

DIGITAL ACCESS TO SCHOLARSHIP AT HARVARD DASH.HARVARD.EDU



HARVARD LIBRARY Office for Scholarly Communication

# Microfossils from the lower Mesoproterozoic Kaltasy Formation, East European Platform

# The Harvard community has made this article openly available. <u>Please share</u> how this access benefits you. Your story matters

| Citation          | Sergeev, Vladimir N., Andrew H. Knoll, Natalya G. Vorob'eva,<br>and Nina D. Sergeeva. 2016. "Microfossils from the Lower<br>Mesoproterozoic Kaltasy Formation, East European Platform."<br>Precambrian Research 278 (June): 87–107. doi:10.1016/<br>j.precamres.2016.03.015.  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Published Version | doi:10.1016/j.precamres.2016.03.015                                                                                                                                                                                                                                           |
| Citable link      | http://nrs.harvard.edu/urn-3:HUL.InstRepos:33973833                                                                                                                                                                                                                           |
| Terms of Use      | This article was downloaded from Harvard University's DASH<br>repository, and is made available under the terms and conditions<br>applicable to Open Access Policy Articles, as set forth at http://<br>nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-<br>use#0AP |

1

| 1 | <b>Microfossils fro</b> | m the lower | Mesoproterozoic | Kaltasy Formation, | East European |
|---|-------------------------|-------------|-----------------|--------------------|---------------|
|---|-------------------------|-------------|-----------------|--------------------|---------------|

- 2 **Platform**
- 3
- 4 Vladimir N. Sergeev<sup>1</sup>, Andrew H. Knoll<sup>2</sup>, Natalya G. Vorob'eva<sup>1</sup>, and Nina D. Sergeeva<sup>3</sup>
- 5 1. Geological Institute, Russian Academy of Sciences, Pyzhevskii per., 7, Moscow, 119017,
- 6 Russia
- 7 2. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge,
- 8 MA, USA
- 9 3. Institute of Geology, Ufimian Scientific Center, Russian Academy of Sciences, Ufa,
- 10 Russia
- 11 \* Corresponding author: Sergeev V.N., Tel. 7-495-959-2923; Fax: 7-495-953-0760; E-mail:
- 12 sergeev-micro@rambler.ru; Vsergeevfossil@gmail.com
- 13
- 14

#### 15 Abstract

16 Basinal shales of the lower Mesoproterozoic Kaltasy Formation, sampled from three

17 boreholes drilled into the southeastern East European Platform, Russia, contain abundant

18 and moderately well preserved microfossils. 34 distinct entities have been identified, most

- 19 assigned to simple sphaeromorphic or small filamentous taxa found widely and
- 20 characterized by long stratigraphic ranges. Ornamented microfossils found in coastal
- 21 successions of other lower Mesoproterozoic basins are absent, but large filamentous
- 22 microfossils interpreted as possible benthic photosynthetic eukaryotes are recorded,
- 23 drawing comparisons to relatively deep water shales in Siberia. In overall aspect, the
- 24 Kaltasy microfossils are consistent with other broadly coeval assemblages, but they

- 25 highlight the importance of environment, as well as age, in determining the distributions of
- 26 remains that record the early diversification of marine eukaryotes. Rectia magna is
- 27 described as a new species.
- 28
- erope Keywords: Mesoproterozoic, microfossils, biostratigraphy, eukaryotes, East European 29

33

#### 34 **1. Introduction**

35

| 36 | Recent paleontological and biogeochemical research has sharpened our                           |
|----|------------------------------------------------------------------------------------------------|
| 37 | understanding of late Paleoproterozoic and early Mesoproterozoic marine ecosystems.            |
| 38 | Silicified coastal carbonate facies offer a view of benthic microbes, including abundant and   |
| 39 | diverse cyanobacteria (e.g., Zhang, 1981; Sergeev et al., 1995, 2007; Kumar and                |
| 40 | Srivastava, 1995), while carbonaceous compressions in fine-grained siliciclastic lithologies   |
| 41 | record both benthic and planktonic microorganisms across a range of lagoonal to basinal        |
| 42 | environments (e.g., Prasad et al., 2005; Nagovitsin, 2009; Agić et al., 2015; Vorob'eva et     |
| 43 | al., 2015). In many basins of this age, microfossils thought to be eukaryotic are largely      |
| 44 | restricted to coastal waters (Javaux et al., 2001), and an explanation for this may lie in the |
| 45 | physical nature of mid-Proterozoic oceans. Geochemical data on iron-speciation, nitrogen       |
| 46 | isotopes, and trace metal abundances and isotopes concur in suggesting the surface mixed       |
| 47 | layer of mid-Proterozoic oceans lay above widespread and persistent anoxic water masses;       |
| 48 | episodic upward mixing of these subsurface waters may have inhibited eukaryotic                |
| 49 | diversification in open shelf environments (Anbar and Knoll, 2002; Johnston et al., 2009;      |
| 50 | Stueeken, 2013; Guildbaud et al., 2015).                                                       |
| 51 | Although widespread, subsurface anoxia was not universal in mid-Proterozoic                    |

oceans. Basinal shales in the lower Mesoproterozoic Kaltasy Formation, southeastern East European Platform, preserve geochemical evidence that, at least to the depth recorded by maximum flooding, water masses were oxic (Sperling et al., 2014). Here we report on microfossils preserved in Kaltasy shales. The Kaltasy microfossil assemblage preserves both cyanobacteria and eukaryotic microorganisms over a wider range of environments than is typical for microfossils of this age. At the same time, conspicuously ornamented

4

| 58 | taxa well known from other, broadly coeval basins are absent, prompting questions about      |
|----|----------------------------------------------------------------------------------------------|
| 59 | the spatial as well as the time distribution of early eukaryotic microfossils.               |
| 60 |                                                                                              |
|    |                                                                                              |
| 61 | PLACE FIGURE 1 NEAR HERE                                                                     |
| 62 |                                                                                              |
| 63 | 2. Geological setting                                                                        |
| 64 |                                                                                              |
| 65 | 2.1. Tectonic and stratigraphic framework                                                    |
| 66 |                                                                                              |
| 67 | For many years, Russian geologists have discussed Meso- and early Neoproterozoic             |
| 68 | stratigraphy in terms of a Riphean stratotype located in the Bashkirian meganticlinorium, a  |
| 69 | large structure on the western slope of the southern Ural Mountains (Chumakov and            |
| 70 | Semikhatov, 1981; Keller and Chumakov, 1983; Fig. 1). The term Riphean, currently a          |
| 71 | formal unit of Russian Stratigraphic Scale, was originally established to encompass a large  |
| 72 | scale tectonic cycle, comparable to the Phanerozoic Caledonian or Hercynian orogenies        |
| 73 | (Shatskii, 1964). Later, largely on the basis of stromatolitic assemblages, strata of        |
| 74 | comparable age were recognized across much of Siberia and the term acquired its present      |
| 75 | stratigraphic meaning. The Meso-Neoproterozoic succession in the Bashkirian                  |
| 76 | meganticlinorium records the eastern flank of an extensive sedimentary basin that probably   |
| 77 | graded eastward into a continental margin; it can be correlated with confidence to strata in |
| 78 | platform aulacogen (graben, or rift) sections of the adjacent East European Platform. The    |
| 79 | Uralian part of the basin, representing the margin per se, belongs to external part of the   |
| 80 | Timanian orogeny, deformed in Ediacaran (Vendian) and Late Paleozoic time (Puchkov,          |
| 81 | 2013).                                                                                       |
| 82 | Regionally, the Mesoproterozoic to lower Neoproterozoic (Tonian and Cryogenian)              |

83 succession contains up to 15 km of weakly altered sedimentary and subordinate

| 84  | volcanogenic rocks, divided into the Burzyan, Yurmata, Karatau and Arsha groups,               |
|-----|------------------------------------------------------------------------------------------------|
| 85  | separated by unconformities (the Arsha Group, which occurs only on the eastern limb of         |
| 86  | the Bashkirian meganticlinorium, was recently added to the Riphean as a result of new          |
| 87  | isotopic data; Puchkov, 2005, 2013). The entire succession is overlain unconformably by        |
| 88  | the Ediacaran (Vendian) Asha Group (Fig. 2).                                                   |
| 89  | On the western limb of the Bashkirian meganticlinorium, the lower                              |
| 90  | Mesoproterozoic (Lower Riphean) is represented by the Burzyan Group, traditionally             |
| 91  | divided into the Ai (siliciclastic and volcanogenic rocks, 1500-2000 m thick), Satka           |
| 92  | (predominantly carbonates 900–1800 m to 2000–2400 m thick, but thinning significantly to       |
| 93  | the west), and Bakal (shale-carbonate unit, 900-1800 m thick) formations, in ascending         |
| 94  | stratigraphic order. Their counterparts on the Bashkirian Meganticlinorian eastern limb are    |
| 95  | the Bolshoi Inzer, Suran and Yusha formations, respectively.                                   |
| 96  | In the Volgo-Ural region to the west, sub-surface Riphean stratigraphy is known                |
| 97  | from core and geophysical data. The Kyrpy, Serafimovka and Abdulino groups correlate           |
| 98  | with the Burzyan, Yurmata and Karatau groups, respectively (Fig. 2). The Kaltasy               |
| 99  | Formation occurs within the Or'ebash Subgroup of the Kyrpy Group (Kozlov et al., 2009,         |
| 100 | 2011; Kozlov and Sergeeva, 2011). Kaltasy strata include mixed carbonates and shales,          |
| 101 | correlated with the Satka Formation in the Ural Mountains (Keller and Chumakov, 1983;          |
| 102 | Kah et al., 2007; Kozlov et al., 2009); the 1230 to 3600 m succession has been subdivided      |
| 103 | into three conformable members: Sauzovo, Arlan and Ashit. The Sauzovo Member (105 to           |
| 104 | 816 m thick) consists largely of dolostones that locally contain stromatolites, along with     |
| 105 | interlayers of dark gray to black shales and less frequent feldspar-quartz siltstones near its |
| 106 | base. The overlying Arlan Member (535 to 1216 m thick) is comprised of carbonaceous            |
| 107 | shales (some of them fossiliferous) and subordinate siltstones, carbonates and dolomitic       |
| 108 | marls. The Ashit Member (230 to 1550 m thick) consists of dolostones with stromatolite         |
| 109 | horizons and thin interbedded shales. Fossiliferous samples come from shales of the Arlan      |

| 110 | and Ashit members in three cores: 133 Azino-Pal'nikovo, 203 Bedryazh and 1 East Askino       |
|-----|----------------------------------------------------------------------------------------------|
| 111 | (Figs. 1 and 2; Kozlov et al., 2011).                                                        |
| 112 |                                                                                              |
| 113 | PLACE FIGURE 2 NEAR HERE                                                                     |
| 114 |                                                                                              |
| 115 | As described by Sperling et al. (2014), the Arlan Member in the 203 Bedryazh core            |
| 116 | (and in 1 East Askino) consists almost entirely of dark, parallel laminated shales with      |
| 117 | minor, commonly diagenetic micrite/dolomicrite. Clay-rich laminae predominate, with          |
| 118 | thin intercalations that contain appreciable quartz silt. Fine sand grains of angular quartz |
| 119 | occur in some laminae; commonly these float in a finer matrix and may have been              |
| 120 | transported into the basin by wind. No wave- or current-generated sedimentary structures     |
| 121 | are present in more than a kilometer of stratigraphic thickness, suggesting persistent       |
| 122 | deposition below storm wave-base. Consistent with this view, Kah et al. (2007) argued that   |
| 123 | the 203 Bedryazh drill core penetrates some of deepest Arlan facies found in the entire      |
| 124 | basin. Kah et al. (2007) also suggested that the cyclic granular dolostones and fine-grained |
| 125 | sandstones recovered by the 133 Azino-Pal'nikovo borehole record shallow water, high-        |
| 126 | energy platform environments near the western limit of the Kama-Belaya aulacogen.            |
| 127 | Although basinal environments in many lower Mesoproterozoic basins were anoxic, and          |
| 128 | sometimes euxinic (Sperling et al., 2015, and references therein), Fe-speciation             |
| 129 | geochemistry of the Kaltasy succession indicates oxic water throughout the range of depths   |
| 130 | recorded by the succession (Sperling et al., 2014).                                          |
| 131 |                                                                                              |
| 132 | 2.2. Age of the Kaltasy Formation.                                                           |
| 133 |                                                                                              |
| 134 | The age of Kaltasy correlatives in the southern Ural Mountains is constrained by the         |

135 ~1380 Ma Mashak volcanics in the overlying Middle Riphean (Mesoproterozoic) Yurmata

| 136 | Group (Puchkov et al., 2013; Krasnobaev et al., 2013a) and by ~1750 Ma basalts 200        |
|-----|-------------------------------------------------------------------------------------------|
| 137 | meters above the base of the Ai Formation (Puchkov et al., 2012, Krasnobaev et al.,       |
| 138 | 2013b). More directly, a series of K-Ar dates obtained for glauconite from the Arlan      |
| 139 | Member provides ages of 1510, 1520 and 1425 Ma in Borehole 3, Buranovo area; 1488 and     |
| 140 | 1469 Ma in Borehole 36, Arlan area; and 1358 and 1334 Ma in Borehole 191, Urustamak       |
| 141 | area (Keller and Chumakov, 1983; all age estimates have an uncertainty of approximately   |
| 142 | 3%; Gorozhanin, personal communication, 2015). Illite from mudstone of the underlying     |
| 143 | Norkino Formation penetrated by Borehole 20005 in the Karachevo area, is dated at         |
| 144 | 1400±42Ma by K-Ar (Gorozhanin, 1995), and K-Ar dates of 1368, 1377 and 1310 Ma            |
| 145 | were obtained for whole-rock samples of gabbroids that intruded the overlying Nadezhdino  |
| 146 | Formation (Keller and Chumakov, 1983). Recently Arlan shales were dated using             |
| 147 | Rhenium-Osmium (Re-Os) geochronology, yielding depositional ages of 1414±40 Ma and        |
| 148 | 1427±43 Ma for two horizons near the base of the succession (Sperling et al., 2014). In   |
| 149 | summary, all available geochronological data are consistent with early Mesoproterozoic    |
| 150 | deposition.                                                                               |
| 151 | Stromatolites in more proximal facies of the Kaltasy Formation are consistent with        |
| 152 | geochronological data, recording forms found previously in lower Mesoproterozoic (Lower   |
| 153 | Riphean) carbonates in the Southern Urals and Siberia (Kozlov et al., 1995).              |
| 154 | Chemostratigraphic data likewise support an early Mesoproterozoic age (Kah et al., 2007). |
| 155 | Microfossils, however, were originally interpreted as supporting a younger age of         |
| 156 | deposition. Veis et al. (2000) discovered an assemblage of large and relatively complex   |
| 157 | microfossils in Kaltasy rocks that they termed the Pal'nikov microbiota. As the           |
| 158 | assemblage differed from known microbiotas of the contemporaneous Satka and Omachta       |
| 159 | formations, more closely resembling, at least broadly, younger assemblages from Siberia   |
| 160 | and the southern Ural Mountains, Veis et al. (2000) proposed a Neoproterozoic age of      |
| 161 | deposition. Since that time, however, both the longer stratigraphic range of many simple  |
|     |                                                                                           |

| 162 | Neoproterozoic microfossils and the importance of facies in Proterozoic micropaleontology   |
|-----|---------------------------------------------------------------------------------------------|
| 163 | have become more fully appreciated (e.g., Sergeev, 1992, 2009; Sergeev et al., 1995, 2010;  |
| 164 | Kah et al., 2007). Thus, as discussed below, Kaltasy microfossils are fully consistent with |
| 165 | an early Mesoproterozoic age.                                                               |
| 166 |                                                                                             |
| 167 | 3. Materials and methods                                                                    |
| 168 |                                                                                             |
| 169 | 3.1. Fossiliferous localities.                                                              |
| 170 | 9                                                                                           |
| 171 | Microfossils reported in this study occur in shale samples of the Arlan and Ashit           |
| 172 | members of the Kaltasy Formation collected in 2011 by V.N. Sergeev during joint research    |
| 173 | with A.H. Knoll, E.A. Sperling, N.D. Sergeeva and the late V.I. Kozlov. The samples were    |
| 174 | taken from the 203 Bedryazh borehole core extracted near Bedryazh village in the Cis-Ural   |
| 175 | area (Fig. 1; Google Map Coordinates, decimal degrees latitude and longitude,               |
| 176 | 56.340809°N, 55.475973°E) and reposited in the BIPiNeft' core storage facility near         |
| 177 | Kungur; sample depth is shown in Fig. 2. Further Arlan samples come from the 1 East         |
| 178 | Askino borehole drilled near Askino village in the Cis-Ural area (Fig. 1; 56.093889°N,      |
| 179 | 56.702778°E) and reposited in the Kuraskovo core storage facility on the outskirts of Ufa;  |
| 180 | again, sample depths are shown in Fig. 2. Additionally, we examined nine samples of         |
| 181 | Ashit shale collected by the late A.F. Veis from the 133 Azino-Pal'nikovo borehole (Fig. 1; |
| 182 | 56.523374°N, 53.529541°E) obtained from southern Udmurtia, near Izhevsk and partially       |
| 183 | described by Veis et al.(2000); sample depths are marked in Fig. 2.                         |
| 184 |                                                                                             |
| 185 | 3.2. Methods of slide preparation and investigation.                                        |

|     | 9                                                                                                    |
|-----|------------------------------------------------------------------------------------------------------|
| 187 | Microfossils were extracted from the shales by low agitation processing. After                       |
| 188 | standard sample processing using approximately 10% concentration (roughly one                        |
| 189 | tablespoon per 100 ml of water) of caustic potash, the shales were dissolved in hydrofluoric         |
| 190 | acid (100%). Then, acritarchs and other microfossils were collected manually from the                |
| 191 | residue by a needle using a stereomicroscope. This simple and effective technique avoids             |
| 192 | the requirement for centrifugation and heavy liquid treatment, facilitating the intact               |
| 193 | preservation of large microfossils (e.g., Grey, 1999, 2005; Willman and Moczydłowska,                |
| 194 | 2008; Sergeev et al., 2011). Slide-preparation methods were similar to those described in            |
| 195 | many previous publications; permanent strew mounts were made using Canada balsam                     |
| 196 | mixed with polypropylene ether to inhibit recrystallization. Microfossils in the maceration          |
| 197 | slides prepared by A.F. Veis were extracted from rock samples by chemical processing                 |
| 198 | using hydrochloric and hydrofluoric acids in a conventional palynological maceration                 |
| 199 | method, filtering the residue on a 90-µm sieve mesh.                                                 |
| 200 | Transmitted-light photomicrographs were acquired using a RME-5 microscope                            |
| 201 | (Rathenower, Germany) equipped with a Canon EOS 300D digital camera (Canon, Tokyo,                   |
| 202 | Japan) and a Zeiss Axio Imager A1 microscope (#3517002390) equipped with an                          |
| 203 | AxioCamMRc 5 digital camera (both Carl Zeiss, Germany).                                              |
| 204 | The microfossils reported in this study were measured using Zeiss Axio Imager A1                     |
| 205 | microscope Axiovision software. Where appropriate, taxonomic descriptions indicate the               |
| 206 | mean (" $\mu$ ") and standard deviation (" $\sigma$ ") for sample populations, the relative standard |
| 207 | deviation ("RSD", or standard deviation as a percent of the mean) and number of measured             |
| 208 | specimens ("n") using SigmaPlot softwear.                                                            |
| 209 |                                                                                                      |
| 210 | 3.3. Repository of illustrated specimens.                                                            |

