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Abstract 

 

The goal of this work is to develop a high-throughput approach to quantify the functional 

impact of the regulatory genome on target gene expression, and apply this system to   

catalogue functional cis-regulatory elements (CREs) that drive expression of BRCA2, a 

mutational driver of breast and ovarian cancer progression. The interactions between 

transcription factors and regulatory DNA modules underlie transcriptional outputs, but 

current techniques of cis-regulatory characterization utilize correlative features of 

enhancers, such as chromatin state, to assume CRE activity and do not measure the 

contributory effects of each CRE to a given target gene. Here we develop a CRISPR/Cas-

based high-throughput screen to comprehensively and directly identify cis-regulatory 

sites that are necessary for BRCA2 expression by intercalating mutations across 185 

kilobases of genomic space and using a fluorescence reporter to obtain measurements of 

diminished BRCA2 expression levels. We spatially map the distribution of required cis-

regulatory sequences, and find evidence that proximal and distal elements exert 

controlling influences on BRCA2 expression. Multiple statistical evaluations of individual 

site and regional significance enable clarification of a diversified and spatially dispersed 

functional regulatory architecture governing BRCA2 transcription.  
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Chapter I 

Introduction 

 

Gene expression is dynamically coordinated by a vast regulatory interactome, 

equipped by the combinatorial diversity of regulatory inputs to encode hierarchical 

properties of gene control and effectuate intricate regimes of cellular behavior (Spitz & 

Furlong, 2012). This regulatory connectivity is defined by the convergence of 

transcription factors (TFs) to dispersed binding-enriched genomic modules called cis-

regulatory elements (CREs). Enhancers, a class of CREs, harbor clusters or small 

ensembles of short TF recognition sites for TF binding, serving as genomic platforms for 

conditional TF synergism and context-specific partnerships between cohorts of recruited 

TFs and co-activator proteins (Junion et al., 2012). The ability of an enhancer to regulate 

transcriptional output is governed by the element’s structural and epigenetic organization, 

coupled with its mechanistic interactions with transcriptional proteins and genomic loci 

(Spitz & Furlong, 2012). Specifically, an enhancer’s functionality in driving target gene 

expression is a complex superposition of enhancer features (DNA sequence, binding site 

syntax, and chromatin state) and interaction parameters (multiplicity of TF occupancy, 

direct TF-TF interaction contributions, strength of TF synergism with the basal 

transcriptional machinery), making it hard to delineate functional elements from the 

constellations of non-contributive sites. By controlling gene-specific agendas of 

expression, a subset of these functional cis-elements face an additional “burden”: their 
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perturbation can cause gene dysregulation, destabilizing cellular processes of DNA repair 

and damage control to predispose a cancerous state. There is not only a need to focalize 

the abundance of TF-DNA interactions to the functionally relevant participants, but also a 

clinical imperative to understand how hereditary and acquired variation in functional 

genomic sites can contribute to the development of cancers, including breast and ovarian 

cancers. 

 Current high-throughput experimental methodologies of enhancer identification 

include genome-wide profiling of TF occupancy patterns, genomic surveillance of 

enhancer-associated histone modifications and molecular hallmarks, and DNaseI 

footprinting of bound DNA elements within gene-proximal regulatory regions (Neph et 

al., 2012; Sung, Guertin, Baek, & Hager, 2014). However, these large-scale approaches 

do not enable quantification of the functional significance of putative enhancers, as they 

utilize TF binding, histone marks, and chromatin accessibility as proxy, indirect 

measurements of enhancer activity (Sanjana et al., 2016). Due to experimental 

limitations, a large majority of these candidate enhancers have not been matched to a 

beneficiary target gene, and are therefore annotated as “functionally unaffiliated”. On a 

clinical level, there is minimal understanding of the phenotypic relevance of functional 

regulatory nodes, the catalytic influence that non-coding sequences exert on disease 

progression, and the penetrative effect of variation within non-coding functional sites that 

regulate cancer-associated genes (Ward & Kellis, 2012).  

 The goal of the thesis is to elucidate the functional regulatory architecture that 

specifies expression of BRCA2 (Breast Cancer 2), a DNA repair gene whose disruption is 

associated with breast and ovarian cancer progression (Welcsh & King, 2001). Here we 
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develop a high-throughput CRISPR/Cas mutagenesis approach to systematically and 

directly identify CREs that functionally contribute to BRCA2 expression, probing the 

variegation of attributes of functional enhancer elements that govern BRCA2 expression 

(Wang, Wei, Sabatini, & Lander, 2014). We hypothesize that BRCA2 expression is 

regulated by a diverse set of enhancers that span a broad spatial distribution to facilitate 

proximal and long-range transcriptional activation, contain both predictive molecular 

hallmarks of regulatory function and non-canonical enhancer features, and exert 

differential contributions to BRCA2 expression representative of the “activity strength” of 

the element. The high-throughput, exhaustive nature of the developed genomic screen 

enables unbiased interrogation of distal regulatory DNA regions, as well as genomic 

stretches that lack the stereotypical epigenetic and chromatin markers that associate with 

enhancer domains. 

 In the future, experimental results can be intersected with genome-wide 

association studies for hereditary breast and ovarian cancer patients to map significant 

non-coding variants and polymorphisms that occur in functionally relevant BRCA2 

regulatory sites. Importantly, identification of phenotypically relevant cis-regulatory 

elements enables targeted CRE genetic screening for individuals with a family history of 

breast and ovarian cancer, expanding the “search space” of cancer-associated genetic 

variants and strengthening the accuracy of hereditary cancer diagnostics (Walsh, 2015). 

Additionally, as cancer genome sequencing becomes more routine, acquired mutations 

that functionally impact BRCA2 can be pinpointed, improving phenotypic 

characterization of cancers. 
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Underlying Mechanisms of Enhancer Function 

An enhancer’s function in regulating transcriptional output is reliant on the 

enhancer’s ability to act as a “regulatory junction” for an ordered, productive reaction 

with specific transcriptional proteins (Todeschini, Georges, & Veitia, 2014). Specifically, 

a regulatory element’s contributive effect on target gene expression is dependent on its 

direct additive recruitment of specific TF combinations, as well as a “cascade interaction 

effect” of bound, cohabitated factors to indirectly remodel an environment for assistive 

TF loading or cooperatively recruit additional co-activator proteins and the basal 

transcriptional machinery (BTM) by direct protein-to-protein binding (He, Samee, Blatti, 

& Sinha, 2010). Recently, reporter assays using synthetically constructed CREs have 

demonstrated that certain subsets of enhancers depend on precise orientation and 

patterning of TF binding sites to promote enhancer activity, while other types of 

enhancers are structurally flexible and require little or no motif grammar to generate gene 

expression profiles (Erceg et al., 2014). Other studies have surveyed specific enhancers to 

elucidate the nature of TF co-occupancy and the mechanisms of TF cooperativity, 

resulting in the delineation of various modes of combinatorial regulation that include 

assistive alteration of the enhancer’s environment to promote additional TF binding 

events and transcriptional synergy of bound proteins to concertedly recruit the BTM 

(Spitz & Furlong, 2012; Liu et al., 2014) (Figure 1).  
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Figure 1. Three primary models of enhancer activity. Image (a) represents the 

enhanceosome model, which suggests that recruited TFs form an ordered configuration, 

and fixed motif composition and grammar is necessary for enhancer activation. Image (b) 

describes the flexible billboard model, which states that binding site position and 

orientation can be variable for a given enhancer output. Image (c) represents the TF 

collective model, which suggests that TF-mediated recruitment and TF-TF cooperativity 

drive enhancer activity, rather than a strict vs. flexible motif grammar paradigm. Adapted 

from Spitz & Furlong, 2012.  

 

These studies underscore a remarkable operational complexity to enhancer 

function. Importantly, they suggest a “granular” paradigm of enhancer activity – 

contributive regulatory elements may not act in stereotyped ways to drive gene 

expression, but can employ divergent strategies of TF recruitment and multiplexed 

regulation to enable enhancer activity.  

 

Analysis of Current Methods of Cis-Regulatory Site Identification 

This section discusses the “imperfect” specificity of TFs to their target genomic sites in 

relation to enhancer function, the shortcomings of current high-throughput enhancer 
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definition methodologies, and the applications of the proposed CRISPR/Cas experimental 

system of functional CRE detection. 

 

Enhancer Prediction from Motif Recognition Analysis 

TFs recognize short, 6-12 bp degenerate DNA sequences and exhibit preferential 

binding to a selection of target genomic sites, whose sequence patterns can be formalized 

as a TF binding motif (Boeva, 2016). Interestingly, TFs can have variable affinities for 

the sequences that comprise its binding motif, and certain TFs also can bind relatively 

dissimilar sequences with the same specificity (Zhao, Ruan, Pandey, & Stormo, 2012). 

