation (in contrast to large
isometric cells or cell-casts of Cephalonyx). Earlier, similarly large pseudocellular
filaments were described as Striatella coriaceae Asseeva (in Asseeva and Velikanov,
1983), but an earlier homonym (Midler, 1964) renders this generic name illegitimate (see
Butterfield et al., 1994). Botuobia Pyatiletov, 1979 is another genus of morphologically
similar filamentous microfossils embracing mainly sheaths with trichome cell imprints of
large diameter. Botuobia magna (Tynni and Donner, 1980) exceeds 100 pm in diameter

but is still smaller than Rectia magna; moreover, its surface is covered with septate cell
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casts without doubled annulations. Veis et al. (2000) identified these microfossils as
Botuobia, a taxon now considered to be a junior synonym of Tortunema (Butterfield in
Butterfield et al., 1994). Therefore, we have chosen describe the Kaltasy remains as a new
species of Rectia. Rectia magna is probably the remains of eukaryotic filamentous
microorganisms (Fig. 10). Some Rectia specimens superficially resemble the tightly coiled
filaments of Obruchevella or Spiromorpha, but the bispiral pattern observed in these genera
is not traceable in the tubes with prominent doubled annulations. Nor does it appear that the

annulations originated as tubes rather than as reinforced sheets.

Rectia magna Sergeev, Knoll and Vorob’eva new species

Figures 6.1-6.6

Botuobia spp.: Veis et al., 2000, pl. 2, Figs. 9, 11, 13 and 20.

Ex gr. Botuobia: Veis et al., 2000, pl. 3, Fig. 5.

Diagnosis: A species of Rectia with cross-sectional diameter 70-200 pum.

Description: Compressed, unbranched tubes tapering sharply at its terminus, with prominent
doubled annulations separated by thin-walled intervals. Cross sectional diameter 70-200 pm
(n=7,u=132um, 6 =43, RSD = 32.5%); tubes up to 250 pm long (incomplete specimens);
tube walls translucent, medium-grained, ca. 1-2 wm thick. Pseudocellular, opaque, granulated,
double annulations 3.0-10.5 um wide (n = 37, u= 6.5um, 6 = 2.3, RSD = 35%) and possibly
2-3 um high with intervening areas 1.5-3.5 um and 0.5-2.0 pm wide between doubled
annulations and within pairs of annulations (when visible), respectively.

Etymology: From Latin magna — large, great, with reference to the taxon’s large size
compared with previously described species of Rectia.

Type: Figure 6.3, GINPC 14712-5408, borehole 133 Azino-Pal'nikovo, 2052 m depth (See
Veis et al., 2000, pl. 3, Fig. 5).

Material examined: Seven well-preserved and additionally poorly preserved specimens.
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Occurrence: Lower Mesoproterozoic, Kaltasy Formation, Cis-Urals area, East European
Platform.
Remarks: Rectia magna is closely similar to R. costata Yankauskas (1980) in morphology
and, in principle, the two could reflect a single biological entity. Two considerations
prompt us to diagnose a new species of Rectia: the ages of the Kaltasy Rectia and R.
costata do not overlap (500 million year difference), and the size distributions of the two
populations do not overlap (70-200 pm for R. magna vs. 35 um for R. costata). These
considerations are challenging for the hypothesis of biological uniformity, and so we prefer

keep these species separate, following common practice in paleobotany.

Genus Rugosoopsis Timofeev and Hermann, 1979

Type species: Rugosoopsis tenuis Timofeev and Hermann, 1979
Rugosoopsis sp.

Figures 6.11, 6.12

Rugosoopsis sp.: Sperling et al., 2014, Fig. 4.13.

Description: Compressed, unbranched rigid tubes containing numerous cross-ribs. Tubes 45-
350 um in cross-sectional diameter (significantly large variance) and up to 550 wm long
(incomplete specimen); tube walls translucent, medium-grained, ca. 1-2 pm thick. Ribs
opaque, 1-2 um wide; distance between ribs ranges from 6-10 to 20 pm.