| 212 | All specimens discussed and illustrated in this study are reposited in the                   |
|-----|----------------------------------------------------------------------------------------------|
| 213 | Paleontological Collection of the Geological Institute of the Russian Academy of Sciences    |
| 214 | (PCGIN of RAS), Collection # 14712. The sample numbering from the 133 Azino-                 |
| 215 | Pal'nikovo borehole by the late A.F. Veis corresponds to the borehole depth from which       |
| 216 | samples were taken (Veis et al., 2000).                                                      |
| 217 |                                                                                              |
| 218 | 4. Kaltasy microfossils: taxonomy and biological interpretation                              |
| 219 |                                                                                              |
| 220 | 4.1. General characteristics.                                                                |
| 221 |                                                                                              |
| 222 | The Kaltasy Formation contains abundant organic-walled microfossils of moderate              |
| 223 | diversity. We recognize 34 distinct entities, largely of sphaeromorph, disphaeromorph and    |
| 224 | netromorph acritarchs and filamentous forms (Fig. 3). Large and distinctive filamentous and  |
| 225 | morphologically simple spheroidal fossils dominate the assemblage, including taxa previously |
| 226 | described from both lower Mesoproterozoic (e.g., the Lower Member of the Kotuikan            |
| 227 | Formation, Anabar Uplift, Siberia; Vorob'eva et al., 2015) and upper Mesoproterozoic to      |
| 228 | lower Neoproterozoic successions (e.g., the Lakhanda Group of the Uchur-Maya Uplift, the     |
| 229 | Derevnya and Miroedikha formations of the Turukhansk Uplift, and the Inzer Formation of      |
| 230 | the southern Ural Mountains; Yankauskas, 1989). Most of these taxa have simple               |
| 231 | morphologies and long stratigraphic ranges, and so they are consistent with radiometric      |
| 232 | constraints without further constraining depositional age. Ornamented acritarchs found in    |
| 233 | upper Paleoproterozoic and lower Mesoproterozoic formations elsewhere (e.g., Yin, 1997;      |
| 234 | Prasad et al., 2005; Nagovitsin, 2009; Adam, 2014; Singh and Sharma, 2014; Agić et al.,      |
| 235 | 2015) have not been identified in the Kaltasy assemblage. Thus, not surprisingly,            |
| 236 | environment as well as age played a role in determining the composition of Mesoproterozoic   |
| 237 | microfossil assemblages.                                                                     |

| 238 |                                                                                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 239 | PLACE FIGURE 3 NEAR HERE                                                                                        |
| 240 |                                                                                                                 |
| 241 | 4.2. Sphaeromorph, disphaeromorph and netromorph acritarchs.                                                    |
| 242 |                                                                                                                 |
| 243 | Unornamented spheroidal microfossils assigned to the form genus Leiosphaeridia are                              |
| 244 | abundant constituents of the Kaltasy assemblage. The simple observation that leiosphaerid                       |
| 245 | sizes range from a few microns to more than a millimeter indicates that diversity existed                       |
| 246 | within this component of the assemblage, but formalizing this by recognizing distinct                           |
| 247 | populations and assigning them to discrete species can be challenging because so few                            |
| 248 | characters are available. Yankauskas (1989) addressed this problem by classifying                               |
| 249 | Proterozoic Leiosphaeridia according to diameter and wall thickness, inferred on the basis of                   |
| 250 | folding and color pattern. Both color and folding geometry during compression can reflect                       |
| 251 | wall composition as well as thickness, and, of course, color varies as a function of diagenetic                 |
| 252 | temperature. Nonetheless, Yankauskas's framework has found widespread use and we adopt                          |
| 253 | it here as it captures much of the apparent diversity among these populations; we recognize L.                  |
| 254 | jacutica (Figs. 4.1, 4.6, 4.7; diameter 285-800 µm, wall more than 2 µm thick), L. crassa                       |
| 255 | (Fig. 4.2, the smaller fossil; diameter 65-70 $\mu$ m, robust wall with a limited number of large               |
| 256 | folds), <i>L. tenuissima</i> (Fig. 4.2, the larger fossil; diameter 125-135 $\mu$ m, wall less than 0.5 $\mu$ m |
| 257 | thick), L. atava (Fig. 4.5; diameter 360-365 µm, wall 1.5 µm thick), L. minutissima (diameter                   |
| 258 | 10-60 $\mu$ m, wall less than 0.5 $\mu$ m thick; illustrated in Sperling et al., 2014, Fig. 4.14) and           |
| 259 | Leiosphaeridia sp. (Figs. 4.8-4.10, diameter 135-410 $\mu$ m, wall about 2 $\mu$ m thick). We also              |
| 260 | recognize L. ternata (Figs. 4.3, 4.4; diameter 120-190 $\mu$ m) as a distinctive taxon based on its             |
| 261 | nearly opaque wall and characteristic radial cracks. Both features are arguably diagenetic in                   |
| 262 | origin, but they appear to reflect a distinctive original wall composition.                                     |

| 263 | Additionally, we consider a population of unusually large sphaeromorphs (diameter                   |
|-----|-----------------------------------------------------------------------------------------------------|
| 264 | $800-1000 \ \mu\text{m}$ ; Fig. 4.11-4.13; see Section 7). Such large spheroids are commonly lumped |
| 265 | together in Chuaria circularis, but the Kaltasy fossils differ in key characters from the Grand     |
| 266 | Canyon populations, including the lectotype designated by Ford and Breed (1973; see                 |
| 267 | discussion in Vidal and Ford, 1985). Specifically, the type population is characterized by an       |
| 268 | unusually thick wall, with large, thick folds (Butterfield et al., 1994; see also Vidal, 1976),     |
| 269 | whereas the Kaltasy fossils, while large, had thin walls marked by numerous fine folds. For         |
| 270 | this reason, we assign the Kaltasy population to Leiosphaeridia (?) wimanii, reflecting a           |
| 271 | combination established by Butterfield (in Butterfield et al., 1994) for large, smooth, thin-       |
| 272 | walled sphaeromorphs. Rare, dark sphaeromorphs with a spongy wall texture are assigned to           |
| 273 | Spumosina rubiginosa (Fig. 5.1, diameter 150-250 µm; Hofmann and Jackson, 1994). The                |
| 274 | spongy texture is likely to reflect diagenetic alteration.                                          |
| 275 | There is consensus that Leiosphaeridia species reflect a variety of biological origins,             |
| 276 | nonetheless, leiosphaerids have commonly been interpreted as green algae, either the                |
| 277 | phycomata of prasinophyte green algae (Tappan, 1980) or chlorophyte cell walls                      |
| 278 | (Moczydłowska, 2010; Moczydłowska et al., 2010). Leiosphaerids generally lack                       |
| 279 | ultrastructural features known to be associated with prasinophytes, but a distinctive TLS           |
| 280 | (trilaminar sheath structure) ultrastructure has been recognized in TEM images of Cambrian          |
| 281 | and Neoproterozoic specimens, supporting their interpretation as chlorophytes (Talyzina and         |
| 282 | Moczydłowska, 2000; and, with less certainty, Moczydłowska et al., 2010). This, however,            |
| 283 | does not mean that all spheroidal acritarchs were sourced by green algae, as potentially            |
| 284 | preservable spheroidal envelopes are made by organisms ranging from cyanobacteria (e.g.,            |
| 285 | Fairchild, 1985; Sun, 1987; Sergeev, 1992) to ciliates (e.g., Villalobo et al., 2003). Questions    |
| 286 | of systematic affinity become more challenging in older successions, where the probability of       |
| 287 | encountering extinct stem group lineages increases substantially. Mesoproterozoic                   |
| 288 | leiosphaerids examined to date do not show recognizably chlorophyte ultrastructures (Javaux         |

| 289  | et al., 2004) and so, informed by molecular clocks (e.g., Parfrey et al., 2011; Eme et al., 2014), |
|------|----------------------------------------------------------------------------------------------------|
| 290  | the range of potential eukaryotic sources for these fossils must include undiagnostic crown        |
| 291  | group green algae, stem group greens, stem group archaeoplastids (the photosynthetic group         |
| 292  | that includes green, red, and glaucocystophyte algae), or stem group eukaryotes. In principle,     |
| 293  | any or all could be represented in the Kaltasy assemblage. C29 steranes, widely accepted as        |
| 294  | biomarkers for green algae, first become significant constituents of sedimentary organic           |
| 295  | matter in Ediacaran strata (Knoll et al., 2007; Bhattacharya and Dutta, 2015); thus, if greens     |
| 296  | are represented among Kaltasy and other early Mesoproterozoic microfossil assemblages, they        |
| 297  | would appear to have played only a minor role in marine primary production. [Many                  |
| 298  | prasinophytes synthesize mainly C28 sterols, but C28 steranes are also rare or absent in           |
| 299  | Mesoproterozoic rocks (Kodner et al., 2008).] Aggregates of relatively small (20-35 $\mu$ m)       |
| 300  | spheroidal vesicles are identified as Synsphaeridium sp. (Figs. 5.2 and 5.3, diameter 20-40        |
| 301  | $\mu$ m). The biological interpretation of this taxon is uncertain and could include cyanobacteria |
| 302  | as well as either planktonic or benthic eukaryotes.                                                |
| 303  |                                                                                                    |
| 304  | PLACE FIGURE 4 NEAR HERE                                                                           |
| 305  |                                                                                                    |
| 306  | Three more, broadly sphaeromorphic, disphaeromorphic and netromorphic                              |
| 307  | populations bear mention. First is Pterospermopsimorpha pileiformis, a form taxon applied to       |
| 308  | spheroidal microfossils where one vesicle is encompassed by another. In Figs. 5.4, 5.5 and         |
| 309  | 5.7, this organization is clearly evident, and it supports the interpretation of these fossils as  |
| 310  | photosynthetic. In all likelihood, at least one of the preserved walls was vegetative, and living  |
| 311  | eukaryotes with continuous vegetative walls are nearly all photosynthetic or osmotrophic           |
| 312  | (Margulis et al., 1990; Teyssèdre, 2006; Moczydłowska et al., 2011). Fig. 5.6 is also              |
| 24.2 | tentetively accorded to D will if any is but the internal body may represent chryster call         |

tentatively assigned to *P. pileiformis*, but the internal body may represent shrunken cell

314 contents rather than a distinct wall layer. Found separately, if poorly preserved, the two 315 vesicles of *P. pileiformis* would be assigned to distinct *Leiosphaeridia* species. 316 We also note the presence of rare elongated vesicles with surfaces that include strips 317 twisted into spiral structures: Spiromorpha aff. S. segmentata (Figs. 5.8 and 5.9). Similar 318 forms were previously reported from lower Mesoproterozoic shales in China (Yin et al., 319 2005) and India (Prasad and Asher, 2001), where they were compared to conjugating green 320 algae (Yin et al., 2005). The comparison, however, is broad, and molecular clocks suggest 321 a much later origin of conjugating streptophyte greens (Becker, 2013). Given its rarity and 322 relatively poor preservation, we leave the Kaltasy specimen in open nomenclature. 323 There are the rare, but distinctive microfossils assigned here to (?) Moyeria (Figs. 5.10, 324 5.11 and possibly 5.12). These large (nearly 200  $\mu$ m in maximum dimension) vesicles have a strikingly pleated surface of biological origin. The genus *Moyeria* was erected for distinctive 325 326 Ordovician and Silurian microfossils recovered from fluviatile successions and interpreted as 327 the preserved pellicle of a euglenid protist (Gray and Boucot, 1989). Broadly similar 328 microfossils with longitudinal folds have been figured from nonmarine shales of the 1.1 Ga Oronto Group, Michigan (Wellman and Strother, 2015). Whether these late Mesoproterozoic 329 330 fossils are euglenids or reflect broad morphologic convergence remains to be established. 331 Given that the Kaltasy fossils are both rare and still further removed from unambiguous 332 *Moyeria* by both time and environment, we remain uncertain of both their formal taxonomic 333 assignment and phylogenetic interpretation. Quite possibly, this fossil represents a new genus 334 and species, but formal evaluation of this awaits the discovery of additional specimens. 335 Finally, Navifusa is a genus name applied to elongate, or netromorph, acritarchs 336 (Hofmann and Jackson, 1994). These fossils are much larger than ellipsoidal fossils called 337 Archaeoellipsoides, generally found in silicified carbonates and interpreted as the akinetes of 338 nostocalean cyanobacteria (Horodyski and Donaldson, 1980; Golubic et al., 1995; Sergeev et 339 al., 1995), as well as their at least partial counterpart in shales Brevitrichoides (Yankauskas,

| 340 | 1980). The specimen illustrated in Fig. 5.15 closely approximates N. actinomorpha from the        |
|-----|---------------------------------------------------------------------------------------------------|
| 341 | upper Mesoproterozoic Bylot Supergroup in Baffin Island (Hofmann and Jackson, 1994). The          |
| 342 | partial specimen in Fig. 5.13 may also fit within this species, but the elongate form in Fig.     |
| 343 | 5.14 is distinct and can plausibly be interpreted as representing elongation at an early stage of |
| 344 | binary cell division. If correct, this would relate the specimen to Leiosphaeridia and provide    |
| 345 | further evidence of a vegetative cell wall.                                                       |
| 346 |                                                                                                   |
| 347 | PLACE FIGURE 5 NEAR HERE                                                                          |
| 348 | 9                                                                                                 |
| 349 | 4.3. Large filamentous forms.                                                                     |
| 350 |                                                                                                   |
| 351 | Large filamentous forms comprise large, relatively complex microfossils plausibly                 |
| 352 | interpreted as the remains of eukaryotic algae because they exceed the maximal width of           |
| 353 | known cyanobacterial filaments (~100 $\mu$ m; Schopf, 1992). Moreover, the constituent cells      |
| 354 | of the filaments have continuous cell walls, strongly suggesting that the organisms were          |
| 355 | photosynthetic or osmotrophic. Among living eukaryotes, filaments made of cells with              |
| 356 | dimensions like those observed in the fossils tend to be photosynthetic, as osmotrophy            |
| 357 | would be far more efficient with thin filaments such as those of fungial mycelia. They also       |
| 358 | tend to be benthic. There is no inherent conflict between our interpretation of the               |
| 359 | environmental setting as basinal and the hypothesis of photosynthesis. Today, benthic             |
| 360 | multicellular algae grow beneath storm wave base, indeed, at depths greater than 200 m            |
| 361 | (Littler et al., 1985).                                                                           |
| 362 | Most important are two groups of large, broadly tubular microfossils with                         |
| 363 | transverse ribs or septa assigned to Eosolena minuta (Vorob'eva et al., 2015) and Rectia          |
| 364 | magna sp. nov. Originally described from the upper Mesoproterozoic Lakhanda                       |
| 365 | Formation, the type species of <i>Eosolena</i> , <i>E. loculosa</i> (Hermann and Timofeev, 1985)  |

| 366 | consists of uniseriate filaments, several millimeters long, with constituent cells up to 150          |
|-----|-------------------------------------------------------------------------------------------------------|
| 367 | $\mu$ m wide and variably constricted at prominent septum-like transverse walls (Yankauskas,          |
| 368 | 1989; Hermann, 1990; Hermann and Podkovyrov, 2009, 2014; Vorob'eva et al., 2015).                     |
| 369 | Eosolena minuta, originally described from the lower Mesoproterozoic Kotuikan                         |
| 370 | Formation, has smaller cells (up to 200 µm wide) but similar organization (Figs. 6.7-6.9;             |
| 371 | Vorob'eva et al., 2015). For the reasons outlined above, these forms may record benthic               |
| 372 | photoautotrophs (which does not necessarily make them crown group green algae; see                    |
| 373 | discussion of <i>Leiosphaeridia</i> ).                                                                |
| 374 | Rectia magna sp. nov., is also large, exhibiting a broadly filamentous organization                   |
| 375 | that widens distally before tapering sharply at its terminus; the wall has thick transverse           |
| 376 | annulations, ca. 5-7 $\mu$ m wide (Fig. 6.1-6.6). The size of this population approaches the          |
| 377 | maximum observed for cyanobacterial filaments, but its overall morphology suggests that               |
| 378 | R. magna, like E. minuta, could have been eukaryotic and benthic. A few fossils (Fig.                 |
| 379 | 6.10) exhibit broad features comparable to those of <i>Rectia</i> but also have a thin surface        |
| 380 | covering that deforms into tight, thin folds, as observed in the genus Plicatidium                    |
| 381 | (Yankauskas, 1989). These may be taphonomic variants of Rectia magna; here we                         |
| 382 | differentiate them as <i>Plicatidium latum</i> following Veis et al.'s (2000) earlier identification. |
| 383 | Rugosoopsis sp. (Figs. 6.11 and 6.12) is the name given to non-branching, rigid tubes that            |
| 384 | bear numerous cross ribs, in contrast to Plicatidium, which features elastic tubes bearing            |
| 385 | cross ribs that are often folded along the primary axis. The affinities of all these fossils          |
| 386 | remain obscure; however, their large size and relatively complex morphology support an                |
| 387 | eukaryotic origin.                                                                                    |
| 388 |                                                                                                       |
| 389 | PLACE FIGURE 6 NEAR HERE                                                                              |
| 390 |                                                                                                       |

*4.4. Filamentous microfossils.* 

| 002 |                                                                                                 |
|-----|-------------------------------------------------------------------------------------------------|
| 393 | The Kaltasy microfossil assemblage contains abundant and moderately diverse                     |
| 394 | filamentous microfossils less than 100 $\mu$ m in diameter, most of which can be interpreted in |
| 395 | light of the biology and taphonomy of cyanobacteria. Traditionally, uniseriate trichomes        |
| 396 | with no cell differentiation were placed in the Oscillatoriales (Elenkin, 1949) or Subgroup     |
| 397 | III (Rippka et al., 1979) of the Cyanobacteria. Molecular phylogenies now make it clear         |
| 398 | that, as circumscribed, this group is not monophyletic (e.g., Giovannoni et al., 1988;          |
| 399 | Schirrmeister et al., 2015), but whether simple filamentous multicellularity evolved once       |
| 400 | within the cyanobacteria and was lost several times (Schirrmeister et al., 2015) or evolved     |
| 401 | multiple times convergently (Ishida et al., 2001) remains a topic of debate. In either event,   |
| 402 | the microfossil record of Subgroup III cyanobacteria is one of cellular trichomes, variously    |
| 403 | well preserved, and extracellular sheaths, and so extant species assigned to Lyngbya,           |
| 404 | Oscillatoria, and related genera provide a morphological basis for interpretation.              |
| 405 | Polytrichoides aff. P. lineatus Hermann, 1974 (Fig. 7.1), which are bundles of                  |
| 406 | trichomes bound within a common cylindrical sheath, are usually compared with                   |
| 407 | polytrichomous filaments of the oscillatorian genera Microcoleus, Hydrocoleum or                |
| 408 | Schizothrix (Hermann, 1990; Vorob'eva et al., 2015).                                            |
| 409 | Trichomes composed of disc-like medial cells and rounded terminal cells without                 |
| 410 | encompassing sheaths comparable to extant Oscillatoria are placed in the genus                  |
| 411 | Oscillatoriopsis, represented in the Kaltasy assemblage by O. longa (Timofeev and               |
| 412 | Hermann, 1979; Figs. 7.2, 7.6 and 7.7; 22.0-30.0 µm in cross-sectional diameter).               |
| 413 | As exemplified by extant Lyngbya, simple trichomes can be encompassed by an                     |
| 414 | extracellular polysaccharide sheath. Sheaths can bear the imprint of trichome cells they        |
| 415 | once contained, either as distinct collar-like annulations (Cephalonyx sp.; Fig. 7.4, 7.8) or   |
| 416 | as regularly spaced pseudosepta (Tortunema patomica, Butterfield et al., 1994; Figs. 7.3,       |
| 417 | 7.5). Whether each of the form species recognized in the Kaltasy assemblage corresponds         |

| 418 | to a distinct biological entity is uncertain; differing taphonomic circumstances could easily    |
|-----|--------------------------------------------------------------------------------------------------|
| 419 | account for some observed distinctions. Moreover, the boundaries between form genera             |
| 420 | are porous; all tubular sheaths once contained trichomes and while the distinction between       |
| 421 | sheaths containing well-preserved trichomes and empty tubes is straightforward, trichomes        |
| 422 | exhibit a continuum of intermediate preservational states. Nonetheless, classification           |
| 423 | adopted here captures the morphological variation found within the assemblage.                   |
| 424 | Taphonomic observation and experiments show that cyanobacterial sheaths                          |
| 425 | preserve better than the trichomes they contain (Sergeev and Krylov, 1986; Bartley, 1996),       |
| 426 | and so tubular sheaths are more common in the Proterozoic fossil record than are                 |
| 427 | trichomes, including in the Kaltasy assemblage. Smooth, non-septate tubes are assigned to        |
| 428 | the genus Siphonophycus (Schopf, 1968; Knoll et al., 1991) and partitioned into species on       |
| 429 | the basis of size frequency distribution (Butterfield et al., 1994); on this basis, we recognize |
| 430 | five species (S. robustum, S. typicum, S. kestron, S. solidum, and S. punctatum; Fig.3),         |
| 431 | found as individual fragments or loosely intertwined populations (Figs. 8.4-8.7).                |
| 432 | Some cyanobacteria form true or false branches, and this can be recorded by                      |
| 433 | branched sheaths; in the Kaltasy assemblage we find scattered fragments of Pseudodendron         |
| 434 | anteridium (Butterfield et al., 1994; Figs. 8.1-8.3) that arguably record nostocalean            |
| 435 | cyanobacteria.                                                                                   |
| 436 | In general, then, filamentous microfossils record a diversity of cyanobacteria, many             |
| 437 | of which lived on the oxic seafloor of the Kaltasy basin, but some of which could have           |
| 438 | inhabited overlying surface waters.                                                              |
| 439 |                                                                                                  |
| 440 | PLACE FIGURE 7 NEAR HERE                                                                         |
| 441 |                                                                                                  |
| 442 | 4.5. Miscellaneous forms.                                                                        |
| 443 |                                                                                                  |