Several mathematical models have been developed in order to represent a TF binding 

motif, and take into account the disparate set of sequences that a TF can favor. One of the 

most prevalent models of TF specificity is the position weight matrix (PWM), which 

specifies the position-dependent probability of each nucleotide within a motif (Boeva, 

2016). PWM construction relies on using experimentally determined genomic sequences 

from ChIP-seq data as the collection of “input sequences” that are examples of a TF 

binding motif; then, this large input set is condensed into a single sequence logo that 

prioritizes the nucleotides that had the highest occurrence frequency in a given position 

(Zhou et al., 2015). Genome-wide enhancer prediction methods using motif finding 

frequently involve scanning large genomic regions or promoter-proximal areas to identify 

sequences that have a high alignment score with a known PWM, and extrapolating cis-

regulatory activity from the presence of multiple motif instances. These approaches are 

based on a simplifying assumption that high-affinity (or high “scoring”) sites are causal 

to enhancer function in regulating gene expression.  
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However, recent experiments involving the construction and manipulation of cis-

regulatory structure have shown that enhancers containing low-affinity binding sites can 

still effectively mediate gene expression patterns due to optimal binding site grammar 

(Farley, Olson, Zhang, Rokhsar, & Levine, 2016). As such, current enhancer prediction 

methods based on motif analysis generalize functional enhancers as “hubs” of high-

affinity binding sites, and underappreciate the functional significance of non-canonical 

regulatory elements as well as the role of a “binding site neighborhood” in promoting 

enhancer output.  

 

High-throughput Experimental Methods to Identify Enhancer Elements 

Genome-wide experiments that chronicle TF occupancy patterns generate a TF 

binding atlas from which active regulatory regions are inferred, making these approaches 

susceptible to “transcriptional noise” in the form of non-specific TF binding. In order to 

effectuate gene expression, TFs need to navigate through a crowded nuclear environment, 

and sift through the genome to identify target DNA sites for docking (Schmidt, Sewitz, 

Andrews & Lipkow, 2014). Single molecule tracking experiments have recently 

demonstrated that throughout this search process, as TFs interpret the genomic 

information to home in on a target sequence within a cis-element, they also non-

specifically collide with DNA (Chen et al., 2014). Importantly, studies on the kinetics of 

TF target searching have indicated that these non-specific transactions with DNA occur 

frequently and stochastically (Chen et al., 2014).  
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One of the most employed methods of TF-binding site mapping and putative cis-

regulatory characterization is ChIP-seq, a technique which involves isolating crosslinked 

DNA-protein fragments using a TF-specific antibody and high-throughput sequencing of 

the DNA fragments that were directly bound by the TF (Boeva, 2016). The output of a 

ChIP-seq experiment is thousands of binding peaks throughout the genome, which are 

clustered to demarcate CRE domains and frequently coined as “active regulatory 

regions”. In conjunction with recent conclusions on the nature of TF search dynamics 

within the cell, this suggests that many TF binding sites are not relevant to gene 

regulation, and only a selective portion of ChIP-derived genomic sites exert a functional 

influence on target gene expression. Thus, by permissively incorporating non-specific 

TF-DNA interactions, ChIP-based methods of TF occupancy profiling can yield a high 

false positive rate of regulatory element discovery. Interestingly, these methods have an 

additional drawback of being blind to TF-TF cooperative interactions that can potentiate 

a regulatory element. ChIP experiments do not robustly capture indirect TF-DNA 

associations that occur by recruitment of a TF or co-factor protein by an enhancer-bound 

TF (Spitz & Furlong, 2012).  

 

Proposing a New Method to Overcome Current Experimental Limitations 

Recent advances in cis-regulatory annotation methods include epigenome 

profiling for enhancer-associated chromatin features. These assays involve surveying 

large non-coding genomic spaces for nucleosome-depleted regions and specific histone 

modification marks that are associated with TF occupancy. Frequently, chromatin 

accessibility is indicative of cooperative TF activity, as certain types of pioneer TFs are 
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capable of actively repositioning nucleosomes to “open” the DNA for subsequent TF 

binding (Calo & Wysocka, 2013). Through the described collection of genome-wide 

tools for enhancer identification, over 400,000 putative enhancers have been identified in 

the human genome (Calo & Wysocka, 2013).  

However, these de facto approaches to enhancer classification all use correlative, 

indirect measures of enhancer activity to impute cis-regulatory function on gene 

expression, and do not match identified enhancers to a target gene. Consequently, 

existing methods do not enable quantification of the functional significance of candidate 

enhancers, as they broadly capture non-specific, transient binding to regulatory elements 

and neither delineate which genomic sites can natively affect transcriptional response nor 

score enhancers based on the strength of downstream expression modulation. We address 

these shortcomings by formulating a functional assay for CRE identification that directly 

surveys and scores enhancer activity in a high-throughput format. The CRISPR/Cas 

genome editing platform intercalates targeted mutations in >150 kb of genomic space 

surrounding the BRCA2 gene, enabling unbiased articulation of the entire complement of 

regulatory sites that are necessary for BRCA2 output. The final output is a description of 

the diverse collection of regulatory elements whose disruption causes a measurable 

alteration in BRCA2 gene expression, encompassing the repertoire of sites that hosted 

binding events that directly and indirectly facilitated stable gene expression from a distal 

or proximal location. 
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The Biological Role of BRCA2 in DNA Repair and Genomic Stability 

The lack of functional annotations in the non-coding genome has precluded 

understanding of how variation in focal regulatory nodes can lead to aberrant expression 

of disease-associated genes. It is challenging to attribute phenotypic significance to non-

coding mutations because it is unclear which mutations perturb functional regulatory 

sequences (Ward & Kellis, 2012). We implement our system of “functional cartography” 

to characterize BRCA2, a DNA repair gene that participates in the homologous 

recombination (HR) pathway.  

The BRCA2 protein mediates repair of double stranded DNA breaks (DSBs) by 

controlling the localization and recombinase activity of RAD51, a repair protein that 

catalyzes homologous pairing of a broken DNA strand with its intact sister chromatid 

template (Gudmundsdottir & Ashworth, 2006). During this process of HR by gene 

conversion, BRCA2 binds RAD51 and facilitates its transport into the nucleus and to 

specific sites of DNA damage, where it then assists in RAD51-loading onto a broken 3’ 

overhang of single stranded DNA; this “stabilizing” role of BRCA2 is necessary to 

promote strand invasion of the broken ssDNA-RAD51 complex into its homologous 

sister chromatid for high-fidelity DNA synthesis (Prakash, Zhang, Feng, & Jasin, 2015). 

Deficiency of functional BRCA2 caused by deleterious mutations incapacitates RAD51 

mobilization to DSB sites, resulting in inefficient HR repair and genomic instability. As a 

consequence of HR impairment, cells resort to alternative error-prone mechanisms to 

repair DNA lesions, resulting in the runaway accumulation of DNA replication errors and 

mutagenic events from inaccurate repair processes. As such, BRCA2 is considered a 

tumor suppressor gene, because the presence of inactivating BRCA2 mutations 
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predisposes a “hypermutation” cellular state, contributing to the development of 

hereditary breast and ovarian cancers. Germline mutations in the BRCA2 gene account 

for the majority of familial cases of breast and ovarian cancers, implicating BRCA2 as a 

genetic driver of tissue-specific cancer progression (Gudmundsdottir & Ashworth, 2006). 

 

Interpreting Cis-Regulatory Variants in Hereditary Cancer Screening 

Over 1000 BRCA2 sequence variants that confer hereditary susceptibility to breast 

and ovarian cancers have been identified by genetic screening (Maia et al., 2012). To 

date, mutational screening of BRCA2 from patient-derived tissue and blood samples 

involves exon and intron-exon junction coverage, enabling the detection of genetic 

abnormalities in coding regions and splice sites. Deleterious mutations have been 

identified throughout the coding framework of the BRCA2 gene, frequently involving 

truncating mutations, as well as nucleotide substitutions that disrupt critical protein 

binding domains (Prakash et al., 2015). However, mutation analysis techniques 

(nucleotide sequencing, genotyping) exclude the surrounding regulatory genomic space, 

bypassing any non-coding mutagenic occurrences that predispose the progression of 

breast and ovarian cancers. Thus, we develop a high-resolution CRISPR/Cas assay that 

parses through the regulatory genome to precisely map functional regulatory elements 

that control BRCA2 expression. The novel system identifies functional regulatory 

sequences that are causally linked to extinguishing BRCA2 expression, thus associating 

these sites with breast cancer risk and enabling clinical prioritization of genetic variation 

that occurs in these cis-regulatory sites.  
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The development of high-throughput functional mapping techniques can be 

harnessed to improve the accuracy of genetic risk assessment and disease diagnostics. 

Currently, genetic screening of hereditary cancer-associated genes (BRCA2, BRCA1, 

ATM, RAD51C) is limited to exon coverage, because it is challenging to attribute a gene-

specific regulatory role to cis-acting genomic sequences (Walsh, 2015). Functional 

regulatory assays enable tractable interrogation of a variety of DNA repair genes that are 

linked to hereditary breast and ovarian cancer susceptibility. By advancing systematic 

annotation of functional non-coding elements, it is possible to expand the “search space” 

of current mutational screens to include functionally significant non-coding regions that 

directly regulate transcriptional output of hereditary cancer genes. This enables 

identification of deleterious cis-regulatory variations in individuals for personalized 

genomic assessments with enhanced predictive capacity for hereditary breast and ovarian 

cancer risk.  
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Chapter II 

Materials and Methods 

 

 The first section of the Materials and Methods chapter describes the experimental 

procedures for BRCA2 gRNA integration into a customized BRCA2 reporter mouse cell 

line, fluorescence-based positive selection of expression loss phenotypes, and preparation 

of cellular genomic DNA for targeted next-generation sequencing. The second section 

details the computational methods for gRNA library design and analysis of gRNA 

representation and enrichment levels in GFPneg and GFPmed populations.  