Material examined: Two moderately well preserved specimens.

Remarks: This form differs from R. tenuis in its larger tube and thinner wall. Therefore, we

have chosen to identify this form as Rugosoopsis sp.

7.4. Filamentous microfossils
Genus Cephalonyx A. Weiss, in Veis, 1984 emend. Butterfield, in Butterfield et al., 1994

Type species: Cephalonyx coriaceus (Asseeva) (in Asseeva and Velikanov, 1983)
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Cephalonyx sp.

Figures 7.4 and 7.8

Oscillatoriopsis spp.: Veis et al., 2000, pl. 2, Fig. 8.

Description: Unbranched tubes with prominent doubled annulations separated by thin-walled
intervals. Pseudocellular opaque granulated annulations 25-50 pm wide and 5-10 pm long
tapering toward apices to 9-14 um and separated by translucent intervening areas 2.5-4.5 pm
long. Length of tube is about 100 pm (incomplete specimen preserved).

Remarks: Here we follow the emended diagnosis of genus Cephalonyx suggested by
Butterfield in Butterfield et al., 1994, who interpreted these fossils as pseudocellular fossil
sheaths. It may be that some specimens interpreted as sheaths are in fact compressed
ensheathed trichomes in which cross walls have been lost (Golubic and Barghoorn, 1977;
Gerasimenko and Krylov, 1983; Hofmann and Jackson, 1994; Sergeev et al., 1995);
however, the Kaltasy population exhibits features best interpreted in terms of pseudocellular
sheaths, especially the ripped ends of preserved filaments, where irregular edges cut across
cell-like features (Fig. 7.8). This.is expected if the fossils are sheaths, unexpected it they were
actually trichomes. [See also Cephalonyx as, described by Veis (1984), which tapers toward
apices and has large discoidal and S-like cell shapes probably preserved as casts with
cyanobacterial ‘sheaths.] Tapering toward apices may be original, but can also reflect post-
mortem shrinkage of filaments (Golubic and Barghoorn, 1977; Gerasimenko and Krylov,
1983; Sergeev, 1992; Knoll and Golubic, 1992). In its morphometric characteristics
Cephalonyx sp. resembles Cephalonyx sibiricus A.-Weiss (in Veis, 1984), but in general is
smaller.

Material examined: Two moderately well-preserved specimens.

Genus Polytrichoides Hermann, 1974, emend. Hermann, in Timofeev et al., 1976

Type species: Polytrichoides lineatus Hermann, 1974
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Polytrichoides aff. P. lineatus Hermann, 1974, emend. Hermann in Timofeev et al., 1976

Figure 7.1

Polytrichoides lineatus Hermann, 1974, p. 8, pl. 6, Figs. 3 and 4; Timofeev et al., 1976, p. 37, pl. 14, Fig. 7;
Yankauskas, 1989, p.119-120, pl. 30, Figs. 5a, 56, 6, and 7; Hermann, 1990, pl. 9, Figs. 8 and 8a; Schopf,
1992, pl. 27, Figs. A and A,; Gnilovskaya et al., 2000, pl. 2, Figs. 16 and 17; Veis and Petrov, 1994a, pl. 2,
Figs. 25 and 27; Vorob’eva et al., 2006, Fig. 2e; Vorob’eva et al., 2009, p.188, Figs.15.13 and 15.14; Sergeev et
al., 2012, p. 342, pl. 29, Figs. 6-8; Tang et al., 2013, p. 178, Fig. 14; Vorob’eva et al., 2015, p. 218, Figs. 9.5 and 9.7-
9.11.

Majaphyton antiguam Timofeev and Hermann, 1979 (partim): Veis et al., 2000, pl. 3, Fig. 14.

Non Polytrichoides lineatus: Veis et al., 2000, pl. 2, Figs. 14 and 15 (For additional synonymy see Sergeev et

al., 2012 and Tang et al., 2013).