#### PLACE FIGURE 8 NEAR HERE

| 446 | The Kaltasy assemblage contains additional populations that do not fit into the                |
|-----|------------------------------------------------------------------------------------------------|
| 447 | aforementioned categories. Miscellaneous microfossils include Pellicularia tenera              |
| 448 | (Yankauskas, 1980), relatively large and problematic fusiform vesicles with longitudinal,      |
| 449 | intertwined thread-like filaments within the body (Figs. 8.8–8.10), as well as five            |
| 450 | populations left in open nomenclature. Unnamed Form 1 (Figs. 9.1-9.3) includes                 |
| 451 | translucent, irregular, elongated vesicles with a reticulate surface probably formed during    |
| 452 | diagenesis. Unnamed Form 2 (Figs. 9.4-9.6) consists of opaque spheroidal vesicles with         |
| 453 | irregular outlines. Vesicles appear to exhibit blunt conical processes, but we interpret these |
| 454 | as products of diagenesis. Unnamed Form 3 (Figs. 9.7 and 9.10) also appears to exhibit         |
| 455 | small conical spines of uncertain and possibly diagenetic origin. Unnamed Form 4 (Figs.        |
| 456 | 9.8, 9.9, 9.11 and 9.12) is applied to elongate vesicles often arranged en echelon, with two   |
| 457 | or three connected individuals. Vesicles are translucent to opaque, with a chagrinate          |
| 458 | surface and, commonly, perpendicular cracks or transverse annulations in the equatorial        |
| 459 | region. These morphological features are shared by Pololeptus rugosus, recently described      |
| 460 | from Neoproterozoic deposits in China (Tang et al., 2013, see above). Nonetheless, we          |
| 461 | have chosen to treat these microfossils informally because the transverse annulations could    |
| 462 | be of diagenetic origin. And finally, Unnamed Form 5 (Figs. 9.13 and 9.14) consists of         |
| 463 | elongated translucent solitary vesicles composed of two or three segments communicating        |
| 464 | freely each to other and bearing elongated horn-like protrusions.                              |
| 165 |                                                                                                |

#### PLACE FIGURE 9 NEAR HERE

- **5. The Kaltasy microbiota in the Mesoproterozoic world**

 $\overline{}$ 

| 470 | All microfossil assemblages found in upper Paleoproterozoic to lower                      |
|-----|-------------------------------------------------------------------------------------------|
| 471 | Mesoproterozoic shales contain simple spheroidal acritarchs and most also contain         |
| 472 | cyanobacteria-like filaments. Beyond this, however, they can be divided into three broad  |
| 473 | groupings, based on fossil types not shared among all contemporaneous formations          |
| 474 | (Vorob'eva et al., 2015). Type I assemblages lack conspicuously ornamented acritarchs     |
| 475 | but contain abundant small coccoidal (e.g. Ostiana, Myxococcoides, Synsphaeridium) and    |
| 476 | filamentous (e.g., Siphonophycus, Leiotrichoides, Brevitrichoides) microfossils not       |
| 477 | exceeding a hundred microns in diameter; prokaryotic microorganisms account for much of   |
| 478 | this diversity, as recorded in the Satka and Bakal formations of the southern Ural        |
| 479 | Mountains and the Omachta and Svetly formations of the Uchur-Maya Region, Siberia         |
| 480 | (Yankauskas, 1982; Veis and Semikhatov, 1989; Veis et al., 1990; Sergeev and Lee Seong-   |
| 481 | Joo, 2001, 2004; Sergeev, 2006). Type II assemblages are characterized by the presence of |
| 482 | eukaryotic remains with processes or other conspicuous ornamentation, for example,        |
| 483 | Shuiyousphaeridium, Tappania, Valeria, Dictyosphaera and Satka favosa. These taxa have    |
| 484 | a wide geographic distribution, being reported from the Beidajiang and Baicaoping         |
| 485 | formations of the Ruyang Group, China (Xiao et al., 1997; Pang et al., 2013; Agić et al., |
| 486 | 2015); the Roper Group, Australia (Javaux et al., 2001, 2004); the Chitrakut, Rampur and  |
| 487 | Deonar formations of the Semri Group and the Bahraich Group, India (Prasad and Asher,     |
| 488 | 2001; Prasad et al., 2005; Singh and Sharma, 2014); the Newland Formation of the Belt     |
| 489 | Supergroup, USA (Adam, 2014), and the Dalgokta and Dzhelindukon formations of the         |
| 490 | Kamo Group, Central Angara Basin, Siberia (Nagovitsin, 2009). Type III microbiotas may    |
| 491 | share some of the simple coccoids and filaments found in Type I biotas, but additionally  |
| 492 | include large structures such as Eosolena, Elatera, and Rectia magna, as observed in the  |
| 493 | Kotuikan and Ust'-II'ya formations of the Anabar Uplift, Siberia (Veis et al., 2001;      |
| 494 | Vorob'eva et al., 2015), and the McMinn Formation of the Roper Group, Australia (Peat et  |
| 495 | al., 1978).                                                                               |
|     |                                                                                           |

496 The Kaltasy assemblage clearly belongs to the Type III grouping. Morphologically 497 complex acritarchs are conspicuously absent, while large filaments like *Eosolena* and 498 *Rectia magna* are equally conspicuously present. The assemblages noted in the previous 499 paragraph are constrained by radiometric dating to fall within a single ca. 200 million year 500 time bloc, but we do not know that they are strictly coeval, leaving open the possibility that 501 differences among assemblages reflect evolutionary change. That said, we think it more 502 likely that differences among assemblages mainly reflect environmental distinctions. 503 Where assemblage composition has been tied to sedimentology and sequence stratigraphy 504 (e.g., Javaux et al., 2001; Vorob'eva et al., 2015), assemblages rich in ornamented 505 acritarchs tend to cluster in near-shore facies. The absence of such fossils in the Kaltasy 506 assemblage could thus reflect the open marine setting of these fossils. The large 507 microfossils that characterize Type III assemblages reflect benthos, probably photosynthetic, growing on the seafloor. In many Paleoproterozoic and Mesoproterozoic 508 509 basins, basinal shales accumulated beneath anoxic and sometimes sulfidic waters, 510 restricting the environmental amplitude of benthic eukaryotes. In the Kaltasy basin, 511 however, basinal environments were oxic (Sperling et al., 2014), allowing eukaryotes to 512 flourish. Perhaps, then, these assemblages reflect a co-occurrence of moderate depth and 513 oxic waters not broadly observed in basins of this age. Consistent with this interpretation, 514 Type III assemblages of the Kotuikan Formation, Siberia, were deposited during maximum 515 flooding in shales that drape large stromatolitic bioherms; according to Vorob'eva et al. 516 (2015), deposition took place between storm and fair weather wave base. Iron speciation 517 chemistry is not available for this basin but the presence of large, apparently eukaryotic 518 benthos in shales deposited during maximum flooding implies oxic waters in relatively 519 basinal environments.

520 Sedimentological constraints for Type I assemblages are little explored, but it is521 likely that all three major assemblage types and variations on these themes reflect

522 deposition along a gradient from near-shore, predominantly lagoonal facies to basinal 523 marine environments deposited beneath tens to more than a hundred meters of seawater. 524 Ecological variation along environmental depth gradients is characteristic of modern 525 oceans, and it has been documented previously in both younger and contemporaneous 526 Proterozoic basins (Knoll, 1984; Butterfield and Chandler, 1992; Javaux et al., 2001). 527 Diversity is commonly highest in mid-shelf environments that are neither restricted by 528 coastal environmental variation nor inhibited by anoxic subsurface waters that mix upward 529 in open marine settings (Veis, Petrov, 1994 a,b; Petrov, Veis, 1995). The hypothesis 530 proposed by Veis et al. (2000) that Kaltasy microfossils are distinct because of their 531 Neoproterozoic age is falsified by radiometric age constraints as well as chemostratigraphic 532 data. Our work, however, helps to explain why Veis could have been misled (see also 533 Sergeev et al., 1995), including a greater appreciation that many Proterozoic acritarchs 534 have long stratigraphic ranges and the local, environmentally mediated absence in Veis' 535 assemblages of those few morphologically complex taxa that do seem to be restricted to 536 lower Mesoproterozoic rocks. Paradoxically, associations of evolutionarily conserved 537 cyanobacteria may prove biostratigraphically informative in some Mesoproterozoic 538 successions, because they are closely tied to physical environments that themselves are 539 limited in time (Knoll and Sergeev, 1995; Sergeev et al., 1995; Sergeev, 2006, 2009). 540

#### 541 6. Conclusion

542

The microbiota of the lower Mesoproterozoic Kaltasy Formation, Cis-Ural Area, East European Platform contains a moderately diverse assemblage of (cyano)bacterial and eukaryotic microorganisms. Kaltasy shales are unusual among Mesoproterozoic strata in recording a depositional environment that was both basinal (but within the photic zone) and oxic, and this helps to explain the distinctive features of Kaltasy microfossils. Thus, the

| 548 | Kaltasy microfossils provide a fresh reminder that Proterozoic microfossils vary as a function |
|-----|------------------------------------------------------------------------------------------------|
| 549 | of both time and space, and inferences about evolution or biostratigraphy cannot be drawn in   |
| 550 | the absence of information about the physical and chemical dimensions of depositional          |
| 551 | setting. That relatively large multicellular remains occur in basinal, oxic environments       |
| 552 | indicates that aspects of early eukaryotic evolution may have occurred in environments not     |
| 553 | commonly sampled by paleontologists (a similar argument has been made concerning early         |
| 554 | evolution in non-marine environments; Wellman and Strother, 2015). In general, sharper         |
| 555 | paleoenvironmental and radiometric constraints on informative microfossil assemblages will     |
| 556 | help us to build a better evolutionary and biostratigraphic understanding of life in mid-      |
| 557 | Proterozoic oceans                                                                             |
| 558 |                                                                                                |
| 559 | 7. Systematic paleontology                                                                     |
| 560 |                                                                                                |
| 561 | 7.1. Location of specimens within maceration slides                                            |
| 562 |                                                                                                |
| 563 | Figure legends identify the slide containing the fossil, borehole and sample number,           |
| 564 | location of the specimen within the fossiliferous maceration slide (denoted by the number      |
| 565 | of the point above the specimen on an overlay-map attached to the palynological slide and      |
| 566 | by England Finder Slide coordinates for the specimen), and the catalog number of the           |
| 567 | specimen in the GIN paleontological collection. Thus, for the specimen of Pseudodendron        |
| 568 | anteridium shown in Fig. 8.3, (203B)-40-3, p. 1, E57[3], 14712-86 indicates that the           |
| 569 | illustrated fossil is from 203 Bedryazh borehole (for borehole index abbreviations see         |
| 570 | caption to Fig. 1) and occurs in maceration slide 40-3, prepared from rock sample 40           |
| 571 | obtained from the Kaltasy Formation (Fig. 2); that within this maceration slide, the fossil    |
| 572 | occurs at location point 1 and within the England Finder Slide E57[3] area; and that the       |
| 573 | specimen itself is cataloged as GINPC 14712-86. For the samples collected by the late          |

- A.F. Veis from the 133 Azino-Pal'nikovo borehole, sampled intervals are indicated by
- sample number. Thus, for the specimen of *P. anteridium* shown in Fig. 8.2, (133AP)-2760-
- 576 2765-1, p. 4, H36[3], 14712-2764, the sampled interval is 2760-2765.
- 577 In this study, we provide the descriptions of new and key importance for Proterozoic
- 578 paleobiology and biostratigraphy as well as for the taxonomy of the Kaltasy taxa. Well-
- known and broadly distributed/ long-ranging taxa are not described in detail; however, their
- 580 morphometric characteristics are briefly provided above.
- 581
- 582 7.2. Sphaeromorph, disphaeromorph and netromorph acritarchs
- 583 Genus *Leiosphaeridia* Eisenack, 1958, emend. Downie and Sarjeant, 1963
- 584 *Type species: Leiosphaeridia baltica* Eisenack, 1958
- 585 Leiosphaeridia (?)wimanii Brotzen, 1941, emend. and comb. Butterfield (in Butterfield et al.,
- 586 1994)
- 587 Figures 4.11, 4.12, and 4.13
- 588 Das Fossil aus der Visingsögruppe Wiman, 1894, pl. 5, Figs. 1-5.
- 589 Chuaria wimani Brotzen, 1941, p. 258-259.
- 590 *Kildinella magna* Timofeev, 1969, p. 14, pl. 6, Figs. 4-5.
- 591 Chuaria circularis Walcott, 1899 (partim): Ford and Breed, 1973, pl. 62, Fig. 3.
- 592 Shouhsienia shouhsienensis Xing (Hsing) in Zhang et al., 1991 p. 120, pl. 1, Figs. 16-26.
- 593 *Chuaria wimanii* Butterfield *in* Butterfield et al., 1994, p. 42-43, Figs. 13D-13F (see Zhang et al., 1991, for
- additional synonymy).
- 595 *Description:* Spheroidal vesicles 800-1000 µm in diameter; walls translucent, about 0.5-1.0
- 596  $\sim \mu m$  thick; surface texture smooth or fine-grained, with numerous fine folds oriented
- 597 subparallel to cell margin.
- 598 *Material examined*: Nine well-preserved specimens.
- 599 *Occurrence*: Widely distributed in Proterozoic rocks.
- 600 *Remarks: Chuaria* is a formal taxon incorporating large spherical microfossils with robust
- opaque walls that are the remains of either unicellular eukaryotic cells or empty envelopes

- of prokaryotic colonies (See Vidal and Ford, 1985; Fairchild, 1985; Yankauskas, 1989;
- Butterfield et al., 1994; Sergeev, 2006; Sergeev et al., 2012 for additional discussion).
- Based on SEM observations of material from the type locality, Butterfield in Butterfield et
- al., 1994, suggested that *Chuaria* should be restricted to spheroidal fossils with wall thicker
- than 2  $\mu$ m. We follow the Butterfield et al., 1994, classification here; uncertainty about
- species attribution reflects a broader uncertainty about how many species of exceptionally
- 608 large *Leiosphaeridia* may exist.

609

610 *Leiosphaeridia* sp.

611 Figures 4.8 – 4.10

- 612 Description: Solitary, spheroidal, single-walled vesicles 140 to 390 µm in diameter with
- robust, translucent, chagrinate walls 2  $\mu$ m thick that are commonly ruptured and exhibit
- what may be biological openings (n = 8,  $\mu$ = 225  $\mu$ m,  $\sigma$  = 103, RSD = 45%). Some vesicles
- 615 contain a spheroidal cyst-like inclusion up to 350-370 µm in diameter, with a translucent
- wall 0.5-1.0  $\mu$ m thick (Fig. 4.9). Vesicle surface fine-grained and smooth, with occasional

617 possible striations.

- 618 *Material examined*: Eight well-preserved specimens.
- 619 *Discussion*: Members of the genus *Leiosphaeridia* are among the most commonly
- 620 occurring sphaeromorph acritarchs known from Precambrian sediments. Like Valeria, this
- 621 population shows both medial splits and, occasionally, a striation-like surface pattern.
- 622 Recently Pang et al. (2015) suggested that in *Valeria* the striation-like surface functioned as
- a mechanism to guide biologically programmed excystment through medial split. In our
- specimens, however, possible striations could be diagenetic, and so we prefer to classify
- 625 this form as *Leiosphaeridia* sp.
- 626

627 (?) Genus Moyeria Thusu, 1973

- 628 Type species: Moyeria cabottii (Cramer, 1970), emend. Miller and Eames, 1982
- 629 (?)*Moyeria* sp.
- 630 Figures 5.10, 5.11 and 5.12?
- 631 Leiosphaerid with multiple folds: Sperling et al., 2014, Figs. 4.4 and 4.4a
- 632 *Description:* Vesicle ellipsoidal, fusiform or spindle-shaped; wall consisting of 14 well
- 633 developed pleats twisted spirally and oriented parallel to the vesicle's longitudinal axis.
- 634 Pleats overlapping without intermediate space, but also without septa or diaphragm.
- 635 Vesicle 240  $\mu$ m long and 200  $\mu$ m wide; pleats 5-18  $\mu$ m wide. Vesicle translucent, with
- 636 psilate surface; wall about  $1 \mu m$  thick.
- 637 *Material examined*: One well-preserved specimen and another problematic vesicle.
- 638 *Remarks:* This form is similar to *Moyeria* species described from the Paleozoic deposits
- (Molyneux et al., 2008; Le Hèrissè et al., 2013) and interpreted as euglenid pellicles.
- 640 However, only one well-preserved specimen has been found and therefore we defined it as
- 641 (?)*Moyeria* sp. Whether it bears any close phylogenetic relationship to Paleozoic
- 642 populations is unclear.
- 643
- 644 Genus Navifusa Combaz et al., 1967
- 645 *Type species: Navifusa bacilla* (Deunff, 1955).
- 646 Navifusa sp.
- 647 Figures 5.13 5.15
- 648 *Description*: Solitary single-layered nonseptate ellipsoidal vesicles with rounded ends.
- 649 Vesicle walls translucent to opaque, coarse-grained, 1.0-2.0 μm thick. Ellipsoids 300-550 μm
- long and 190-375  $\mu$ m wide (n=3); length/width ratio 1.7-1.5.
- 651 *Material examined*: Nine variously preserved specimens.
- 652 *Remarks*: These ellipsoidal microfossils from the Kaltasy Formation were identified in open
- nomenclature as *Navifusa* sp. They are larger than ellipsoidal akinetes of nostocalean

- 654 cyanobacteria Archaeoellipsoides (= Brevitrichoides), which can be abundant in
- Mesoproterozoic peritidal facies (Sergeev et al., 1995); most likely, the Kaltasy specimens are
- the remains of eukaryotic microorganisms. We cannot exclude the possibility that some
- 657 specimens assigned to *Navifusa* sp. (e.g., Fig. 5.14) are sphaeromorphic vesicles elongated in
- an early stage of binary cell division.
- 659
- 660 Genus Pterospermopsimorpha Timofeev, 1966, emend. Mikhailova and Yankauskas, in
- 661 Yankauskas, 1989
- 662 Type species: Pterospermopsimorpha pileiformis Timofeev, 1966
- 663 Pterospermopsimorpha pileiformis Timofeev, 1966, emend. Mikhailova, in Yankauskas,
- 664 1989
- 665 Figures 5.4 5.7
- 666 Pterospermopsimorpha pileiformis Timofeev, 1966, p. 34, pl. 5, Fig. 12; Mikhailova in Yankauskas, 1989, p.
- 667 49–50, pl. 3, Figs. 7 and 8; Veis and Petrov, 1994a, pl. 3, Fig. 15; Sergeev and Lee Seong-Joo, 2004, p. 18, pl.
- 668 3, Figs. 1–3, and 9; Sergeev, 2006, p. 231, pl. 30, Figs. 1-3, and 8; Sergeev et al., 2008, pl. 7, Figs. 1 and 2;
- 669 Sergeev and Schopf, 2010, p. 395, 396, Figs. 15.1, 15.2, 15.4, and 15.5; Vorob'eva et al., 2015, p. 217, 218,
- 670 Figs. 8.7, 8.9, and 8.10.
- 671 *Description*: Solitary spheroidal vesicles 110 to 315  $\mu$ m in diameter (n = 7,  $\mu$ = 130 $\mu$ m,  $\sigma$  =
- 672 96, RSD = 74%), defined by single-layered, 0.5- to 1.0- $\mu$ m-thick, medium-grained walls,
- which contain a large, opaque, more or less spheroidal body 95-180  $\mu$ m in diameter (n = 8,
- 674  $\mu = 123\mu m$ ,  $\sigma = 38$ , RSD = 30%), with a chagrinate superficial texture.
- 675 *Material examined*: Fifteen moderately well-preserved specimens.
- 676 *Occurrence*: Widely distributed in Meso- and Neoproterozoic microfossil assemblages.
- 677 *Remarks*: A well-known disphaeromorph acritarch, *Pterospermopsimorpha*, differs from
- sphaeromorph acritarchs by the presence a dark robust cyst-like inner body approximately
- 679 2/3 of the outer vesicle diameter. *Pterospermopsimorpha pileiformis* differs from other
- 680 species of *Pterospermopsimorpha* by its vesicle size and by the chagrinate surface of the

| 681 | inner body (Yankauskas, 1989). The specimen illustrated to Fig. 5.7 is similar to Simia,         |
|-----|--------------------------------------------------------------------------------------------------|
| 682 | with a flap-like membrane surrounding an inner translucent body, but it also could turn out      |
| 683 | to be poorly preserved Leiosphaeridia with a collapsed inner envelope layer.                     |
| 684 | Pterospermopsimorpha and the morphologically similar, predominantly Paleozoic                    |
| 685 | taxon <i>Pterospermella</i> are commonly interpreted as phycomata of prasynophyte algae          |
| 686 | (Teyssédre, 2006; Moczydłowska et al., 2011). This is reasonable for Paleozoic forms, but        |
| 687 | morphology in Proterozoic populations assigned to Pterospermopsimorpha is generally              |
| 688 | quite simple and so might have been generated by a number of distinct groups (e.g.,              |
| 689 | amoebas, see Margulis et al., 1983, Figs. 5D, 5H and 20B). Teyssédre (2006) considered           |
| 690 | that the name Pterospermopsimorpha was a waste-basket for many Precambrian acritarchs            |
| 691 | in which the so called wings are actually degraded protoplasmic residues. Not surprisingly,      |
| 692 | Pterospermopsimorpha has been reported from numerous silicilastic units ranging in age           |
| 693 | from early Mesoproterozoic through late Neoproterozoic. Disphaeromorphic                         |
| 694 | Pterospermopsimorpha-like morphologies are common among Proterozoic silicified                   |
| 695 | chroococcacean cyanobacteria where a central translucent sphere formed as a result of an         |
| 696 | inner sheath layer during post-mortum alteration (e.g., Knoll and Golubic, 1979, Fig. 6A-E;      |
| 697 | Sergeev, 2006, pl. 26, Figs. 1-9; pl. 40, Figs. 11, 12 and 15; pl. 41, Figs. 2 and 3; Sergeev et |
| 698 | al., 2012, pl. 7, Figs. 1-6; pl. 8, Figs. 9, 10 and 13).                                         |
| 699 |                                                                                                  |
| 700 | Genus Spiromorpha Yin et al., 2005                                                               |
| 701 | Type species: Spiromorpha segmentata (Prasad and Asher, 2001)                                    |

- 702 Spiromorpha aff. S. segmentata (Prasad and Asher, 2001) emend. and comb. Yin et al.,
- 703 2005
- Figures 5.8 and 5.9
- Navifusa segmentatus Prasad and Asher, 2001, p. 77, pl. 5, Figs. 4, 5, 14 and 15.
- 706 *Spiromorpha segmentata* Yin et al., 2005, p. 57, 60, Figs. 5.1, 5.4-5.8.