 

Experimental Cell Culture Methods 

 

Cell Culture Conditions 

 Experiments were performed with 129P2/OlaHsd mouse embryonic stem cells 

(mESCs). mESCs were maintained on gelatin-coated plates feeder-free in mESC media 

composed of Knockout DMEM (Life Technologies) supplemented with 15% defined 

fetal bovine serum (FBS) (HyClone), 0.1mM nonessential amino acids (NEAA) (Life 

Technologies), Glutamax (GM) (Life Technologies), 0.55 mM 2-mercaptoethanol (b-

ME) (Sigma), 1X ESGRO LIF (Millipore), 5 nM GSK-3 inhibitor XV and 500 nM 

UO126. Cells were regularly tested for mycoplasma. 
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Derivation of the ROSA26 locus gRNA cassette 

 The purpose of engineering a unique mESC cell line with a knock-in gRNA 

cassette in the chromatin accessible ROSA26 locus is to enable site-specific 

incorporation and expression of a singular library gRNA per cell. The gRNA cassette 

consists of a U6 promoter upstream of a placeholder non-targeting “dummy” gRNA 

sequence and the gRNA hairpin scaffold, constructed such that the dummy gRNA 

protospacer will be subsequently replaced by a genome-targeting gRNA upon BRCA2 

gRNA library electroporation.   

 To successfully knock-in a dummy gRNA expression cassette, it is first necessary 

to PCR a plasmid containing the U6 promoter and dummy gRNA plus hairpin scaffold 

with primers that amplify the entire expression construct and attach ROSA26 homology 

arms (Table 3). The PCR reaction is performed as a 35 cycle 2-step PCR (98 for 10 

seconds, 72 for 45 seconds), resulting in a 750 bp fragment. The resulting purified PCR 

product is subjected to a sequential PCR (35 cycle 2-step PCR, 98 for 10 seconds, 72 for 

45 seconds) to extend the ROSA26 homology arms, resulting in an 800 bp final amplicon 

(Table 3). Upon completion of the PCR amplification steps, mESCs at a cell density ~ 

1.0e6 are co-electroporated with 5 ug p2T CBh S.Pyogenes Cas9 BlastR, 5 ug p2T 

U6sgROSA26-FE HygroR, and the purified ROSA-HDR dummy gRNA cassette 

amplicon. Electroporation is performed using a Bio-Rad electroporator set to 230 V, 

0.500 uF and maximum resistance. Cells are transiently selected with Blasticidin and 

Hygromycin for 24-72 hours post-electroporation. Knock-in positive clones are identified 

by genomic DNA PCR testing of the cassette sequence and sequence verification of the 

full ~900 bp region, resulting in positive identification of a heterozygous ROSA26 gRNA 
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expression cassette knock-in cell line (Table 3). The final sequence of the ROSA26 

dummy gRNA expression module is: 

TCCCATTTTCCTTATTTGCCCCTATTAAAAAACTTCCCGACAAAACCGAAAAT

CTGTGGGAAGTCTTGTCCCTCCAATTTTACACCTGTTCAATTCCCCTGCAGGA

CAACGCCCACACACCAGGTTAGCCTTTAAGCCTGCCCAGAAGACTCCCGCCC

AGCATGTGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACA

AGGCTGTTAGAGAGATAATTGGAATTAATTTGACTGTAAACACAAAGATATT

AGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTT

TAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTAT

TTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCGAGGCGTC

TGGGTGGCTCTTGGTTTAAGAGCTATGCTGGAAACAGCATAGCAAGTTTAAA

TAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTT

GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTTTTAGCGC

GTGCGCCAATTCTGCAGACAAATGGCTCTAGAGGTACGGCCGCTTCGAGCAG

ACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTG

AAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCA

TTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTT

CAGGTTCAGGGGGAGATGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACA

AATGTGGTAAAATCGCGATGCAGATCACGAGGGAAGAGGGGGAAGGGATTC

TCCCAGGCCCAGGGCGGTCCTCAGAAGCCAGGAGGCAGCAGAGAACTCCCA

GAAAGGTATTGCAACACTCCCCTCCCCCCTCCGGAGAAGGGTGCGGCCTTCT

CCCCGCCTACTCCAC                                    

The dummy gRNA protospacer sequence is indicated in red. 

 

Generation of the BRCA2-GFP Reporter Cell Line 

 The gRNA screening process is dependent on the generation of a locus-specific 

GFP knock-in reporter cell line that labels the BRCA2 gene with a GFP tag for rapid 

fluorescent signal readout of gene expression and fluorescence-based cell sorting. GFP 

transgene knock-in is performed using mESCs with an integrated ROSA26 gRNA 

cassette, as described in a previous protocol. To construct the BRCA2-GFP fusion gene, a 

BRCA2 exon 27-targeting gRNA is cloned into a plasmid containing a U6 promoter, 

gRNA hairpin scaffold, and Hygromycin resistance cassette. The BRCA2-targeting 
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gRNA specifies the precise location of CRISPR/Cas-mediated cleavage and GFP 

transgene insertion into the genome. Next, a GFP insertion cassette is synthesized by two 

successive PCR amplification steps of the GFP frame, with homology arm primers that 

add 70-80 bp of BRCA2 homologous sequence surrounding the desired insertion site to 

facilitate GFP knock-in via homologous recombination (Appendix, Table 3). Engineered 

mESCs with the ROSA26 dummy gRNA construct are then co-electroporated with the 

BRCA2-targeting gRNA plasmid, the homology arm-extended GFP amplicon, and a 

S.Pyogenes Cas9 plasmid with a Blasticidin resistance cassette (Figure 2).  

 

 

Figure 2. Construction of the BRCA2-GFP mESC line. Exon 27 of the BRCA2 gene is 

targeted by a site-specific gRNA plasmid, Cas9 plasmid, and GFP transgene amplicon for 

CRISPR-mediated cleavage and GFP knock-in.  
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Following Blasticidin and Hygromycin antibiotic selection, the electroporated 

mESCs are flow cytometrically sorted and GFP-expressing single cells are collected and 

clonally expanded. Genomic DNA PCRs of clones confirm the locus-specific integration 

of the GFP tag (Table 3). Flow cytometry analysis of a sequence-verified BRCA2-GFP 

fusion mESC population derived from expansion of a single positive colony reveals a 

pattern of stochastic BRCA2 gene expression across a cellular population. Despite 

multiple rounds of fluorescence-based purification, the BRCA2-GFP mESC population is 

persistently heterogeneous with ~80% of cells as GFP-expressing and ~20% as GFP-

negative at a given timepoint, suggesting that cells can dynamically fluctuate between 

strong and subdued BRCA2 expression states (Figure 3).   

 

 

Figure 3. Flow cytometry analysis of the original BRCA2-GFP cell population. Figure 

(3a) compares the BRCA2-GFP cell line to a negative control, non-fluorescent cell line to 

demonstrate GFP fluorescence in the constructed cells. Figure (3b) is a univariate 

histogram that displays cell count vs. relative fluorescence. The flow cytometry 

histogram of BRCA2-GFP cells reveals a bimodal population distribution, with ~18% of 

cells landing below the GFP-positive gate.  
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BRCA2 gRNA Library Screening Process 

The BRCA2 gRNA library comprehensively spans 185 kb of the regulatory 

genome to uncover functional cis-elements that are necessary for BRCA2 expression in a 

native context. The assay harnesses the CRISPR/Cas platform to tile mutations across the 

BRCA2 regulatory landscape, selects for cells that undergo complete or partial expression 

loss, and cultivates 3 phenotypically-distinct cellular populations that can be compared to 

identify gRNAs preferentially associated with BRCA2 expression loss.  

 

Preparation and Introduction of gRNA Pool into Customized mESCs 

 The pooled BRCA2 gRNA library is PCR amplified to attach ~80-90 bp of 

ROSA26 homology arms to each side (5’ and 3’) of the gRNAs (Table 3). The PCR is 

performed as an 800uL NEBNext reaction for 35 cycles (3 step PCR; 98 for 10s, 62 for 

30s, 72 for 30s) using 1% of the gRNA library, yielding ~189 bp gRNA amplicons. 

BRCA2-GFP fusion mESCs with the ROSA26-integrated gRNA cassette are co-

electroporated with 80 ug p2T CBh Cas9 BlastR, 80 ug of a gRNA plasmid that cleaves 

the dummy gRNA protospacer, and the purified ROSA26-extended gRNA library. The 

sequence of the gRNA that cuts the dummy gRNA is GAAACACCGAGGCGTCTGGG. 

At the time of electroporation, the mESCs have grown to 80% confluence on 2 15 

cm plates – a starting density of ~2e7 cells/plate is requisite for >1e7 mESCs to survive 

antibiotic selection to preserve library diversity in the cellular population. 24 hours post-

electroporation, the cells are subjected to Blasticidin treatment (1:1000) for the following 
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48 hours.5 days post-electroporation (d5), ½ of the surviving mESCs are pooled on the 

same 15 cm tissue culture plate, and the remaining ½ is frozen and stored at -80.  