Description: Bundles of tubular structures closely grouped within a common cylindrical
sheath that tapers toward ends. Tubular structures1.5-4.5 um in diameter, walls translucent,
hyaline, 0.5-1.0 thick. The surrounding sheath is cylindrical, commonly tapering toward both
closed and open ends, 25-45 um wide and up to 350 wm long. Sheath walls translucent,
hyaline or fine grained, 1-2 um thick.

Material examined: A few poorly preserved specimens.

Occurrence: Widely distributed in Proterozoic microfossil assemblages.

Remarks: Like the broadly similar taxa Eoschizothrix Lee Seong-Joo and Golubic, 1998 and
Eomicrocoleus Horodyski and Donaldson 1980, filaments of Polytrichoides are commonly
compared with the modern polytrichomous hormogonian cyanobacteria Microcoleus,

Hydrocoleum or Schizothrix (See Sergeev et al., 2012).

Genus Pseudodendron Butterfield, in Butterfield et al., 1994
Type species: Pseudodendron anteridium Butterfield (in Butterfield et al., 1994).
Pseudodendron anteridium Butterfield, in Butterfield et al., 1994

Figures 8.1 — 8.3
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Pseudodendron anteridium Butterfield, in Butterfield et al., 1994, p. 70, 72, Figs. 28 A-28G, and 28J; Butterfield,
2009, Figs. 3A and 3B; Vorob’eva et al., 2015, p. 218, 219, Figs. 9.1-9.4.

A broad filamentous sheath: Veis and Vorob’eva, 1992, pl. 1, Figs. 12, 15, and 20; Veis and Petrov, 1994a, pl. 3,
Fig. 5; Veis et al., 2001, Fig. 2o.

A branching filament: Veis and Petrov, 19944, pl. 3, Fig. 22.

Archaeoclada sp.: Veis et al., 2000, pl. 3, Figs. 16 and 17.

Pseudodendron aff. P. anteridium: Sperling et al., 2014, Fig. 4.11

Description: Heterogeneous branching thalli sometime tapering toward apices with an outer
sheath and terminal expansion. Branching is lateral or dichotomous, and two levels of
branching are clearly present. Thalli are translucent to opaque, with spumose texture. Sheath
translucent but not always visible; conspicuous at branch junctions where the sheath can occur
on the inside angle as a prominent subtriangular gusset. Thalli 25-125 pm in cross-sectional
diameter, up to 1000 pm long (incomplete specimen); sheath wall medium-grained, ca. 1-2
pum thick.

Material examined: Approximately fifty well-preserved specimens.

Occurrence: Widely distributed in Proterozoic microfossil assemblages.

Remarks: This form is compared with either branching filaments of cyanobacteria

(Butterfield et al., 1994) or eukaryotic algae.

Genus Siphonophycus Schopf, 1968, emend. Knoll and Golubic, 1979, emend. Knoll et al.,
1991

Type species: Siphonophycus kestron Schopf, 1968.

Siphonophycus punctatum Maithy, 1975, emend. Buick and Knoll, 1999

Figure 8.7

Siphonophycus punctatus Maithy, 1975, p. 137, pl. 1, Fig. 5.

Siphonophycus punctatum Buick and Knoll, 1999, p. 761, Figs. 6.2-6.4 and 6.6.
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Asperatofilum experatus Hermann, in Yankauskas, 1989, p. 100, pl. 26, Fig. 16; Veis and Petrov, 1994a, pl.
1, Figs. 25 and 26, pl. 2, Fig. 26, pl. 3, Fig. 17; Veis et al., 2000, pl. 2, Figs. 5,7, 17 and 21 (for additional
synonymy see Buick and Knoll, 1999).

Description: Unbranched solitary nonseptate tubes, cylindrical to slightly compressed and
32.0 to 64.0 um broad, that rarely contain degraded trichomic thread-like amorphous
fragments; tube walls range from smooth to fine-or medium-grained, 0.5 to 1.0 thick.
Occurrence: Widely distributed in Proterozoic microfossil assemblages.