- 707 Description: Vesicle ellipsoidal, straight, empty inside, consisting of 7-12 strips twisted
- helically from one end to the other. Strips connected closely without any intermediate
- space and without septa or diaphragm in the vesicle interior, but with prominent connecting
- velds forming upraised crescent-like structures (Fig. 5.9, marked by arrows). Vesicle
- length about 125  $\mu$ m, vesicle width 45-55; spiral strips 7.5–9.5 $\mu$ m wide, welds 0.5-1.5  $\mu$ m
- and upraised  $1.5-2.5 \,\mu m$  above main vesicle body. Vesicle surface smooth; wall fine
- 713 grained about  $1 \mu m$  thick.
- 714 *Material examined*: One indifferently preserved specimen.
- 715 *Remarks*: The Kaltasy form is similar to *S. segmentata*, but differs slightly in the presence
- of upraised welded zones connecting adjacent strips. *Spiromorpha segmentata* has been
- reported from the middle part of the Beidajian Formation, upper Mesoproterozoic Ruyang
- 718 Group, Shanxi Province, China, and the Sarda and Avadh formations of the Ganga Basin,
- 719 India (Prasad and Asher, 2001). *Spiromorpha* has compared to modern conjugating green
- algae, but this comparision is superficial, and molecular clock inferences suggest that
- conjugating algae diverged as much as 700 million years after the time of Kaltasy
- deposition (Becker, 2013). We previously identified this Kaltasy specimen as
- 723 Brevitrichoides bashkiricus, misled by its poor preservation (Sperling et al., 2014, Figs. 4.6
- 724 and 4.6a).
- 725
- 726 7.3. Large filamentous forms
- 727 Genus *Eosolena* Hermann in Hermann and Timofeev, 1985
- 728 *Type species: Eosolena loculosa* Hermann (in Hermann and Timofeev, 1985).
- 729 Eosolena minuta Vorob'eva and Sergeev in Vorob'eva et al., 2015
- 730 Figures 6.7 6.9
- 731 *Eosolena loculosa* Hermann in Hermann and Timofeev, 1985 (partim): Veis et al., 2001, Fig. 2 ж.
- 732 Large trichome-like fossils: Veis and Petrov, 1994a, pl. 3, Figs. 1-3, 8, 10, 11, and 13; Veis et al., 2001, Fig. 2 T.
- *Eosolena minuta* Vorob'eva and Sergeev in Vorob'eva et al., 2015, p. 215, Figs. 6.3-6.5.

- 734 Description: Compressed, unbranched tubes separated by cross-ribs into partially isolated
- isometric chambers that communicate freely each with each other. Tubes with 90-160  $\mu$ m
- ross-sectional diameters, up to 360 μm long (incomplete specimen); tube walls translucent,
- variably constricted at prominent transverse walls, medium-grained, ca. 1-2 µm thick. Cross-
- ribs opaque,  $3-5 \,\mu m$  (possibly up to 9  $\mu m$ , but this isn't clearly visible) wide and 2-10  $\mu m$
- high; distance between cross-ribs ranges from 20 to 30  $\mu$ m.
- 740 *Material examined*: Five variously preserved specimens.
- 741 Occurrence: Early Mesoproterozoic: Kotuikan Formation, Anabar Uplift, Siberia; Kaltasy
- 742 Formation, Cis-Urals area, East European Platform.
- 743 Remarks: Eosolena minuta differs from E. loculosa and from E. anisocyta Hermann (in
- Hermann and Timofeev, 1985) in the smaller cross-sectional diameter of tubes: 75-205 µm
- vs. 200-800 and 450-750 µm, respectively, and from *E. anisocyta* in a lack of clear
- separation of the thallus into chambers (Yankauskas, 1989).
- 747
- 748 Genus Plicatidium Yankauskas, 1980
- 749 *Type species: Plicatidium latum* Yankauskas, 1980
- 750 Plicatidium latum Yankauskas, 1980
- 751 Figure 6.10
- 752 Plicatidium latum Yankauskas, 1980, p. 109, 110, pl. 12, Fig. 15; Yankauskas, 1989, p. 139, pl. 41, Figs. 3
- 753 and 4; Veis et al., 2000, pl. 2, Fig. 10; Sergeev et al., 2007, pl. 1, Fig. 19; Pang et al., 2015, Figs. 2A and 2B;
- 754 Vorob'eva et al., 2015, p. 216, Figs. 6.6-6.9.
- 755 *Description*: Compressed, unbranched tubes with thin elastic walls bearing numerous elastic
- r cross-ribs or fine folds broadly perpendicular to the tube axis. Tubes 160-170  $\mu$ m in cross-
- respectively sectional diameter, up to  $135 \,\mu m \log$  (incomplete specimen); tube walls translucent,
- medium-grained, ca. 1  $\mu$ m thick. Ribs opaque, 1.0-2.0 to 3-4  $\mu$ m wide and 0.5-1.5  $\mu$ m high;
- distance between ribs ranges from 5.5 to 7.5  $\mu$ m.

| 760 | Material examined: Two well-preserved specimens.                                                         |
|-----|----------------------------------------------------------------------------------------------------------|
| 761 | Occurrence: Widely distributed in Proterozoic microfossil assemblages.                                   |
| 762 | Remarks: We do not accept the emendation and merging of Plicatidium and Rugosoopsis                      |
| 763 | suggested by Pyatiletov, 1988 and Butterfield et al., 1994, as both the details of                       |
| 764 | morphology and mechanical properties of the two entities differ (rigid vs. elastic tubes; see            |
| 765 | Sergeev et al., 2007 and Vorob'eva et al., 2015, their Figs. 4C and 4D). Recently Pang et                |
| 766 | al., 2015 suggested a secondary origin for <i>Plicatidium</i> folds.                                     |
| 767 |                                                                                                          |
| 768 | PLACE FIGURE 10 NEAR HERE                                                                                |
| 769 |                                                                                                          |
| 770 | Genus Rectia Yankauskas, 1989                                                                            |
| 771 | Type species: Rectia costata (Yankauskas, 1980) comb. Yankauskas, 1989                                   |
| 772 | <i>Remarks: Rectia</i> was erected by Yankauskas in 1989 on the basis of sheaths with                    |
| 773 | annulations earlier described as <i>Siphonophycus costatus</i> (Yankauskas, 1980, 1982). The             |
| 774 | genus suffered many subsequent revisions and was considered as a junior synonym of                       |
| 775 | Cephalonyx (Butterfield et al., 1994) or Rugosoopsis (as Siphonophycus costatus,                         |
| 776 | Moczydlowska, 2008). We consider <i>Rectia</i> to be a distinct morphological entity, differing          |
| 777 | from <i>Rugosoopsis</i> by its pseudocellular, filamentous nature (in contrast to rugose surface of      |
| 778 | <i>Rugosoopsis</i> and <i>Plicatidium</i> ) and by its paired ring-like annulation (in contrast to large |
| 779 | isometric cells or cell-casts of <i>Cephalonyx</i> ). Earlier, similarly large pseudocellular            |
| 780 | filaments were described as <i>Striatella coriaceae</i> Asseeva (in Asseeva and Velikanov,               |
| 781 | 1983), but an earlier homonym (Mädler, 1964) renders this generic name illegitimate (see                 |
| 782 | Butterfield et al., 1994). <i>Botuobia</i> Pyatiletov, 1979 is another genus of morphologically          |
| 783 | similar filamentous microfossils embracing mainly sheaths with trichome cell imprints of                 |
| 784 | large diameter. <i>Botuobia magna</i> (Tynni and Donner, 1980) exceeds 100 µm in diameter                |
| 785 | but is still smaller than <i>Rectia magna</i> ; moreover, its surface is covered with septate cell       |
|     | - A                                                                                                      |

- casts without doubled annulations. Veis et al. (2000) identified these microfossils as
- 787 Botuobia, a taxon now considered to be a junior synonym of Tortunema (Butterfield in
- 788 Butterfield et al., 1994). Therefore, we have chosen describe the Kaltasy remains as a new
- species of *Rectia*. *Rectia magna* is probably the remains of eukaryotic filamentous
- microorganisms (Fig. 10). Some *Rectia* specimens superficially resemble the tightly coiled
- filaments of *Obruchevella* or *Spiromorpha*, but the bispiral pattern observed in these genera
- is not traceable in the tubes with prominent doubled annulations. Nor does it appear that the
- annulations originated as tubes rather than as reinforced sheets.

- 795 Rectia magna Sergeev, Knoll and Vorob'eva new species
- 796 Figures 6.1-6.6
- 797 Botuobia spp.: Veis et al., 2000, pl. 2, Figs. 9, 11, 13 and 20.
- 798 Ex gr. *Botuobia*: Veis et al., 2000, pl. 3, Fig. 5.
- *Diagnosis*: A species of *Rectia* with cross-sectional diameter 70-200 μm.
- 800 Description: Compressed, unbranched tubes tapering sharply at its terminus, with prominent
- 801 doubled annulations separated by thin-walled intervals. Cross sectional diameter 70-200 μm
- 802 (n = 7,  $\mu$ = 132 $\mu$ m,  $\sigma$  = 43, RSD = 32.5%); tubes up to 250  $\mu$ m long (incomplete specimens);
- tube walls translucent, medium-grained, ca. 1-2 μm thick. Pseudocellular, opaque, granulated,
- double annulations 3.0-10.5  $\mu$ m wide (n = 37,  $\mu$ = 6.5 $\mu$ m,  $\sigma$  = 2.3, RSD = 35%) and possibly
- $2-3 \,\mu\text{m}$  high with intervening areas 1.5-3.5  $\mu\text{m}$  and 0.5-2.0  $\mu\text{m}$  wide between doubled
- annulations and within pairs of annulations (when visible), respectively.
- 807 *Etymology*: From Latin *magna* large, great, with reference to the taxon's large size
- 808 compared with previously described species of *Rectia*.
- 809 *Type*: Figure 6.3, GINPC 14712-5408, borehole 133 Azino-Pal'nikovo, 2052 m depth (See
- 810 Veis et al., 2000, pl. 3, Fig. 5).
- 811 *Material examined*: Seven well-preserved and additionally poorly preserved specimens.

- 812 Occurrence: Lower Mesoproterozoic, Kaltasy Formation, Cis-Urals area, East European
- 813 Platform.
- 814 *Remarks: Rectia magna* is closely similar to *R. costata* Yankauskas (1980) in morphology
- and, in principle, the two could reflect a single biological entity. Two considerations
- prompt us to diagnose a new species of *Rectia*: the ages of the Kaltasy *Rectia* and *R*.
- 817 *costata* do not overlap (500 million year difference), and the size distributions of the two
- populations do not overlap (70-200 µm for *R. magna* vs. 35 µm for *R. costata*). These
- considerations are challenging for the hypothesis of biological uniformity, and so we prefer
- 820 keep these species separate, following common practice in paleobotany.
- 821
- 822 Genus Rugosoopsis Timofeev and Hermann, 1979
- 823 Type species: *Rugosoopsis tenuis* Timofeev and Hermann, 1979
- 824 *Rugosoopsis* sp.
- 825 Figures 6.11, 6.12
- 826 Rugosoopsis sp.: Sperling et al., 2014, Fig. 4.13.
- 827 Description: Compressed, unbranched rigid tubes containing numerous cross-ribs. Tubes 45-
- $350 \,\mu\text{m}$  in cross-sectional diameter (significantly large variance) and up to  $550 \,\mu\text{m}$  long
- 829 (incomplete specimen); tube walls translucent, medium-grained, ca. 1-2 μm thick. Ribs
- $1-2 \mu m$  wide; distance between ribs ranges from 6-10 to 20  $\mu m$ .
- 831 *Material examined*: Two moderately well preserved specimens.
- *Remarks*: This form differs from *R. tenuis* in its larger tube and thinner wall. Therefore, we
  have chosen to identify this form as *Rugosoopsis* sp.
- 834
- 835 7.4. Filamentous microfossils
- 636 Genus *Cephalonyx* A. Weiss, in Veis, 1984 emend. Butterfield, in Butterfield et al., 1994
- 837 Type species: *Cephalonyx coriaceus* (Asseeva) (in Asseeva and Velikanov, 1983)

- 838 *Cephalonyx* sp.
- 839 Figures 7.4 and 7.8
- 840 Oscillatoriopsis spp.: Veis et al., 2000, pl. 2, Fig. 8.
- 841 *Description*: Unbranched tubes with prominent doubled annulations separated by thin-walled
- intervals. Pseudocellular opaque granulated annulations 25-50 μm wide and 5-10 μm long
- tapering toward apices to 9-14  $\mu$ m and separated by translucent intervening areas 2.5-4.5  $\mu$ m
- long. Length of tube is about  $100 \ \mu m$  (incomplete specimen preserved).
- 845 *Remarks*: Here we follow the emended diagnosis of genus *Cephalonyx* suggested by
- 846 Butterfield in Butterfield et al., 1994, who interpreted these fossils as pseudocellular fossil
- sheaths. It may be that some specimens interpreted as sheaths are in fact compressed
- ensheathed trichomes in which cross walls have been lost (Golubic and Barghoorn, 1977;
- 649 Gerasimenko and Krylov, 1983; Hofmann and Jackson, 1994; Sergeev et al., 1995);
- 850 however, the Kaltasy population exhibits features best interpreted in terms of pseudocellular
- sheaths, especially the ripped ends of preserved filaments, where irregular edges cut across
- cell-like features (Fig. 7.8). This is expected if the fossils are sheaths, unexpected it they were
- actually trichomes. [See also *Cephalonyx* as, described by Veis (1984), which tapers toward
- apices and has large discoidal and S-like cell shapes probably preserved as casts with
- cyanobacterial sheaths.] Tapering toward apices may be original, but can also reflect *post*-
- 856 *mortem* shrinkage of filaments (Golubic and Barghoorn, 1977; Gerasimenko and Krylov,
- 1983; Sergeev, 1992; Knoll and Golubic, 1992). In its morphometric characteristics
- 858 *Cephalonyx* sp. resembles *Cephalonyx sibiricus* A.Weiss (in Veis, 1984), but in general is 859 smaller.
- 860 *Material examined*: Two moderately well-preserved specimens.
- 861

862 Genus Polytrichoides Hermann, 1974, emend. Hermann, in Timofeev et al., 1976

863 Type species: Polytrichoides lineatus Hermann, 1974

- 864 Polytrichoides aff. P. lineatus Hermann, 1974, emend. Hermann in Timofeev et al., 1976
- 865 Figure 7.1
- 866 *Polytrichoides lineatus* Hermann, 1974, p. 8, pl. 6, Figs. 3 and 4; Timofeev et al., 1976, p. 37, pl. 14, Fig. 7;
- 867 Yankauskas, 1989, p.119-120, pl. 30, Figs. 5a, 56, 6, and 7; Hermann, 1990, pl. 9, Figs. 8 and 8a; Schopf,
- 868 1992, pl. 27, Figs. A<sub>1</sub> and A<sub>2</sub>; Gnilovskaya et al., 2000, pl. 2, Figs. 16 and 17; Veis and Petrov, 1994a, pl. 2,
- 869 Figs. 25 and 27; Vorob'eva et al., 2006, Fig. 2e; Vorob'eva et al., 2009, p.188, Figs. 15.13 and 15.14; Sergeev et
- 870 al., 2012, p. 342, pl. 29, Figs. 6-8; Tang et al., 2013, p. 178, Fig. 14; Vorob'eva et al., 2015, p. 218, Figs. 9.5 and 9.7-
- **871** 9.11.
- 872 Majaphyton antiquam Timofeev and Hermann, 1979 (partim): Veis et al., 2000, pl. 3, Fig. 14.
- 873 Non *Polytrichoides lineatus*: Veis et al., 2000, pl. 2, Figs. 14 and 15 (For additional synonymy see Sergeev et
- 874 al., 2012 and Tang et al., 2013).
- 875 *Description*: Bundles of tubular structures closely grouped within a common cylindrical
- sheath that tapers toward ends. Tubular structures 1.5-4.5 µm in diameter, walls translucent,
- hyaline, 0.5-1.0 thick. The surrounding sheath is cylindrical, commonly tapering toward both
- closed and open ends, 25-45 μm wide and up to 350 μm long. Sheath walls translucent,
- 879 hyaline or fine grained,  $1-2 \mu m$  thick.
- 880 *Material examined*: A few poorly preserved specimens.
- 881 *Occurrence*: Widely distributed in Proterozoic microfossil assemblages.
- 882 *Remarks*: Like the broadly similar taxa *Eoschizothrix* Lee Seong-Joo and Golubic, 1998 and
- 883 *Eomicrocoleus* Horodyski and Donaldson 1980, filaments of *Polytrichoides* are commonly
- 884 compared with the modern polytrichomous hormogonian cyanobacteria *Microcoleus*,
- 885 *Hydrocoleum* or *Schizothrix* (See Sergeev et al., 2012).

- 887 Genus *Pseudodendron* Butterfield, in Butterfield et al., 1994
- 888 *Type species: Pseudodendron anteridium* Butterfield (in Butterfield et al., 1994).
- 889 Pseudodendron anteridium Butterfield, in Butterfield et al., 1994
- 890 Figures 8.1 8.3

- 891 Pseudodendron anteridium Butterfield, in Butterfield et al., 1994, p. 70, 72, Figs. 28A-28G, and 28J; Butterfield,
- 892 2009, Figs. 3A and 3B; Vorob'eva et al., 2015, p. 218, 219, Figs. 9.1-9.4.
- A broad filamentous sheath: Veis and Vorob'eva, 1992, pl. 1, Figs. 12, 15, and 20; Veis and Petrov, 1994a, pl. 3,
- Fig. 5; Veis et al., 2001, Fig. 20.
- A branching filament: Veis and Petrov, 1994a, pl. 3, Fig. 22.
- 896 Archaeoclada sp.: Veis et al., 2000, pl. 3, Figs. 16 and 17.
- 897 Pseudodendron aff. P. anteridium: Sperling et al., 2014, Fig. 4.11
- 898 *Description*: Heterogeneous branching thalli sometime tapering toward apices with an outer
- sheath and terminal expansion. Branching is lateral or dichotomous, and two levels of
- branching are clearly present. Thalli are translucent to opaque, with spumose texture. Sheath
- 901 translucent but not always visible; conspicuous at branch junctions where the sheath can occur
- 902 on the inside angle as a prominent subtriangular gusset. Thalli 25-125 µm in cross-sectional
- 903 diameter, up to 1000 µm long (incomplete specimen); sheath wall medium-grained, ca. 1-2
- 904  $\mu$ m thick.
- 905 *Material examined*: Approximately fifty well-preserved specimens.
- 906 Occurrence: Widely distributed in Proterozoic microfossil assemblages.
- 907 *Remarks*: This form is compared with either branching filaments of cyanobacteria
- 908 (Butterfield et al., 1994) or eukaryotic algae.
- 909
- Genus *Siphonophycus* Schopf, 1968, emend. Knoll and Golubic, 1979, emend. Knoll et al.,
  1991
- 912 *Type species: Siphonophycus kestron* Schopf, 1968.
- 913 Siphonophycus punctatum Maithy, 1975, emend. Buick and Knoll, 1999
- 914 Figure 8.7
- 915 Siphonophycus punctatus Maithy, 1975, p. 137, pl. 1, Fig. 5.
- 916 Siphonophycus punctatum Buick and Knoll, 1999, p. 761, Figs. 6.2-6.4 and 6.6.