 

Flow Cytometry Separation of GFPneg and GFPmed Populations 

 Following BRCA2 library gRNA integration in the ROSA26 locus and gRNA-

induced mutagenesis at a complementary genomic site, the targeted cell population is a 

mixed pool of GFP-positive, GFP-negative and GFP-medium phenotypes. On day 7 post-

electroporation (d7), genomic DNA from ¼ of the merged bulk population is collected, 

and ½ of the mESC bulk population is flow cytometrically sorted according to GFP 

expression loss. In the first round, a positive vs. negative flow cytometry gate 

permissively segregates high and low GFP intensity, and captures single cells with both 

intermediate and complete fluorescence loss; in this first round of purifying selection, 

~23-24% of the total sorted population is encompassed. The sorted GFPneg and GFPmed 

cells are subsequently cultured for 3-4 days, and on d10-d11, the cells are subjected to a 

second fluorescence sorting. In the second round of sorting, the cells are partitioned into a 

GFPneg or GFPmed population based on the extent of GFP expression, and the two 

separated populations are cultured for 2-3 days. Between d12-14, a third fluorescence 

sorting is performed if necessary to obtain a purified population, based on the noisiness 

of separation in previous sorting rounds. Following 2 sorts, the GFPneg population is 

sufficiently purified at >90%, and genomic DNA is collected from ½ of the GFPneg cell 

population between d12-14. The GFPmed population is noisier, with infiltrating positive 

and negative events, so GFPmed mESCs are sorted for a third time, cultured for 2-3 days 

post-sorting, and genomic DNA is harvested from ½ of the population (Figure 4).  
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Figure 4. Multi-stage flow cytometry analysis through library targeting and cell sorting. 

Successive flow cytometry analysis following library introduction and fluorescence 

sorting reveals a population shift in GFP expression and successful purification of 

GFPnegative and GFPmedium sub-populations.  

 

Library Preparation for Genomic DNA Sequencing 

 Genomic DNA extracted from the three populations (bulk, GFPneg, GFPmed) is 

prepared for Illumina sequencing by a 3-stage PCR process. The first PCR reaction 

exclusively amplifies integrated library gRNAs in the ROSA26 locus to enable out-

competition of the ROSA26-incorporated gRNAs over unincorporated gRNA homology 

fragments. The first library prep PCR is performed as a 15 cycle NEBNext reaction, with 

a ratio of 16 ug genomic DNA in an 800 uL volume and a primer concentration of 500 

nM (Table 3). This ratio of ~20 ng genomic DNA/uL of reaction volume is necessary to 

avoid over-saturation of DNA template for amplification. The purified PCR product is 

then tested in a 20 uL SybrGreen qPCR reaction using 0.1 uL of the PCR product (Table 
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3). The qPCR count typically falls between 9-14 cycle counts, and the qPCR count 

divided by 2 is then used as the cycle value for the second library prep PCR.  

 The second PCR barcodes the samples with a 5 bp sample-specific sequence for 

multiplexing the three genomic libraries. The second PCR is done in a 50 uL NEBNext 

reaction using 23 uL of the purified product from the first PCR and a cycle number 

determined from the qPCR value. Primers for the second PCR are added at a 500 nM 

concentration, and include a forward Illumina PE1 barcode sequence and the reverse 

library gRNA PE2 primer (Table 3). From this reaction, a sample barcode is introduced 

between the library gRNA and the PE1 primer, and the first half of the PE2 sequence is 

attached to the constructs. The purified second PCR product is tested in a 20 uL 

SybrGreen qPCR reaction using 0.1 uL of the purified product, and the equivalent qPCR 

count value is applied as the number of cycles for the third library prep PCR.  

 The third PCR adds the rest of the standard Illumina paired-end sequencing 

adaptors to the library gRNA fragments. The PCR step is performed in a 50 uL NEBNext 

reaction using 23 uL of the purified second PCR product and a cycle number determined 

from the qPCR count. The Illumina PE1 and PE2 primers are included at a 500 nM 

concentration (Table 3). The final amplicons are ~211 bps, and are composed of a 

genome-integrated library gRNA sequence, a sample barcode shared across the 

population, and flanking Illumina paired-end sequencing primers. The final amplicons are 

purified, quantified for fragment size, and sequenced using an Illumina MiSeq 

instrument.  
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BRCA2 gRNA Library Design 

 The BRCA2 gRNA library is composed of 10376 gRNAs that collectively target   

a -93 kb to +93 kb genomic expanse surrounding the BRCA2 promoter, 74 positive 

control gRNAs that directly mutagenize the GFP open reading frame (ORF), and 126 

negative control non-targeting gRNAs that do not possess genome complementarity. The 

key design specification is that the gRNA library tiles the cis-regulatory genome in an 

unbiased manner such that known regions are not prioritized over uncharacterized sites 

and there exists commensurate likelihood of functional element discovery across different 

genomic categories.  

 gRNAs were designed using the following algorithm: 

1. Establish a broad window of interest for examining the genome to identify 

regulatory sites of significance (~185 kb of genomic landscape). 

2. Find all NGG occurrences on both the forward and reverse strand. The 

S.Pyogenes Cas9 nuclease recognizes the trinucleotide protospacer adjacent motif 

(PAM) in the genomic DNA, which is necessary for gRNA-DNA pairing and 

cleavage of the target site.  

3. Design the gRNA such that it has 19-20 bps of homology immediately preceding 

the genomic 5’-NGG-3’ PAM. 

a. If the genome sequence is GNNNNNNNNNNNNNNNNNNN NGG 

(GN19NGG), the guide RNA spacer sequence (the 5’ gRNA targeting 
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sequence with ~20 bp complementarity with the desired genomic DNA) 

should be GNNNNNNNNNNNNNNNNNNN (GN19). 

b. If statement a is not satisfied but GNNNNNNNNNNNNNNNNNN NGG 

(GN18NGG) is satisfied, the gRNA spacer sequence should be 

GNNNNNNNNNNNNNNNNNN (GN18). 

c. If statements a and b are not satisfied, the gRNA spacer sequence should be 

GNNNNNNNNNNNNNNNNNNNN (GN20) where the genomic sequence is 

NNNNNNNNNNNNNNNNNNNN NGG (N20NGG) – it does not matter if 

the first G is in not the genome. 

For all gRNAs, the presence of the 5’G at the start of the spacer sequence 

improves U6 transcription.  

4. Each designed gRNA spacer sequence is placed in the following template, which 

is 98-100 bp long: 

TTATATATCTTGTGGAAAGGACGAAACACC[GN18/19/20]GTTTAAGAGCT

ATGCTGGAAACAGCATAGCAAGTTTAAATAAGGCTAGT.  

The template consists of a gRNA-proximal stretch of the U6 promoter, the 

genome-targeting gRNA spacer, and a partial component of the gRNA scaffold. 

PCR-based extension of the gRNA template completes the U6 promoter and 

gRNA scaffold sequences using ROSA26 homology arm primers prior to 

electroporation of the BRCA2 gRNA library.  
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Data Processing and Analysis of gRNA Significance 

 

Mapping of MiSeq Reads 

 The expected full sequence consisting of the sample barcode, primers and 

designed gRNA is compared to the output reads. Counts for each gRNA for either 

GFPneg, GFPmed or bulk populations are obtained by counting the number of sequenced 

reads that show exact matches to the designed gRNA.  

 

Visualization of gRNA Read Distributions and Genome Feature Boundaries 

The UCSC genome browser (mouse GRCm38/mm10 assembly) is used to 

visualize the data and create genomic view snapshots for regulatory regions of BRCA2. 

Absolute read counts of gRNAs in the GFPneg and GFPmed populations are plotted in the 

browser, along with a track representing the genome coverage of bulk reads.  

Enhancer predictions are made using 6 histone modifications from ENCODE data 

trained on p300 binding site data from mouse embryonic stem cells. Enhancers are 

separated into “strong” and “weak” descriptors based on presence of H3K27ac at levels 

greater than input. Enhancer boundaries are further clarified using established edge-

detection methods (Rajagopal et al, 2016). Similarly, DNaseI hypersensitivity hotspots 

are identified with a standard algorithm utilized by Rajagopal et al. H3K4me3 and 

H3K27ac signals are displayed in the UCSC browser panel, which are histone 
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modification marks associated with promoters and active regulatory elements, 

respectively.  

 

Detection of Significantly Enriched gRNAs in GFPneg and GFPmed Populations 

 The enrichment score of each gRNA in the GFPneg and GFPmed populations 

represents the log fold-change between the sorted and bulk reads, calculated as the log2 

ratio of GFPneg to bulk reads and GFPmed to bulk reads. The term “enriched” signifies a 

log2 ratio of GFPsorted/bulk > 0. Statistically significant BRCA2-targeting gRNAs in 

GFPneg and GFPmed populations are discerned by the following condition:  

For a given sorted population (GFPneg or GFPmed), if the log2 ratio of GFPsorted/bulk for 

targeting gRNAi > 2 standard deviations above the mean log2 ratio of GFPsorted/bulk of all 

negative control gRNAs, then gRNAi is considered significantly enriched in that 

population.  