Material examined: About a hundred well-preserved specimens.

Genus Tortunema Hermann, in Timofeev et al., 1976, emend. Butterfield, in Butterfield et
al., 1994

Type species: Tortunema Wernadskii (Schepeleva,1960)

Tortunema patomica (Kolosov,1982), emend..and comb. Butterfield (in Butterfield et al.,
1994)

Figures 7.3 and 7.5

Palaeolyngbya patomica Kolosov, 1982, p. 72, pl. 10, Fig. 1.

Botuobia patomica Kolosov, 1984, p. 48-49, pl. 9, Fig. 2; Yankauskas, 1989, p. 101, pl. 43, fig. 3.

Botuobia angustata Kolosov, 1984, p. 49-50, pl. 10, Fig. 1.

Botuobia diversa Kolosov, 1984, p. 50, pl. 11, Fig. 1.

Palaeolyngbya sphaerocephala Hermann and Pylina in Hermann, 1986 (partim): Veis et al., 2000, pl. 2, Fig.

6.

Description: Unbranched solitary cylindrical compressed tubes 45 to 50 um broad (20 pm
in narrowest part) and tapering toward both ends; contains degraded opaque thread-like
fragments 10-15 um wide. Tubes transparent or translucent, prominent, non-lamellated,
about 0.5 pm thick and up to 400 pm long with clear annular lines 1-2 pm long separated
by intervening regions 5-7 pm long.

Material examined: One well-preserved and a few medium to poorly preserved specimens.
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Age and distribution: Mesoproterozoic: Kaltasy Formation, 203 Bedryazh and 133 Azino-
Pal’nikovo boreholes; Ediacaran, Kursov Formation, Siberia.
Remarks: Tortunema was originally erected to describe septate (pseudoseptate) sheaths that
taper toward both ends. We follow here the formal classification of Butterfield in
Butterfield et al., 1994, accepting Botuobia as a junior synonym of Tortunema and
separating the latter into species on the basis of tube diameter, much like the convention for
Siphonophycus sheaths (Butterfield et al., 1994, p. 69). Although generally interpreted as
pseudosepatate sheaths, Tortunema might alternatively be considered trichomes which lost
septa during diagenesis. This interpretation is unlikely for the Kaltasy population, both
because ripped ends cut across “septa” (Fig. 7.3; see discussion of Cephalonyx) and
because some specimens contain remnants of shrunken cells (Fig. 7.5), obviating

interpretation of the entire specimen as a trichome.

7.5. Miscellaneous microfossils

Genus Pellicularia Yankauskas; 1980

Type species: Pellicularia tenera Y ankauskas, 1980
Pellicularia tenera Yankauskas, 1980

Figures 8.8, 8.9 and 8:10

Pellicularia tenera Y ankauskas, 1980, p. 110, pl. 12, Fig. 9; Yankauskas, 1989, p. 139, pl. 42, Figs. 3-5; Veis

et al., 2000, pl. 3, Fig. 6.

Description: Fusiform-like and ribbon-like structures 25-70 um across and up to 350 pm
long, with longitudinal intertwined thread-like filaments 1-2 pm in diameter incorporated
inside the main body. Walls translucent, about 1 um thick, with folds 1-2 um wide; surface
granular to shagrinate.

Remarks: Yankauskas (1980) described this taxon from the Neoproterozoic (Upper

Riphean) Schtanda Formation of Cis-Urals area, but his treatment has not been broadly
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recognized. Veis et al. (2000) described it from the Kaltasy Formation, using this to argue
for a Neoproterozoic age. The affinities of the microfossils are uncertain.

Material examined: Four well-preserved specimens.
Age and distribution: Mesoproterozoic: Kaltasy Formation, 203 Bedryazh and 133 Azino-
Pal’nikovo boreholes; Neoproterozoic: Schtanda Formation, 62 Kabakovo borehole, Cis-

Urals area, East European Platform.