- 917 Asperatofilum experatus Hermann, in Yankauskas, 1989, p. 100, pl. 26, Fig. 16; Veis and Petrov, 1994a, pl.
- 918 1, Figs. 25 and 26, pl. 2, Fig. 26, pl. 3, Fig. 17; Veis et al., 2000, pl. 2, Figs. 5, 7, 17 and 21 (for additional
- 919 synonymy see Buick and Knoll, 1999).
- 920 Description: Unbranched solitary nonseptate tubes, cylindrical to slightly compressed and
- 921 32.0 to 64.0 μm broad, that rarely contain degraded trichomic thread-like amorphous
- fragments; tube walls range from smooth to fine-or medium-grained, 0.5 to 1.0 thick.
- 923 *Occurrence*: Widely distributed in Proterozoic microfossil assemblages.
- 924 *Material examined*: About a hundred well-preserved specimens.
- 925
- 926 Genus Tortunema Hermann, in Timofeev et al., 1976, emend. Butterfield, in Butterfield et
- 927 al., 1994
- 928 Type species: Tortunema Wernadskii (Schepeleva, 1960)
- 929 Tortunema patomica (Kolosov, 1982), emend. and comb. Butterfield (in Butterfield et al.,
- 930 1994)
- 931 Figures 7.3 and 7.5
- 932 Palaeolyngbya patomica Kolosov, 1982, p. 72, pl. 10, Fig. 1.
- 933 Botuobia patomica Kolosov, 1984, p. 48-49, pl. 9, Fig. 2; Yankauskas, 1989, p. 101, pl. 43, fig. 3.
- 934 *Botuobia angustata* Kolosov, 1984, p. 49-50, pl. 10, Fig. 1.
- 935 Botuobia diversa Kolosov, 1984, p. 50, pl. 11, Fig. 1.
- *Palaeolyngbya sphaerocephala* Hermann and Pylina in Hermann, 1986 (partim): Veis et al., 2000, pl. 2, Fig.
  6.
- 938 *Description*: Unbranched solitary cylindrical compressed tubes 45 to 50 μm broad (20 μm
- 939 in narrowest part) and tapering toward both ends; contains degraded opaque thread-like
- 940 fragments 10-15 μm wide. Tubes transparent or translucent, prominent, non-lamellated,
- about 0.5 μm thick and up to 400 μm long with clear annular lines 1-2 μm long separated
- 942 by intervening regions 5-7  $\mu$ m long.
- 943 *Material examined*: One well-preserved and a few medium to poorly preserved specimens.

- 944 Age and distribution: Mesoproterozoic: Kaltasy Formation, 203 Bedryazh and 133 Azino-
- 945 Pal'nikovo boreholes; Ediacaran, Kursov Formation, Siberia.
- 946 *Remarks: Tortunema* was originally erected to describe septate (pseudoseptate) sheaths that
- taper toward both ends. We follow here the formal classification of Butterfield in
- Butterfield et al., 1994, accepting *Botuobia* as a junior synonym of *Tortunema* and
- separating the latter into species on the basis of tube diameter, much like the convention for
- 950 Siphonophycus sheaths (Butterfield et al., 1994, p. 69). Although generally interpreted as
- 951 pseudosepatate sheaths, *Tortunema* might alternatively be considered trichomes which lost
- septa during diagenesis. This interpretation is unlikely for the Kaltasy population, both
- because ripped ends cut across "septa" (Fig. 7.3; see discussion of *Cephalonyx*) and
- because some specimens contain remnants of shrunken cells (Fig. 7.5), obviating
- 955 interpretation of the entire specimen as a trichome.
- 956
- 957 7.5. Miscellaneous microfossils
- 958 Genus Pellicularia Yankauskas, 1980
- 959 Type species: *Pellicularia tenera* Yankauskas, 1980
- 960 Pellicularia tenera Yankauskas, 1980
- 961 Figures 8.8, 8.9 and 8.10
- *Pellicularia tenera* Yankauskas, 1980, p. 110, pl. 12, Fig. 9; Yankauskas, 1989, p. 139, pl. 42, Figs. 3-5; Veis
  et al., 2000, pl. 3, Fig. 6.
- 964 Description: Fusiform-like and ribbon-like structures 25-70 µm across and up to 350 µm
- long, with longitudinal intertwined thread-like filaments 1-2 μm in diameter incorporated
- inside the main body. Walls translucent, about 1 μm thick, with folds 1-2 μm wide; surface
- 967 granular to shagrinate.
- 968 *Remarks*: Yankauskas (1980) described this taxon from the Neoproterozoic (Upper
- 969 Riphean) Schtanda Formation of Cis-Urals area, but his treatment has not been broadly

- CR

- 970 recognized. Veis et al. (2000) described it from the Kaltasy Formation, using this to argue
- 971 for a Neoproterozoic age. The affinities of the microfossils are uncertain.
- 972 *Material examined*: Four well-preserved specimens.
- 973 Age and distribution: Mesoproterozoic: Kaltasy Formation, 203 Bedryazh and 133 Azino-
- 974 Pal'nikovo boreholes; Neoproterozoic: Schtanda Formation, 62 Kabakovo borehole, Cis-
- 975 Urals area, East European Platform.
- 976
- 977 Unnamed Form 1
- 978 Figures 9.1, 9.2 and 9.3
- 979 *Description*: Translucent irregular ellipsoidal or elongated vesicles arranged in clusters
- from a few individuals joined each other by their walls. Vesicles  $100-265 \,\mu\text{m}$  across and
- 981 240-390  $\mu$ m long; surface reticulated, with a granulated wall 1.0-1.5  $\mu$ m thick.
- 982 *Material examined*: Five well-preserved specimens.
- 983 *Remarks*: Unnamed Form 1 exhibits a reticulated surface that could reflect *post-mortem*
- alteration. Clusters of vesicles could also formed by secondary aggregation of the dead cells.
- 985 Originally, therefore, these microorganisms could have been smooth-walled vesicles similar to
- 986 *Leiosphaeridia*. Given the large uncertainties in basic interpretation, we prefer to describe it
- 987 informally, noting only that it contributes to the overall diversity recorded by the Kaltasy
- 988 assemblage.
- 989
- 990 Unnamed Form 2
- 991 Figures 9.4, 9.5 and 9.6
- 992 Envelopes with problematic spines or pseudospines: Sperling et al., 2014, Fig. 4.5.
- 993 *Description*: Solitary, translucent to opaque vesicles of spherical and subspherical shape
- 150-785 μm across, but irregular in outlines. Vesicles bear blunt conical and elongated
- spine-like structures 40-130 µm wide (near base) and 15-65 µm long. Walls translucent,

- 996 medium-grained, 1.0-2.0 µm thick and sometime are surrounded by outer translucent
- 997 membrane about  $0.5 \,\mu$ m thick.
- 998 *Material examined*: Five relatively poorly preserved specimens.
- 999 *Remarks*: The origin of spine-like structures that cover the vesicle surface is uncertain;
- 1000 given their irregular shape, we suspect that these originated during diagenesis.
- 1001
- 1002 Unnamed Form 3
- 1003 Figures 9.7 and 9.10
- 1004 *Description*: Solitary, single-layered translucent spheroidal or ellipsoidal vesicles with
- 1005 rounded ends. Vesicle surface is covered with small spine-like structures sometimes
- surrounded by a halo- or membrane-like transparent structure. Vesicle diameter 35-100
- 1007  $\mu$ m; walls translucent, medium-grained, less than 1  $\mu$ m thick; spine-like structures 1.5-5
- 1008  $\mu$ m wide and 2-4  $\mu$ m long.
- 1009 *Material examined*: Twenty three variously preserved specimens.
- 1010 *Remarks*: The genesis of spine-like structures covering surfaces of Unnamed Form 3 is
- 1011 uncertain. They are probably of secondary origin, similar to many pseudospines
- 1012 observed on originally smooth surfaces of cyanobacteria (e.g., Sergeev et al., 1995,
- 1013 Fig. 7.10; 2012, pl. 7, Figs. 8-10, pl. 27, Fig. 5; Sergeev, 2006, pl. 1, Fig. 10, pl. 21,
- 1014 Figs. 10-13, pl. 23, Figs. 1-8). However, as in all previous cases (Unnamed Forms 1 and
- 1015 2) we cannot rule out an option that these structures are of primarily origin and so describe1016 them here only informally.
- 1017
- 1018 Unnamed Form 4
- 1019 Figures 9.8, 9.9, 9.11 and 9.12
- 1020 Paired envelopes of Leiosphaeridia jacutica: Sperling et al., 2014, Fig. 4.9

- 1021 Description: Elongated translucent to opaque vesicles, solitary, in pairs, or arranged in an
- 1022 echelon style 2 or 3 together. Vesicles translucent to opaque 100-350 µm wide and 180-
- 1023 500  $\mu$ m long, with wall up to 2  $\mu$ m thick (when visible), with a shagrinate surface and
- 1024 typically a system of perpendicular cracks or transverse annulations 1-3 µm wide in the
- 1025 equatorial regions.
- 1026 *Remarks*: These microfossils resemble microfossils recently described from Neoproterozoic

345

- 1027 deposits of China as *Pololeptus rugosus* (Tang et al., 2013). Similarities, however, could
- 1028 reflect diagenetic convergence.
- 1029 *Material examined*: Twenty well-preserved specimens.
- 1030
- 1031 Unnamed Form 5
- 1032 Figures 9.13 and 9.14
- 1033 Description: Elongated translucent solitary vesicles composed of two or three segments
- that communicate freely each to other, but with constrictions at conjunctions. Some
- 1035 vesicles exhibit elongated, blunt, horn-like protrusions. Vesicle surface fine-grained and
- 1036 covered with small dark irregular grains. Vesicle width 100-700 μm, length 135-815 μm;
- 1037 protrusions 10-15  $\mu$ m wide and 15-20  $\mu$ m long; walls 0.5-1.0  $\mu$ m thick.
- 1038 *Material examined*: Eight variously preserved specimens.
- 1039 *Remarks*: The morphology of the microfossils is quite unusual for Proterozoic
- 1040 microfossils. Upon recovery of better preserved samples, this population could deserve
- 1041 recognition as a new genus, but given the quality of our specimens and lingering
- 1042 uncertainty about diagenetic alteration, we describe it here only informally.

1043

#### 1044 Acknowledgements.

- 1045 We thank the late V.I. Kozlov, who facilitated this research and Heda Agić and an
- 1046 anonymous reviewer for comments that materially improved our paper. We also thank the
- 1047 NASA Astrobiology Institute (AHK) and RFBR Grants 13-05-00127, 14-05-00323 and the
- 1048 Program of the Presidium of Russian Academy of Sciences 30 (VNS and NGV) for

#### 1050 References

| 1   |    | 1 |
|-----|----|---|
| - 1 | כט |   |
|     |    |   |

| 1052 | Adam, Z.R., 2014           | Microfossil     | Paleontology | and Biostratigra | aphy of the E  | arlv |
|------|----------------------------|-----------------|--------------|------------------|----------------|------|
| 1052 | $\Lambda uann, L.K., 2017$ | . 1011010105511 | 1 alcomology | and Diostratigit | ipity of the L | JIIY |

- 1053 Mesoproterozoic Belt Supergroup, Montana. Unpublished Ph.D. thesis, Montana
- 1054 State University.
- 1055 Agić, H., Moczydłowska, M., Yin, L., 2015. Affinity, life cycle, and intracellular
- 1056 complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi,
- 1057 China. Journal of Paleontology 89, 28-50.
- Anbar, A.D., Knoll, A.H., 2002. Proterozoic ocean chemistry and evolution: a bioinorganic
  bridge? Science 297, 1137-1142.
- 1060 Asseeva, E.A., Velikanov, V.A., 1983. New finds of the fossilized plant remains in the
- 1061 Vendian Layadovskaya layers of Podolia (Upper Precambrian), in: Fossil fauna and1062 flora of Ukraine. Naukova Dumka, Kiev, pp. 3-8 (In Russian).
- 1063 Bartley, J. K., 1996. Actualistic taphonomy of cyanobacteria: implications for the
- 1064 Precambrian fossil record. Palaios 11, 571-586.
- Becker, B., 2013. Snow ball Earth and the split of Streptophyta and Chlorophyta. Trends in
  Plant Science 18, 180-183.
- Bhattacharya, S., Dutta, S., 2015. Neoproterozoic-Early Cambrian biota and ancient niche:
  A synthesis from molecular markers and palynomorphs from Bikaner-Nagaur

1069 Basin, western India. Precambrian Research 266, 361-374.

- 1070 Brotzen, F., 1941. Några bidrag till visingsöformationens stratigrafi och tektonik. Geologiska
  1071 Foreningens Forhandlingar 63, 245-261.
- 1072 Buick, R., Knoll, A.H., 1999. Acritarchs and microfossils from the Mesoproterozoic
- Bangemall Group, Northwestern Australia. Journal of Paleontology 73, 744-764.

- Butterfield, N.J., 2009. Modes of pre-Ediacaran multicellularity. Precambrian Research
  1075 173, 201-211.
- 1076 Butterfield, N.J., Chandler, F.W., 1992. Paleoenvironmental distribution of Proterozoic
- 1077 microfossils, with an example from the Agu Bay Formation, Baffin Island.
- 1078 Palaeontology 35, 943–957.
- 1079 Butterfield, N.J., Knoll, A.H., Swett, K., 1994. Paleobiology of the Neoproterozoic
- 1080 Svanbergfjellet Formation, Spitsbergen. Fossils and Strata 34, 1-84.
- 1081 Combaz, A., Lange, F.W., Pansart, J., 1967. Les "Leiofusidae" Eisenack, 1938. Review
- 1082 of Palaeobotany and Palynology 1, 207–307.
- 1083 Cramer, F.H., 1970. Distribution of selected Silurian acritarchs; an account of the
- 1084 palynostratigraphy and paleogeography of selected Silurian acritarch taxa. Revista
- 1085 Espanola de Micropaleontologia (numero extraordinario), 1-203, pis I-XXIII.
- 1086 Chumakov, N.M., Semikhatov, M.A. 1981. Riphean and Vendian of the USSR.
- 1087 Precambrian Research 15, 229–253.
- 1088 Deunff, J., 1955. Un microplancton fossile Dévonien a Hystrichosphéres du Continent
- 1089 Nord–Américain. Bulletin de la Microscopie Appliqué, Séries 2, 5, 138–149.
- 1090 Downie, C., Sarjeant, W.A.S., 1963. On the interpretation and status of some
- 1091 Hystrichosphere genera. Palaeontolgy 6, 83-96.
- Eisenack, A., 1958. Microfossilien aus dem Ordovizium des Baltikums. 1. Markasitschicht,
  Dictyonema-Scheifer, Glaukonitsand, Glaukonitkalk. Senckenbergian Lethaea 39,
  389–404.
- Elenkin, A.A., 1949. Monographia algarum Cyanophycearum aquidulcium et terrestrium in
  finibus URSS inventarum. Pars specialis (Systematica), Fasc. II. III. Hormogoneae
  (Geitl.) Elenk. Sumptibus Academiae Scientarum URSS, Moscow and Leningrad,
- 1098 pp. 985-1908 (In Russian).

| 1099 | Eme, L., Sharpe, S.C., Brown, M.W., Roger, A.W., 2014. On the age of eukaryotes:              |
|------|-----------------------------------------------------------------------------------------------|
| 1100 | Evaluating evidence from fossils and molecular clocks. Cold Spring Harbor                     |
| 1101 | Perspectives in Biology, doi: 10.1101/cshperspect.a016139.                                    |
| 1102 | Fairchild, T.R., 1985. Size as a criterion for distinguishing probable eukaryotic unicells in |
| 1103 | silicified Precambrian microfloras. 8th Congresso Brasileiro de Paleontologia, Rio            |
| 1104 | de Janeiro. Sociedade Brasileira de Paleontologia. Anais (MME-DNPM. Sèrie                     |
| 1105 | Geologia n. 27), pp. 1-8.                                                                     |
| 1106 | Ford, T.D., Breed, W., 1973. The problematical Precambrian fossil Chuaria. Palaeontology      |
| 1107 | 16, 535-550.                                                                                  |
| 1108 | Gerasimenko, L.M., Krylov, I.N., 1983. Post-Mortem changes in cyanobacteria from the          |
| 1109 | algal-bacterial mats of thermal springs. Doklady Akademii Nauk SSSR 172(1),                   |
| 1110 | 201–203 (In Russian).                                                                         |
| 1111 | Giovannoni, S.J., Turner, S., Olsen, G.J., Barns, S., Lane, D.J., Pace, N.R., 1988.           |
| 1112 | Evolutionary relationships among cyanobacteria and green chloroplasts. Journal of             |
| 1113 | Bacteriology 170, 3584-3592.                                                                  |
| 1114 | Gnilovskaya, M.B., Veis, A.F., Bekker, Y.R., Olovyanishnikov, V.G., Raaben, M.E., 2000.       |
| 1115 | Pre-Ediacaran fauna from Timan (Annelidomorphs of the Late Riphean).                          |
| 1116 | Stratigraphy and Geological Correlation 8, 11-39.                                             |
| 1117 | Golubic, S., Barghoorn, E.S., 1977. Interpretation of microbial fossils with special          |
| 1118 | reference to the Precambrian, in: Flügel, E. (Ed.), Fossil algae. Berlin-Heidelberg-          |
| 1119 | N.Y., Springer-Verlag, pp. 1–14.                                                              |
| 1120 | Golubic, S., Sergeev, V.N., Knoll, A.H., 1995. Mesoproterozoic Archaeoellipsoides:            |
| 1121 | akinetes of heterocystous cyanobacteria. Lethaia 28, 285–298.                                 |
| 1122 | Gorozhanin, V.M., 1995. Candidate's Dissertation in Geology and Mineralogy                    |

1123 (Yekaterinburg, 1995).

- 1124 Gray, J., Boucot, A.J., 1989. Is Moyeria a euglenoid? Lethaia 22, 447–456. DOI
- 1125 10.1111/j.1502-3931.1989.tb01449.x
- 1126 Grey, K., 1999. A modified palynological preparation technique for the extraction of large
- 1127 Neoproterozoic acanthomorphic acritarchs and other acid insoluble microfossils.
- 1128 Gelogical Survey of Western Australia Record 10, 1-23.
- 1129 Grey, K., 2005. Ediacaran palynology of Australia. Memoir of the Association of
- 1130 Australasian Palaeontologists 31, 1-439.
- 1131 Guilbaud, R., Poulton, S.W., Butterfield, N.J., Zhu, M.Y., Shields-Zhou, G.A., 2015. A
- 1132 global transition to ferruginous conditions in the early Neoproterozoic oceans.
- 1133 Nature Geoscience 8, 466-468.
- 1134 Le Hérissé, A., Paris, F., Steemans, P., 2013. Late Ordovician–earliest Silurian
- 1135palynomorphs from northern Chad and correlation with contemporaneous deposits
- 1136 of southeastern Libya. Bulletin of Geosciences 88(3), 483–504.
- 1137 Hermann, T.N., 1974. Finds of massive accumulations of trichomes in the Riphean, in:
- 1138 Timofeev, B.V. (Ed.), Microfossils of Proterozoic and early Paleozoic of the USSR.
- 1139 Nauka, Leningrad, pp. 6-10 (In Russian).
- 1140 Hermann, T.N., 1986. The finds of filamentous blue-green algae in the Upper Precambrian
- 1141 (the Miroedikha Formation), in: Actual problems of modern paleoalgology.
- 1142 Naukova Dumka, Kiev, pp. 37-40 (In Russian).
- Hermann, T.N., 1990. Organic world a billion years ago. Nauka, Leningrad (In Russian,
  with English summary).
- Hermann, T.N., Podkovyrov, V.N., 2009. New insights into the nature of the Late Riphean *Eosolenides*. Precambrian Research 173, 154-162.
- 1147 Hermann, T.N., Podkovyrov, V.N., 2014. Formation of an unusual form of Riphean
- 1148 *Eosolenides*. Paleontological Journal 48, 345–352.