 

Detection of Significant gRNA Windows in GFPneg and GFPmed Populations 

 A “sliding window” approach is employed to identify the presence of significant 

regions across N consecutive gRNAs, where N = 25. The “sliding window” approach 

tests whether the mean GFPneg read count of the 25 gRNAs in each window is 

significantly greater than the mean GFPneg read count of the 126 negative control gRNAs 

using a statistical t-test (Fulco et al., 2016). The Benjamin-Hochberg procedure is applied 
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to compute adjusted p-values, controlling the false discovery rate (FDR) at level α = 0.05 

across multiple hypothesis comparisons.  
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Chapter III 

Results 

 

Here we present a high-resolution CRISPR/Cas-based assay that quantifies the 

functional impact of the regulatory genome in its native cellular context. The assay 

utilizes a uniquely designed ~10,000 sequence gRNA library to comprehensively screen 

>150 kb of genomic space in an unbiased manner to uncover the distribution of 

functional elements that control BRCA2 expression. Genomic perturbation is achieved by 

the nuclease action of Cas9, which co-localizes with a single library gRNA per cell to the 

targeted genomic regulatory site and induces DNA cleavage, resulting in site-specific 

mutagenesis. This method utilizes a fluorescence-based readout to obtain accurate 

measurement of BRCA2 expression and enable cell population separation based on the 

degree of expression loss. Next-generation sequencing of filtered populations yields 

quantitative information on the differential enrichment of gRNAs that target a sequence 

encoding a regulatory function, and concatenating this information across thousands of 

tiled gRNAs produces a functional regulatory architecture of all necessary cis-elements 

that power BRCA2 expression. This technique confers 3 benefits to a standard high-

throughput screening process: first, the gRNA library size confers unbiased targeting of a 

large genomic region; second, it uses a cloning-independent system for library gRNA 

integration with a single targeting event per cell; third, a fluorescent reporter is used for 

efficient gene expression measurement (Rajagopal et al., 2016) (Figure 5).  
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Figure 5. Assay workflow for high-throughput gRNA screening. Library gRNAs are tiled 

across the cis-regulatory regions of the GFP-tagged BRCA2 locus and cells are sorted 

according to their extent of expression loss. Deep sequencing identifies the gRNAs that 

induce complete and partial expression loss.  

 

 

Assessment of gRNA Library Integration Efficiency and Representation 

 Efficient HR-mediated integration of library gRNAs into the ROSA26 locus is 

necessary for robust library diversity (percentage of different gRNAs detected from the 

original pool). Out of the 10576 gRNAs in the BRCA2 library, 10348 gRNAs are detected 

in the bulk population (>= 1 matched sequencing read). Thus, ~98% of library gRNAs 

have at least one faithful genomic integration event that is captured by bulk population 
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sequencing, resulting in strong library diversity and minimal gRNA drop-out during the 

integration step.  

 Next, we analyze gRNA abundances in GFPneg and GFPmed populations, detecting 

retention of 4692/10576 gRNAs in the GFPneg population and 5652/10576 gRNAs in the 

GFPmed population. Fluorescence-based purifying selection filters out ~50% of gRNAs 

that target non-contributory or nonfunctional regulatory sites; however, while targeting of 

a nonfunctional cis-regulatory node accounts for a majority of the occurrences of gRNA 

depletion during fluorescence selection of BRCA2 expression loss, it is possible that a 

small subset of the unretained gRNAs hit upon sequences with regulatory significance 

but fail to inactivate their functionality. As expected, a high fraction (70/74, or 95%) of 

positive control gRNAs was retained in the GFPneg population, as these gRNAs were 

specifically designed to induce mutations in the coding frame of the GFP reporter. A 

lower fraction of negative control gRNAs (71/126) was represented with at least 1 

sequencing read in the GFPneg population, but these gRNAs may need to be further 

examined to ensure that there is no genome complementarity or off-target cutting that can 

potentially induce expression loss. Figure 6 depicts scatterplots of log-transformed read 

counts for each represented gRNA in the GFPneg and GFPmed populations.  
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Figure 6. Log2 sorted counts vs. log2 bulk counts for each gRNA. The upper figure 

represents a scatterplot of log2 GFPneg counts vs. log2 bulk counts for each gRNA with 

representation in the GFPneg population. The lower figure depicts a scatterplot of log2 

GFPmed counts vs. log2 bulk counts for each gRNA with representation in the GFPmed 

population.  
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Genomic Mapping of gRNAs 

 Here we map the distribution of gRNA read counts in the GFPneg and GFPmed 

population by their genome coordinates to identify 4 key BRCA2 regulatory trends: first, 

the marginal abundance (“regulatory strength”) and density (“regional importance”) 

between clusters of gRNAs, the representation of gRNAs that coincide with known 

genomic categories and regulation-associated markers, the representation of gRNAs in 

regions devoid of typical gene regulatory signatures, and the pattern of genomic feature 

diversification within the BRCA2 regulatory architecture.  

 The assay is designed such that the relative abundance of a given gRNA, 

calculated as the fold-change ratio of gRNA prevalence between the sorted and bulk 

populations, is generally correlated to the functional importance of that element to 

BRCA2 expression. While extenuating aspects of the CRISPR screening platform – such 

as the gRNA cleavage efficiency and the likelihood that a gRNA-induced mutation will 

inactivate the regulatory sequence – affects the relationship between gRNA relative 

abundance and cis-regulatory activity, the assay is designed to mitigate this effect by 

incorporating numerous gRNAs that target flanking or overlapping sequences, and more 

broadly, by extensive genome coverage. A genomic visualization of gRNA abundance 

across the array of spatially-mapped gRNAs elucidates a distributed regulatory topology 

governing BRCA2, whereby individual gRNA peaks (high-abundance gRNAs) are 

located in distal zones and proximal regions to the BRCA2 promoter, but no single gRNA 

window commands the regulatory signal that controls gene expression. Similarly, we 
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observe that gRNA density is relatively uniform, without discernible formations (large 

clusters or gaps) of represented gRNAs along the GFPneg and GFPmed tracks (Figure 7).  

 

Figure 7. UCSC browser display of the 185 kb genomic space proximal to BRCA2. In top 

to bottom order, the genomic view provides a track of bulk read coverage across the 

targeted region, spatially mapped GFPneg and GFPmed gRNAs with bar height proportional 

to gRNA abundance in the given population, annotated genes, predicted strong (red) and 

weak (green) enhancers, DNaseI hotspot regions, and H3K4me3 and H3K27ac ChIP-seq 

signals.  

 

 

Next, we focus on the distribution of gRNAs within established categories of 

genomic elements associated with regulatory potential and unmarked DNA regions. 

Genomic categories include non-coding RNA transcripts (ncRNAs) residing within gene 

loci and intergenic stretches, strong and weak enhancers predicted from chromatin 

modifications, DNaseI hypersensitive hotspots, and histone acetylation and methylation 

peaks. While these molecular hallmarks are frequently used to infer active regulatory 

participation in controlling proximal gene expression, causality between these structural 
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or epigenetic features and the regulatory function of the underlying sequences has not 

been systematically established (Sanjana et al., 2016). The assay is developed to address 

this specific caveat by first directly scoring for the contribution of cis-acting sites to 

BRCA2 expression, and subsequently intersecting the results with ENCODE-derived 

genomic annotation data to determine the co-occurrence of gRNA representation and 

enhancer-associated marks. Figure 8 depicts gRNA representation within selected 

genomic elements, including a strong predicted enhancer within FRY, a long intergenic 

non-coding RNA (lncRNA), the H3K4me3 peak in the BRCA2 promoter, an unmarked 

regulatory element (URE) within BRCA2, and the H3K4me3 peak in the N4BP2L1 

promoter.  

 

 

Figure 8. Snapshots of genomic regions with corresponding gRNA abundance plots and 

UCSC browser annotations. For elements Strong Enh457525 and URE535589, the last 6 

digits represent the genomic start coordinates 150XXXXXX. In left to right order, the 

first slide depicts a strong predicted enhancer element located 65 kb upstream of BRCA2, 

the second depicts the GM5 lncRNA located in an intergenic stretch between FRY and 

BRCA2, the third depicts the BRCA2 H3K4me3 peak that coincides with the gene 

promoter region, the fourth depicts an unmarked regulatory region, and the fifth depicts 

the N4BP2L1 H3K4me3 peak located 72 kb downstream of the BRCA2 start site.  
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 Through high-resolution mapping of gRNAs in the GFPneg and GFPmed 

populations, we can observe individual gRNAs with maximal abundance within a given 

genomic element and compare differential densities of represented gRNAs across 

genomic regions. Interestingly, URE535589 contains several gRNAs with high 

abundance in the GFPneg population, despite the fact that this region lacks canonical 

characteristics of regulatory activity, such as H3K27ac and DNaseI hypersensitivity. The 

H3K4me3 peak region of the N4BP2L1 gene promoter has a high density of represented 

gRNAs, suggesting the involvement of specific sites within the N4BP2L1 promoter in 

regulating BRCA2 expression.  

 We then quantify the fraction of represented gRNAs in GFP loss populations 

among the different genomic categories to determine the prevalence of regulatory 

participation from diverse elements. Overall, the fractions of represented gRNAs across 

elements from various genomic backgrounds reveal that diversified regulatory inputs 

govern BRCA2 expression. While there are disparities in the proportions of represented 

gRNAs between 2 elements from the same genomic category – for instance, URE581139, 

located downstream of BRCA2, has a lower fraction of GFPneg-represented gRNAs than 

URE535589 – the results support the conception of a distributed repertoire of functional 

elements regulating BRCA2. We also observe differential fractional representation of 

gRNAs between GFPneg and GFPmed populations, suggesting that some targeting gRNAs 

only induce partial expression loss, either as an artifact of the gRNA mutagenic screening 

and selection process, or as a product of a complex regulatory code whereby some 

functional elements tune the rate or efficiency of transcription (Figure 9). 
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Figure 9. Fraction of GFPneg and GFPmed represented gRNAs across different genomic 

categories. Fractions are calculated as the proportion of targeting gRNAs that map to a 

given element with >= 1 read count for each respective population. Genomic categories 

are established classes of elements associated with gene regulation, as well as elements 

that lack UCSC-designated markers of regulatory activity. The last 6 digits for Strong 

Enh, URE and DHS elements indicate the genomic start coordinates 150XXXXXX.  