Unnamed Form 1

Figures 9.1, 9.2 and 9.3

Description: Translucent irregular ellipsoidal or elongated vesicles arranged in clusters
from a few individuals joined each other by their walls: Vesicles 100-265 um across and
240-390 um long; surface reticulated, with a granulated wall 1.0-1.5 pm thick.

Material examined: Five well-preserved specimens.

Remarks: Unnamed Form 1 exhibits areticulated surface that could reflect post-mortem
alteration. Clusters of vesicles could also formed by secondary aggregation of the dead cells.
Originally, therefore, these microorganisms could have been smooth-walled vesicles similar to
Leiosphaeridia. Given the large uncertainties in basic interpretation, we prefer to describe it
informally, noting only that it contributes to the overall diversity recorded by the Kaltasy

assemblage.

Unnamed Form 2

Figures 9.4, 9.5 and 9.6

Envelopes with problematic spines or pseudospines: Sperling et al., 2014, Fig. 4.5.

Description: Solitary, translucent to opaque vesicles of spherical and subspherical shape
150-785 um across, but irregular in outlines. Vesicles bear blunt conical and elongated

spine-like structures 40-130 um wide (near base) and 15-65 um long. Walls translucent,
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medium-grained, 1.0-2.0 pm thick and sometime are surrounded by outer translucent
membrane about 0.5 pm thick.

Material examined: Five relatively poorly preserved specimens.
Remarks: The origin of spine-like structures that cover the vesicle surface is uncertain;

given their irregular shape, we suspect that these originated during diagenesis.

Unnamed Form 3

Figures 9.7 and 9.10

Description: Solitary, single-layered translucent spheroidal or ellipsoidal vesicles with
rounded ends. Vesicle surface is covered with small spine-like structures sometimes
surrounded by a halo- or membrane-like transparent structure. Vesicle diameter 35-100
pum; walls translucent, medium-grained, less than 1 wm thick; spine-like structures 1.5-5
pm wide and 2-4 pum long.

Material examined: Twenty three variously preserved specimens.

Remarks: The genesis of spine-like structures covering surfaces of Unnamed Form 3 is
uncertain. They are probably of secondary origin, similar to many pseudospines
observed on originally smooth surfaces of cyanobacteria (e.g., Sergeev et al., 1995,
Fig. 7.10; 2012, pl. 7, Figs. 8-10, pl. 27, Fig. 5; Sergeev, 2006, pl. 1, Fig. 10, pl. 21,
Figs. 10-13,pl. 23, Figs. 1-8). However, as in all previous cases (Unnamed Forms 1 and
2) we cannot rule out an option that these structures are of primarily origin and so describe

them here only informally.

Unnamed Form 4

Figures 9.8,9.9, 9.11 and 9.12

Paired envelopes of Leiosphaeridia jacutica: Sperling et al., 2014, Fig. 4.9
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Description: Elongated translucent to opaque vesicles, solitary, in pairs, or arranged in an
echelon style 2 or 3 together. Vesicles translucent to opaque 100-350 pm wide and 180-
500 pm long, with wall up to 2 um thick (when visible), with a shagrinate surface and
typically a system of perpendicular cracks or transverse annulations 1-3 um wide in the
equatorial regions.
Remarks: These microfossils resemble microfossils recently described from Neoproterozoic
deposits of China as Pololeptus rugosus (Tang et al., 2013). Similarities, however, could
reflect diagenetic convergence.

Material examined: Twenty well-preserved specimens.

Unnamed Form 5

Figures 9.13 and 9.14

Description: Elongated translucent solitary vesicles composed of two or three segments
that communicate freely each to other, but with constrictions at conjunctions. Some
vesicles exhibit elongated, blunt, horn-like protrusions. Vesicle surface fine-grained and
covered with small dark irregular grains. Vesicle width 100-700 um, length 135-815 um:;
protrusions 10-15 um wide and 15-20 um long; walls 0.5-1.0 pm thick.

Material examined: Eight variously preserved specimens.