- 1149 Hermann, T.N., Timofeev, B.V., 1985. *Eosolenides*, a new group of problematic
- organisms from the Late Precambrian, in: Problematics of the Late Precambrian and
  Paleozoic. Nauka, Novosibirsk, pp. 9-15 (In Russian).
- Hofmann, H.J., Jackson, G.D., 1994. Shale-facies microfossils from the Proterozoic Bylot
  Supergroup, Baffin Island, Canada. Palaeontological Society Memoir 37, 1-39.
- 1154 Horodyski, R.J., Donaldson, J.A., 1980. Microfossils from the Middle Proterozoic Dismal

1155 Lakes Group, Arctic Canada. Precambrian Research 11, 125-159.

- 1156 Ishida, T., Watanabe M.K., Sugiyama J., Yokota, A., 2001. Evidence for polyphyletic
- 1157 origin of the members of the orders of Oscillatoriales and Pleurocapsales as
- determined by 16S rDNA analysis. FEMS Microbiology Letters 201, 79-82.
- Javaux, E.J., Knoll, A.H., Walter, M.R., 2001. Morphology and ecological complexity in
  early eukaryotic ecosystems. Nature 412 (6872), 66–69.
- Javaux, E.J., Knoll, A.H., Walter, M.R., 2004. TEM evidence for eukaryotic diversity in
  mid-Proterozoic oceans. Geobiology 2, 121–132.
- 1163 Johnston, D.T, Wolfe-Simon, F., Pearson, A., Knoll. A.H., 2009. Anoxygenic
- 1164 photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age.
- 1165 Proceedings of the National Academy of Sciences, USA 106, 16925–16929.
- 1166 Kah, L.C., Crawford, D.C., Bartley, J.K., Kozlov, V.I., Sergeeva, N.D., Puchkov, V.N.
- 2007. C- and Sr-isotope chemostratigraphy as a tool for verifying age of Riphean
  deposits in the Kama-Belaya Aulacogen, the East European Platform. Stratigraphy
  and Geological Correlation 15, 12–29.
- 1170 Keller, B.M., Chumakov, N.M. (Eds.), 1983. Stratotype of the Riphean, Stratigraphy,
  1171 Geochronology. Nauka, Moscow (In Russian).
- 1172 Knoll, A.H., 1984. Microbiotas of the Late Precambrian Hunnberg Formation,

1173 Nordaustlandet, Svalbard. Journal of Paleontology 58, 131–162.

1174 Knoll, A.H., Golubic, S., 1979. Anatomy and taphonomy of a Precambrian algal

stromatolite. Precambrian Research 10, 115–151.

- 1176 Knoll, A.H., Golubic, S., 1992. Living and Proterozoic cyanobacteria, in: Schidlowski, M.,
- 1177 et al. (Eds.), Early organic evolution: Implication for mineral and energy resources.
- 1178 Springer-Verlag, Berlin, pp. 450–462.
- 1179 Knoll, A.H., Sergeev, V.N., 1995. Taphonomic and evolutionary changes across the
- 1180 Mesoproterozoic-Neoproterozoic transition. Neues Jabrbuch für Geologie und
- 1181Paläontologie Abhandlungen 195 (1/3), 289-302.
- 1182 Knoll, A.H., Sweet, K., Mark, J., 1991. Paleobiology of a Neoproterozoic tidal
- 1183flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen. Journal
- 1184 of Paleontology 65, 531-570.
- 1185 Knoll, A.H., Summons, R.E., Waldbauer, J., Zumberge, J., 2007. The geological
- 1186 succession of primary producers in the oceans, in: Falkowski, P., Knoll, A.H.
- 1187 (Eds.), The evolution of primary producers in the sea. Elsevier, Burlington, pp. 133-
- 1188 163.
- 1189 Kodner, R.B., Summons, R.E., Pearson, A., Knoll, A.H., 2008. Sterols in red and green
- algae: quantification, phylogeny and relevance for the interpretation of geologicsteranes. Geobiology 6, 411-420.
- Kolosov, P.N., 1982. Upper Precambrian paleoalgological residues from the SiberianPlatform. Nauka, Moscow (In Russian).
- Kolosov, P.N., 1984. Late Precambrian microorganisms from the Eastern Siberian Platform.
  Yakutskii Filial AN SSSR, Yakutsk (In Russian).
- 1196 Kozlov, V.I., Muslimov, R. Kh., Gatiyatullin, N.S. et al., 1995. Upper Precambrian of
- 1197 Eastern Tatarstan: Implications for Oil and Gas Prospecting. Institute of Geology,
- 1198 Ufa (in Russian).

| 1199 | Kozlov, V.I., Sergeeva, N.D., 2011. Upper Proterozoic of the Volgo-Ural region.         |
|------|-----------------------------------------------------------------------------------------|
| 1200 | Stratigraphy and composition, Geology. Proceedings on the Earth Sciences and            |
| 1201 | Mineral Resources of the Academy of Sciences of Bashkirian Republic 17, 58-80           |
| 1202 | (In Russian).                                                                           |
| 1203 | Kozlov, V.I., Sergeeva, N.D., Mikhailov, P.N., 2009. Stratgraphic subdivision of the    |
| 1204 | boundary Upper Riphean, Vendian and Paleozoic deposits of western                       |
| 1205 | Bashkortostan. Bulletin of the Regional Interdepartmental Stratigraphic                 |
| 1206 | Commission on the Central and Southern Parts of the Russian Plate 4, 40-44 (In          |
| 1207 | Russian).                                                                               |
| 1208 | Kozlov, V.I., Puchkov, V.N., Sergeeva, N.D., 2011. New Chart of Geological Succession   |
| 1209 | Revealed by the Parametric Borehole 1 Kulguninskaya. Institute of Geology, Ufa,         |
| 1210 | (In Russian).                                                                           |
| 1211 | Krasnobaev, A., Kozlov, V.I., Puchkov, V.N., Busharina, S.V., Sergeeva, N.D., Paderin,  |
| 1212 | I.P., 2013a. Zircon geochronology of the Mashak volcanic rocks and the problem of       |
| 1213 | the age of the lower-middle Riphean boundary (Southern Urals). Stratigraphy and         |
| 1214 | Geological Correlation 21, 465–481.                                                     |
| 1215 | Krasnobaev, A.A., Puchkov, V.N., Kozlov, V.I., Sergeeva, N.D., Busharina, S.V.,         |
| 1216 | Lepekhina, E.N., 2013b. Zirconology of Navysh volcanic rocks of the Ai suite and        |
| 1217 | the problem of the age of the Lower Riphean boundary in the Southern Urals.             |
| 1218 | Doklady Earth Sciences 448, 185-190.                                                    |
| 1219 | Kumar, S., Srivastava, P., 1995. Microfossils from the Kheinjua Formation,              |
| 1220 | Mesoproterozoic Semri Group, Newari area, central India. Precambrian Research           |
| 1221 | 74,91-117                                                                               |
| 1222 | Lee Seong-Joo, Golubic, S., 1998. Multi-trichomous cyanobacterial microfossils from the |
| 1223 | Mesoproterozoic Gaoyuzhuang Formation, China: Paleontological and taxonomic             |
| 1224 | implications. Lethaia 31,169-184.                                                       |

- 1225 Littler, M.M., Littler D.S, Blair, S.M. Norris, J.N., 1985. Deepest known plant life
- discovered on an uncharted seamount. Science 227, 57-59.
- 1227 Mädler, K., 1964. Bemerkenswerte Sporenformen aus dem Keuper und unteren Lias.
- 1228 Fortschritte in der Geologie von Rheinland and Westfalen 12, 169-170.
- 1229 Maithy, P.K., 1975. Micro-organisms from the Bushimay System (Late Precambrian) of
- 1230 Kanshi, Zaire. Palaeobotanist 22,133-149.
- 1231 Margulis, L., Grosovski, B.D.D., Stolz, J.F., Gong-Collins, E.J., Lenk, S., Read, D., Lopèz-
- 1232 Cortès, A., 1983. Distinctive microbial structure and the pre-Phanerozoic fossil
- record. Precambrian Research 20, 443–478.
- 1234 Margulis, L., Corliss, J.O., Melkonnian, M. Chapman, D.J. (eds.), 1990. Handbook of
- 1235 Protoctista. Jones and Barlett, Boston.
- 1236 Miller, A., Eames, L., 1982. Palynomorphs from the Silurian Medina Group (Lower
- 1237 Llandovery) of the Niagara Gorge, Lewiston, New York, U.S.A. Palynology 6,1238 221–254.
- 1239 Moczydłowska, M., 2008. New records of late Ediacaran microbiota from Poland.
- 1240 Precambrian Research 167, 71-92.
- 1241 Moczydłowska, M., 2010. Life cycle of Early Cambrian microalgae from the Skiagia-
- 1242 plexus acritarchs. Journal of Paleontology 84, 216-230.
- Moczydłowska, M., 2015. Algal affinities of the Ediacaran and Cambrian organic-walled
  microfossils with internal reproductive bodies: *Tanarium* and other morphotypes.
  Palynology 40, 83-121 doi: 10.1080/01916122.2015.1006341.
- 1246 Moczydłowska, M., Schopf, J.W., Willman, S., 2010. Micro- and nano-scale ultrastructure
- of cell walls in Cryogenian microfossils: revealing their biological affinity. Lethaia43, 129-136.
- 1249 Moczydłowska, M., Landing, E., Zhang, W., Palacios, T., 2011. Proterozoic phytoplankton
- and timing of chlorophyte algae origin. Palaeontology 54, 721–733.

1251 Molyneux, S.G., Barron, H.F., Smith R.A., 2008. Upper Llandovery-Wenlock (Silurian)

1252 palynology of the Pentland Hills inliers, Midland Valley of Scotland. Scottish

- 1253 Journal of Geology 44, 151-168.
- 1254 Nagovitsin, K., 2009. Tappania-bearing association of the Siberian platform: Biodiversity,
- stratigraphic position and geochronological constraints. Precambrian Research 173,
  137-145.
- 1257 Pang, K., Tang, Q., Schiffbauer, J.D., Yao, J., Yuan, X., Wan, B., Chen, L., Ou, Z., Xiao,
- S., 2013. The nature and origin of nucleus-like intracellular inclusions in
  Paleoproterozoic eukaryote microfossils. Geobiology 11, 499–510.
- 1260 Pang, K., Tang, Q., Yuan, X., Wan, B., Xiao, S., 2015. A biomechanical analysis of the
- early eukaryotic fossil *Valeria* and new occurrence of organic-walled microfossils
  from the Paleo-Mesoproterozoic Ruyang Group. Palaeoworld 24, 251–262.
- 1263 Parfrey, L., Lahr, D., Knoll, A.H., Katz, L.A., 2011. Estimating the timing of early
- 1264 eukaryotic diversification with multigene molecular clocks. Proceedings of the
  1265 National Academy of Sciences, USA 108, 13624–13629.
- 1266 Peat, C.J., Muir, M.D., Plumb, K.A., McKirdy, D.M., Norvick, M.S., 1978. Proterozoic
- microfossils from the Roper Group, Northern Territory, Australia. BMR Journal ofAustralian Geology and Geophysics 3, 1-17.
- Petrov, P.Yu., Veis, A.F., 1995. Facial-ecological structure of the Derevnya Formation
  microbiota: Upper Riphean, Turukhansk Uplift, Siberia. Stratigraphy and
  Geological Correlation 3, 18-51.
- 1272 Prasad, B., Asher, R. 2001. Biostratigraphy and lithostratigraphic classification of
- 1273 Proterozoic and Lower Paleozoic sediments (Pre-Unconformity Sequence) of
- 1274 Ganga Basin, India. Paleontographica Indica 5, 1-151.

| 1275 | Prasad, B., Uniyal, S.N., Asher, R., 2005. Organic walled microfossils from the Proterozoic |
|------|---------------------------------------------------------------------------------------------|
| 1276 | Vindhyan Supergroup of Son Valley, Madhya Pradesh, India. Palaeobotanist 54,                |
| 1277 | 13-60.                                                                                      |
| 1278 | Puchkov, V.N., 2005. Evolution of lithosphere: from the Pechora ocean to Timanian           |
| 1279 | orogen, from the Paleouralian ocean to Uralian orogeny, in: Leonov, Y.G. (Ed.),             |
| 1280 | Problems of Tectonics of the Central Asia. GEOS, Moscow, pp. 309–342 (In                    |
| 1281 | Russian).                                                                                   |
| 1282 | Puchkov, V.N., 2013. Structural stages and evolution of the Urals. Mineralogy and           |
| 1283 | Petrology 106, 3–37.                                                                        |
| 1284 | Puchkov, V.N., Bogdanova, S.V., Ernst, R.E., Kozlov, V.I., Krasnobaev, A.A., Soderlund,     |
| 1285 | U., Wingate, M.T.D., Postnikov, A.V., Sergeeva, N.D., 2013. The ca. 1380 Ma                 |
| 1286 | Mashak igneous event of the Southern Urals. Lithos 174, 109-124.                            |
| 1287 | Puchkov, V.N., Krasnobaev, A.A., Kozlov, V.I., Sergeeva N.D., 2012. New isotope ages        |
| 1288 | of volcanics in the standard section of the Riphean and Vendian of the Southern             |
| 1289 | Urals: consequences for stratigraphy and tectonics, in: Materials for the 435 IX-th         |
| 1290 | Republican Conference on Geology and Environment. Institute of Geology, Ufa,                |
| 1291 | pp. 52–56.                                                                                  |
| 1292 | Pyatiletov, V.G., 1979. On finds of blue-green algae Yudoma deposits of Yakutia             |
| 1293 | (Vendian). Doklady Academii Nauk SSSR 249, 714-716 (In Russian).                            |
| 1294 | Pyatiletov, V.G., 1988. Microfossils of the Late Proterozoic of the Uchur-Maya Region, in:  |
| 1295 | Khomentovsky, V.V., Schenfil', V.Y. (Eds.), Late Precambrian and Early Paleozoic of         |
| 1296 | Siberia. IGiG SO AN SSSR, Novosibirsk, pp. 47-104 (In Russian).                             |
| 1297 | Rippka, R., Deuellesj, J., Waterbury, J., Herdman, M., Stanier, R.Y., 1979. Generic         |
| 1298 | assignments, strain histories, and properties of pure cultures of cyanobacteria.            |
| 1299 | Journal of General Microbiology 111, 1-61.                                                  |

1300 Schirrmeister, B.E., Gugger, M., Donoghue, P.C.J., 2015. Cyanobacteria and the Great

1301 Oxidation Event: evidence from genes and fossils. Palaeontology 58, 769-785.

- 1302 Schepeleva, E.D., 1960. Finds of blue-green algae in Lower Cambrian deposits of the
- 1303 Leningrad region, in: Problemy Neftyanoi Geologii i Voprosy Metodiki Laboratornykh
- 1304 Issledovanij. Nauka, Moscow, pp. 170-172 (In Russian).
- 1305 Schopf, J.W., 1968. Microflora of the Bitter Springs Formation, Late Precambrian, central

1306 Australia. Journal of Paleontology 42, 651–688.

- 1307 Schopf, J.W., 1992. Atlas of representative Proterozoic microfossils, in: Schopf, J.W.,
- 1308 Klein, C. (Eds.), The Proterozoic Biosphere. Cambridge University Press,
- 1309 Cambridge, 1055-1118.
- 1310 Sergeev, V.N., 1992. Silicified microfossils of the Precambrian and Cambrian of the Urals

1311 and Central Asia. Nauka, Moscow (in Russian).

- 1312 Sergeev, V.N., 2006. Precambrian microfossils in cherts: their paleobiology, classification,
  1313 and biostratigraphic usefulness. Geos, Moscow (in Russian).
- 1314 Sergeev, V.N., 2009. The distribution of microfossil assemblages in Proterozoic rocks.
- 1315 Precambrian Research 173, 212–222.
- 1316 Sergeev, V.N., Lee Seong-Joo, 2001. Microfossils from cherts of the Middle Riphean
- 1317
   Svetlyi Formation, the Uchur-Maya Region of Siberia and their stratigraphic

1318 significance. Stratigraphy and Geological Correlation 9, 1-10.

- Sergeev, V.N., Lee Seong-Joo, 2004. New data on silicified microfossils from the Satka
  Formation of the Lower Riphean Stratotype, the Urals. Stratigraphy and Geological
  Correlation 12, 1-21.
- 1322 Sergeev, V.N., Krylov, I.N., 1986. Microfossils of the Min'yar Formation from the Basin
- 1323 of Inzer River. Paleontological Journal 1, 84-95 (In Russian).

| Sergeev, V.N., Schopf, J.W., 2010. Taxonomy, paleoecology and biostratigraphy of the<br>Late Neoproterozoic Chichkan Microbiota of South Kazakhstan: The Marine |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lata Naaprotarozoia Chiahkan Migrahiata of South Kazakhatan. The Marine                                                                                         |
| Late Neopioterozoic Chichkan Wicrobiota of South Kazaklistan. The Walthe                                                                                        |
| biosphere on the eve of metazoan radiation. Journal of Paleontology 84, 363-401.                                                                                |
| Sergeev, V.N., Knoll, A.H., Grotzinger, J.P., 1995. Paleobiology of the Mesoproterozoic                                                                         |
| Billyakh Group, Anabar Uplift, northeastern Siberia. Palaeontological Society                                                                                   |
| Memoir 39, 1-37.                                                                                                                                                |
| Sergeev, V.N., Vorob'eva, N.G., Petrov, P.Yu., 2007. New Riphean microbiotas of the                                                                             |
| Billyakh Group, the North Anabar region (Fomich River Basin): Riphean                                                                                           |
| biostratigraphy of the Siberian Platform. Stratigraphy and Geological Correlation                                                                               |
| 15, 1-11.                                                                                                                                                       |
| Sergeev, V.N., Semikhatov, M.A., Fedonkin, M.A., Vorob'eva, N.G., 2010. Principal                                                                               |
| stages in evolution of Precambrian organic world: Communication 2. The Late                                                                                     |
| Proterozoic. Stratigraphy and Geological Correlation 18, 561-592.                                                                                               |
| Sergeev, V.N., Knoll, A.H., Vorob'eva, N.G., 2011. The organic-wall compression-                                                                                |
| preserved microfossils from the Ediacaran Ura Formation of the Baikal-Patom                                                                                     |
| Uplift, Siberia: taxonomy and biostratigraphic significance. Journal of                                                                                         |
| Paleontology 85, 987-1011.                                                                                                                                      |
| Sergeev, V.N., Sharma, M., Shukla, Y., 2008. Mesoproterozoic silicified microbiotas of                                                                          |
| Russia and India – characteristics and contrasts. Palaeobotanist 57, 323-358.                                                                                   |
| Sergeev, V.N., Sharma, M., Shukla, Y., 2012. Proterozoic fossil cyanobacteria.                                                                                  |
| Palaeobotanist 61, 189-358.                                                                                                                                     |
| Shatsky, N.S., 1964. Selected works 2. Nauka, Moscow (In Russian).                                                                                              |
| Singh, V.K., Sharma, M., 2014. Morphologically complex organic-walled microfossils                                                                              |
| (OWM) from the late Paleoproterozoic – early Mesoproterozoic Chitrakut                                                                                          |
| Formation, Vindhyan Supergroup, Central India and their implications on the                                                                                     |
| antiquity of eukaryotes. Journal of the Paleontological Society of India 59, 89-102.                                                                            |
|                                                                                                                                                                 |

| 1350 | Sperling, E.A., Rooney, A.D., Hays, L., Sergeev, V.N., Vorob'eva, N.G., Sergeeva, N.D.,   |
|------|-------------------------------------------------------------------------------------------|
| 1351 | Selby, D., Johnston, D.T., Knoll, A.H., 2014. Redox heterogeneity of subsurface           |
| 1352 | waters in the Mesoproterozoic ocean. Geobiology 12, 373-386.                              |
| 1353 | Sperling, E.A., Wolock, C.J., Morgan, A.S., Gill, B.C., Kunzmann, M., Halverson, G.P.,    |
| 1354 | Macdonald, F.A., Knoll, A.H., Johnston, D.T., 2015. Statistical analysis of iron          |
| 1355 | geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451-          |
| 1356 | 454.                                                                                      |
| 1357 | Stueeken, E.E., 2013. A test of the nitrogen-limitation hypothesis for retarded eukaryote |
| 1358 | radiation: nitrogen isotopes across a Mesoproterozoic basinal profile. Geochimica         |
| 1359 | et Cosmochimica Acta 120, 121-139.                                                        |
| 1360 | Sun, W.G., 1987. Palaeontology and biostratigraphy of Late Precambrian macroscopic        |
| 1361 | colonial algae: Chuaria Walcott and Tawuia Hofmann. Palaeontographica B 203,              |
| 1362 | 109-134.                                                                                  |
| 1363 | Talyzina, N., Moczydłowska, M., 2000. Morphological and ultrastructural studies of some   |
| 1364 | acritarchs from the Lower Cambrian Lukati Formation, Estonia. Review of                   |
| 1365 | Palaeobotany and Palynology 112, 1-21.                                                    |
| 1366 | Tang, Q., Pang, K., Xiao, S., Yuan, X., Oua, Z., Wan, B., 2013. Organic-walled            |
| 1367 | microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan             |
| 1368 | region of North China and their biostratigraphic significance. Precambrian                |
| 1369 | Research 236, 157–181.                                                                    |
| 1370 | Tappan, H., 1980. The Paleobiology of Plant Protists. WH Freeman, San Francisco.          |
| 1371 | Teyssèdre, B., 2006. Are the green algae (phylum Viridiplantae) two billion years old?    |
| 1372 | Carnets de Geologie 3, 1–21.                                                              |
| 1373 | Timofeev, B.V., 1966. Micropaleontological investigation of ancient formations. Nauka,    |
| 1374 | Moscow (In Russian).                                                                      |