 

 

Identification of Significant gRNAs by Differential Enrichment 

 Here we identify gRNAs that are significantly enriched in GFP loss populations 

by thresholding gRNA enrichment scores, and impute regulatory significance from 

statistically striking count differences. Enrichment scores are calculated as the log fold-

change ratio of gRNA abundance between the sorted and bulk populations (the relative 

abundance), representing the functional importance of the cis-regulatory site. Figure 10 

depicts the respective cumulative distribution function of the log fold-change ratio of 

represented gRNAs in the GFPneg and GFPmed populations. 
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Figure 10. Cumulative distribution function plots of log fold-change ratios. CDF plots 

show the log2 fold changes in gRNA abundance between sorted and bulk populations for 

GFPneg and GFPmed represented gRNAs.  

 

 

Detection of Significantly Enriched gRNAs in GFPneg and GFPmed Populations 

 Around 40% of GFPneg gRNAs and 50% of GFPmed gRNAs are enriched with a 

log fold-change ratio > 0, but marginal enrichment is frequently a by-product of chance 

in a multi-stage screening process, sequencing-introduced error, or background from 

stochastic variations in BRCA2 transcription. As such, we utilize an enrichment score 

threshold to selectively capture gRNAs with significant over-representation in GFP loss 
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populations, setting a cutoff of 2 standard deviations above the average relative 

abundance of the set of negative control gRNAs. This method of gRNA enrichment 

classification enables high-resolution detection of short genomic sequences (~20 bps) that 

are necessary for BRCA2 expression (Figure 11). 
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Figure 11. Log2 fold-changes vs. log2 sorted counts for GFPneg and GFPmed gRNAs. The 

upper scatterplot depicts the log-transformed GFPneg-to-bulk fold-change values, and the 

lower scatterplot depicts the log-transformed GFPmed-to-bulk fold-change values. In each 

plot, the dashed line indicates the enrichment score cutoff for significance, and gRNAs 

above the threshold are demarcated as significantly enriched.  
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A total of 153 gRNAs are significantly enriched over the set of non-targeting 

controls in the GFPneg population, and 65 gRNAs are significantly enriched in the GFPmed 

population. There is a considerable overlap of 44 significant gRNAs that are present in 

both populations. From these results, we conclude 2 things: first, that we are able to use 

purifying selection and enrichment thresholding to generate a filtered panel of highly 

enriched gRNAs (~2% of the original 10376 BRCA2 gRNA targeting library) that are 

preferentially associated with expression loss; and second, the overlap of significant 

gRNAs in the GFPneg and GFPmed populations reinforces that targeted disruption of these 

sites affects transcriptional output, but the extent of transcriptional alteration (partial or 

complete) for a shared gRNA may depend on the type of induced mutation at that 

element (Table 1).  

Table 1. 

Top-enriched gRNAs in GFPneg and GFPmed cells. 

 

Note: The upper and lower tables rank the top-hit GFPneg and GFPmed gRNAs with the 

highest log fold-change ratios, respectively.  
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Assessment of Controls and Sources of Bias in Enrichment-Based Estimations of gRNA 

Significance 

 The process of high-throughput gRNA screening to identify genomic sites of 

regulatory significance involves accounting for random variability in count data between 

populations, technical biases introduced by assay procedures and library preparation, and 

the uncertainty of measuring true gRNA abundance levels by read counts to confidently 

distinguish gRNAs that are associated with an expression loss phenotype (Anders & 

Huber, 2010; Rapaport et al., 2013). We calculate a log fold-change ratio between the 

sorted and bulk populations for each library gRNA, and prosecute a thresholding test 

based on the average log fold-change of the set of negative control gRNAs. Thus, a 

decision boundary line is formulated with the expectation that negative control gRNAs 

have a negative log fold-change ratio and that gRNAs of regulatory significance, as well 

as positive control gRNAs, will exceed the specified threshold by at least 2 standard 

deviations. In this section, we perform negative and positive control benchmarking to 

determine if the set of control gRNAs exhibit expected behaviors, and consequently 

diagnose the effects of low bulk read counts in skewing inferences on gRNA 

significance.  
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Analyzing Enrichment Scores of Negative and Positive Control gRNAs 

 The average log fold-change of the set of negative control, non-targeting gRNAs 

in GFPneg cells is negative, indicating overall depletion of negative controls during 

purifying selection. At the level of individual negative control gRNAs, we observe that 

55 gRNAs show no reads in the GFPneg population but are present in the bulk population. 

22 of the 71 negative control gRNAs represented in the GFPneg population are enriched 

(log fold-change ratio > 0) - of the enriched negative controls, a strong majority (91%) 

are marginally enriched, but unexpectedly, 2 negative control gRNAs are significantly 

enriched in the GFPneg population. It is necessary to scrutinize these two strongly 

enriched negative control gRNAs prior to further replicate screening in order to 

determine if their enrichment is caused by aberrant genome targeting that induces BRCA2 

expression loss.  

 The average log fold-change of the set of positive control gRNAs in GFPneg cells 

is positive, upholding the expectation that these gRNAs have a stronger likelihood of 

inducing GFP loss. Individual analysis reveals that 52 of the 70 represented positive 

controls have a log fold-change ratio > 0, and unexpectedly, 4 positive control gRNAs are 

completely depleted in the GFPneg population. While only 7 positive control gRNAs are 

significantly enriched above the 2 S.D. enrichment cutoff, we find that 29 gRNAs are 

enriched above a 1 S.D. enrichment cutoff in GFPneg cells. Thus, the sets of negative and 

positive control gRNAs exhibit differential enrichment patterns, but 22/126 total negative 

control gRNAs (17%) and 22/74 total positive control gRNAs (30%) deviate from 

predicted behaviors. These results illustrate the essentiality of performing future 

biological and technical replicates to measure and filter out the background of random 
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biological variation and technical noise (Quackenbush, 2002). Additionally, the 

performance of control gRNAs is a useful touchstone to evaluate the reliability of the log 

fold-change metric and identify possible caveats that accompany using relative 

abundances to infer regulatory significance of genomic sites.  

 

Effects of Low Read Counts on Enrichment Score Estimations 

 Log fold-change calculations are frequently employed in high-throughput 

sequencing assays to assess quantitative differences across sample states, such as 

differential expression comparisons of transcriptomics data or genome-wide analysis of 

regions preferentially associated with a molecular phenotype (Love, Huber, & Anders, 

2014). We design an assay that enables quantification of log fold-change ratios across a 

large genomic terrain by exhaustive tiling of successive gRNAs such that drop-out of 

certain gRNAs (0 read count tally) in GFPneg and GFPmed populations and system-wide 

variables such as randomized nucleotide insertions/deletions (indels) from end-joining 

repair can be tolerated in the analysis of a BRCA2 functional regulatory architecture. 

However, while genome coverage is a necessary prerequisite for detecting a regulatory 

signal from read count data, it is also important to consider how low gRNA bulk counts 

can exaggerate log fold-change ratios to skew the signal. Figure 12 depicts a histogram of 

bulk read counts across the BRCA2 gRNA library, highlighting a “low count” bin from 1 

to 5 reads.  
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Figure 12. Histogram of BRCA2 gRNA bulk read counts. The low count bulk read range 

(1-5 reads) is highlighted in pink.  

 

 

The relationship between gRNA relative abundance and regulatory site 

importance is complicated by low bulk counts, which injects noisiness into enrichment 

ratio calculations. At low bulk count numbers (<= 5 reads), a single read difference 

between the bulk and sorted population has a magnified effect on the fold-change ratio, 

causing small changes to be construed as statistically significant above the enrichment 

score threshold. This “enrichment exaggeration” effect has a tendency to inflate the log 

fold-changes of gRNAs with low read counts while diluting the signal of gRNA 

candidates at the other end of the count spectrum – as such, it is possible that certain 

gRNAs, even if significantly enriched, may not be the most biologically relevant cis-

regulatory sites for BRCA2 transcription control (Love, Huber & Anders, 2014). 
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Modeling the log fold-change ratio of GFPneg to bulk reads in relation to the bulk counts 

additionally illustrates a pattern of increased variance (heteroskedasticity) in log fold-

changes depending on bulk count above the equatorial zero fold-change line, with 

numerous low count gRNAs landing above the enrichment score cutoff for significance 

(Figure 13).  