Remarks: The morphology of the microfossils is quite unusual for Proterozoic
microfossils. Upon recovery of better preserved samples, this population could deserve
recognition as a new genus, but given the quality of our specimens and lingering

uncertainty about diagenetic alteration, we describe it here only informally.
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Figure captions

Fig. 1. A —Index map of North Eurasia, indicating the location of the studied area (filled
square at arrow). B — Map of the southern Ural Mountains and Volgo-Ural region showing
the locations of the microfossiliferous boreholes of the Kaltasy Formation (filled pentagons;
see section 3.1 for details), abbreviations: 203B — 203 Bedryazh, 133AP — 133 Azino-

Pal’nikovo, and 1EA — 1 East Askino boreholes.

Fig. 2. Generalized Proterozoic stratigraphy of the Bashkirian meganticlinorium (southern
Ural Mountains) and Volga—Ural region (upper Neoproterozoic part of the successions not
shown) with 1 East Askino (1EA), 203 Bedryazh (203B) and 133 Azino-Pal’nikovo
(133AP) boreholes (modified after Keller and Chumakov, 1983; Sergeev, 2006; Kah et al.,
2007; Kozlov et al., 2011). Abbreviations, formations and members: Ai-Bin — Ai-Bolshoi
Inzer, St-Sr — Satka-Suran, Bk-Js — Bakal-Yusha, Ms — Mashak, Zg — Zigal’ ga, Zk —
Zigazy-Komarovo, Av — Avzyan, Z1 —Zilmerdak, Kt — Katav, In — Inzer, Sg - Sigaevo, Ks
- Kostino, Nr — Norkino, Rt — Rotkovo, Mn — Minaevo, Kl — Kaltasy, KI; — Sauzovo, Kl, —
Arlan, K15 — Ashit, Kb — Kabakovo, Nd — Nadezhdino, Tk — Tukaevo, Ol — OI’khovka, Us
— Usa, Ln — Leonidovo, Pr — Priyutovo; Sh — Shikhan, L.z — Leuznovo; groups and
subgroups: Sr — Sarapul, Pk — Prikamskii, Br —Borodulino; other geological units: PP —
Paleoproterozoic, LP — Lower Proterozoic, Pz — Paleozoic, R, — Middle Riphean, Ed —
Ediacaran, V — Vendian. Key, 1 — tillites, 2 — conglomerates, 3 — sandstones, 4 — siltstones, 5
— shales, 6 — limestone, 7 — clay limestone, 8 — dolomite, 9 — dolomites with cherts, 10 —
marls, 11 — stromatolites, 12 — Conophyton stromatolites, 13 — tuff, tuffaceous sandstone, and
diabase; 14 — basement gneiss, 15 — disconformities, 16 — angular unconformities. New Re—
Os age estimates from 203 Bedryazh core (Sperling et al., 2014) indicated by arrow (see

section 2.3 for details). The numbers of the collected samples are shown to the right of the



1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

61
1EA and 203B cores (indicated by dots); fossiliferous levels of the samples collected by
Veis et al., 2000 are indicated to the left of 133AP core (arrows). The fossiliferous Arlan
(Kl,) and Ashit (Kl3) members of the Kaltasy Formation are shown with different shades

of grey.

Fig. 3. Microfossil taxa reported from the Kaltasy Formation, indicating their morphological
grouping, relative abundance (R =rare, C = common, D = dominant), and size range
(displayed on a logarithmic scale in which the arrows denote taxa larger than 550 um in

diameter).