1375 Timofeev, B.V., 1969. Proterozoic Spheromorphida. Nauka, Leningrad (In Russian).

- 1376 Timofeev, B.V., Herman, T.N., 1979. Precambrian microbiota of the Lakhanda Formation,
- 1377 in: Sokolov, B.S. (Ed.), Paleontology of the Precambrian and Early Cambrian.
- 1378 Nauka, Leningrad, pp. 137-147 (in Russian).
- 1379 Timofeev, B.V., Herman, T.N., Mikhailova, N.S., 1976. Microphytofossils from the
- 1380 Precambrian, Cambrian and Ordovician. Nauka, Leningrad (In Russian).
- 1381 Thusu, B., 1973. Acritarches provenant de l'Ilion Shale (Wenlockian), Utica, New York.
- 1382 Revue de Micropaléontologie 16, 137-146.
- Tynni, R., Donner, J., 1980. A microfossil and sedimentation study of the late Precambrian
  formation of Hailuoto, Finland. Geological Survey of Finland 311, 1-27.
- 1385 Veis, A.F., 1984. Microfossils from the Upper Riphean of the Turikhansk region.
- 1386Paleontological Journal 2, 102-108 (In Russian).
- 1387 Veis, A.F., Vorob'eva, N. G., 1992. Riphean and Vendian microfossils from the Anabar
- 1388 Uplift. Izvestiya AN SSSR, Seriya Geologicheskaya 1, 114-130 (In Russian).
- 1389 Veis, A.F., Petrov, P.Yu., 1994a. The main peculiarities of the environmental distribution
- of microfossils in the Riphean Basins of Siberia. Stratigraphy and GeologicalCorrelation 2, 397-425.
- 1392 Veis, A.F., Petrov, P.Yu., 1994b. Taxonomic diversity of Riphean organic-walled
- 1393 microfossils as dependent on their origination settings (the Bezymyannyi Formation
- of Turukhansk Region as an example), in: Ecosystem Reorganizations and
  Evolution of Biosphere 1. Nedra, Moscow, pp. 32–42.
- 1396 Veis, A.F., Semikhatov, M.A., 1989. The Lower Riphean Omakhta microfossil assemblage of
  1397 Eastern Siberia: composition and depositional environments. Izvestiya AN SSSR,
- 1398 Seriya Geologicheskaya 5, 36–55 (In Russian).
- Veis, A.F., Kozlova, E.V., Vorob'eva, N.G., 1990. Organic-walled microfossils from the type
  section of the Riphean (Southern Urals). Izvestiya AN USSR, Seria Geologicheskaya 9,
  20.26 (In Provise)
- 1401 20-36 (In Russian).

|      | 57                                                                                       |
|------|------------------------------------------------------------------------------------------|
| 1402 | Veis, A.F., Petrov, P.Yu., Vorob'eva, N.G., 2001. Geochronological and biostratigraphic  |
| 1403 | approaches to reconstruction of Precambrian biota evolution: new finds of microfossils   |
| 1404 | in Riphean sections on the Western Slope of the Anabar Uplift. Doklady Earth             |
| 1405 | Sciences 378(4), 413-419.                                                                |
| 1406 | Veis, A.F., Larionov, N.N., Vorob'eva, N.G., Lee Seong-Joo, 2000. Significance of        |
| 1407 | microfossils for Riphean stratigraphy of the Southern Urals (Bashkirian                  |
| 1408 | Meganticlinorium) and adjacent region (Kama-Belaya Aulacogen). Stratigraphy              |
| 1409 | and Geological Correlation 8, 33–50.                                                     |
| 1410 | Vidal., G., 1976. Late Precambrian microfossils from the Visingsö Beds in southern       |
| 1411 | Sweden. Fossils and Strata 9, 1-56.                                                      |
| 1412 | Vidal, G., Ford, T.D., 1985. Microbiotas from the Late Proterozoic Chuar Group (Northern |
| 1413 | Arizona) and Uinta Group (Utah) and their chronostratigraphic implications.              |
| 1414 | Precambrian Research 28, 349–389.                                                        |
| 1415 | Villalobo, E., Moch, C., Fryd-Versavel, G., Fleury-Aubusson, A., Morin, L., 2003.        |
| 1416 | Cysteine proteases and cell differentiation: excystment of the ciliated protist          |
| 1417 | Sterkiella histriomuscorum. Eukaryotic Cell 2, 1234–1245                                 |
| 1418 | Vorob'eva, N.G., Sergeev, V.N., Semikhatov, M.A., 2006. Unique Lower Vendian             |
| 1419 | Kel'tma microbiota, Timan Ridge: new evidence for the paleontological essence            |
| 1420 | and global significance of the Vendian System. Doklady Earth Sciences 410, 1038-         |
| 1421 | 1043.                                                                                    |
| 1422 | Vorob'eva, N.G., Sergeev, V.N., Knoll, A.H., 2009. Neoproterozoic microfossils from the  |
| 1423 | northeastern margin of the East European Platform. Journal of Paleontology 83,           |
| 1424 | 161-192.                                                                                 |
| 1425 | Vorob'eva, N.G., Sergeev, V.N., Petrov, P.Yu., 2015. Kotuikan Formation assemblage: A    |
| 1426 | diverse organic-walled microbiota in the Mesoproterozoic Anabar succession,              |
| 1427 | northern Siberia. Precambrian Research 256, 201-222.                                     |

| 1428 | Walcott, C.D., 1899. Precambrian fossiliferous formations. Geological Society of America      |
|------|-----------------------------------------------------------------------------------------------|
| 1429 | Bulletin 10, 199-244.                                                                         |
| 1430 | Wellman, C.H., Strother, P.K., 2015. The terrestrial biota prior to the origin of land plants |
| 1431 | (embryophytes): a review of the evidence. Palaeontology 58, 601-627.                          |
| 1432 | Willman, S., Moczydlowska, M., 2008. Ediacaran acritarch biota from the Giles 1 drillhole,    |
| 1433 | Officer Basin, Australia, and its potential for biostratigraphic correlation.                 |
| 1434 | Precambrian Research 162, 498-530.                                                            |
| 1435 | Wiman, C., 1894. Ein prakambrisches Fossil. Bulletin of the Geological Institution of the     |
| 1436 | University of Uppsala 2, 109-113.                                                             |
| 1437 | Xiao, S., Knoll, A.H., Kaufman, A.J., Yin, L., Zhang, Y., 1997. Neoproterozoic fossils in     |
| 1438 | Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic                    |
| 1439 | conundrum from the North China Platform. Precambrian Research 84, 197-220.                    |
| 1440 | Yankauskas, T.V., 1980. On the micropaleontlogical characteristic of the Middle and           |
| 1441 | Upper Cambrian in the north-west of the East European Platform. Izvestiya                     |
| 1442 | Akademiya Nauk Estonskoyi SSR, Geology 19(4), 131-135 (In Russian).                           |
| 1443 | Yankauskas, T.V., 1982. Microfossils of the Riphean in the Southern Urals, in: Keller, B.M.   |
| 1444 | (Ed.), Stratotype of the Riphean. Palaeontology, Palaeomagnetism. Nauka, Moscow, pp.          |
| 1445 | 84–120 (In Russian).                                                                          |
| 1446 | Yankauskas, T.V. (Ed.), 1989. Precambrian microfossils of the USSR. Trudy Instituta           |
| 1447 | Geologii i Geochronologii Dokembria SSSR Akademii Nauk, Leningrad (In                         |
| 1448 | Russian).                                                                                     |
| 1449 | Yin, L., 1997. Acanthomorphic acritarchs from Meso-Neoproterozoic Shales of the Ruyang        |
| 1450 | Group, Shanxi, China. Review of Palaeobotany and Palynology 98, 15–25.                        |
| 1451 | Yin, L., Yuan, X., Meng, F., Hu, J., 2005. Protista of Upper Mesoproterozoic Ruyang           |
| 1452 | Group in Shanxi Province, China. Precambrian Research 141, 49-60.                             |
|      |                                                                                               |

- 1453 Zhang, R., Feng, S., Ma, G., Xu, G., Yan, D., 1991. Late Precambrian macroscopic fossil
- algae from Hainan Island. Acta Palaeontologica Sinica 30, 115-125. 1454
- Zhang, Y., 1981. Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation 1455
- 1456 (Early Sinian: Riphean), Hebei, China. Journal of Paleontology 55, 485–506.

#### 1458 **Figure captions**

1460 Fig. 1. A – Index map of North Eurasia, indicating the location of the studied area (filled

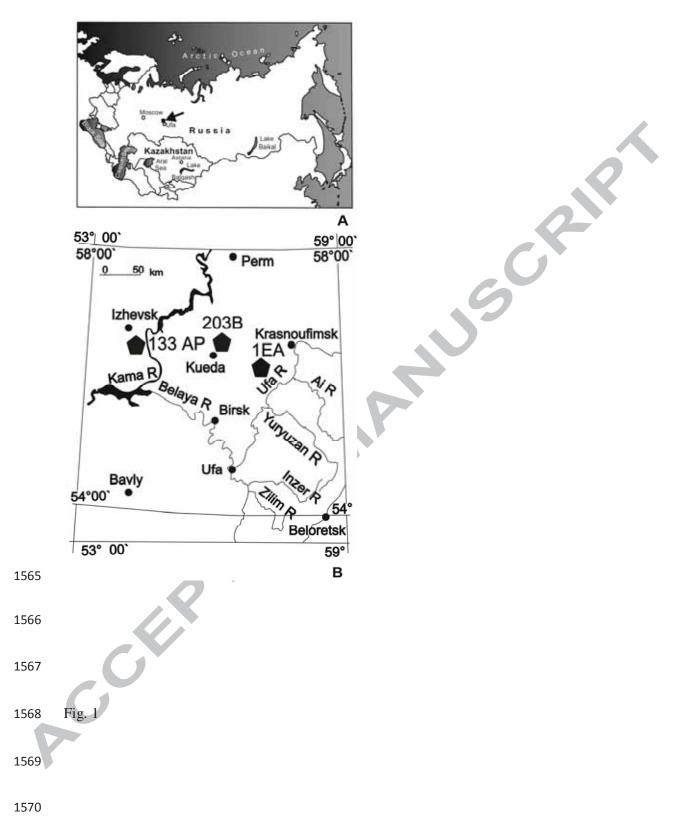
- 1461 square at arrow). B Map of the southern Ural Mountains and Volgo-Ural region showing
- the locations of the microfossiliferous boreholes of the Kaltasy Formation (filled pentagons;
- see section 3.1 for details), abbreviations: 203B 203 Bedryazh, 133AP 133 Azino-
- 1464 Pal'nikovo, and 1EA 1 East Askino boreholes.
- 1465
- 1466 Fig. 2. Generalized Proterozoic stratigraphy of the Bashkirian meganticlinorium (southern
- 1467 Ural Mountains) and Volga–Ural region (upper Neoproterozoic part of the successions not
- shown) with 1 East Askino (1EA), 203 Bedryazh (203B) and 133 Azino-Pal'nikovo
- 1469 (133AP) boreholes (modified after Keller and Chumakov, 1983; Sergeev, 2006; Kah et al.,
- 1470 2007; Kozlov et al., 2011). Abbreviations, formations and members: Ai-Bin Ai-Bolshoi
- 1471 Inzer, St-Sr Satka-Suran, Bk-Js Bakal-Yusha, Ms Mashak, Zg Zigal'ga, Zk –
- 1472 Zigazy-Komarovo, Av Avzyan, Zl Zilmerdak, Kt Katav, In Inzer, Sg Sigaevo, Ks
- 1473 Kostino, Nr Norkino, Rt Rotkovo, Mn Minaevo, Kl Kaltasy, Kl<sub>1</sub> Sauzovo, Kl<sub>2</sub> –
- 1474 Arlan, Kl<sub>3</sub> Ashit, Kb Kabakovo, Nd Nadezhdino, Tk Tukaevo, Ol Ol'khovka, Us
- 1475 Usa, Ln Leonidovo, Pr Priyutovo; Sh Shikhan, Lz Leuznovo; groups and
- 1476 subgroups: Sr Sarapul, Pk Prikamskii, Br –Borodulino; other geological units: PP –
- 1477 Paleoproterozoic, LP Lower Proterozoic, Pz Paleozoic, R<sub>2</sub> Middle Riphean, Ed –
- 1478 Ediacaran, V Vendian. Key, 1 tillites, 2 conglomerates, 3 sandstones, 4 siltstones, 5
- 1479 shales, 6 limestone, 7 clay limestone, 8 dolomite, 9 dolomites with cherts, 10 -
- 1480 marls, 11 stromatolites, 12 *Conophyton* stromatolites, 13 tuff, tuffaceous sandstone, and
- 1481 diabase; 14 basement gneiss, 15 disconformities, 16 angular unconformities. New Re–
- 1482 Os age estimates from 203 Bedryazh core (Sperling et al., 2014) indicated by arrow (see
- section 2.3 for details). The numbers of the collected samples are shown to the right of the

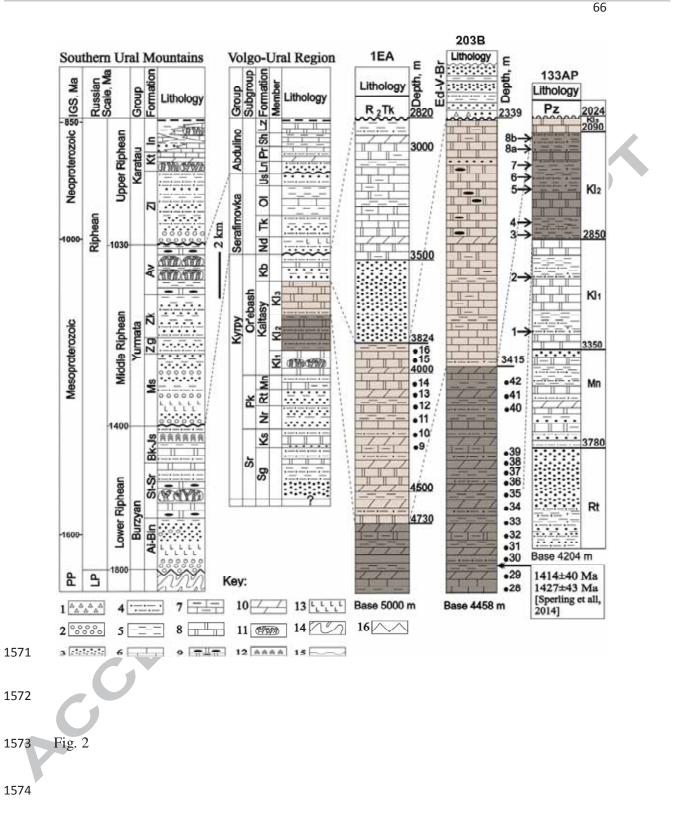
- 1484 1EA and 203B cores (indicated by dots); fossiliferous levels of the samples collected by
- 1485 Veis et al., 2000 are indicated to the left of 133AP core (arrows). The fossiliferous Arlan
- 1486  $(Kl_2)$  and Ashit  $(Kl_3)$  members of the Kaltasy Formation are shown with different shades
- 1487 of grey.
- 1488
- 1489 Fig. 3. Microfossil taxa reported from the Kaltasy Formation, indicating their morphological
- 1490 grouping, relative abundance (R = rare, C = common, D = dominant), and size range
- 1491 (displayed on a logarithmic scale in which the arrows denote taxa larger than 550 µm in
- 1492 diameter).
- 1493
- 1494 Fig. 4. Sphaeromorph acritarchs. 1, 6, 7, *Leiosphaeridia jacutica*; 1, (1EA)-11-3, p. 6,
- 1495 P55[3], 14712-117; 6, (1EA)-15-1, p. 2, M52[3], 14712-191; 7, (1EA)-11-4, p. 5, R50[0],
- 1496 14712-124; 2, Leiosphaeridia tenuissima (large light disc) and L. crassa (smaller darker
- disk), (1EA)-12-3, p. 2, N59[2], 14712-154a and 14712-154b, respectively; 3, 4,
- 1498 Leiosphaeridia ternata; 3, (1EA)-16-1, p. 2, M54[0], 14712-196; 4, (203B)-40-1, p. 4,
- 1499 N70[2], 14712-70; 5, Leiosphaeridia atava, (203B)-40-3, p. 7, K66[0], 14712-92; 8 10,
- 1500 *Leiosphaeridia* sp.; 8, (1EA)-16-6, p. 2, M49[4], 14712-228; 9, (1EA)-12-2, p. 2, M46[2],
- 1501 14712-147; 10, (1EA)-11-3, p. 3, M62[1], 14712-114; 11 13, *Leiosphaeridia* (?)
- 1502 *wimanii*; 11, (203B)-34-20, p. 1, R27[3], 14712-297; 12, (203B)-34-19, p. 2, M61[2],
- 1503 14712-296; 13, (203B)-34-19, p. 1, L62[4], 14712-298.
- 1504 For all illustrated specimens, the single scale bar =  $10 \,\mu\text{m}$  and the double bar =  $100 \,\mu\text{m}$ .
- 1505 All specimens are from the Arlan and Ashit members of the Kaltasy Formation; sample
- location and explanation are provided in sections 3.1 and 7.1, respectively.
- 1507

- 1508 Fig. 5. Sphaeromorph and netromorph acritarchs.1, Spumosina rubiginosa, (133AP)-2560-
- 1509 2568, p. 1, K38[2], 14712-287; 2, 3, Synsphaeridium sp.; 2, (203B)-31-1, p. 2, Q59[3],
- 1510 14712-8; 3, (1EA)-18-1, p. 4, N59[4], 14712-243; 4-7, Pterospermopsimorpha pileiformis;
- 1511 4, (1EA)-11-1, p. 3, N53[4], 14712-104; 5, (1EA)-11-4, p. 1, K51[2], 14712-120; 6, (1EA)-
- 1512 14-1, p. 1, L48[0], 14712-186; 7, (1EA)-12-4, p. 4, Q58[4], 14712-165; 8, 9, Spiromorpha
- 1513 aff. S. segmentata, (203B)-34-6, p. 1, M64[3], 14712-32; 9, detail of 8, arrows indicate
- 1514 crescent-like connecting wields; 10-12, (?) Moyeria sp.; 10, 11, (203B)-34-6, p. 3, S59[2],
- 1515 14712-34, 11, detail of 10, arrows indicate overlapping of bispiral bands each to other;12,
- 1516 (1EA)-12-4, p. 3, O57[2], 14712-164, arrows indicate possible initial cleavage of vesicle;
- 1517 13-15, Navifusa sp.; 13, (1EA)-16-8, p. 3, M58[4], 14712-235; 14, (1EA)-11-2, p. 4,
- 1518 N58[4], 14712-110; 15, (1EA)-12-1, p. 3, O53[1], 14712-136.
- 1519
- 1520 Fig. 6. Large filamentous forms. 1-6, *Rectia magna*; 1, (133AP)-2064-2068-1, p. 2,
- 1521 H40[3], 14712-6802; 2, (133AP)-2052-2054-1, p. 3, J36[1], 14712-5084; 3, holotype,
- 1522 (133AP)-2052-2054-1, p. 8, Q33[2], 14712-5408; 4, (133AP)-2056-2058-1, p. 4, Q47[2],
- 1523 14712-269; 5, (133AP)-2058-2060-1, p. 2, K38[2], 14712-6002; 6, (133AP)-2052-2054-1,
- 1524 p. 9, Y40[4], 14712-265; 7–9, *Eosolena minuta*; 7, (1EA)-11-5, p. 1, L46[0], 14712-125, 8,
- 1525 9, details of 9; 10, *Plicatidium latum*, (133AP)-2044-2046-1, p. 6, O41[1], 14712-4618;
- 1526 11, 12, *Rugosoopsis* sp.; 11, (133AP)-2073-2077-1, p. 3, K44[4], 14712-279; 12, (203B)-
- 1527 34-7, p. 1, L67[2], 14712-35.