 

 

Figure 13. Log2 fold-change of GFPneg to bulk reads vs. bulk counts. Scatterplot of log-

transformed fold change ratios between GFPneg and bulk populations along bulk read 

counts. The horizontal dashed line indicates the enrichment score threshold for gRNA 

significance and the vertical full line indicates the boundary of the low bulk count bin (5 

reads). Dividing the scatterplot into 4 quadrants, the upper left quadrant (pink) is the set 

of significantly enriched gRNAs with low bulk counts and the upper right quadrant 

(yellow) is the set of significantly enriched gRNAs with >5 bulk counts.  
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Determination of gRNA Significance by Absolute GFPneg Counts 

 Here we evaluate gRNA significance to BRCA2 expression by GFPneg read count 

values, and then compare top-ranked gRNAs from an absolute count method of gRNA 

analysis to top-enriched gRNAs determined by the log fold-change metric. This method 

links gRNA abundance in GFPneg cells to functional importance instead of using relative 

abundances, and thus does not rely on the sorted-to-bulk ratio to infer required elements 

for gene expression. First, we rank gRNAs based on absolute GFPneg counts, observing a 

range of 0 to 285 reads. Out of 10576 library gRNAs, 4692 have reads >= 1 (GFPneg 

represented gRNAs). Next, we assess negative and positive control performance: of the 

126 negative control gRNAs, 55 have 0 GFPneg reads, 24 have between 1 and 5 GFPneg 

reads, and 13 have between 6 and 10 GFPneg reads; of the 74 positive control gRNAs, 31 

gRNAs are in the upper 10% of represented gRNAs. Conversely, 10 negative control 

gRNAs are present in the upper 10% of ranked GFPneg gRNAs, and 4 positive control 

gRNAs have 0 GFPneg counts and 12 have between 1 and 10 GFPneg counts. By the 

absolute count method, 8% of negative control gRNAs and 22% of positive control 

gRNAs do not conform to expected depletion or enrichment behaviors, respectively. By 

control benchmarking between the two significance metrics, we find that the absolute 

GFPneg count method exhibits improved negative and positive control performance.  

 Comparative analysis of top-ranked gRNAs by GFPneg count and top-enriched 

gRNAs by log-fold change score demonstrates that the two methods can output divergent 

conclusions of significance for the same gRNA. Of the 10 maximal abundance gRNAs in 

the GFPneg population, 6 do not reach significance by the enrichment score thresholding 
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method. The 2 BRCA2-targeting gRNAs that are considered significant by both criterions 

correspond to the promoter region of N4BP2L1 and an intron within FRY (Table 2). 

 

 

Table 2. 

Top-ranked gRNAs by absolute GFPneg read counts. 

 

Note: Ranked gRNAs by maximum GFPneg counts described by genome location and 

enrichment-based significance decision.  

 

 

Interestingly, these 2 dual-significant gRNAs have high bulk read counts and fall 

below the upper bound of fold-change ratios, while the 3 most significantly enriched 

gRNAs possess low bulk reads and the highest log fold-change ratios. In future iterations 

of this assay, the two significance metrics should be applied in combination to enhance 

robust detection of functional cis-regulatory sites.  
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Detection of Significant Windows of Multiple Consecutive gRNAs 

 Here, we seek to determine the presence of significant regulatory regions in the 

GFPneg population by integrating GFPneg count information across multiple sequential 

gRNAs and performing a statistical test that compares the average GFPneg count of a 

given gRNA window to the GFPneg read count of the set of negative control gRNAs with 

a controlled FDR ≤ 0.05 (Fulco et al., 2016). This enables high-confidence identification 

of gRNA windows (~500 bp span) that exhibit strong association with expression loss 

compared to the distribution of non-targeting gRNA controls in the GFPneg population, 

resulting in clarification of clustering dynamics of significant gRNAs. The output of the 

test is highly interpretable: if there are local clusters of over-represented gRNAs, then the 

corresponding window will be considered significant; if high abundance gRNAs are 

predominantly dispersed throughout the genome and do not concentrate in specific 

regions, then there will not be windows detected as significant. We do not conclude the 

presence of any significant regions, supporting previous analyses of a distributed 

regulatory architecture governing BRCA2 expression. As such, even top-ranked gRNAs 

(maximal read counts) in the GFPneg population do not reside in broader windows of 

regulatory significance.  

 

 

 

 

 



 
 

48 
 

 

Chapter IV 

Discussion 

 

 The regulation of gene expression is highly interactive and dynamic, governed by 

TF motif recognition, cooperativity between TFs to stabilize binding and recruit 

additional factors to cis-modules, physical interaction between bound enhancers and the 

cognate promoter, and assembly of RNA Polymerase II and the full transcriptional 

machinery to initiate gene transcription (Wilczynski, Liu, Yeo, & Furlong, 2012). 

Various aspects of this regulatory choreography are not well elucidated, as it is 

challenging to quantify the regulatory activity of individual CREs in an endogenous 

context, discern the paired responsiveness between a gene-specific promoter and a TF-

bound enhancer, and integrate activating cues across multiple CREs to construct a profile 

of necessary regulatory inputs for target gene expression (Cusanovich, Pavlovic, 

Pritchard, & Gilad, 2014; Wilczynski et al., 2012). Importantly, a lack of functional 

annotation in the regulatory genome impairs interpretation of regulatory sequence 

variations. Genome-wide association studies have uncovered thousands of non-coding 

variants associated with disease traits, but frequently are unable to distinguish silent 

alterations from deleterious mutations that affect functional regulatory sites, obfuscating 

the causal role of specific cis-regulatory variations in disease progression (Ward & 

Kellis, 2012).  
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 Here we devise a CRISPR/Cas-based method to analyze the contribution of cis-

regulatory DNA to gene expression. We find evidence that a spatially dispersed and 

functionally variegated set of genomic regulatory elements controls BRCA2 expression, 

identifying several high-abundance gRNAs located >70 kb away from the BRCA2 

promoter region, deciphering regulatory participation of genomic domains with and 

without conventional chromatin features, and performing a “sliding window” statistical 

test to confirm the broad spread of high abundance gRNAs. We utilize two metrics to 

evaluate the significance of gRNA representation in GFP loss populations, enabling high-

throughput recognition of cis-regulatory sites that are necessary for BRCA2 expression.  

 This section discusses various approaches to validate the regulatory contribution 

of significant gRNAs, and future applications to dissect integrative aspects of gene 

control across multiple functional regions and analyze noncoding mutations that are 

causal to cancerous disease states.  

 

Validation of Predicted Functional Regulatory Sites and Characterization of Off-target 

CRISPR/Cas Activity 

Here we develop a proof-of-concept system to demonstrate the viability of a high-

throughput, unbiased CRISPR/Cas methodology to systematically screen the regulatory 

genome surrounding BRCA2, and we expect to confirm experimental reproducibility by 

analyzing the correlations between biological and technical replicates. Upon execution of 

replicate screening, we recommend the following approaches to validate the regulatory 

significance of cis-sites governing BRCA2 expression: first, apply refined statistical 
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methods to model variability of counts between replicates and correct inflated log-fold 

change estimates for low-count samples; second, assess the false-positive and false-

negative rates of the pooled gRNA library format by testing individual gRNAs; and third, 

analyze the introduction of false positives from off-target effects of CRISPR/Cas 

cleavage.  

 Variability between replicates arises from biological heterogeneity in a cell 

population, technical variations from the sequencing process, and the randomized 

vocabulary of CRISPR-mediated indels at a given target site (Anders & Huber, 2010; 

Rajagopal et al., 2016). A major component of biological variation in the assay is the 

stochastic expression pattern of BRCA2, which is defined by random cellular transitions 

between active and inactive gene production. This “switch-like” property of expression 

can cause cells to shuttle in and out of the GFPneg population independent of cis-element 

targeting, and some of these cells will be flow cytometrically preserved and sequenced in 

the GFPneg pool. We observe that around 18% of the BRCA2-GFP cell population resides 

in an expression “off” state at any given time – although we do not have definitive means 

to discriminate between stochastic and gRNA-driven events of BRCA2 attenuation, it is 

possible to filter out experimental noise from significance estimations by sharing 

information across numerous biological and technical replicates. Upon replicate 

collection, we suggest the application of statistical methodologies to model inter-replicate 

variability and execute controlled shrinkage of log fold-change ratios for low bulk counts 

prior to hypothesis testing of gRNA significance (Love, Huber & Anders, 2014). It is 

important to note that gRNA enrichments between biological replicates also vary as a 

consequence of unique mutant genotypes generated by CRISPR/Cas cleavage, and that 
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increasing the number of biological replicates will strengthen the detection of significant 

gRNAs (precision) above the levels of BRCA2 expression variations, uncertainty of 

enrichment estimations, and randomized transmission of indels.  

 Assessment of false-positive and false-negative rates involves consideration of the 

experimental and computational liabilities associated with a high-throughput screening 

process that affect the accuracy of functional cis-regulatory identification. For the set of 

gRNAs categorized as significant across replicate testing, individual validation of 

induced expression loss in a non-pooled format will provide clarification of true positives 

and false positives. We expect that gRNAs detected as enriched by our assay will 

demonstrate comparable activity in smaller cell populations, and we can construct a 

receiver operating characteristic (ROC) curve to compare the true-positive rate against 

the false-positive rate. We can also determine the false-negative rate by computing the 

fraction of positive control gRNAs that induce GFP loss by individual follow-up tests and 

the proportion of validated positive control gRNAs that are identified as non-significant 

(false negatives) by our high-throughput system.  

 It is important to consider the potential for off-target CRISPR/Cas cleavage to 

affect precision of gRNA analysis and increase false discovery of functional regulatory 

sites. The specificity of Cas9 cleavage is governed by the targeting spacer sequence in the 

gRNA and the PAM recognition sequence in the genome, but the Cas9 nuclease can 

tolerate mismatches between the gRNA-DNA pairing, resulting in unwanted cleavage at 

non-target locations (Cho et al., 2014). To analyze false-positives caused by off-target 

effects, we recommend using off-target prediction tools (CRISPR Design, ZiFiT) to 

determine potential off-target sites of library gRNAs, and to eliminate gRNAs with off-
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target scores from subsequent significance analysis (Marx, 2014). Ideally, a strong 

majority of significantly enriched or high-abundance gRNAs in the GFPneg population 

will be retained and the spatial distribution of significant gRNAs will not be altered by 

off-target filtering.  