Fig. 4. Sphaeromorph acritarchs. 1, 6, 7, Leiosphaeridia jacutica; 1, (IEA)-11-3,p. 6,
P55[3], 14712-117; 6, (1IEA)-15-1, p. 2, M52[3], 14712-191; 7, 1EA)-11-4, p. 5, R50[0],
14712-124; 2, Leiosphaeridia tenuissima (large light disc) and L. crassa (smaller darker
disk), (IEA)-12-3, p. 2, N59[2], 14712-154a and 14712-154b, respectively; 3, 4,
Leiosphaeridia ternata; 3, (1EA)-16-1, p. 2, M54[0], 14712-196; 4, (203B)-40-1, p. 4,
N70[2], 14712-70;5, Leiosphaeridia atava, (203B)-40-3, p. 7, K66[0], 14712-92; 8 — 10,
Leiosphaeridia sp.; 8, (1EA)-16-6, p. 2, M49[4], 14712-228; 9, (1EA)-12-2, p. 2, M46[2],
14712-147; 10, (1EA)-11-3, p. 3, M62[1], 14712-114; 11 — 13, Leiosphaeridia (?7)
wimanii; 11, (203B)-34-20, p. 1, R27[3], 14712-297; 12, (203B)-34-19, p. 2, M61[2],
14712-296; 13, (203B)-34-19, p. 1, L62[4], 14712-298.

For all illustrated specimens, the single scale bar = 10 um and the double bar = 100 pm.
All specimens are from the Arlan and Ashit members of the Kaltasy Formation; sample

location and explanation are provided in sections 3.1 and 7.1, respectively.
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Fig. 5. Sphaeromorph and netromorph acritarchs.1, Spumosina rubiginosa, (133 AP)-2560-
2568, p. 1, K38[2], 14712-287; 2, 3, Synsphaeridium sp.; 2, (203B)-31-1, p. 2, Q59(3],
14712-8; 3, (1IEA)-18-1, p. 4, N59[4], 14712-243; 4-7, Pterospermopsimorpha pileiformis;
4, (1EA)-11-1, p. 3, N53[4], 14712-104; 5, (1EA)-11-4, p. 1, K51[2], 14712-120; 6, (1EA)-
14-1, p. 1, LA8[0], 14712-186; 7, (1IEA)-12-4, p. 4, Q58[4], 14712-165; 8, 9, Spiromorpha
aff. S. segmentata, (203B)-34-6, p. 1, M64[3],14712-32; 9, detail of 8, arrows indicate
crescent-like connecting wields; 10-12, (?)Moyeria sp.; 10, 11, (203B)-34-6, p. 3, S59[2],
14712-34, 11, detail of 10, arrows indicate overlapping of bispiral bands each to other;12,
(1EA)-12-4, p. 3, O57[2], 14712-164, arrows indicate possible initial cleavage of vesicle;
13-15, Navifusa sp.; 13, (1IEA)-16-8, p. 3, M58[4], 14712-235; 14,(1EA)-11-2, p. 4,

N58[4], 14712-110; 15, (1EA)-12-1, p. 3, O53[1], 14712-136.

Fig. 6. Large filamentous forms. 1-6, Rectia magna; 1, (133 AP)-2064-2068-1, p. 2,
H40[3], 14712-6802; 2, (133AP)-2052-2054-1, p. 3, J36[1], 14712-5084; 3, holotype,
(133AP)-2052-2054-1, p. 8, Q33[2], 14712-5408; 4, (133AP)-2056-2058-1, p. 4, Q47[2],
14712-269; 5, (133AP)-2058-2060-1, p. 2, K38[2], 14712-6002; 6, (133AP)-2052-2054-1,
p- 9, Y40[4], 14712-265; 7-9, Eosolena minuta; 7, (1EA)-11-5, p. 1, L46[0], 14712-125, 8,
9, details of 95 10, Plicatidium latum, (133AP)-2044-2046-1, p. 6, O41[1], 14712-4618,;
11, 12, Rugosoopsis sp.; 11, (133AP)-2073-2077-1, p. 3, K44[4], 14712-279; 12, (203B)-

34-7,p. 1, L67[2], 14712-35.