- 1529 Fig. 7. Filamentous microfossils. 1, Polytrichoides aff. P. lineatus, (133AP)-2060-2064-1,
- 1530 p. 1, D36[3], 14712-6401; 2, 6, 7, Oscillatoriopsis longa; 2, (133AP)-2044-2046-1, p. 2,
- 1531 D45[3], 14712-258; 6, (1EA)-11-5, p. 3, J45[4], 14712-131; 7, (203B)-39-3, p. 2, L68[1],
- 1532 14712-60; 3, 5, Tortunema patomica; 3, (1EA)-11-3, p. 4, N59[3], 14712-115; 5, (133AP)-

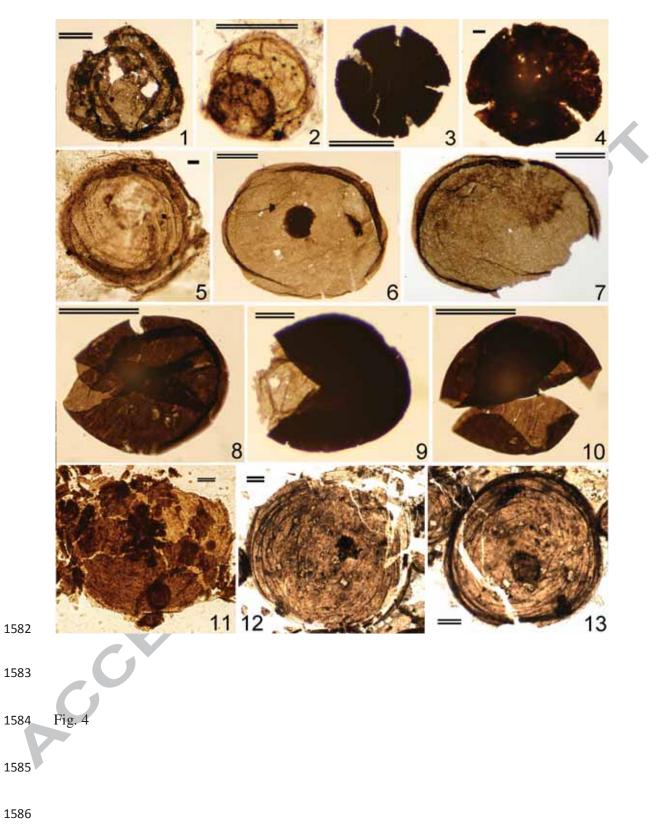
- 1533 2058-2060-1, p. 12, K39[2], 14712-271; 4, 8, *Cephalonyx* sp.; 4, (133AP)-2568-2572-1, p.
- 1534 6, N40[2], 14712-6003; 8, (133AP)-2073-2077-1, p. 1, G36[3], 14712-278, arrow indicates
- a probable mechanically displaced trichome fragment.

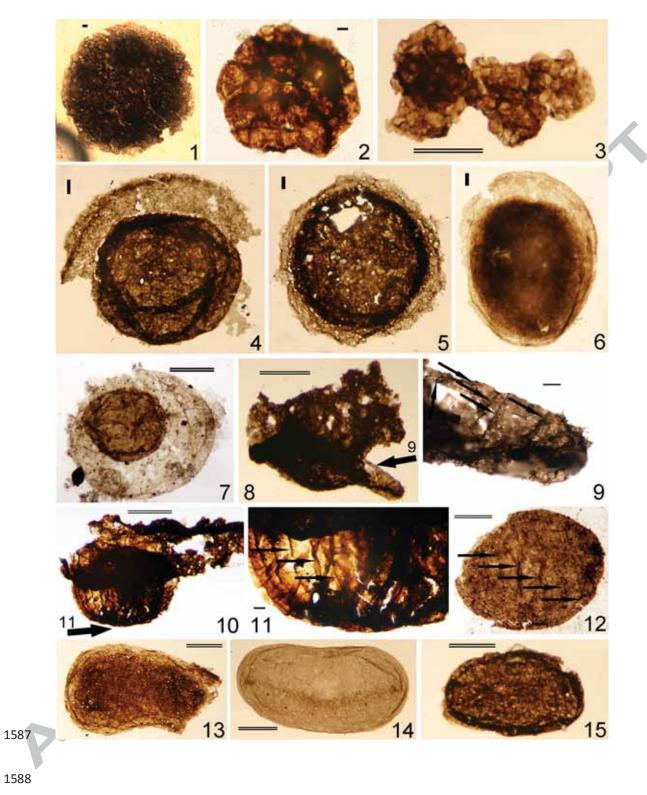

1536


- 1537 Fig. 8. Filamentous and miscellaneous microfossils. 1-3, *Pseudodendron anteridium*;
- 1538 1,(133AP)-2817-2822-1, p. 2, V20[1], 14712-2801; 2, (133AP)-2760-2765-1, p. 4, H36[3],
- 1539 14712-2764; 3, (203B)-40-3, p. 1, E57[3], 14712-86; 4, Siphonophycus robustum (thin
- threads) and poorly preserved filaments of *Polytrichoides* aff. *P. lineatus* or *Pellicularia*
- 1541 *tenera* (larger threads), (203B)-34-3, p. 4, Q59[1], 14712-24; 5, Siphonophycus typicum,
- 1542 (1EA)-12-7, p. 1, M53[3], 14712-184; 6, Siphonophycus solidum, (1EA)-11-3, p. 2, L57[3],
- 1543 14712-113; 7, *Siphonophycus punctatum*, (133AP)-2046-2048-1, p. 1, F35[4], 14712-4803;
- 1544 8-10, *Pellicularia tenera*; 8, (133AP)-2353-2355-1, p. 1, W44[2], 14712-551; 9, (203B)-
- 1545 34-9, p. 2, K66[4], 14712-43; 10, (203B)-34-8, p. 3, P68[4], 14712-41.

1546

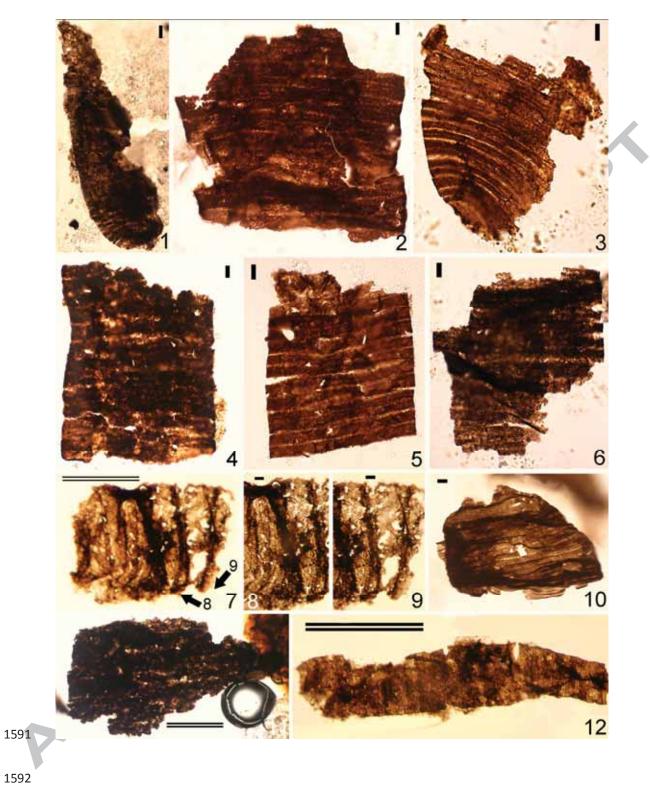
- 1547 Fig. 9. Miscellaneous microfossils. 1–3, Unnamed form 1; 1, (1EA)-12-6, p. 2, N46[3],
- 1548 14712-182; 2, (1EA)-12-2, p. 5, K57[3], 14712-150; 3, (1EA)-12-3, p. 1, F60[4], 14712-
- 1549 153; 4 6, Unnamed form 2; 4, (203B)-31-1, p. 3, S60[1], 14712-9; 5, (203B)-39-3, p. 3,
- 1550 M69[4], 14712-61; 6, (203B)-34-3, p. 3, K60[4], 14712-23; 7, 10, Unnamed form 3; 7,
- 1551 (203B)-40-2, p. 7, R53[4], 14712-83; 10, (203B)-40-2, p. 8, S58[3], 14712-85; 8, 9, 11, 12,
- 1552 Unnamed form 4; 8, (1EA)-16-7, p. 2, N22[3], 14712-232; 9, (1EA)-16-2, p. 3, P55[4],
- 1553 14712-205; 11, (203B)-34-3, p. 2, K62[0], 14712-22; 12, (1EA)-11-5, p. 1a, K47[3],
- 1554 14712-126; 13, 14, Unnamed form 5; 13, (1EA)-12-3, p. 5, N53[4], 14712-158; 14, (1EA)-
- 1555 18-1, p. 6, O54[0], 14712-245.


- 1557 Fig. 10. Three morphological groups (genera) of filamentous microfossils: A - Rectia tubes
- with a rounded closed end bearing double annulations, B Cephalonyx tubes bearing 1558
- numerous annulations, C elastic tubes of Tortunema with numerous cross-ribs tapering 1559
- 1560 toward both ends and poorly preserved trichome remains. The double scale bar is 100 µm Acception
- and single bar is  $10 \,\mu$ m. 1561





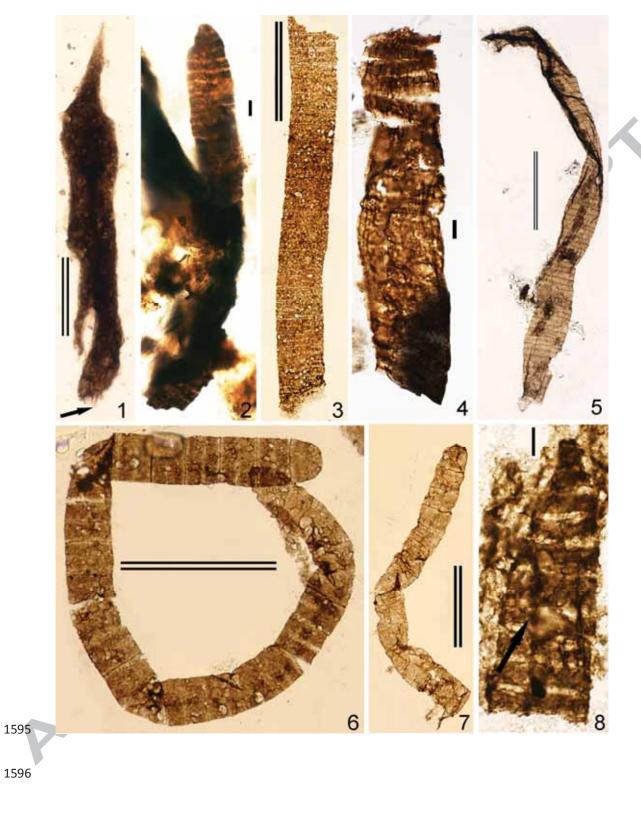

| LARGE FILAN<br>FILAMENTOU | RPH, DISPHAEROMORPH AND NETROMORP<br>MENTOUS FORMS<br>S MICROFOSSILS<br>OUS MICROFOSSILS                                   | H A         | CRITARO<br>LS<br>F <br>M | CHS |   | e, μr<br><sup>50 1</sup> | n<br>00 250 | 500 |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|-----|---|--------------------------|-------------|-----|--|
|                           | 1. Leiosphaeridia atava<br>2. Leiosphaeridia crassa<br>3. Leiosphaeridia jacutica                                          | C<br>D<br>C | S<br>S                   |     |   | ŀ                        | -           | * • |  |
|                           | <ol> <li>4. Leiosphaeridia minutissima</li> <li>5. Leiosphaeridia tenuissima</li> <li>6. Leiosphaeridia ternata</li> </ol> | C<br>C<br>C | S<br>S                   |     |   |                          | -           |     |  |
|                           | <ol> <li>Leiosphaeridia (?)wimanii</li> <li>Leiosphaeridia sp.</li> <li>Navifusa sp.</li> </ol>                            | C<br>C<br>R | S<br>S                   |     |   |                          | +           | ¥   |  |
|                           | <ol> <li>Pterospermopsimorpha pileiformis</li> <li>Spumosina rubiginosa</li> <li>Synsphaeridium sp.</li> </ol>             | C<br>C<br>C | S<br>S<br>S              |     |   |                          | -           |     |  |
| 13 14<br>15 16 10         | <ol> <li>13. Eosolena minuta</li> <li>14. (?)Moyeria sp.</li> <li>15. Plicatidium latum</li> </ol>                         | R<br>R<br>R | L<br>L<br>L              |     |   |                          | -           |     |  |
|                           | 16. Rectia magna<br>17. Rugosoopsis sp.<br>18. Spiromorpha aff. S. segmentata                                              | C<br>R<br>R | L<br>L<br>L              |     |   | -                        | -           | -   |  |
| 19 20<br>21 22            | <ol> <li>Cephalonyx sp.</li> <li>Oscillatoriopsis longa</li> <li>Polytrichoides aff. P. lineatus</li> </ol>                | R<br>C<br>C | F<br>F<br>F              | -   |   | -                        |             |     |  |
| 23 24                     | <ul><li>22. Pseudodendron anteridium</li><li>23. Siphonophycus robustum</li><li>24. Siphonophycus typicum</li></ul>        | C<br>D<br>C | F<br>F<br>F              | -   |   | <u> </u>                 | -           |     |  |
| 25<br>27<br>28<br>28      | <ul><li>25. Siphonophycus kestron</li><li>26. Siphonophycus solidum</li><li>27. Siphonophycus punctatum</li></ul>          | R<br>C<br>C | F<br>F<br>F              |     | Ī | -                        |             |     |  |
| 29 30                     | <ol> <li>28. Tortunema patomica</li> <li>29. Pellicularia tenera</li> <li>30. Unnamed Form 1</li> </ol>                    | R<br>R<br>C | F<br>M<br>M              |     |   |                          |             | -   |  |
| 31 32<br>33 34            | <ul><li>31. Unnamed Form 2</li><li>32. Unnamed Form 3</li><li>33. Unnamed Form 4</li></ul>                                 |             | M<br>M<br>M              |     |   | +                        |             | *   |  |
|                           | 34. Unnamed Form 5                                                                                                         |             | M                        |     |   |                          | _           |     |  |


1579 Fig. 3

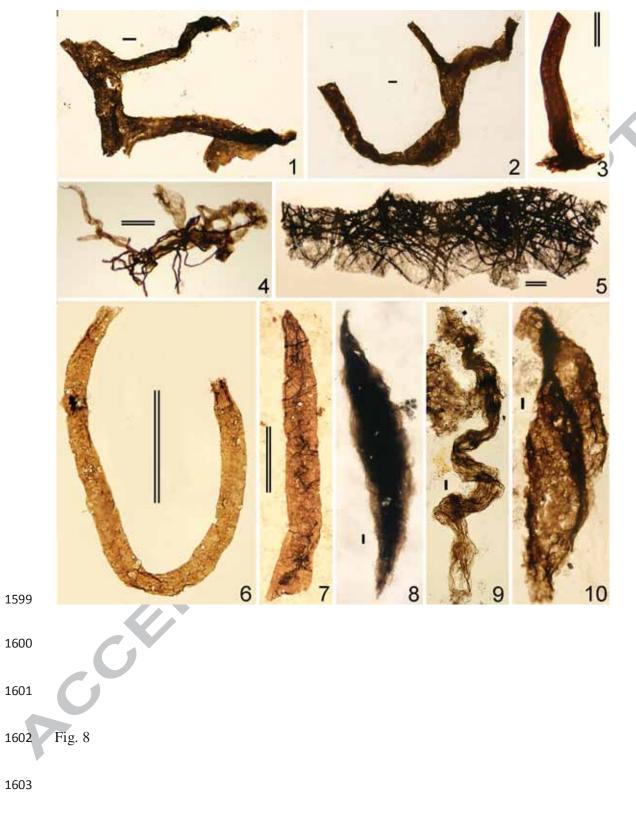




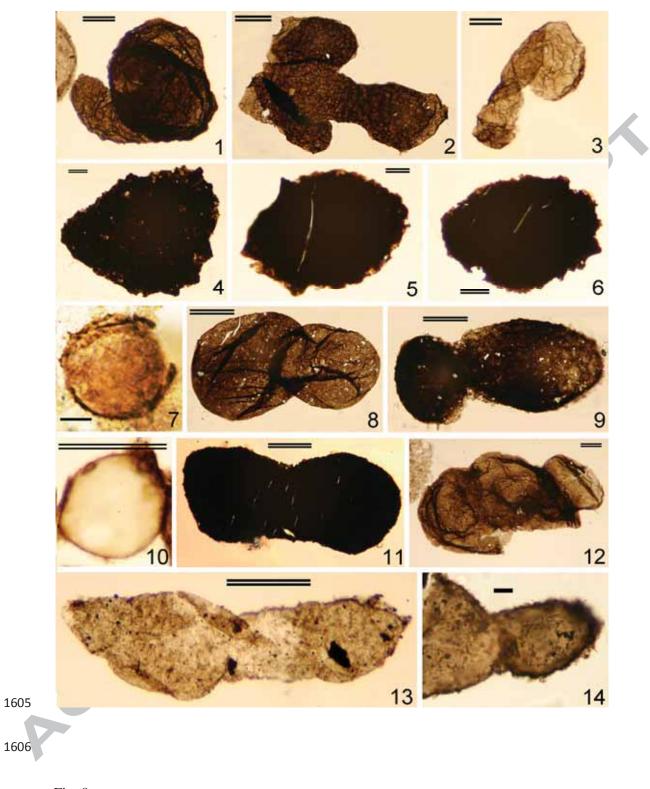
1589


1590 Fig. 5



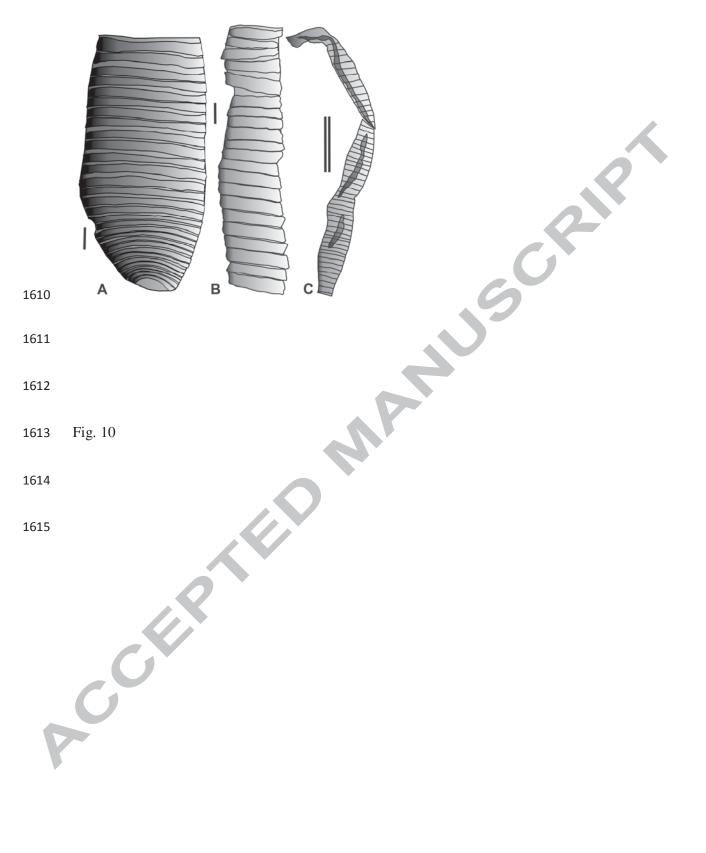

1593

1594 Fig. 6


71



1597 Fig. 7




73



1607 Fig. 9

1608





| • The ~1450-Ma-old Kaltasy Formation contains compressed organic-walled microfossils. |
|---------------------------------------------------------------------------------------|
|                                                                                       |
| • The fossils record life in basinal but oxic environments.                           |
|                                                                                       |
| • The assemblage includes large and moderately complex eukaryotic microorganisms.     |
|                                                                                       |
| • The microbiota differs from many coeval deposits in its absence of acanthomorphs.   |
|                                                                                       |
| • The fossils document morphological conservatism among early eukaryotes.             |
|                                                                                       |
|                                                                                       |
|                                                                                       |