 

Future Directions of Functional CRE Annotation in the Regulatory Genome 

 Functional maps of the regulatory genome can help elucidate the combinatorial 

regulation of gene expression patterns across multiple active cis-regulatory sites. 

Currently, little is known about how multiple regulatory regions integrate their activities 

to produce transcriptional responses that vary along spatial and temporal axes. Our 

system of CRE identification enables deeper analysis on the interrelationships and 

convergence of core regulatory elements that control gene expression through high-

throughput introduction of specific gRNA pairs that can act synergistically, 

independently or in opposition to affect gene expression (Wilczynski et al., 2012). 

Having identified functional CREs that regulate a gene of interest such as BRCA2, we can 

also introduce targeted changes to the enhancer sequence that alter binding site 

multiplicity, TF site location and site order to address the roles of motif grammar and 

sequence context in determining the regulatory contribution of genomic elements (Sharon 

et al., 2012).  

 Our method of CRISPR/Cas-based perturbation of genomic regions can be 

harnessed to examine the mutant genotypes that are associated with an expression loss 

phenotype and describe novel sequence motifs that capacitate regulatory function. Cas9 
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cleavage of a targeted genomic site initiates an error-prone process of cellular repair at 

the specified element, resulting in a randomized process of genomic alteration that can 

range from a single nucleotide insertion to a 40-bp deletion (Marx, 2014). Our current 

pipeline assumes equivalence between the mutant genotypes that a single gRNA induces, 

as it does not distinguish between the distinct and variable regulatory mutations that a 

single gRNA produces, and only scores the functional significance of the gRNA based on 

its abundance in GFPneg and GFPmed populations. However, our system can be extended to 

explore cis-regulatory sequence variations that cause expression loss with nucleotide-

level resolution. Future experiments in this area involve individual introduction of select 

library gRNAs for targeted disruption, enumeration of the spectrum of mutant genotypes 

in GFPpos and GFPneg populations by deep sequencing, and algorithmic discovery of 

critical base positions (sequence motifs) within a given regulatory element and mutation 

types that abolish the element’s activity (Rajagopal et al., 2016). The ultimate objective 

of these experiments is two-fold: first, to identify sequence features within a given 

required regulatory element that endow it with its functional activity; and second, to 

capture sequence variations along different positions of a regulatory motif that affect the 

functional capacity of the element (Ward & Kellis, 2012).  

 As an integral DNA repair gene with a high carrier rate and known association in 

breast and ovarian cancer susceptibility, BRCA2 is a prime candidate for regulatory 

mapping. Approximately 1 in 240 individuals carry a pathogenic variant (germline or 

somatic mutation) of BRCA1 or BRCA2, and BRCA1/BRCA2 mutations account for 5-

10% of breast cancers diagnosed in women under the age of 40 and explain ~24% of 

familial ovarian cancer cases (Jervis et al., 2014; Milne & Antoniou, 2016). BRCA2 
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genetic testing is offered through a number of companies (such as Myriad Genetics and 

Quest Diagnostics) in conjunction with a panel of other homologous recombination 

genes, but genetic screening is frequently limited to the coding frame regions and thus 

does not provide a comprehensive picture of breast and ovarian cancer risks (Walsh, 

2015). Our system enables detailed annotation of functional enhancers and regulatory 

motifs with the discriminative power to distinguish between deleterious and passive 

mutations, and in the future, significant BRCA2 elements discovered by our method can 

be decussated with genome-wide association studies of BRCA2-deficient cancers to 

assess the penetrance and pathogenicity of non-coding sequence modifications. 

Translation of functional regulatory maps to the clinic has the potential to extend the 

search coverage of cancer-associated mutations during screening, thus improving the 

accuracy of cancer risk diagnosis, guiding risk management strategies, and facilitating 

informed decision-making for treatment plans (Milne & Antoniou, 2016; Walsh, 2015).  
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Chapter V 

Appendix 

 

Table 3.  

Primer sequences and experimental descriptions.  

 

 

Primer Name Primer Sequence Primer Description

091514_U6gRNA_ROSAHDR_fw

CCAGGTTAGCCTTTAAGCCTGCCCAGAAGACTCCCGCCCA 

GCATGTGAGGGCCTATTTCC 

PCR dummy gRNA plasmid with ROSA26 homology 

arms

091514_U6gRNA_ROSAHDR_rv

GGAGAATCCCTTCCCCCTCTTCCCTCGTGATCTGCA 

TCGCGATTTTACCACATTTGTAGA 

PCR dummy gRNA plasmid with ROSA26 homology 

arms

091514_ROSAHDR_Ext_fw 

ACACCTGTTCAATTCCCCTGCAGGACAACGCCCACACACCAG

GTTAGCCTTTAAG CCTGC 

Extend ROSA26 homology arms for dummy gRNA 

knock-in construction

091514_ROSAHDR_40bpext_rv 

TCTGCTGCCTCCTGGCTTCTGAGGACCGCCCTGGGCCTGGGA

GAATCCCTTCCC CCTCTT

Extend ROSA26 homology arms for dummy gRNA 

knock-in construction

080814_U6gRNA_late_fw TCTACAAATGTGGTAAAATCGCGA 

Genomic DNA PCR primers to verify dummy gRNA 

knock-in in clones

091514_ROSA_downstream_rv GGGAGGGGAGTGTTGCAATA

Genomic DNA PCR primers to verify dummy gRNA 

knock-in in clones

091514_ROSA_upstream_fw TGGGAAGTCTTGTCCCTCCA

Sequencing primers to sequence dummy gRNA 

cassette in clonal knock-in lines

091514_ROSA_downstream_rv GGGAGGGGAGTGTTGCAATA

Sequencing primers to sequence dummy gRNA 

cassette in clonal knock-in lines

072715_sgBrca23_GFPHDR_fw
CTGTAGAGGCGACAGCAGTGAGAAATTAGCTGTTGAGTCT 

GTGAGCAAGGGCGAGGAGCT

PCR amplify GFP plasmid with BRCA2 homology 

arms

072715_sgBrca23_GFPHDR_rv
TTCTCACACGAACACCTATGAGTAGCCTGGAACTGTACAC 

TGAGGAGTGAATTGCGGCCG

PCR amplify GFP plasmid with BRCA2 homology 

arms

072715_sgBrca23_HDRext_fw
GCAAGTAGGGCCCAGGTCCAGGAAGGAGTCTCTCAGGGACT

GTAGAGGCGACAGCAGTGA Extend BRCA2 homology arms for GFP knock-in

072715_sgBrca23_HDRext_rv

ACACACGCTTCAGTAGAGTGCAGCTACTCCCGCCTTCTCACAC

GAACACCTATGAGTAGC Extend BRCA2 homology arms for GFP knock-in

072715_sgBrca23_up_fw
CGGTGATTCCACAAGGAAC

Genomic DNA PCR primers to verify GFP fusion 

with BRCA2

072715_sgBrca23_dwn_rv CCAGGTAGAGCATCTGAGCA

Genomic DNA PCR primers to verify GFP fusion 

with BRCA2

052314_gRNALib_HDR_fw

TGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGT

ATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAA

CACC

PCR amplify BRCA2 gRNA library with ROSA26 

homology arms

101815_gRNALib_HDR_trunc_rv

CTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTT

AAACTTGCTATGCTGTTTCCAGCATAGCTCTTAAAC

PCR amplify BRCA2 gRNA library with ROSA26 

homology arms

082214_gRNA_upstream_fw TTGTGGAAAGGACGAAACACC Library prep PCR 1 primers

091514_ROSA_downstream_rv GGGAGGGGAGTGTTGCAATA Library prep PCR 1 primers

082214_gRNA_upstream_fw TTGTGGAAAGGACGAAACACC Library prep qPCR primers

020515_gRNA_qPCR_rv GCCTTATTTAAACTTGCTATGCTGT Library prep qPCR primers

101714_gRNAPE1_BcX

CTCTTTCCCTACACGACGCTCTTCCGATCTCCAATTTGTGGAA

AGGACGAAACACC Library prep PCR 2 primer to barcode bulk sample

101714_gRNAPE1_BcY

CTCTTTCCCTACACGACGCTCTTCCGATCTGCGTATTGTGGAA

AGGACGAAACACC

Library prep PCR 2 primer to barcode GFP negative 

sample

101714_gRNAPE1_BcZ

CTCTTTCCCTACACGACGCTCTTCCGATCTTGAGC 

TTGTGGAAAGGACGAAACACC

Library prep PCR 2 primer to barcode GFP medium 

sample

010715_LibrarygRNA_PE2
CATTCCTGCTGAACCGCTCTTCCGATCTGCCTTATTTAAACTTG

CTATGCTGT Library prep PCR 2 primer (Illumina PE2)

100615_PE1
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACG

ACGCTCTTCCGATCT Library prep PCR 3 primer (Illumina PE1)

100615_PE2

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGC

TGAACCGCTCTTCCGATCT Library prep PCR 3 primer (Illumina PE2)
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