Fig. 7. Filamentous microfossils. 1, Polytrichoides aff. P. lineatus, (133 AP)-2060-2064-1,
p. 1, D36[3], 14712-6401; 2, 6, 7, Oscillatoriopsis longa; 2, (133 AP)-2044-2046-1, p. 2,
D45(3], 14712-258; 6, (1IEA)-11-5, p. 3, J45[4], 14712-131; 7, (203B)-39-3, p. 2, L68[1],

14712-60; 3,5, Tortunema patomica; 3, (1EA)-11-3, p. 4, N59[3], 14712-115; 5, (133AP)-
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2058-2060-1, p. 12, K39[2], 14712-271; 4, 8, Cephalonyx sp.; 4, (133AP)-2568-2572-1, p.
6, N40[2], 14712-6003; 8, (133AP)-2073-2077-1, p. 1, G36[3], 14712-278, arrow indicates

a probable mechanically displaced trichome fragment.

Fig. 8. Filamentous and miscellaneous microfossils. 1-3, Pseudodendron anteridiumy
1,(133AP)-2817-2822-1, p. 2, V20[1], 14712-2801; 2, (133AP)-2760-2765-1, p. 4, H36[3],
14712-2764; 3, (203B)-40-3, p. 1, E57[3], 14712-86; 4, Siphonophycus robustum (thin
threads) and poorly preserved filaments of Polytrichoides aff. P. lineatus or Pellicularia
tenera (larger threads), (203B)-34-3, p. 4, Q59(1], 14712-24;.5, Siphonophycus typicum,
(1EA)-12-7, p. 1, M53[3], 14712-184; 6, Siphonophycus-solidum, (1EA)-11-3, p. 2, L57[3],
14712-113; 7, Siphonophycus punctatum, (133 AP)-2046-2048-1, p. 1, F35[4], 14712-4803;
8-10, Pellicularia tenera; 8, (133AP)-2353-2355-1, p. 1, W44[2], 14712-551; 9, (203B)-

34-9, p. 2, K66[4], 14712-43; 10, (203B)-34-8, p. 3, P68[4], 14712-41.

Fig. 9. Miscellaneous microfossils. 1-3, Unnamed form 1; 1, (1EA)-12-6, p. 2, N46[3],
14712-182; 2, (1EA)-12-2, p. 5, K57[3], 14712-150; 3, (1IEA)-12-3, p. 1, F60[4], 14712-
153; 4 — 6, Unnamed form 2; 4, (203B)-31-1, p. 3, S60[1], 14712-9; 5, (203B)-39-3, p. 3,
M69[4], 14712-61; 6, (203B)-34-3, p. 3, K60[4], 14712-23; 7, 10, Unnamed form 3; 7,
(203B)-40-2, p. 7, R53[4], 14712-83; 10, (203B)-40-2, p. 8, S58[3], 14712-85; 8, 9, 11, 12,
Unnamed form 4; 8, (1EA)-16-7, p. 2, N22[3], 14712-232; 9, (1EA)-16-2, p. 3, P55[4],
14712-205; 11, (203B)-34-3, p. 2, K62[0], 14712-22; 12, (1EA)-11-5, p. 1a, K47[3],
14712-126; 13, 14, Unnamed form 5; 13, (1IEA)-12-3, p. 5, N53[4], 14712-158; 14, (1EA)-

18-1, p. 6, O54[0], 14712-245.
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Fig. 10. Three morphological groups (genera) of filamentous microfossils: A — Rectia tubes
with a rounded closed end bearing double annulations, B — Cephalonyx tubes bearing
numerous annulations, C — elastic tubes of Torfunema with numerous cross-ribs tapering
toward both ends and poorly preserved trichome remains. The double scale bar is 100 um

and single bar is 10 um.
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SPHAEROMORPH, DISPHAEROMORPH AND NETROMORPH ACRITARCHS 2
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Fig. 4
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Fig. 6
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Fig. 7
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Fig. 9
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* The ~1450-Ma-old Kaltasy Formation contains compressed organic-walled microfossils.

e The fossils record life in basinal but oxic environments.

* The assemblage includes large and moderately complex eukaryotic microorganisms.

* The microbiota differs from many coeval deposits in its absence of acanthomorphs.

* The fossils document morphological conservatism among early eukaryotes.



